!
; :] i y
Iy s 1 avR \ { - sl e ¥ y \ = 1 ” |
. - (. ! d y L ' b a
B ‘ i v] , Al) |) A \ | |
—t I : i !)
i] | i - -
N 4 y 7 . 5 y
'] J : 4 { { 4
- 2 o ;] — -4 d - oy - —_— i — =/ X ; \
y (|
— -

~\
Building 1005 0)Games using HTMLS &
Phas rjs Gammg Frameworks

(‘6! Edltlon mcludes V2.X.X &V3. 24+)
............. </

. / ,«'.;,’

(By""’Stephen Gose
|

Phaser Game Prototyping

Building 100s of games using HTML5 & Phaser.js Gaming
Frameworks (6th Edition includes v2.x.x & v3.24+)

Stephen Gose
This book is for sale at http://leanpub.com/LoRD
This version was published on 2021-05-28

ISBN 978-1-952635-04-5

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© Copyright, 1972 - 2017, Stephen Gose. All rights reserved.

http://leanpub.com/LoRD
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Stephen Gose by spreading the word about this book on Twitter!
The suggested tweet for this book is:

I'm making HTML games using Phaser Game Prototyping workbook.

The suggested hashtag for this book is #°BMCube.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#PBMCube

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20making%20HTML%20games%20using%20Phaser%20Game%20Prototyping%20workbook.
https://twitter.com/search?q=%23PBMCube
https://twitter.com/search?q=%23PBMCube

For my students
@ Culpeper Public Schools, Culpeper, VA;
@ ITT Technical Institute, Tempe, AZ;
@ Early Career Academy, Tempe, AZ; and

@ University of Advancing Technology (UAT), Tempe, AZ

CONTENTS

Contents
Distribution Permission i
Supportingwebsite e i
Forwards e i
Disclosures iii
Disclaimer iv
About this Workbook: v
Viewingthe Source Code i Vi
Links and References Vi
Who should use thisworkbook? vii
Your newly obtained skills... viii
Game Design System™ X
Game Studio - Book Series X
Game Studio - Online Courses i Xi
“Making Browser Games” - Books Series Xii
“Making Browser Games” Series -onlineCourses Xiii
Programming COUISES o i it e e e e e e e e e e e Xiii
“Walk-Thru Tutorial” Series - Online Courses Xiii
Part I: Product Management 1
1. Game Studio & Project Preparations 1
1.1 Workstation Setup e 2
Batteries not included ... Web Server Required 3
Deeper Dive: Testing “MMoGs” Locally??l 4
DevelopmentTools e 5
1.2 ProjectSetup e 7
Deeper Dive: Project Data Structure 7
Deeper Dive: And its name shallbecalled 8
Project Directories & Files 10
1.3 Game Project “Concept & Design” 14

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Introduction to Game Design System™ 14

What makesa Good Game? 16

1.4 Preparing a“Gaming Product”, 17
Why areyou doing this? 18

What are you making? 19

What technology willyouuse? 19
“Loose lips sink ships” ... and revenues! 23

What features areiincluded? 25

What featuresare mandatory? 30

How willyou encodeit?. 34

1.5 Game Design Architecture 34
‘ORI ONl e 34
TOP-AOWN" . . 36
BOttOM-UP” . . e e e 37

“Oh! Oh!” vs. Top-Down vs. Bottom-Upvs.OLOO 37

1.6 Game Project Summarized: 38
Concept Development: e 38
DeSIgN: . e 38
Production Encoding: e 39

1.7 SUMMANY . .o e e e e e e e e 40
1.8 Chapter References: i e 41
2. Buildinga Game Prototype 42
2.1 Creating Prototype Mechanisms — 4-Step method 45
Step 0) Preparationand Research 46

Step 1) Generate Game Phases(asneeded). 47

Step 2) Generate code for triggeringevents. 47

Step 3) Generate transition 48

Step 4) Create your Game's Core & auxiliary functions 49

2.2 Using“Box" Graphics 51
2.3 Game Practicum: Box Prototyping 54
Phaser lll Code Review 54
Phaserv2.x.xCodeReview, 59

2.4 3D Prototypes e 62
2.5 "ToTo, ... we're not in Kansas anymore” — Dorothy 64
2.6 Starting Your “Game Recipe™ 66
Step #0) the Front-Door e 66

Task #1-1 Instructions: 67
compareyour Code 69
Mobile “Single Web Page Applications” (SWPA) 69
Cocoon.js - Cloud Alternatives 71

Task #2: LaunchingaGame i 72
Deeper Dive: Launching a Phaser lllGame.. 77

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Game Config” . v v i e e e e 77

2.7 Deeper Dive: To Infinityand Beyond!. 80
2.8 SUMMAIY . o e 81
2.9 Chapter References: it e e e 81
3. Game Phases, Scenes & Roses. 83
3.1 Bare-Bones Prototypes 83
3.2 Using a Phaser Sceneasa“GamePhase” 85
3.3 9 Essential Functions of a Phaser “Scene” 86
34 GamePhasesasModules o 91
“Phaser.Game” — One File to Rulethemall 91
Main.js (aka “launch” orindex.js). 92
BOOt. S . . e e 93
Preload.js o oo o 94
Deeper Dive: Artwork & Resources Security 94
Deeper Dive: Phasercache i i ittt 95
Deeper Dive: Loader Examples. i 97
Splash.js or Language.js? o v vt it 99

Main MeNnuU.JS e 102
Play. S . 105
Deeper Dive:JSModules e 105

3.5 Step #1 of 4: Generate GamePhases. 107
Dynamically Including Game Phases 108
Deeper Dive: D.R.Y.Stand-alone L 110

Step #3 of 4: Game Phase Transitions 111
Deeper Dive: The CMS “Game Shell” 112
Deeper Dive: Whentouseagameshell 113

3.6 Encoding Phaser Scenes as a “Game Phase” 114
Vanilla, Chocolate, or Strawberry Creme-filled? 114
Overriding Essential Functions inside Phaser.Scene 116
Creating Scenes using ES5 Prototypes 116
Creating Scenes using Phaser.Class. 118
Creating Scenes by extending Phaser.Class 118

ES6 Considerations: “Strawberry” 119
Creating Scene Configurationfiles 120
Deeper Dive: Defining Other Scene Properties 121
Deeper Dive: ESO9Modules. 124

3.7 SUMMANY . o e e 125
3.8 ChapterReferences: i e e 126

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Part Il: Mechanisms vs. Mechanics 127
4. Building Game Prototypes, Mechanisms & Tools 128
4.1 Task#3:Mini-Me 129
Creating an Avatar - “visual display” 129
Deeper Dive: Display selected frames from a sprite-sheet. 132
Deeper Dive: Using Baseb4 Images 133
Creatingan Avatar'smetadata 134
Deeper Dive 3.19+ Tweens it 136

4.2 Task #4: Moving Game Elements 137
Deeper Dive: Phaser lll InputManager. 140
Deeper Dive: Future Proofing your sourcecode. 141
Deeper Dive: Configuring the Keyboard (Phaser v3.16+ updated)143

4.3 Task#5:Thingsthatgobump 143
Walls and Camera boundaries 143
Interior Decoration 145
Deeper Dive on Game Objects hitareas. 147
Doors, Knobs,and Buttons 149
Deeper Dive: Writing Optimized Code 154
Deeper Dive: Buttons as a “Class” or “Scenes"?!I? 155
Deeper Dive: Button size considerations 155
Deeper Dive: Adding Buttons & Mobile Touch 156

4.4 Task #6: When Worlds Collide o o L. 157
4.5 Task#7:Itscurtainsforyou... 161
4.6 Other Game Mechanics Categories 165
4,7 The Finish Line: You're AWESOME ... Gloat, Gloat... 169
4.8 Chapter SourceCode &Demo 170
4.9 SUMMANY . .t e e 171
4,10 ChapterReferences i 172
5. Dem’'sfightin"words 173
51 LaunchingWeb Sockets i 173
52 DynamicCombatMenus e 175
53 So,GiveMeSomeSpace... 178
Melee Weaponso oot 181
Ranged Weapons i 181

54 OO! OW! AH!, OW! Stayin’ alive! Stayin"alive! 185
Grid-lessCombat e 185
Grid-edCombat. 188

55 Tactical Tiled-Maps.o i 188
5.6 Squares and Checkered Grids 189
Deeper Dive: Phaser Il Grids 192
Hexagonal Grids e 194

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Deeper Dive: Real hexagonal grids 195
Squishes 196

5.7 Rules of Engagement: Take 5 paces, turn,and 196
Beenthere..donethat.. 196

58 “Where'sthe beef?” e 197
Click-fest 198
Guitar hero - Timeto getitRight! 200

Days of our Lives-Drama Theater 201

SCA Virtual “Fighter Practice” by Steve Echos 202
EnGuardmethod 204

Yeap! Ya betcha'‘urlifel 205

5.9 Storynarrative 206
5.10 Frisking, Fondling, or Groping i 207
511 ChapterSourceCode e 207
5.12 Complete Combat Prototypes 208
513 Summary 208
514 FOOtNOteS 209
6. Game Mechanism Components 211
6.1 Phaserlllinline script-Reviewed 211
Phaser v2.x.x inline script- Reviewed 212
Adding Display objects 212
Adding Control Mechanisms 218
Adding Buttons & MobileTouch 219
Phaser lll “Actions” 221
CompoNeNntSo e 222

DOM . e 224
Game Objects 224
System Components 224

6.2 TileMap 225
Tilemap Rendering - new Dynamic method 225
Tilemap Rendering - new Staticmethod 226

6.3 PhaserlllSystems 227
V3 BOOt . . . 227

V3 Cache . .. 231
v3Device Manager. e 232
VIEVENTS . . . e 232
v3Iinput Manager 234
Deeper Dive: v3.16+ New Keyboard rewrite! 235

V3 Loader 237
V3SoUNd ... 239
v3Scene Manager e 240
v3Texture Manager i e 243

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

viTween Manager.ottt 244
Deeper Dive 3.19+ TwWeens ittt 245

6.4 Phaser3 Finish Line: You're AWESOME ... Gloat!, Gloat! 245
Phaser v3 Source Code & Demos 245

6.5 V3ANIMAtioONS 246
Deeper Dive: History of Animation 248
AnimationToday 249
Animation Recommendations o .. 250
Frame Rates Recommendations 251
TWEEBNS . o 252

6.6 Camera & VIiewportS. it 253
6.7 SUMMAIY . . . e 256
6.8 Chapter Footnotes: e 256
7. Whazzz-sUP!.... HUD Development 258
7.1 HUD Housing Development 259
7.2 HUDasPanels 263
7.3 HUDPanelsoutsidethe Canvas?!? 264
7.4 HUDDEMOS 266
7.5 SUMMANY . . e 268
7.6 FOOtNOteS 268
8. Don’t make me think or “Artificial Intelligence for Dummies” 269
8.1 The 6 of 9" 269
8.2 Chasing e 270
8.3 Evading 270
8.4 Patterns 271
8.5 Fuzzy logiC 273
8.6 Finite State Machines (FSM) i 273
FSM Resolving Combat Outcomes. 275

FSM Resolving Al behaviors 277

8.7 Recursive WorldFeedback 279
Probability DataTables 280

8.8 Complete AIPrototypest 281
8.9 ChapterSourceCode 281
.10 SUMMArY . . . 281
.11 Footnotes. 282

Part Ill;: “Walk-thru” Tutorials & Resources 2s3

9. Game Prototype Libraries 284
9.1 Walk-through Tutorial Series 284
Introductory (Difficulty Rating #1) 284

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Intermediate (Difficulty Rating #2to#3). 285

Advanced — “The Full Monty!” (Difficulty Rating #4) 285

9.2 References: 287

10. What's next? e 288
10.1 Game Distribution & Marketing 288
Introduction: 8-Step Deployment Method. 288

10.2 BookReview Protocol 290
10.3 Tell the world aboutyour game! 292

Appendix 293

More ReSOUKCeS 294
JavaScript Garden 294
Additional Appendices 294
Other resSOUrCeS: . . . v vt e e e e e e 295
Sellingyour Game ASSetS o ittt 296

Appendix: Online Game Development 298

Appendix: Making WebXR Games! 299

Appendix: Phaser llI Plugins 301

Appendix: Network Concepts 302
Security CONCRIMNS ot e e e e e e e e e e e e 303

Protecting Game Assets 303
Useof <iframe>. 304
Bad Bot! 305
Other Considerations it e e e 307
Game Services (Back-end) 307
CMS - Server-side Frameworks e 310
Index Page (Non-Traditional Method) 311
High Scores Services. i 312
Membership Login 313
Production release version. 314
Codelgniter & Phaser Integrated CMS i 315
Codelgniter Prep Step-by-Stepo 318
Game Shell (clickdummy) 320
SUMMAIY . o e e e e 323
Chapter FOOtNOtes 323

Appendix: “How to Start a WebSocket”. 324

Testing Your Browser e 326

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

WebSocket Protocol Handshake 327
Deeper Dive: WebSocket APl 328
Sample Source Code: Client-side WebSocket 334
Step #1: GaMe index PAZE .« v v v i v e e e 336

Step #2: Generate Eventhandlers. 337
Appendix: Project Mgmt Methods 343
Prototyping o 346
Basic Principles 346
Strengths:. 347
Weaknesses: 348
Situations where most appropriate:. o o .. 349
Situations where least appropriate: oo 350
Incremental 350
Basic Principles: 350
Strengths:. 351
Weaknesses: 352
Situations where most appropriate:. 352
Situations where least appropriate: o oo oL 352

SpIral . 353
Basic Principles: 353
Strengths:. 354
Weaknesses: e 354
Situations where most appropriate:. o o .. 355
Situations where least appropriate: oo oo .. 355

Rapid Application Development (RAD) 355
Basic Principles:®** 356
Strengths: 357
Weaknesses: 358
Situations where most appropriate: 359
Situations where least appropriate:. oL 360
Test-Driven Development 361
Basic Principles: e 361
Expected Benefits 361
CommonPitfalls e 362
Typical team pitfallsinclude: 362
SignsofUse 362

Skill Levels e 362
Further Reading on Test Driven Development.. 363

Game Project Management Foot Notes: 363
Appendix: Consolidated Phaser Examples 364
Phaser Il (1stto 6th editions): o o i i e e e e e e 364

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Demonstrations: e 364
Searching for Game Mechanics and Mechanisms. 364
Content Management System embedded in HTML5 <canvas> tag. . . .364
Phaser lll Examples o 365
Phaser Il Game Prototyping Demonstrations 366
Game Mechanics & Mechanisms identified. 367
WebSockets, Dynamic Menus, Combat,and FSM 367
Appendix: Game AutomationTools 369
Deeper Dive: Database Protection Considerations 371
Database Schema Construction (Copyright-able!!) 371
Database Record Construction 373
Database structure 374
Remote Codebase Using AppML 374
Building an AppML application 376
Sample AppML codebase (PublicAccess) 376
Remote codebase Using JSON 377
Per-user storage e 377
Chapter Source Code & Demo i 379
SUMMAIY . o e e e 380
Chapter References i i 381
Appendix: OLOO - Safe JavaScript 382
Deeper Dive: JS Delegation (aka “Inheritance™) 384
Theoldway 385
Objects Linking to Other Objects (OLOO) i ... 391
Compare your COAe it e e 392
Object.create 392
Exercise Lesson O:. 394
Game Singletons 395
Deeper Dive: Object Manipulation objectsinES5/6 397
LeSSON SUMMAIY ot e e e e e e e e e e 398
Resource References: 398
Appendix: Common Pitfalls 399
Lacking Debugging ToOIS? 399
Deeper Dive: Console Commands oo i i 400

Same “Name-spaces” 407
Callbacks o 407
Missing Documentation e 408
Deeper Dive: Whatis Dragon Speak 409

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Answers to Exercises 410
AppPEeNdiX .. 410
Appendix: OLOO - Safe JavaScript i 410

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Distribution Permission i

Distribution Permission

All rights are reserved under the Pan-American and International Copyright Con-
ventions. You may not reproduce this book, in whole or in part, in any form or by
any means electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system that is now known or hereafter invented,
without written permission from the author. Brief quotations in critical reviews or
articles are permitted without the author’s permission.

Supporting website

https://makingbrowsergames.com/

Thank you for your patronage! | truly appreciate it.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/

Forwards ii

Forwards

* by Terry Paton: — “Copying or imitating is an awesome way to learn how to
do something, traditional artists have done it for centuries. This practice was
generally considered a tribute, not forgery', — If you want to get better at
something, then trying to do it like those who already have mastered it.
Look at the choices they have made and consider why they made those decisions,
often important things are hidden in subtlety, and the only way we learn those
subtleties is by creating the same thing. The balance here is stealing versus
inspiration. “Ripping off” ideas from someone else in a way that harms their
hard work compared to producing something which is inspired by their work.
If you plan on publicly releasing something, | recommend you should inject some
of your own vision into any game you make, take a concept but then extend or
change it to create something of your own.”

Thttp://en.wikipedia.org/wiki/Art_forgery

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://en.wikipedia.org/wiki/Art_forgery
http://en.wikipedia.org/wiki/Art_forgery

Disclosures iii

Disclosures

+ Stephen Gose LLC reserves the right, at any time and without notice, to change
modify or correct the information contained in this publication.

* | refer to “Phaser v3.16+" under a moniker of “Phaser Ill” to distinguish it as a
clear demarcation from previous versions.

In this book, | am not paid to recommend any of the tools or services presented
but | do use affiliate links. Here's how it works. When | find a tool, service, author’s
content, idea, or product | admire, | investigate if they have an affiliate program. If it
exists, | get a special link and when you click it or confirm a purchase | receive a small
percentage from that activity. In short, it's the same methods everyone finds on any
typical website; only now, those links are available inside ebooks as substitute for
“crowd-funding”.

| think everyone, with any business savvy?, should do this too; especially when you
recommend your own books, services, and tools. Amazon and others offer affiliate
links. Whenever you recommend anything (hopefully this book? hint, hint!), use
your affiliate links.

By law, | must disclose that | am are using affiliate links. Amazon, in particular, requires
the following.

“We are a participant in the Amazon Services LLC Associates Program, an affiliate
advertising program designed to provide a means for us to earn fees by linking
to Amazon.com and affiliated sites.”

2https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html
https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html

Disclaimer iv

Disclaimer

+ All the information, contained within, is for the convenience of its readers. It
is accurate, as can be reasonably verified, at the time of original publication.
However, this content may not reflect migrating industry recommendations after
the original publication date for ECMA-2623 (also known as (aka) “JavaScript”,
ES5, ES6, ES7, ES8, ES9 or ES10) or for any version of the Phaser.JS Gaming
Frameworks.

+ All websites listed herein are accurate at the time of publication but may
change in the future or cease to exist. It is best to research these “dead
websites” links in “The WayBack Machine”*. The website references does not
imply my endorsement of a site’s contents.

* There are no guarantees nor warranties stated nor implied by the distribution
of this educational information. Using this information is at the reader’'s own
risk, and no liability shall carry to the author. Any damage or loss is the sole
responsibility of the reader.

Warning: The Phaser newsletter dated 21 September 2018 includes projected
development on Phaser Ill. In August 2017, many features in pre-v3.16.x
were removed. There were many business decisions on why they were re-
moved based on financial support and sponsorship deadlines imposed. Phaser
v3.14.0 (released OCT 2018) saw the return of many deleted features. In other
words, Phaser v3.14.0 returns to the original vision of January 2017 after
several rewrites. Phaser v3.15+ was the next massive re-write (released OCT
2018); followed by v3.16.0 DEC 2018. Phaser v3.5 is nearing completion with
more “breaking changes”.

My best guess is that any books, tutorials, blogs, and “how-to” articles — written
before to Phaser v3.16+ (NOV 2018) — are not fully functional with Phaser Il and
should be re-written to the Phaser v3.24+ minimum standard baseline. Hence the
reason this book is dedicated and updated to the official Phaser 1l (release v3.24+)
and has removed any references to previously released versions. (See newsletter
#139 dated 20190211) “Breaking Changes™

3http://www.ecma-international.org/publications/standards/Ecma-262.htm
4https://web.archive.org/
Shttps://madmimi.com/p/fob3bd

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/
https://madmimi.com/p/f0b3bd
https://madmimi.com/p/f0b3bd
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/
https://madmimi.com/p/f0b3bd

About this Workbook: \Y

About this Workbook:

This 6th edition offers additional production methods, beyond the former editions,
| call the Game Design System™ from which we’'ll create Game Recipes™. Expert
game developers understand the “Don’t Repeat Yourself” (D.R.Y.) concept, yet few
have taken a step back to the “10,000-foot view"® (i.e., “Executive level thinking”) on
their game production pipelines. We'll do that aerial view in this book as we build
gaming prototypes, linked to “Headless” Game Design™’ mechanics, and artwork.
Then, “nose dive head-first” directly into game prototyping. | believe you will be
surprised how quickly and easily we can build 100s of games using this Game Design
System™ with its Game Recipes™ tools.

This workbook is intended to be a hands-on guide for “HTML5 Game Development”
with an emphasis on the Phaser JavaScript Gaming Frameworks. Yet, our game
production and project management could apply to any browser-based gaming
framework! 1t's not exclusive to the Phaser Il JS Gaming Framework.

I'm assuming you already have a “working knowledge” of the “Front-end” technolo-
gies® — specifically HTML5°, €$53'°, and JavaScript'' — in your arsenal. | know that
many senior “full-stack” and “front-end” developers do; but, | have received dozen
of emails about this book's former editions as being “... too difficult for those
just starting their own game studios.” Therefore, if learning any of these web
development technologies'? is what you're initially seeking, then | recommend
a quick visit to W3Schools'3 as your first FREE starting point. By following their
instructions, you will learn a complete foundation in HTML5, CSS, and JavaScript in
a matter of hours! ... then, return to this workbook and learn how to combine
those technologies into your own game creations.

6https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
7https://leanpub.com/hgd
8https://roadmap.sh/frontend
http://amzn.to/2nAYjxr
10http://amzn.to/2mG01Zv
1Thttps://amzn.to/2IW9RZj
12https://github.com/kamranahmedse/developer-roadmap
13http://www.w3schools.com/js/default.asp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
https://leanpub.com/hgd
https://roadmap.sh/frontend
https://roadmap.sh/frontend
http://amzn.to/2nAYjxr
http://amzn.to/2mG01Zv
https://amzn.to/2Iw9RZj
https://github.com/kamranahmedse/developer-roadmap
https://github.com/kamranahmedse/developer-roadmap
http://www.w3schools.com/js/default.asp
https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
https://leanpub.com/hgd
https://roadmap.sh/frontend
http://amzn.to/2nAYjxr
http://amzn.to/2mG01Zv
https://amzn.to/2Iw9RZj
https://github.com/kamranahmedse/developer-roadmap
http://www.w3schools.com/js/default.asp

About this Workbook: Vi

Viewing the Source Code

This e-Book includes source code which is optimally viewed in single-column, land-
scape mode with the font size adjusted to a comfortable setting.

Links and References

The Internet is a living, dynamic resource of information that doubles every 35 days!
There are several reasons this book points to external content. Because —

1. It provides you the “research path” | took to develop and present my ideas. It
takes all the guess-working and personal research out of it. This saves you 100s
of hours of your personal free-time searching for supporting facts and opinions.

2. It avoids copyright infringements and provides the required acknowledgments
to “Open-source authors” for use of their contributions and resources under the
various licenses and EULA'4,

3. It provides external authors an opportunity to recant or update their content.
(Kindly review Phaser v3 DevLogs as an example.) Technology is a fast-moving
target, and what was once “cutting edge” becomes obsolete. For example, the
use of “window.onload” was recanted by its originator back in 2014 as an unsafe
method for launching browser applications. (see Phaser Game Design Workbook,
pages 15-22"> for complete details.)

4. 1t reduces your initial purchase price from the reams of “padded source code
content” — don’t make me embarrass those authors who do this — while
keeping your investment in this book’s information “fresh”. This book would be
triple the size and “4x” the price if | had embedded all of the source code tutorial’s
as many others do.

All the source code is written in “pure” JavaScript (JS) and the Phaser.js Gaming
Frameworks; it doesn’t use any additional “abstraction layers” such as “TypeScript”,
“CoffeeScript”, or “JQuery” for obvious reasons.

You'll find your Bonus content, source code, and references in ...

* the footnotes links,

"4https://choosealicense.com/licenses/
1Shttp://leanpub.com/phaserjsgamedesignworkbook/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://choosealicense.com/licenses/
http://leanpub.com/phaserjsgamedesignworkbook/
http://leanpub.com/phaserjsgamedesignworkbook/
https://choosealicense.com/licenses/
http://leanpub.com/phaserjsgamedesignworkbook/

About this Workbook: Vii

+ external reference links, and in the file which are available directly from the
supporting website — without registration nor private logon thus keeping your
personal information safe!

+ or from the latest and most current updates inside your LeanPub.com personal
library (assuming that you're a LeanPub patron’®).

Who should use this workbook?

This workbook targets both the learning novices'’” — those who enjoy “learning by
doing” using “deliberate practice”'® — and the experienced expert programmers'?®
in web-application development; and, of course, those who want a finished game
from their own designs and efforts. If you are interested in making browser games,
especially for the Mobile/WebXR markets?°, then this book is a perfect choice
along with its companion volumes: the Headless HTML5 Game Design™?2", Phaser
Game Starter Kit Collection?2, Phaser Game Design Workbook?3, and Phaser Game
Prototyping?*. With this in mind, you will do a lot of writing, thinking, and coding in
JavaScript throughout this workbook. You may prefer using paper (external physical-
or soft-“paper”) to organize your development ideas and processes.

I've “gone to great lengths”?> to make this book “skim-friendly” — even for my
International customers by emphasizing important concepts in bold font type. | have
provided links to “English (American) Jargon phrases”?® that will help translate this
content directly into your native language. | use “Notes”, “Tips”, “Warning” and “Best
Practices” icons to encapsulate those ancillary topics for your further education from
other experts in the gaming industry.

| further assume that many readers will want to use this book to quickly build
their bespoke?’ game products. So, I've included references to other similar game
examples, gaming engines, frameworks, GUI game kits?8, indie developers, authors,
their “open-source” contributions, articles, books, artwork??, application tools, and
their wisdom.

16https://leanpub.com/u/pbmcube
17https://www.nap.edu/read/9853/chapter/5
18https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
19https://www.nateliason.com/blog/become-expert-dreyfus
20https://immersiveweb.dev/

21http://leanpub.com/hgd

22https://leanpub.com/p3gskc
23https://leanpub.com/phaser3gamedesignworkbook
24https://leanpub.com/phaser3gameprototyping
25https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
26https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
27 https://www.urbandictionary.com/define.php?term=bespoke
28https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
29https://www.gamedevmarket.net/?ally=GVgAVso)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://www.nap.edu/read/9853/chapter/5
https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
https://www.nateliason.com/blog/become-expert-dreyfus
https://immersiveweb.dev/
http://leanpub.com/hgd
https://leanpub.com/p3gskc
https://leanpub.com/p3gskc
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/phaser3gameprototyping
https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
https://www.urbandictionary.com/define.php?term=bespoke
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://leanpub.com/u/pbmcube
https://www.nap.edu/read/9853/chapter/5
https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
https://www.nateliason.com/blog/become-expert-dreyfus
https://immersiveweb.dev/
http://leanpub.com/hgd
https://leanpub.com/p3gskc
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/phaser3gameprototyping
https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
https://www.urbandictionary.com/define.php?term=bespoke
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://www.gamedevmarket.net/?ally=GVgAVsoJ

About this Workbook: Viii

In summary, if you are a hobbyist, independent game developer, student, teacher,
or start-up game studio you will find a wealth of information on both product
and project management, game design, game mechanisms, game mechanics, and
“insider’s tips” about the Phaser JavaScript Gaming Frameworks.

If you'd like a link to your finished games in future updates, please use my
contact information on LeanPub.com?®’ or Amazon.com Author’s page3'.

Your newly obtained skills...

By the end of this workbook, you'll have integrated into your own bespoke32 game
design:

+ Step-by-step methods migrating older Phaser v2.x.x into Ill.

* Built “future-proof” and flexible game architectures.

+ Used the “Headless” Game Design System™ which creates Game Recipes™33
from automated tools.

+ Demystified Web Sockets for optimized game deployments.

* Adopted processes for business product/project management and “extreme
programming’34.

+ Organized a standardized file structure for general game developments;

* Used a blank game template to scaffold further game projects;

+ Converted and adopted new changes in the Phaser Il API.

* Managed groups and layers of game objects with Phaser Frameworks;

* Imported resources and game assets;

+ Displayed, animated, and moved game avatars on various screen renderings;

* Incorporated sound effects (sfx) and theme music across various game phases;

* Deployed “heads-up display” (HUD) on game scenes both inside and outside the
canvas;

* Used customized web fonts;

* Incorporated multiple game-inputs (touch, multi-touch, accelerometer, mouse,
and keyboard);

* Implemented several physics systems in both Phaser Gaming Frameworks;

+ Created and managed various game deployments (CMS, PWA, & SWPA);

30https://leanpub.com/u/pbmcube
31https://www.amazon.com/kindle-dbs/entity/author/B0TN780CUF?_encoding=UTF8&node=283155&0ffset=0&

pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
32https://www.urbandictionary.com/define.php?term=bespoke
33https://www.nateliason.com/blog/become-expert-dreyfus
34https://en.wikipedia.org/wiki/Extreme_programming

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.urbandictionary.com/define.php?term=bespoke
https://www.nateliason.com/blog/become-expert-dreyfus
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming
https://leanpub.com/u/pbmcube
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.urbandictionary.com/define.php?term=bespoke
https://www.nateliason.com/blog/become-expert-dreyfus
https://en.wikipedia.org/wiki/Extreme_programming

About this Workbook:

* Managed permanent cache assets across game phases;
+ Optimized games for various mobile devices;
* Integrated several 3rd-party scripts and services.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Design System™ X

Game Design System™

“Game Recipe™” Courses (purchased separately on specific gaming mechanics) us-
ing the Game Design System™ management method and concepts. These courses
enhance your skills and are available from my educational websites (hosted by
LeanPub.com3>) or Training By Blackboard, Books, and Browsers3°.

You can earn your Game Development Certifications from my online courses?’,
from Udemy (102-pages of online courses!)3® or Zenva (my personal favorite!)?°; to
enhance your resume.

Game Studio - Book Series

Learn to build a Gaming Studio for passive (or secondary) income!

« Game Studio Starter Kit Bundle*® — Start your own Game Studio for passive or
secondary income! This bundle shows you how to develop product and project
management in the gaming industry from my 23 years of experience. You'll learn
how to quickly build game prototypes in any genre, launch, and then distribute
your games. You'll also have 16+ popular game genres to choose for your product
line with 19 subgenres to to expand upon. Learn how to capture various game
industry market shares.

* Headless HTML5 Game Design (Vol. I)*" — Creating Cloud-based “Content-as-a-
Service” (CaaS) games for Any Gaming Device.

* Making Massive Multi-Player Online games (Vol. Il)*> — Creating Multi-Player
Online games using the Full-stack, White-labeled, and “Content-as-a-Service”
(CaaS) Architectures.

35https://leanpub.com/u/pbmcube

36http://tbcube.com./

37https://leanpub.com/u/pbmcube

38https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%
2Fcourses%2Fdevelopment%2Fgame-development%2F%3Fsearch-query%game%2Bdevelopment

39 https://academy.zenva.com/?a=47&campaign=RPGCaaS

40https://leanpub.com/b/gssk

4 https://leanpub.com/hgd

42https://leanpub.com/mmmog

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://leanpub.com/u/pbmcube
http://tbcube.com/
https://leanpub.com/u/pbmcube
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://academy.zenva.com/?a=47&campaign=RPGCaaS
https://leanpub.com/b/gssk
https://leanpub.com/hgd
https://leanpub.com/mmmog
https://leanpub.com/u/pbmcube
http://tbcube.com/
https://leanpub.com/u/pbmcube
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://academy.zenva.com/?a=47&campaign=RPGCaaS
https://leanpub.com/b/gssk
https://leanpub.com/hgd
https://leanpub.com/mmmog

Game Design System™ Xi

* Making Multi-Player Online games*3 — A Game Development Workbook for any
Phaser JavaScript Gaming Framework. This book is a thorough review of MMoG
mechanics for both client- and server-side APIs using Block-chain, WebRTC, RPC,
MoM, SSE, Cloud Services, and Web Sockets (Berkeley). I do not recommended
for entry-level developers; mastery of several IT technologies** is required.

* Phaser JS Game Design Workbook*> — 6th Edition for v2.x.x and v3.16+ —
guidance on project and product management in the gaming industry.

* Phaser Game Prototyping*® — 6th Edition for v2.x.x and v3.16+

* Phaser Game Starter Kit Collection®’ — 6th Edition for v2.x.x only.

* Phaser Ill Game Prototyping*® — 6th Edition for v3.16+ only.

* Phaser Ill Game Starter Kit Collection*® — 6th Edition for v3.16+ only.

Game Studio - Online Courses

* Phaser Game Design Workshop Course>° — guidance on programming your first
game in v2.X.X.

* Phaser Starter Kit Game Collection>" for either Phaser v2.x.x or Phaser llI.

* Phaser 1ll Game Design Workshop Course>> — guidance on programming your
first game in v3.16+.

« Game Studio Starter Kit Collection (basic)>> — 3 courses are included in this
Business starter kit for Game Studios ... “Making Dating & Quiz Browser games”,
“Making Online Dress-UP Fashion games”, and “Making Puzzle Browser games”
with Phaser v2.x.x.

* Ultimate Game Studio Starter Kit Collection>* — 6 course-set are included in this
Business starter kit for Game Studios. Build your own Game Studio business for
as little as $17.99.

43https://leanpub.com/rrgamingsystem
44https://github.com/kamranahmedse/developer-roadmap
45https://leanpub.com/phaserjsgamedesignworkbook
46https://leanpub.com/LoRD
47https://leanpub.com/pgskc
48https://leanpub.com/phaser3gameprototyping
49https://leanpub.com/p3gskc
50https://leanpub.com/c/phasergamedesignworkshop
51https://makingbrowsergames.com/p3gskc/
52https://leanpub.com/c/p3gdc
53https://leanpub.com/set/leanpub/gsskit
54https://leanpub.com/set/leanpub/ugsskitc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/rrgamingsystem
https://github.com/kamranahmedse/developer-roadmap
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://leanpub.com/pgskc
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/p3gskc
https://leanpub.com/c/phasergamedesignworkshop
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/c/p3gdc
https://leanpub.com/set/leanpub/gsskit
https://leanpub.com/set/leanpub/ugsskitc
https://leanpub.com/rrgamingsystem
https://github.com/kamranahmedse/developer-roadmap
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://leanpub.com/pgskc
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/p3gskc
https://leanpub.com/c/phasergamedesignworkshop
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/c/p3gdc
https://leanpub.com/set/leanpub/gsskit
https://leanpub.com/set/leanpub/ugsskitc

Game Design System™ Xii

“Making Browser Games” - Books Series

Individual Chapters — sold separately from the “Phaser Starter Kit Game Collections
books>> — contain both the Phaser v2.x.x and Phaser “Ill” (3.16+) examples, source
code, and game license. Find and select your favorite game genre.

Chapter 1 — Action & Arcade>®

Chapter 2 — Adventure Mazes & Story Plots>’

Chapter 3 — Collapsing Blocks>2

Chapter 4 — Connect 4 & Go~°

Chapter 5 — Dating Simulations & Quizzes®°

Chapter 6 — Defensive Towers®' — the typical tower-defense constructions with two
innovative variations.

Chapter 7 — Dress-Up & Fashion®?

Chapter 8 — Hidden Objects®3

Chapter 9 — “Jump to Capture”®*

Chapter 10 — Mahjong — available only in the “Phaser Starter Kit Game Collec-
tions”®> volumes or the “Memory Match” mega-chapter.

Chapter 11 — Match-3 & Trace 3+¢°

Chapter 12 — Memory Match®’ for Pairs (either “Open” or “Hidden”) & Sequence
matching — a “mega-chapter” with 5 games and licenses.

Chapter 13 — Music & Rhythm®8

Chapter 14 — Puzzle (both Jigsaw & Sliders)®°

Chapter 15 — Role-Playing Character Development — available only in the “Phaser
Starter Kit Game Collection”’° volumes. Role Playing Content-as-a-Service (CaaS)’’

— a "mega-chapter” developing content for B2B, Affiliate Syndicates, and clients is
NOT available in the “Phaser Starter Kit Game Collections”’2 volumes.

Chapter 16 — Simulations — available only in the “Phaser Starter Kit Game

55https://makingbrowsergames.com/p3gskc/
56https://leanpub.com/mbg-action-arcade
57https://leanpub.com/mbg-adventure
58https://leanpub.com/mbg-collapse
59https://leanpub.com/mbg-connect4
60https://leanpub.com/mbg-dating
61https://leanpub.com/mbg-towers
62https://leanpub.com/mbg-dressup
63https://leanpub.com/mbg-hidden
64https://leanpub.com/makingjump2capturebrowsergames
65https://makingbrowsergames.com/p3gskc/
66https://leanpub.com/mbg-match3
67https://leanpub.com/mbg-memory
68https://leanpub.com/mbg-music
89https://leanpub.com/mbg-puzzle
7Ohttps://makingbrowsergames.com/p3gskc/
7Thttps://leanpub.com/mbg-rpg
72https://makingbrowsergames.com/p3gskc/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-action-arcade
https://leanpub.com/mbg-adventure
https://leanpub.com/mbg-collapse
https://leanpub.com/mbg-connect4
https://leanpub.com/mbg-dating
https://leanpub.com/mbg-towers
https://leanpub.com/mbg-dressup
https://leanpub.com/mbg-hidden
https://leanpub.com/makingjump2capturebrowsergames
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-match3
https://leanpub.com/mbg-memory
https://leanpub.com/mbg-music
https://leanpub.com/mbg-puzzle
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-rpg
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-action-arcade
https://leanpub.com/mbg-adventure
https://leanpub.com/mbg-collapse
https://leanpub.com/mbg-connect4
https://leanpub.com/mbg-dating
https://leanpub.com/mbg-towers
https://leanpub.com/mbg-dressup
https://leanpub.com/mbg-hidden
https://leanpub.com/makingjump2capturebrowsergames
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-match3
https://leanpub.com/mbg-memory
https://leanpub.com/mbg-music
https://leanpub.com/mbg-puzzle
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-rpg
https://makingbrowsergames.com/p3gskc/

Game Design System™ Xiii

Collections”’3 volumes.
Chapter 17 — Strategy & Tactics’*

“Making Browser Games” Series - online Courses

* Making Browser games — Tower Defense’> with Phaser v2x.x and v3.16+.
* Making Dating & Quiz Browser games’® with Phaser v2x.x.

* Making Online Dress-UP Fashion games’’ with Phaser v2x.x.

* Making Peg Solitaire Browser games’8 with Phaser v2x.x.

* Making Phaser 11l Peg Solitaire Browser games’® with Phaser v3.16+.

* Making Puzzle Browser games&® with Phaser v2x.x.

* Making RPG Browser games?®' with Phaser v2x.x.

Programming Courses

See the growing catalog of courses for college credit, home schooling or personal
skills development at Training by Blackboard, Books & Browsers®>

* Using JavaScript OLOO in game development?3 (learn JavaScript development)
“Walk-Thru Tutorial” Series - Online Courses

These courses are “step-by-step” guides to create specifically designed games with
some explanation as to why we do this (which is typically found in most online
tutorials).

* “Walk-Thru Tutorial Series” - Blood Pit™ (IGM)3*

73https://makingbrowsergames.com/p3gskc/
74https://leanpub.com/mbg-strategy
7Shttps://leanpub.com/c/mbg-p2p3-towerdefenses
76https://leanpub.com/c/mbg-dating
77https://leanpub.com/c/mbg-dressup-p2
78https://leanpub.com/c/mbg-peg-p2
7https://leanpub.com/c/mbg-peg-p3
80https://leanpub.com/c/mbg-puzzle-p2
81https://leanpub.com/c/mbg-rpg-p2
82https://www.tbcube.com/
83https://leanpub.com/c/jsoloo
84https://leanpub.com/c/bloodpit-wtts

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/mbg-strategy
https://leanpub.com/c/mbg-p2p3-towerdefenses
https://leanpub.com/c/mbg-dating
https://leanpub.com/c/mbg-dressup-p2
https://leanpub.com/c/mbg-peg-p2
https://leanpub.com/c/mbg-peg-p3
https://leanpub.com/c/mbg-puzzle-p2
https://leanpub.com/c/mbg-rpg-p2
https://www.tbcube.com/
https://leanpub.com/c/jsoloo
https://leanpub.com/c/bloodpit-wtts
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-strategy
https://leanpub.com/c/mbg-p2p3-towerdefenses
https://leanpub.com/c/mbg-dating
https://leanpub.com/c/mbg-dressup-p2
https://leanpub.com/c/mbg-peg-p2
https://leanpub.com/c/mbg-peg-p3
https://leanpub.com/c/mbg-puzzle-p2
https://leanpub.com/c/mbg-rpg-p2
https://www.tbcube.com/
https://leanpub.com/c/jsoloo
https://leanpub.com/c/bloodpit-wtts

Game Design System™ Xiv

* “Walk-Thru Tutorial Series” - Blood Pit 1I™8>
* “Walk-Thru Tutorial Series” - Mozart’'s Music Match™3¢
* “Walk-Thru Tutorial Series” - Rogue Prince Quests™ (IGM)8’

85https://leanpub.com/c/wtts-bloodpit2-mmog
86https://leanpub.com/c/wtts-mmm
87https://leanpub.com/c/arrp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/c/wtts-bloodpit2-mmog
https://leanpub.com/c/wtts-mmm
https://leanpub.com/c/arrp
https://leanpub.com/c/wtts-bloodpit2-mmog
https://leanpub.com/c/wtts-mmm
https://leanpub.com/c/arrp

Part I: Product Management

Process Umbrella

Distribution

g g

* Prototyping

« Maintenance

* Business Logic » Data Structures + Click Dummy * Updates
= Technology « Ul / Scenes + Game Shell « Patches
* Theme + Controls Defined * Iterative + Bug fixes
* Mechanics * Spiral sub-process + New Features

Abstract into Tangible
Affix idea to physical media
Begin Spiral sub-Process

Part | Introduction to Game Design System™
I'm skipping to my 3rd “Product Management Phase” and we'll create a single-player
prototype in both Phaser v2.x.x & v3.24+. More detailed information about the
“Product/Project Management” phases — Concept, Design and Distribution — are
available now only in these “Game Studio” series companions:

* Phaser.js Game Design Workbook (6th edition)?3.
* Headless Game Design® a “Product Management” workbook for “Content-as-a-

Service”.

88https://leanpub.com/phaserjsgamedesignworkbook
89https://leanpub.com/hgd

https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/hgd
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/hgd

Part I is a brief excerpt from Phaser.js Game Design Workbook (6th edition)®® explain-
ing the Game Design System™ and its Game Recipe™ construction. Our goal is to build
several fully-functional “Phaser Game Prototypes”. There are several step-by-step
instructions and file downloads. We'll catalog and create various “Game Framework
Mechanism” (GFM)°' components — those “visual elements” that are separate from
our core “Game Mechanics” (GM) genres and Artwork theme components. From this
simple foundation, we'll learn to combine these “building blocks” into various game
products as easily as a child would use “Lego™ blocks to construct a toy castle.
Furthermore, you can review this construction process throughout “Phaser Game
Starter Kit Collections”°? — a workbook of 16+ popular game genre mechanics and
19 sub-genres. By the end of “Part I, we'll have created everything a game prototype
uses:

+ Creating visual avatars and their associated metadata structures;

* Collecting a player’s input;

+ Detecting collisions and interactions among various elements;

* Migrating to dynamic game phases;

* Monitoring the gaming loop;

* Creating and Updating heads-up displays (aka “HUD").

* Reviewing the massive overhaul of the “Tween” System in the v3.19+;
+ Events and Call-backs &mdash where and when to use;

* Sound effects (sfx); and

* Sprite Animation(s).

9Ohttps://leanpub.com/phaserjsgamedesignworkbook

9 http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_
A2E2B3B1.html
92https://leanpub.com/p3gskc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaserjsgamedesignworkbook
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
https://leanpub.com/p3gskc
https://leanpub.com/p3gskc
https://leanpub.com/phaserjsgamedesignworkbook
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
https://leanpub.com/p3gskc

Game Studio & Project Preparations 1

1. Game Studio & Project Preparations

This chapter is focused on organizing the project’s file structure and setting up your
workstation environment. It will allow us to:

have the software tools available for game production
* maintain an organized file structure;

facilitate project creation, and

* test various aspects of our game

The first impressions you'll develop while reading this chapter is: THERE’S NO FRONT-
END BUILD TOOLS “Why is that?”, you're thinking? My goal is to provide a direct “no
non-sense” approach in game construction. In many competing tutorials and books,
you'll read chapterS(!) on working with “node. js”, “grunt”, “bower”, “yeoman”, “webpack”,
“brunch”, “gulp”, etc. (ad nauseam)’. The shame, of all this, is that folks are beginning
to write such articles as “I finally made sense of front end build tools. You can, too.”>
Another popular game developer, Andrezej Mazur of Enclave Game, stated my same
sentiments in this way ...

“Everything changed so much over the years. | feel like grandpa right now —
backin my days, we typed pure CSS and used jQuery in a Notepad. Right now,
to start a new project, you need a few days to chose the right tools, configure
the build process, have proper configs and settings, preprocessors in place,
etc. | would really need at least a few solid months to go through the most
popular tool-chain. ... That's why | think I'll end up using the “quick and dirty”
approach — I'll do a research about using a common template or a starter
(kit)> and will expand from it.” (quoted from https://dev.end3r.com/2018/
11/gamedev-versus-front-end/)

ACTUALLY START THE DAMN GAME ...

“Writing your idea down is not starting the damn game. Writing a design document
is not starting the damn game. Assembling a team is not starting the damn game.
Even doing graphics or music is not starting the damn game. It's easy to confuse

Thttps://en.wikipedia.org/wiki/Ad_nauseam
2https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
3https://makingbrowsergames.com/book/standalone.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Ad_nauseam
https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://dev.end3r.com/2018/11/gamedev-versus-front-end/
https://dev.end3r.com/2018/11/gamedev-versus-front-end/
http://makegames.tumblr.com/post/1136623767/finishing-a-game
https://en.wikipedia.org/wiki/Ad_nauseam
https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
https://makingbrowsergames.com/book/standalone.zip

Game Studio & Project Preparations 2

“preparing to start the damn game” (ed.: and all those “FRONT-END BUILD TOOLS"!)
with “starting the damn game”. Just remember: a damn game can be played, and if
you have not created something that can be played, it's not a damn game!

So dammit, even creating a game engine is not necessarily starting the damn game.
Which brings me to the next tip...” Read more such advice here ...°

9http://makegames.tumblr.com/post/1136623767/finishing-a-game

Well, ... Ok then, let's get our game “prototype” started and finished; then, we'll
address those “Front-end Building Tools”* in later chapters. BUT first, we need a
workstation to build stuff ...

Hint: Google and Mozilla both provide excellent resources for Game® and Web
Developers.®

1.1 Workstation Setup

Let’s take an inventory of what you currently have on-hand. Do you have:

* A browser that is HTML5 compliant’; now-a-days, most browsers are compli-
ant. But you can double-check using this site: https://caniuse.com/#search=ES6
(NOTE: bookmark this site for use latter.)

* A separate directory (i.e., Microsoft “folder”) to save and review each game
projects’ development files. Check you disk space® now. This becomes your
“software workspace™?. (See Project Setup below)

+ A “text editor” or “Integrated Develop Environment” (IDE) of your choice. (See
Development Tools below)

* An operational web server? (Coming next ...)

4https://developers.google.com/web/tools/setup/setup-buildtools
Shttps://developer.mozilla.org/en-US/docs/Games
bhttps://developers.google.com/web/tools/
7https://caniuse.com/#search=htm|5
8https://www.wikihow.com/Check-Your-Hard-Disk-Space
Ihttps://en.wikipedia.org/wiki/Workspace

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://makegames.tumblr.com/post/1136623767/finishing-a-game
http://makegames.tumblr.com/post/1136623767/finishing-a-game
https://developers.google.com/web/tools/setup/setup-buildtools
https://developer.mozilla.org/en-US/docs/Games
https://developers.google.com/web/tools/
https://developers.google.com/web/tools/
https://caniuse.com/#search=html5
https://caniuse.com/#search=ES6
https://www.wikihow.com/Check-Your-Hard-Disk-Space
https://en.wikipedia.org/wiki/Workspace
https://developers.google.com/web/tools/setup/setup-buildtools
https://developer.mozilla.org/en-US/docs/Games
https://developers.google.com/web/tools/
https://caniuse.com/#search=html5
https://www.wikihow.com/Check-Your-Hard-Disk-Space
https://en.wikipedia.org/wiki/Workspace

Game Studio & Project Preparations 3
Batteries not included ... Web Server Required

“Why do | need a web server? Can’t | just open the ntm1 files with my browser?”

Answer: All JavaScript games, that load assets and files, require launching itself from a
web server — either locally inside your workstation or remotely from the Internet.'°
It's all about browser security and the same-origin policies'" — prohibiting files load-
ing from different “domains”'2 and the protocols used to access your locally stored
files. When you request anything from the Internet you're typically using the “hyper-
text transfer protocol” (“nttp://” or “nttps://"”). From a web server, security policies
ensure you only access files that you are authorized to use. When you open any
HTML file from your local operating system, your browser uses the “fi1e://* protocol.
(technically a different protocol'> than “nttp://"), massive restrictions are triggered
inside your browser, for the following obvious reasons. Under the “fi1e://* protocol,
no concept of domains nor “server-level security policies” exists, just your computer’s
“raw file system” and its operating system — identified as the localhost'* — using
a local IP address(es) (0.0.0.0 or IPv6 ::1 or IPv4 127.0.0.0/8 to 127.255.255.255/8)">
per RFC 990, November 1986.'° This means that your HTML pages are not running
on any domain nor public Internet IP address at all, and thus JavaScript is unable
to load any game assets dynamically. Do you really want JavaScript to have that
much control — to load anything from anywhere — off your computer? Well, I'm
guessing your answer should be “... not ever!”. If JavaScript had unrestricted access
using the “fi1e://* protocol, nothing could stop it from tapping into your information
and sending it anywhere to anyone.

?’ Exercise: Read more about browser security from the Chromium Blog'’

Hint: “127.0.0.1" or “localhost” are IP addresses that default to your local
workstation. The packet path never reaches the Network Interface Card (NIC).
This is an important concept when creating web sockets and Multi-Player
games.

10http://gose-internet-services.net/data-centers/uk-data-center/
1Thttps://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
12https://en.wikipedia.org/wiki/Domain_Master_Browser
13https://www.w3.org/Addressing/

14https://en.wikipedia.org/wiki/Localhost
15https://www.lifewire.com/network-computer-special-ip-address-818385
16http://tools.ietf.org/html/rfc990#page-6

"7 https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gose-internet-services.net/data-centers/uk-data-center/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Domain_Master_Browser
https://www.w3.org/Addressing/
https://en.wikipedia.org/wiki/Localhost
https://www.lifewire.com/network-computer-special-ip-address-818385
http://tools.ietf.org/html/rfc990#page-6
https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://gose-internet-services.net/data-centers/uk-data-center/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Domain_Master_Browser
https://www.w3.org/Addressing/
https://en.wikipedia.org/wiki/Localhost
https://www.lifewire.com/network-computer-special-ip-address-818385
http://tools.ietf.org/html/rfc990#page-6
https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html

Game Studio & Project Preparations 4
Deeper Dive: Testing “MMoGs” Locally??!

There's atrend to give your “localhost” a “top-level domain” (TLD) name of . dev”. Stop!
Don’t! WHY?!? Because in 2017, Google has the TLD registration of several thousand
of these commonly used domains that developers once used. (See this article's.)

?’ Exercise: Learn which TLD names are still available here'.

Locally Testing MMoGs

Wikipedia states®, “The processing of any packets sent to a loop-back address is
implemented in the link layer of the TCP/IP stack. Such packets are never delivered
to any network interface controller (NIC) or device driver, which permits testing of
software in the absence of any hardware network interfaces.

Like any other packets traversing the TCP/IP stack, looped-back packets convey
the IP address and port number they were addressed to. Thus, the services that
ultimately receive them can respond according to the specified loop-back destination.
For example, an HTTP service could route packets addressed to 127.0.0.99:80 and
127.0.0.100:80 to different Web servers, or to a single server that would return
different web pages. (ed.: one browser window to another browser window which
is NOT true testing of any MMoG game.) To simplify such testing, the host’s file can
be modified to provide appropriate aliases for each such address.”

Ihttps://en.wikipedia.org/wiki/Localhost

“So then! What's a girl to do?!” The solution really is simple. Run your game develop-
ment files from a local web server or remotely from the Internet2°. Depending on
your workstation operating system (and what you have installed already), there are
several ways to launch web pages from a “web service”?'.

* Some text editors and Integrated Development Environments (IDE) already
include a local web server. Brackets?? is one such example.

18http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to- https
19https://iyware.com/dont-use-dev-for-development/
20http://gose-internet-services.net/data-centers/uk-data-center/

21 http://www.webopedia.com/TERM/W/Web_Services.html

22http://brackets.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to-https
https://iyware.com/dont-use-dev-for-development/
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Localhost
https://en.wikipedia.org/wiki/Localhost
http://gose-internet-services.net/data-centers/uk-data-center/
http://www.webopedia.com/TERM/W/Web_Services.html
http://brackets.io/
http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to-https
https://iyware.com/dont-use-dev-for-development/
http://gose-internet-services.net/data-centers/uk-data-center/
http://www.webopedia.com/TERM/W/Web_Services.html
http://brackets.io/

Game Studio & Project Preparations 5

* Another simple solution | discovered is the Google’s Chrome Web Server.>> Once
you install this application, you can launch any web page(s) directly from Chrome.
Simply point it at your URI path and project folder.2*

* The official Phaser instructions (and sanctioned method) are ...

Quote: "We would recommend either WAMP Server2> or XAMPP2¢ and both
have easy set-up guides available. WAMP specifically installs an icon into
your system-tray from which you can stop and restart the services, as well
as modify Apache settings such as creating a new folder alias for a project.”
Read more details here?’. (overlooked was MAMP or MAMP Pro28 available
for those with MAC OS X.)

® Exercise: Use this Google Chrome Web Server Install Instructions (movie: 1:51
minutes)?° to setup a webserver.

Development Tools

Although Phaser web site has a well-documented section on “how to get started”>°.
| recommend you test and develop your game using an Integrated Development
Environment (IDE) editor of your choice. | use several: Mighty Editor (now open
source)3', Phaser Editor 2D32, the (FREE) NotePad++33; although, Brackets3* editor
runs a close second in my daily web-site construction. Do not use any word processing
applications such as Microsoft Word; this is not a “hate statement” against Microsoft.
Word processing applications add invisible formatting to your source code that will
lead to problems. If you do not have a favorite text editor, | have some recommenda-
tions based on your status:

23https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
24http://uri.thephpleague.com/4.0/components/overview/
25 http://www.wampserver.com/en/
26http://www.apachefriends.org/en/xampp.html
27https://phaser.io/tutorials/getting-started-phaser3/part2
28https://www.mamp.info/en/
29https://www.youtube.com/watch?v=AK6swHiPtew
30https://phaser.io/tutorials/getting-started-phaser3
31https://github.com/TheMightyFingers/mightyeditor
32https://phasereditor2d.com/
33https://notepad-plus-plus.org/

34http://brackets.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
http://uri.thephpleague.com/4.0/components/overview/
http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html
https://phaser.io/tutorials/getting-started-phaser3/part2
https://www.mamp.info/en/
https://www.youtube.com/watch?v=AK6swHiPtew
https://www.youtube.com/watch?v=AK6swHiPtew
https://phaser.io/tutorials/getting-started-phaser3
https://github.com/TheMightyFingers/mightyeditor
https://github.com/TheMightyFingers/mightyeditor
https://phasereditor2d.com/
https://notepad-plus-plus.org/
http://brackets.io/
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
http://uri.thephpleague.com/4.0/components/overview/
http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html
https://phaser.io/tutorials/getting-started-phaser3/part2
https://www.mamp.info/en/
https://www.youtube.com/watch?v=AK6swHiPtew
https://phaser.io/tutorials/getting-started-phaser3
https://github.com/TheMightyFingers/mightyeditor
https://phasereditor2d.com/
https://notepad-plus-plus.org/
http://brackets.io/

Game Studio & Project Preparations 6

* StarUML v23> and its v2 JavaScript extension3® is a “Forward Engineering3’" tool
that directly converts “UML Model diagrams” directly into JavaScript code. You
can also create supporting documentation website by thoroughly defining your
object models. If you can create UML models you can create gaming code in
JavaScript.

* FREE Access to the online Game Designer Tool Kit3® — from which you can:

- Randomly generate game ideas.
- Collect game prototypes.
- Automatically generate game design documentation and source code.

* Phaser Game mechanics Explorer3? is a limited set of 9 free examples.

Remote Web Server®® pre-installed with Node.js, PHP, and Python 3.5.

Are you a student or instructor? Then obtain a FREE copy of PHPStorm*' or

WebStorm*> — a savings of $199 per year; other enticements and discounts

available for indie start-ups. OVER one third of all professional “full-stack”

developers use this IDE. See the proof here*?

Are you an indie game development start-up or hobbyist with little cash assets?

Then obtain a FREE copy of NotePad++%4; it's the editor | use. Or, use Microsoft

Visual Source / Code* if you are inclined to develop in Typescript*® which

transpiles to ECMAScript 3 by default!!!*’ Only One fourth of all professional web

developers use Typescript! See the proof here*s. |f you're having problems with

Microsoft Visual Studio / Code, you're not alone. Read what others have done to

solve MS Visual Studio / Code problems here*°.

Do you have money to spend? Then pick any of the thousands of software source

code editors available online, and then send me the remaining money for my own

development (wink, wink, my poor attempt at humor?!) On a more serious note,
save your cash for game artwork>°, visual assets, and “Graphical User Interfaces”

(GUI)>' gaming kits

35http://staruml.io/

36http://staruml.io/extensions

37https://www.techopedia.com/definition/19445/forward-engineering

38https://makingbrowsergames.com/gameDesigner/

39https://gamemechanicexplorer.com/

40http://gose-internet-services.net/wordpress-web-hosting/

4 https://www.jetbrains.com/phpstorm/buy/#edition=discounts

42https://www.jetbrains.com/webstorm/buy/#edition=discounts

43https://www.jetbrains.com/research/devecosystem-2018/javascript/

44https://notepad-plus-plus.org/

45https://code.visualstudio.com/

46https://en.wikipedia.org/wiki/TypeScript

47https://www.typescriptlang.org/docs/handbook/compiler-options.html

48https://www.jetbrains.com/research/devecosystem-2018/javascript/

49https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/

50https://www.gamedevmarket.net/?ally=GVgAVso)
51https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://staruml.io/
http://staruml.io/extensions
https://www.techopedia.com/definition/19445/forward-engineering
https://makingbrowsergames.com/gameDesigner/
https://gamemechanicexplorer.com/
http://gose-internet-services.net/wordpress-web-hosting/
https://www.jetbrains.com/phpstorm/buy/#edition=discounts
https://www.jetbrains.com/webstorm/buy/#edition=discounts
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/TypeScript
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://staruml.io/
http://staruml.io/extensions
https://www.techopedia.com/definition/19445/forward-engineering
https://makingbrowsergames.com/gameDesigner/
https://gamemechanicexplorer.com/
http://gose-internet-services.net/wordpress-web-hosting/
https://www.jetbrains.com/phpstorm/buy/#edition=discounts
https://www.jetbrains.com/webstorm/buy/#edition=discounts
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/TypeScript
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Game Studio & Project Preparations 7

1.2 Project Setup

Create the following directories/folders for this first project on your computer. You
can quickly set-up the project by copying the “Project GamePrototype StarterKit”
from inside the Bonus Content directory — the Bonus Content was an additional
download available from your LeanPub.com personal library. For other patrons, you
can download this project template from the book’s website — Phaser template kit>>.

https://makingbrowsergames.com/book/ basic-phaser-template.zip

Deeper Dive: Project Data Structure

The arrangement of directories (i.e.>3 folders) and files is an important consideration.
If you use some of those “Front-end Build tools”,>* your project file structure is
dictated; this provides less security since your game follows a known directory
structure that everyone knows and uses.

| have read dozens of game development authors who literally dictate a rigid organi-
zation up to 10+ layers deep — they should reads Microsoft's warning about doing
that in Windows O/S. “Why should | follow this?”, has always been my question; How
does their organizational structures help or hinder the final game product? |
recommend that you avoid this non-sense of 10-levels deep directories. Create an
organization of directories>> that make sense to you and labeled as you please. A
side benefit of doing so, is a security feature, because it becomes harder to guess
your directories and naming schema.>®

On the other hand, if you are working on a game development team, then directory
structure takes on a new meaning as: “Name Space”>’ for local and public variables.
Consistency and standardization rules as King in software collaborative efforts.>®
Many game developer turn to tools such as Vagrant>° for help.

Whenyou are creating a game project (aka Blueprints, templates, or Game Starter Kits,
make-up your own “marketing nickname”) its “File Structure” should be consistent

52https://makingbrowsergames.com/book/_basic-phaser-template.zip
53https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
54https://frontendmasters.com/books/front-end-handbook/2018/tools.html
55https://addyosmani.com/blog/essential-js-namespacing/
56https://namingschemes.com/

57https://en.wikipedia.org/wiki/Namespace
58https://en.wikipedia.org/wiki/Collaborative_software

59 https://www.vagrantup.com/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
https://frontendmasters.com/books/front-end-handbook/2018/tools.html
https://addyosmani.com/blog/essential-js-namespacing/
https://addyosmani.com/blog/essential-js-namespacing/
https://namingschemes.com/
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Collaborative_software
https://www.vagrantup.com/
https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
https://frontendmasters.com/books/front-end-handbook/2018/tools.html
https://addyosmani.com/blog/essential-js-namespacing/
https://namingschemes.com/
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Collaborative_software
https://www.vagrantup.com/

Game Studio & Project Preparations 8

across all your projects. “Why’s that?” Well, I'll tell you®°; because when you create
another new project and “re-factor” everything (i.e., rename stuff) to coincide with
the new project, it is easier to “find & replace” consistent formatting and file names.
I'll show you how to do this in Part Il and walk through that process in Part Ill.

Coming next is the structure | use, which makes the most sense for me, when creating
my games. Having consistency across all your projects, makes it easier for other staff
members to know where everything is located as they work on — and switching
between — projects .

Deeper Dive: And its name shall be called ...

What is a “Namespace”?

Namespace is a container for a collection of identifiers, functions, methods, and
variables deployed away from the global setting (browser window object). They are
used to organize blocks of functionality into logical groups having a unique identity.
Unfortunately, JavaScript doesn't provide namespacing by default. So anything (func-
tion, method, object, variable) created in JavaScript appears in the window object
(aka global object from which all primitive members reside), and additional software
structures continue polluting that global namespace by adding more to it. To solve
this problem you can create a single object in the global scope for our game, and
make all the game’s functions, variables, and properties inside that secluded object.
Read more here®! and here®?.

Hint: Refer to https://addyosmani.com/blog/essential-js-namespacing/ for
an excellent review.

Why is it poor practice to have variables and functions on a global level?

Because, if you are supplementing your code with 3rd party libraries and scripts,
— which | shy away from for several reasons: 1) it distracts from development
time to learn someone else’s code; 2) your game is only as good as its “weakest
imported library” — those additions all share the same global object. Furthermore,
there is @ chance those additional libraries might use similar naming conventions for
their variables and functions; this could cause “name collisions” and override your
code’s logic. If that all sounds “totally paranoid”®3 and “psychotic”®* — what, what?!

60https://www.youtube.com/watch?v=x2Y7_1dILIQ
61http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
62http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
63https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
64https://medlineplus.gov/psychoticdisorders.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.youtube.com/watch?v=x2Y7_1dILlQ
http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
https://addyosmani.com/blog/essential-js-namespacing/
https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
https://medlineplus.gov/psychoticdisorders.html
https://www.youtube.com/watch?v=x2Y7_1dILlQ
http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
https://medlineplus.gov/psychoticdisorders.html

118
119
120
121
122
123
124
125
126

Game Studio & Project Preparations 9

Software engineers psychotic? Go figure! — you're right! The chances are even higher
when libraries that use “$” as an alias (e.g.: JQuery, Prototype, PHP, and others).

Concerns using Browserify with Phaser

Quotes from “Phaser 2.7.5 Browserify”°, “Phaser was never written to be modular.
Everything exists under one single global namespace, and you cannot require
selected parts of it into your builds. It expects 3 global vars to exist in order to work
properly: Phaser, PIXI, and p2. The following is one way of doing this:

window.PIXI = require('phaser/build/custom/pixi")
window.p2 = require('phaser/build/custom/p2"')
window.Phaser = require('phaser/build/custom/phaser-split')

If you build a custom version of Phaser it will split the 3 core libs out into their own
files, allowing you to require them as above. (ed.: | strongly DO NOT recommend doing
this.)

We appreciate this is just a band-aid, and not a proper use of modules, but please
understand it was never built to be used this way. You're trying to fita square pegin a
round browserify-shaped hole,” so compromises have to be made. Please don't open
GitHub issues about it as we've no intention of changing Phaser at this stage of its life.
Full module based development is available in Phaser v3 http://labs.phaser.io/

Ihttps://photonstorm.github.io/phaser-ce/index.html
bhttps://github.com/browserify/browserify-handbook

If you use 3rd party libraries, you might consider using namespace to isolate your
code. A perfect example comes from “Mighty Editor”®>. Refer to the line numbers
available here®®;

Example: Creating Namespace for game

// MightEditor namespacing: http://mightyfingers.com/
// free on GitHub: https://github.com/TheMightyFingers/
"use strict";
window.GAMEAPP = {
// reference to the Phaser.Game instance

game: null,

//Canvas dimensions: world and viewports' Height and Width

//**TODO** adjust for your game deployment

65http://mightyfingers.com/
66https://makingbrowsergames.com/book/demos/_index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser-ce/index.html
https://github.com/browserify/browserify-handbook
http://labs.phaser.io/
https://photonstorm.github.io/phaser-ce/index.html
https://github.com/browserify/browserify-handbook
http://mightyfingers.com/
https://makingbrowsergames.com/book/demos/_index.html
http://mightyfingers.com/
https://makingbrowsergames.com/book/demos/_index.html

Game Studio & Project Preparations 10

127 viewportWidth: 800, //game view using Golden Ration
128 viewportHeight: 500,
129 worldwidth: 800, //world view using Golden Ration
130 wor 1dHeight: 500,
131 C
132 // main function
133 main: function(){
134 this.game = new Phaser .Game(
135 this.viewportWidth, this.viewportHeight,
136 Phaser .AUTO, document.body,
137 window.GAMEAPP .state.boot);
138 1,
139 // we'll store all game phases
140 // as the js files load.
141 state: {}
142 1
143
144 /** DEPRECATED METHOD - NEVER EVER USE THIS AGAIN!
145 * See Phaser. js Game Design Workbook for complete explanation
146 * http://leanpub.com/phaser jsgamedesignworkbook
147 * window.onload = function () {
148 * let game = new Phaser.Game(©, 0, Phaser.AUTO, document.body);
149 *)
150 */
151 // preferred lauch method for BOM.
152 window.addEventListener('DOMContentlLoaded', function(){
153 window.GAMEAPP .main();
154 }, false);
Project Directories & Files
1 .URI/<PROJECT NAME>/ //game root directory (single player)
2 — favicon.ico //game logo
3 F— index.html //game front-door entrance
4 F— license.txt //game EULA @ http://renown-games/License.txt
5 F— manifest. json //game mobile app
6 — package. json //for Progressive Web Applications
7 F— purchaseOrd.pdf //how to buy your game
8 F— ReadMe.md //game info, contact and metadata
9 |
10 — assets/ //game unique © resources

Copyright © 1972-2017 Stephen Gose. All rights reserved.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Game Studio & Project Preparations 11

| F— audio/

| — images/

| L— spriteSheets/

|

F— css/ //game content styling

| L— main.css

— fonts/ //game font styling

| L— fonts.css

|

L— js/ //game behaviors
— 1lib/ //game external source code libraries
— plugins/ //game enhancements
— prefabs/ //game prefabrication objects
— states/ //game phase

L— utilities/ //game helpers

* index.html — Main game container file, your example game should be viewed
from within this page.

* .htaccess — The default web server configs are for Apache. For more information,
please refer to the Apache Server Configs documentation®’. Host your site on a
server other than Apache? You're likely to find the corresponding server configs
project listed here®®

* apple-touch-icon-precomposed.png — If you want to use different Apple Touch
Icons for different resolutions refer to this documentation®?.

+ crossdomain.xml — A template for working with cross-domain requests. (more
about crossdomain.xml here’®). WARNING: WebSockets can AND do cross-
domain communication, it follows the same cross-origin sharing CORS method-
ologies’" and they are not limited by the “Same Origin Policy (SOP)", as JavaScript
is traditionally inside the browser. Because of this, WebSockets have the same ex-
posure to the types of cross-domain attacks. | won't go into detailed descriptions
on WebSocket security, simply said, it's up to the server authentication to validate
their client’s origin and for WebSocket frame tampering. If you'd like to restrict
browsers’ communication to same-domain servers, you will modify the header
policies in the browser Content-Security-Policy header. This will lock down the
WebSocket to your originating domain. Naturally, you should always use “wss://”
(Secure WebSockets), to ensure a stronger level of encryption.

* favicon.ico — refer to Hans’ handy HTML5 Boilerplate Favicon and Apple Touch

67https://github.com/h5bp/server-configs-apache/tree/master/doc
68https://github.com/h5bp/server-configs/blob/master/README.md
89https://github.com/h5bp/htmi5-boilerplate/blob/v4.3.0/doc/extend. md#apple-touch-icons
7Ohttps://web.dev/samesite-cookies-explained/
7Vhttp://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/h5bp/server-configs-apache/tree/master/doc
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/html5-boilerplate/blob/v4.3.0/doc/extend.md#apple-touch-icons
https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/html5-boilerplate/blob/v4.3.0/doc/extend.md#apple-touch-icons
https://web.dev/samesite-cookies-explained/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Game Studio & Project Preparations 12

lcon PSD-Template’2.

« human.txt — Edit this file to include the team that worked on your site/app, and

the technology powering it.

license.txt — describe how you permit the use of your game.

purchaseOrder.pdf — never know how a consumer obtained your game release;

provide them with a means to remain honest.

readme.txt’? (FILE_ID.DIZ’4, or readme.md’>) should have a customer-friendly

welcome, project introduction, installation instructions, license, and contact in-

formation.

robots.txt — Edit this file to include any pages you need to be hidden from search

engines.

+ assets/ — Any copyrighted assets (purchased or created) specifically for this
game, or referenced in the index.html file. Everything should be in this folder.

- audio/ — Home for any audio files. You could simply name this directory
“sounds” or “sound effects” (sfx). You might consider building two sub-directories
for game theme “music” and another for “sound effects (sfx)”. Remember that
not all browsers support every audio format (.wav, .ogg, mp3/4). Try creating
your own music here’® Research more demos’’ from ToneJS — A Web Audio
framework for making interactive music in the browser at https://tonejs.github.io.
Learn about the differences between HTML5 audio and Web Audio here’3.

* data/ — Any data files (e.g. JSON, atlas) that pertain directly utilized by these
assets.

* fonts/ — Any unique font-sets you have licensed

* images/ — Home for any visual files. You could simply name this directory
“images”, “sprites” or “ graphics effects” (gfx). | stuff all the visuals here — including
spriteSheets.

* maps/ — the information about tile-maps used in this game.

* misc./ — any additional files such as dialogs, run-time scripts, language XML/j-
son, etc.

+ data/ — configurations, static data templates, tile maps, game board dimensions,
etc.

+ docs/ — This directory contains all the HTMLS5 Boilerplate documentation and
might contain any extra documentation about the Blueprint. You can use it as
the location and basis for your own project's documentation.

* js/ — Source JavaScript files for your game. You could simply name this directory
“scripts” or “source (src). You could include Libraries, plugins, and custom code;
or all can be included in a separate sub-directory or directory. It includes some

72https://drublic.de/archive/htmi5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-
template/

73https://en.wikipedia.org/wiki/README

74https://en.wikipedia.org/wiki/FILE_ID.DIZ

7Shttps://en.wikipedia.org/wiki/GitHub_Flavored_Markdown

76https://learningmusic.ableton.com/index.html

77https://tonejs.github.io/demos
78https://deveIoper.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/FILE_ID.DIZ
https://en.wikipedia.org/wiki/GitHub_Flavored_Markdown
https://learningmusic.ableton.com/index.html
https://tonejs.github.io/demos
https://tonejs.github.io
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/FILE_ID.DIZ
https://en.wikipedia.org/wiki/GitHub_Flavored_Markdown
https://learningmusic.ableton.com/index.html
https://tonejs.github.io/demos
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics

Game Studio & Project Preparations 13

initial JS to help get you started

* gameObjects/ — Any core Game Objects (such as player.js, avatar.js, treasure.js,
etc.) should be contained here.

* states/ — All Game Phases/States menus used by your game.

* utils/ — Folder containing any Utility Methods/Objects.

* game.js — The main JavaScript game mechanics logic file.
* lib/ — External Libraries that are required/used should be contained here. This

includes any JavaScript Framework and addons / extensions (a.k.a., Plugins).
* phaser.min.js or simply use from one of the content delivery networks.
* plugins/ — Any Plugins that are used.

+ themes/ — Folder containing any formatting for the overall hosting website.
* CSS/ — cascading styles sheets for the overall website theme. It should follow
a “structured approach”’° creating separate cascading style sheets during devel-
opment. Upon deployment, all of these collapse into a single file. This directory
should contain all your project’s CSS files. It includes some initial CSS to help get
you started from a solid foundation.
* gfx/ — graphics effects for the hosting website.

NOTE: Separate your style sheets for better management.®: typography, color,
layouts, navigation, general formats styles

Hint: “"Development code is what you read and write, and “check-in" to your
source control system. It should be highly modular (split over many files),
extensively commented, and should make liberal use of whitespace to indicate
structure. On the other hand, Machine code is what gets served up to a
browser. It should consist of a small number of merged files, and should be
stripped of comments and unnecessary whitespace. Your build process is a
method to which you apply these transformations; many developers use the
automated “Grunt8', Finally, your web server should deliver the machine code
with gzip compression for extra speediness.” Read more tips here®?

® Exercise: Download this Phase Game Prototype starter kit here (35 MB
? zipped)® https://makingbrowsergames.com/book/standalone.zip

Exercise: Read what others say about “How Do I Organize Files in A Phaser.js
Project?"®4

79https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
80https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
81https://24ways.org/2013/grunt-is-not-weird-and-hard/
82https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
83https://makingbrowsergames.com/book/standalone.zip
84https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/book/standalone.zip
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Game Studio & Project Preparations 14

1.3 Game Project “Concept & Design”

“The time something will take depends on how much time you allot to it.” —
Parkinson’s law®>

By the end of this section, you will have walked through the Game Design System™
method of building a Game Recipe™. Later in this book, we'll automate this process
and develop those tools to do so. But for now, let's step through the “design process”
of creating a Game Recipe™.

Hint: The Game Design Appendix offers many suggestions from experts in the
gaming industry. Hopefully your product/project manager has already thought
about the follow guidelines. The following is an excerpt from the Phaser
Game Design Workbook (6th edition).

Introduction to Game Design System™
“Why study a “systems-based” design?”, you say?

The earliest decisions about what kind of games a studio will build impacts the
following development and production activities for that game project. It affects

* how the programmers encode features,

* how the designers construct levels and optimize game mechanics, and

* how the time-consuming animations and “cut-scenes” are handled ... just to
mention a few!

There's also a “heavy-cost” associated with how much creative freedom is permitted.
Historically, games with “open-ended” possibilities tend to be much more difficult to
accurately schedule. Game Design System™ addresses those short-comings in this
new game prototyping approach.

Creating your own game is an exciting adventure in creativity using the Phaser Il
JavaScript Game Framework — any version beyond v3.16+ — (or with any Gaming

85https://en.wikipedia.org/wiki/Parkinson%27s_law

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Parkinson's_law
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines

Game Studio & Project Preparations 15

Framework?® for that matter); and, at the same time, it's fun! However, dealing with
all those “full-stack” technical details8’ — such as web pages, artwork production®8,
collisions, sprites, “game phases” (and there’s more!) — can be intimidating; espe-
cially, if this is your first experience with such components.?°

Game Design System™

.
Game)
Mechanics)

Data, Logic
\& Rules /

(({ = ”
. “Separation of Concerns

New

Launched Games!

- |
CryEngine Gamel!
Godot :)\\ (/r _\

Gaming Frameworks**:

) Permits Rapidly

Phaser v2 & v3 ; ; 1 /
Unity LA Artwork

5 Mechanism
Unreal Engine {Prototypes) Themes

*¥ Link to Others >>>
https://en.wikipedia.org/wiki/List_of game_engines

Imported

Phaser Game Design Workbook

JavaScript is NOT the end-all for online gaming! To “future-proof”°° your time spent
developing a game, you should begin reading about the “Internet-of-Things” (loT)?",
cloud-based “DevOps”°2 and “web assembly”?3. You should begin using “Separation
of Concerns” (SoC) on your game pipeline to segregate those “Game Mechanic” (GM)
from their “visual elements” governed by the “Game Framework Mechanisms” (GFM)
and further isolate your “Artwork” themes from their “visually displayed mechanisms”
which includes them.

JavaScript Gaming Frameworks®*, in general, are resource libraries that run inside a
browser or an Internet device. Any of these “frameworks” simplify and abstract the
gaming patterns and algorithms®> into an easy-to-use “interface” of JavaScript func-
tions. Using them, you can quickly build various two-dimensional (aka “2D" or “2.5D"%°

86https://ourcodeworld.com/articles/read/308/top- 15-best-open-source-javascript-game-engines
87 https://www.w3schools.com/whatis/default.asp
88https://www.gamedevmarket.net/?ally=GVgAVso)

89http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_
component_architectures_CBC2F6B5.html

9Ohttps://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78

9 https://www.sas.com/en_us/insights/big-data/internet-of-things.html
92https://azure.microsoft.com/en-us/overview/what-is-devops/
93https://developer.mozilla.org/en-US/docs/WebAssembly
94https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
95https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
%https://en.wikipedia.org/wiki/2.5D

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.com/whatis/default.asp
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
https://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78
https://www.sas.com/en_us/insights/big-data/internet-of-things.html
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
https://en.wikipedia.org/wiki/2.5D
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines
https://www.w3schools.com/whatis/default.asp
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
https://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78
https://www.sas.com/en_us/insights/big-data/internet-of-things.html
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
https://en.wikipedia.org/wiki/2.5D

Game Studio & Project Preparations 16

) and even “3D"(1)%7 games inside a simple HTML5 “<canvas>" tag®®. The Phaser
JavaScript Gaming Frameworks®® does 90% of all that work for us; and beyond that,
all you need is your imagination and some basic JavaScript programming knowledge
that you can learn for FREE from W3Schools'%°. So, let's begin by creating simple game
prototypes and mechanisms while exploring many of the basic concepts found in the
Game Design System™ from the former Phaser Ill Game Design Workbook'°' and
newest Headless Game Design Workbook'°.

What makes a Good Game?

MMMM, something smells good ... What’s cookin’?

A “good game” (18-page Bonus Content!)'3 is a matter of personal preference. If
you intend to market your game and earn your “just rewards”, then you need to
research those game genres people enjoy consuming. The hard reality becomes what
others enjoy may not be what inspires you. Starting a small simple game release isn't
the real problem. The problem truly is finding an idea that ...

—

. nobody's tried before (i.e., technology break-through), or

2. improves upon an existing game genre with “better enhancements” (i.e., innova-
tive and again, “better” is a matter of taste), or

is distinct from anything currently on the market (i.e., novelty).

focused on business drivers for a target market.

AW

“Don’'t copy blindly, but try to do things differently instead of doing what everyone
else is doing. Think about how you can stand out from the hundreds of thousands
of other games. Surprise and delight. It doesn’t cost anything to surprise people.
That said, learn as much as you possibly can from others. Then do your own thing.”
(Peter Vesterbacka, pg 401 “Building javaScript Games”?)

%https://amzn.to/2D8c7gM

97https://en.wikipedia.org/wiki/Three.js
98https://www.w3schools.com/graphics/game_canvas.asp
9http://phaser.io
100http://www.w3schools.com
10T https://leanpub.com/phaser3gamedesignworkbook
102https://leanpub.com/hgd
103https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Three.js
https://www.w3schools.com/graphics/game_canvas.asp
http://phaser.io/
http://phaser.io/
http://www.w3schools.com/
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/hgd
https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf
https://amzn.to/2D8c7qM
https://amzn.to/2D8c7qM
https://en.wikipedia.org/wiki/Three.js
https://www.w3schools.com/graphics/game_canvas.asp
http://phaser.io/
http://www.w3schools.com/
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/hgd
https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf

Game Studio & Project Preparations 17

HINT: Generally speaking, if a game has over 50% of a market’s share,'** it'll
be difficult to take on and defeat that “Boss”'%.

The best place, to begin our Game Recipe™, is to jot down'® your ideas on paper —
that's right, draw what you're visualizing — what is your mind “cooking up'°’"? This
will help clarify your ideas into a tangible form (i.e., securing your Copyrights! That
topic’s coming up!) and figure out what needs to be done “in what order” and “with
what priority”. You're building a game prototype; you can think of a prototype as a
“recipe” for an gaming thing! That's what this whole Game Design System™ is all
about. Your doodles become a true skeletal framework/engine with “new muscles
(game prototypes), organs (game mechanics) and flesh (the artwork!%8), When
everything comes together, you'll start shouting — in your best Dr. Frankenstein
accent — “IT'S ALIVE!" However, you might also find, as details are “fleshed out”, there
are some inconsistencies or discover perhaps things that need more clarification.

® Exercise: Read Making Games Fun by Burak Kanber'® for some excellent
? suggestions.

Exercise: Download the Terry Paton mind-map on “What makes
a Great Game™'° or find it in your Bonus Content (file name:
WhatMakesAGreatGame.pdf).

https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

1.4 Preparing a “Gaming Product”

otherwise known as “Planning your Game Project”

If you want to develop game recipes, you should know how to program in JavaScript;
but more importantly, you must know how to create common solutions for various
programming problems. In addition to the problem solving skills, some of those

104https://economictimes.indiatimes.com/definition/market-share
105https://en.wikipedia.org/wiki/Boss_(video_gaming)

106 https://idioms.thefreedictionary.com/jot+down

107 https://www.merriam-webster.com/dictionary/cook%20up

108 https://www.gamedevmarket.net/?ally=GVgAVso)
109http://buildnewgames.com/making-games-fun/
10https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://economictimes.indiatimes.com/definition/market-share
https://en.wikipedia.org/wiki/Boss_(video_gaming)
https://idioms.thefreedictionary.com/jot+down
https://www.merriam-webster.com/dictionary/cook%20up
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://buildnewgames.com/making-games-fun/
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://economictimes.indiatimes.com/definition/market-share
https://en.wikipedia.org/wiki/Boss_(video_gaming)
https://idioms.thefreedictionary.com/jot+down
https://www.merriam-webster.com/dictionary/cook%20up
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://buildnewgames.com/making-games-fun/
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

Game Studio & Project Preparations 18

solutions may be more generic than others, and some of the solutions may become
more efficient than others. In this regard, game programming is sometimes a trade-
off between solving a specific game issues quickly or taking more time to resolve a
whole category of problems at once. In game development, there's often less time to
solve game construction issues because of tightly-mandated deadlines. So, we need
to think about our development approach very carefully. Our ultimate goal in game
prototyping is to write “nice”'"", reusable code which won't always take more time
than writing “quick-and-dirty” code.''? As you gain more experience in this Game
Design System™, you'll find that you'll start developing a mindset that lets you quickly
gauge the kind of solutions that are required for a certain gaming problems.

Why are you doing this?

Before we go any further, let's determine “Why"” you want to create your game. Our
next workbook exercise question is:

?’ Exercise: Do you plan to create this game:

+ As a hobbyist? In other words, generating income is NOT your primary motiva-
tion. You simply want to “add onto” your skills or seek the challenge of creating
a similar popular game currently in the “apps stores”.

* As an academic pursuit? In other words, your primary motivation is to study
and experiment with the most cutting-edge technology.

+ As a way of generating revenues? In other words, your primary motivation is
to supplement or replace your current income source.

Answering this exercise question will guide many of the following production deci-
sions. So, go fetch some paper or open a file and record your answers from the
question above. Write your answer down. Become an active participant, and learn the
mostimportant concept — “Journaling and logging”. By doing so, you are developing
a time-line of your activities (i.e., what is easy for you to do, what poses difficulties
for you, and who to hire for additional staff support). This helps determine the
amount of time it takes to put a profitable game into your distribution channels. When
your customers ask you, “When can | have the finished product?”; you have proven
empirical evidence based your project's development schedule — not some “pie in
the sky”, UN-realistic time-frame to which so many business fall victim!

"M https://en.wikipedia.org/wiki/Nice_(Unix)
M2Zhttps://www.urbandictionary.com/define.php?term=quick-and-dirty

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Nice_(Unix)
https://www.urbandictionary.com/define.php?term=quick-and-dirty
https://en.wikipedia.org/wiki/Nice_(Unix)
https://www.urbandictionary.com/define.php?term=quick-and-dirty

Game Studio & Project Preparations 19

® Exercise: Read why so many business fall victim to poor time management in
? this article: Scrum makes you dumb'' ...

(an excerpt) If your software developers are able to accurately estimate
how long something will take, you should fire them. If they've done some-
thing so many times before that they know exactly how long it'll take them
to do it again, then they should have made a reusable solution by now. (ed.:
a game prototype!)

What are you making?

When | first started game production in the mid-70s, | found myself constantly
thinking of new game ideas and jotting them down.''* | became addicted to the
“creation process” and the power of bringing my thoughts into something physically
tangible. There was so much | wanted to make. If you identify with that sensation,
then you probably have some game ideas already on what you'd like to make. Do you
have your own list?

What technology will you use?

You must be thinking ... “DUH?!? Phaser of course! Why even consider this?”

We must wisely choose a gaming framework to use, since we simply don’t have the
time to study and master every new “bleeding-edge” library, framework, or “brain-
fart”5> appearing on the technology horizon — such as game-based learning''®? To
help us maintain focus and guide us in our selection, here a list of probing questions:

* Is the framework or library well-used?''’ If it has a forum community following
its development, then it becomes more likely that it also has contributors,
frequent improvements on its key features, and rapid software bug resolutions.
Furthermore, it is more likely to have “staying power”"'® and stamina.

113 https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/

M 4https://www.collinsdictionary.com/us/dictionary/english/jotting
115https://www.urbandictionary.com/define.php?term=Brain%20Fart
16https://www.researchgate.net/publication/216566471_What's_on_the_Technology_Horizon
17 https://www.thesaurus.com/browse/well-used
118https://www.merriam-webster.com/dictionary/staying%20power

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/
https://www.collinsdictionary.com/us/dictionary/english/jotting
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.researchgate.net/publication/216566471_What's_on_the_Technology_Horizon
https://www.thesaurus.com/browse/well-used
https://www.merriam-webster.com/dictionary/staying%20power
https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/
https://www.collinsdictionary.com/us/dictionary/english/jotting
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.researchgate.net/publication/216566471_What's_on_the_Technology_Horizon
https://www.thesaurus.com/browse/well-used
https://www.merriam-webster.com/dictionary/staying%20power

Game Studio & Project Preparations 20

* Who comprises its supporting community? Are they corporations, universities,
or passionate hobbyists? How does the community respond to each other ...
with civility or impassioned fanatical opinions or one-upmanship?''® What is their
“welcome wagon”120 for new users.

* How often is community content initiated and updated? It would be a sad day to
discover a software bug and wait for a response to come years later.

* Are there frequently released versions with dramatic changes in API or archi-
tecture? You don't want to revisit your entire product line and refactor, repub-
lish, and redistribute your entire collection portfolio for frequently “breaking
changes”! Furthermore, backward compatibility may pose significant problems
within your marketing channels and worldwide distributions.

* What currently active features make this framework (or library) better than its
competitors? What technological innovation is it based upon? Is that technology
widely available to your client-base?

* Does the framework match your development team'’s capabilities? For example,
if you have junior/student developers, does the framework provide tutorials,
completed documentation and architecture explanations.

+ Speaking of supporting materials, is the documentation consist of quality pro-
fessional content compared to naive descriptions easily deduced from merely
reading the source code?

* Is the framework “open-source” or commercial? Do you have access to the raw
annotated source code or to a compiled release only? Are you able to extend,
modify or supplement the framework legally?

* Is the framework truly performant'?' or merely just an abstraction layer?

® Exercise: Read this article about “Shiny New Objects”?>

Exercise: Read Game Making Tools Features and Comparisons'?? to learn the
180 degree shift in game industry development.

Well, as difficult as this may sound, Phaser v2.x.x may not currently support your
game’s “ultimate dream features”. It might in the future, and there are some pretty
impressive features already in Phaser v2.x.x and v3.24+! But, unless you ask for
those features or better still discuss them in the forums, you may have to look
elsewhere to avoid barriers to your development — keep that thought in mind!

Before we leave the topic about “What technology ...“, I'd like to bring your attention
to something I've discovered recently. Phaser Gaming Framework needs your voice

119https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
120https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
121 https://www.techopedia.com/definition/28231/performant
122https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
123https://instabug.com/blog/game-making-tools/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
https://www.techopedia.com/definition/28231/performant
https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
https://instabug.com/blog/game-making-tools/
https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
https://www.techopedia.com/definition/28231/performant
https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
https://instabug.com/blog/game-making-tools/

Game Studio & Project Preparations 21

in the gaming industry. It's an alarming fact, that can't go “UN-noticed”, with the
coming technology trends. The following chart from Instabug on Mobile Game
Development'?4 shows a significant growth in mobile gaming. Phaser v2.x.x Gaming
Framework alone may not fulfill everything required to enter the mobile/WebXR mar-
ket. Furthermore, Phaser Il might not be fully ready for a migration into WebXR2>.

pC, console] mobile
& Handheld gaming
gaming

150

Video game market revenue worldwide by Instabug Blog

?’ Exercise: Read this report from Instabug on Mobile Game Development'?°,

Let me guide your attention to the “News Press Releases” so far this year (as of
20180901 and 20200924! - Google’s 1st page listing for the search term “The
Best Game Development Tools 2018'27” and “The Best Game Development Tools
2020'28").

+ 16 Best JavaScript Game Engine'?® May 14, 2018 (5 years after formal Phaser v1
released; 18 months from the last official v2.6.2. and 3 months after Phaser lIll.)

*+ Best Dame Development Tools By James Konik'3? — Last Updated: 18 Jun'18 (18
months after formal Phaser v2.6.2 released and 4 months after Phaser lll.)

* The Best 15 Mobile Game Development Platforms & Tools in 2018 By Cristina
Stefanova'3' — April 25, 2018 (16 months after formal Phaser v2.6.2 release.)

124https://instabug.com/blog/mobile-game-development-tools/
125https://www.w3.org/TR/webxr/
126https://instabug.com/blog/mobile-game-development-tools/
127 https://thetool.io/2018/mobile-game-development-platforms
128https://thetool.io/2018/mobile-game-development-platforms
129https://www.dunebook.com/16-best-javascript-game-engine/
130https://www.cloudwards.net/best-game-development-tools/
13T https://thetool.io/2018/mobile-game-development-platforms

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://instabug.com/blog/mobile-game-development-tools/
https://instabug.com/blog/mobile-game-development-tools/
https://www.w3.org/TR/webxr/
https://instabug.com/blog/mobile-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://www.dunebook.com/16-best-javascript-game-engine/
https://www.cloudwards.net/best-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://instabug.com/blog/mobile-game-development-tools/
https://www.w3.org/TR/webxr/
https://instabug.com/blog/mobile-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://www.dunebook.com/16-best-javascript-game-engine/
https://www.cloudwards.net/best-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms

Game Studio & Project Preparations 22

Game Development Software by Capterra’2 The Smart Way to Find Business
Software

« Top 5 Mobile Game Development Tools 201833 17th July, 2018 (19 months after

formal Phaser v2.6.2 release.)

+ 7 Best Game Development Tools Of 2018 That Will Revolutionize The IT Industry

by Henry Kundariya’4 March 18, 2018 (16 month after formal Phaser v2.6.2
release.)

Best Game Development Software by G2 Crowd'3> (publication data unavailable)
Mobile game development in 2018: best tools and advice'3® (publication data
unavailable)

The Most Recommended Game Development Tools and Engine of 2018 For Game
Dev'3’ (publication data unavailable)

In-Depth Comparison of the Top Game Making Tools of 201838 (publication data
unavailable)

are dynamic and will dramatically change over time.

0 NOTE: Google first page is an indication of current trends in SEO. The listing

f Exercise: History Lesson — Read the development history of Phaser from

KiwiJS By Rich Davey'° Rich Davey quoted, “... On April 5th 2013 | started
work on the very first version of Phaser. A couple of weeks later, on April 12th,
version 0.5 was pushed up to GitHub and the rest, as they say, is history.”'*°
Exercise: Do your own “Google Search” — with the latest up-to-date infor-
mation! — for this search term “The Best Game Development Tools (insert
current year)”; or use my researched list above (dated: 20180901). Inside
each article, try and find the word “Phaser” or “Phaser JavaScript Gaming
Framework”. Count how many time it appears. Then answer this question:
What technology will you use (or supplement) your mobile/WebXR game
development?

132https://www.capterra.com/game-development-software/

133

134https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
135https://www.g2crowd.com/categories/game-development
136https://thinkmobiles.com/blog/mobile-game-development-tools/

137 https://blog.sagipl.com/game-development-tools/

138https://instabug.com/blog/game-making-tools/
13%http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
140http://phaser.io/news/2016/04/phaser-is-3-years-old

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.capterra.com/game-development-software/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.g2crowd.com/categories/game-development
https://thinkmobiles.com/blog/mobile-game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://instabug.com/blog/game-making-tools/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://phaser.io/news/2016/04/phaser-is-3-years-old
https://www.capterra.com/game-development-software/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.g2crowd.com/categories/game-development
https://thinkmobiles.com/blog/mobile-game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://instabug.com/blog/game-making-tools/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://phaser.io/news/2016/04/phaser-is-3-years-old

Game Studio & Project Preparations 23
“Loose lips sink ships” ... and revenues!

So let us help Phaser Gaming Framework by discussing what we're planning for our
future games and those features we hope to use. Discussing your innovative ideas
in a public forum?!? Mmm, let's stop and think this through to its logical conclusion
and consequences; and then, don’t complain when your “idea” was “stolen” by
someone. Simply stated: IDEAS'*' are not Copyright-able! You should read what the
US Copyrights Office says.

?’ Exercise: Read Works Unprotected by Copyright Law'*>

Quoted from: http://www.copyright.gov/fls/fl108.pdf

Copyright does not protect the idea for a game, its name or title, or the method or
methods for playing it. Nor does copyright protect any idea, system, method, device,
or trademark material involved in developing, merchandising, or playing a game.
Once a game has been made public, nothing in the copyright law prevents others
from developing another game based on similar principles.

Copyright protects only the particular manner of an author’s expression in literary,
artistic, or musical form

about Ideas, Web Blogs concerning Useful articles, and other such “WORKS
UNPROTECTED BY COPYRIGHT LAW"'%3

Exercise: Research if “copy-left” is a valid form of EULA or implied license
according to US Government Copyrights Office.

?’ Exercise: Study what items are “unprotected” in the Copyright Act. Read

QUOTE: US Government Copyrights Office.”

An implied copyright license is a license created by law in the absence of an actual
agreement between the parties. Implied licenses arise when the conduct of the
parties indicates that some license is to be extended between the copyright owner
and the licensee, but the parties themselves did not bother to create a license. This

141 https://www.bitlaw.com/copyright/unprotected.html#ideas
142 https://www.bitlaw.com/copyright/unprotected.html#ideas
143https://www.bitlaw.com/copyright/unprotected.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.phrases.org.uk/meanings/loose-lips-sink-ships.html
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html#ideas
http://www.copyright.gov/fls/fl108.pdf
https://www.bitlaw.com/copyright/unprotected.html
https://www.bitlaw.com/copyright/unprotected.html
https://www.bitlaw.com/copyright/license.html
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html

Game Studio & Project Preparations 24

differs from an express license in that the parties never actually agree on the
specific terms of the license. The purpose of an implied license is to allow the
licensee (the party who licenses the work from the copyright owner) some right to use
the copyrighted work, but only to the extent that the copyright owner would have
allowed had the parties negotiated an agreement. (ed.: OMG, copy-left is wrong and
can’t enforce their claims?!!"!) Generally, the custom and practice of the community
are used to determine the scope of the implied license... .

A commonly discussed scenario where implied licenses are destined to play a major
role is on the World Wide Web. When a Web page is viewed in a Web browser,
the page is downloaded through the Internet and placed on the user’s screen. It is
clear that a copy of the Web page is being made by the user. It is also clear that
the Web page is protected against unauthorized copying by copyright law. (ed.:
our modern laws need to be updated to society’s current behavior.) But it would not
make sense to allow the author of a Web page to sue a user who viewed her page,
since the author intended that the page be viewed by others when she placed it on
the World Wide Web. (ed.: author’s original intent is marketing their content.) Rather,
attorneys argue, courts should find that the Web page author has given end users
an implied license to download and view the Web page. The extent of this implied
license is unclear, and may someday be defined by the courts.

Ihttps://www.bitlaw.com/copyright/license.html

And hence, the reasons to write down our ideas in a “tangible form”'44; and further-
more, affix a properly labeled notice — using a legal ©'4> prior to forum discussions
(i.e., none of this stuff: “(c)”, “pen names”, “pseudonym” defecation or missing publication
dates). That “tangible” form should be a game description. Let's take for example,
a simple “Breakout” game. You might write your game description similar to this
“elevator speech”'4%, Naturally, you'll create a description about your own game; but
for now, this should give us enough of an idea to continue our planning process with

my game’s description:

Breakout: a game in which a player uses a sliding paddle along the bottom of the
screen. They control the paddle’s movements to collide with an animated ball causing
it to bounce upwards or at various angles toward a grid of blocks. The game's objective
is to hit all those blocks, while at the same time not letting the ball pass-by the paddle
and fall off the bottom of the screen too many times.

Use proper copyright notices:

144https://www.bitlaw.com/copyright/formalities.html
145https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
146https://en.wikipedia.org/wiki/Elevator_pitch

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.bitlaw.com/copyright/license.html
https://www.bitlaw.com/copyright/formalities.html
https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
https://en.wikipedia.org/wiki/Elevator_pitch
https://www.bitlaw.com/copyright/formalities.html
https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
https://en.wikipedia.org/wiki/Elevator_pitch

Game Studio & Project Preparations 25

© Copyright 2014-2018, Stephen Gose. All rights reserved.

f Exercise: Take a moment and jot down your game's description.

Hint: | strongly encourage you to purchase “How to Copyright Software” by M.
J. Salone' (a lawyer!) who shows information “over-looked”'*® by the copy-
left movement and open-source software licenses.

What features are included?

This is the planning stage where dreams are turned into real tangible items,"*° and
where it gets fun, in my opinion. In this step, our goal is to figure out what we're
actually making — in other words, what will the game look like, what features it
includes, and what features it won't include or that won't appear initially.

The first thing we can do is make a paper “mock-up” — sketches that look like the
thing you're making, but without any details like coloring or exact sizing. You can make
mock-ups on paper, or an online program if you prefer.

To give you an idea of what a mock-up might look like, I've included my mock-ups
below for the “Breakout” game example. This becomes our “road map”. Next, Il
sketch each “game phase” separately and have lines connecting those “visual displays”
to show how one “menu” leads a player into another “visual section”. Those lines help
me understand what code | need in my game program to move between the various
“game stages”.

147http://amzn.to/2bmIAcH
148https://en.wikipedia.org/wiki/First-sale_doctrine
149https://www.youtube.com/watch?v=ZXsQAXx_ao0

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2bmlAcH
http://amzn.to/2bmlAcH
https://en.wikipedia.org/wiki/First-sale_doctrine
https://www.youtube.com/watch?v=ZXsQAXx_ao0
http://amzn.to/2bmlAcH
https://en.wikipedia.org/wiki/First-sale_doctrine
https://www.youtube.com/watch?v=ZXsQAXx_ao0

Game Studio & Project Preparations 26

Game Booting

* Download assets
* Progress Bar
* Game Info, Sponsors, Ads, etc.

: " Main Menu Scene |

 Play, Help, Credits, etc. (buttons to new page)
o Title
* Theme Background

 Playing, Inventory, Combat
* End of game: Win / Lose
* Return to Main Menu button

o Title
* Return to Main Menu button
* Text

Simple Game Phase Flow for an RPG game

Here's a more thorough illustration on my various “game phases” with a brake-down
of JavaScript recommendations.

gamar Lo Agiivity

>

N / 7 \ 4 y
Initialize % \ Splash.js/ ¥ i
Game > \ prasi} . Main ‘ Game
2 or Boot |V | Language. » Play P
Clicked E Procace i Assets | is J* Menu J \Fln ished
¢+ Index.html + Boot.js + Preload.js _ + Logon * mainMenu.js + Game.js + gameOver.js
« Launch.js ' (members) » Credits « Avatar.js + Scores.js
N Guest * Help + Enemy.js + Submit

« Setting * Level.js « Share

avle € s * Opti *R J
Network Cloud: TN CRee
- y - « Li « Etc.
TCP / IP Impact* v “
+ Etc.

Free online Course @
http:/vwww.theube.com/

Typical Game Phases from Phaser Game Design Workbook
Below is an example from the Apple’s Game Kit'>° using a Finite State Machine
(FSM)'>" to manage a game's navigation and “user interfaces” (Ul). I'm recommending

150https://developer.apple.com/documentation/gamekit

15T https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-
11867&ref=PBMCube

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/documentation/gamekit
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://developer.apple.com/documentation/gamekit
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube

Game Studio & Project Preparations 27

“Apple” since they are following more what I'm suggesting in the Game Design

Systems™, (more on FSM in later chapters)
GameOver

Final Score

Bananas
Large Bananas

finish game i

Title Playing

pause button

Resume

el

Paused

A ‘Finite State Machine’ for Game Ul navigation
Now we can use these drafts to help create a our game’s features list. This is the step
where we think of every possible feature we can imagine in our game. And take those
ideas and put them into a list. Don't limit yourself just write everything down — BRAIN
STORM!! — we sort these ideas later.

Deconstruction

Quote Phaser Game Design Workbook, page 69, “From a game programming perspec-
tive, basic Game-Play can be deconstructed — revealing tactical components inside
a game's overall mechanics and rules. For example, a fighting game deconstructs
into various tactics such as attacks (or punches, throws, and kicks), defensive moves,
and dodges. These tactics are assigned to game prototypes and mechanisms® —
those input keys, mouse clicks, and mobile screen interactions. These maneuvers are
further enhanced into strong or weak punch/kick from the various input controls.
Therefore, game control mechanisms (e.g., buttons, mouse, touch-screen) are
more of an engineering programming concept while Game-Play is more of a design
heuristic concept that we'll study later.

%http://gameprogrammingpatterns.com/command.html#configuring-input

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gameprogrammingpatterns.com/command.html#configuring-input
http://gameprogrammingpatterns.com/command.html#configuring-input

Game Studio & Project Preparations 28

Game Design System™

e
Game)
Mechanics
Data, Logic
\& Rules /

“Separation of Concerns”
) Permits Rapidly

—

Gaming Frameworks**: New Launched Games!

- |
= CryEngin Game! /
Godot)7 \ f P ™
Phaser v2 & v3 - L k . Imported
ramewor! Artwork

Unity : Mechanism
Unreal Engine {Prototypes) Themes

*¥ | ink to Others >>>
https://en.wikipedia.org/wiki/List_of game_engines

Game Design System™ creating new Games from 3 Components!

MVC'>2, Discover those differences here ..."> "An individual software compo-
nent is a software package, a web service, a web resource, or a module that
encapsulates a set of related functions (or data).” (Wikipedia'>*)

j Exercise: Component-based architecture and development is different from

By combining all of our game mechanisms, game mechanics and rules systems — as
non-invasive aspects in our gaming product'>> — along with an artwork theme'>°,
we're able to create multiple game products quickly. It simply becomes a matter of
exchanging any of those “3 cross-cut” components'’ into a new innovative-mixture
for a “tasty” new game product. This is the secret in concocting a new game'>8 every
month or even every week! For example, swopping a “Guitar Hero” artwork theme
with a garden-variety “Plants & Zombies” artwork. The new game would use the same
“Game Mechanics” and “Game Display Mechanisms” but with a “fresh organic-garden”
look and feel!

Quote: “If we're pasting the same code changing a few variables or arguments each
time to fit the current context. That code is a prime candidate for AOP.” Read entire

152https://www.tutorialspoint.com/mvc_framework/mvc_framework_quick_guide.htm
153https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
154https://en.wikipedia.org/wiki/Component-based_software_engineering
155http://know.cujojs.com/blog/oop-is-not-my-hammer
156https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

157 http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming

158 https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.tutorialspoint.com/mvc_framework/mvc_framework_quick_guide.htm
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct
https://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct

© 00 N1 O O b W N =

NN NN NN NN R S R Sl oy
W N0 U WN RO O OO0 WD,

Game Studio & Project Preparations 29

article’
9https://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0

® Exercise: Make a list of features you'd like in your game. Go wild and write
? down any and every idea!

Returning to my Breakout example, this could be a our potential game feature list,

Broken down by Game Scenes:

Game Play scene has following Game Mechanisms
- User-controlled paddle
- Multiple colored bricks
- Angled ball movement
- Collision detection
- Life display
- Score display
- Sound effects
Main Scene
"Play" (button)
"Help" (button)
"Credits" (button)
Help Scene
- Headline: "Game Instructions"”
- Text: "(explain how to play)"
"Return" to Main Menu (button)
Credits Scene
- Headline: "Credits"
- Text: "(about me & partners)"
"Return" to Main Menu (button)
Win Scene
- Headline "You're Awesome!"
- Text "(List of Scores)"
- [background Fireworks] (animation)
"Return" to Main Menu (button)
Lose Scene
- Headline: "So Sorry!"
- Text: "Boo Hoo! Play Again?"

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0

29
30

Game Studio & Project Preparations 30

- "Restart" (button)
- "Return" to Main Menu (button)

What features are mandatory?

If we had unlimited time to make all the game programs we could ever dream up,
then they'd include every feature from our lists. But, unfortunately, none of us have
that much dedicated free time! (If you do, please let me know! | could use some extra
hands on deck!'>°) So in this next step, we must decide which features are the most
important, and which features we'll postpone until we have more time to include
in later game-release updates. This step further helps us figure out our features’
priorities — that is, where to begin by writing our “most important features” down
to our “least important”.

Let's ask ourselves these questions to help sort the importance of each feature:

If | shared this with a business sponsor, which features should be working? In
other words, what is my vertical slice?'®°

Which features am | the most excited about building? Passion is an important
ingredient in our Game Recipes™!

Which features are the most unique in my game? These will differentiate our
final product from our competitors as unique entertainment and novel — new
or unusual in an interesting way.

Which features will | learn the most from implementing? Knowledge generation
is a valuable asset that many game experts seek depending upon game product
deadlines.

Are there any features that seem too far beyond my current skills or capability
level? You can always include them in a following release or game update. This
is what Richard Davey'®" is doing — hiring additional staff,'%? paying bounty
on bug fixes and raffling off prizes for completing his Phaser v3.x.x technical
documentation. Or consider hiring game development contractors who have the
abilities.%3

Now, let's go through our feature list, and begin sorting. | like to use an excel
spreadsheet and add a ranking column along side to each feature name. Doing so,
helps me sort faster.

159https://www.youtube.com/watch?v=kxUdFQEN_OI
160https://en.wikipedia.org/wiki/Vertical_slice

161 https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
162https://www.patreon.com/photonstorm

163 https://www.indeed.com/jobs?q=Game+Design+Contractor&l=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.youtube.com/watch?v=kxUdFQ6N_OI
https://en.wikipedia.org/wiki/Vertical_slice
https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
https://www.patreon.com/photonstorm
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=
https://www.youtube.com/watch?v=kxUdFQ6N_OI
https://en.wikipedia.org/wiki/Vertical_slice
https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
https://www.patreon.com/photonstorm
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=

© 00 N O O b W N =

W RN NN NN NN N NN A B R Rl sl
© © W I O O b W N~ O © W 9 O U b W N =~

Game Studio & Project Preparations 31

For the Breakout example, I've used a priority column (next to the features column)
with “[1]" to show my top priority, “[2]” for my middle priority, and “[3]" for lowest
priority. I've decided to set those unique game mechanisms' priorities higher than
those simple general game features such as scenes, because I've learned that those
general game features are typically game prototypes I've already created in other games:

Visual elements are the Game Mechanisms

[1] Game Play scene has following "visuals" (Game Mechanisms)
1] User-controlled paddle (game object)
1] animated ball (game object)
1] Multiple colored bricks (game object)
1] Angled ball movement (coded)
1] Collision detection (coded)
2] Life display (text)
2] Score display (text)
2] Sound effects (coded)
ain Menu Scene (game phase/menu)
2] "Play" (button)
3] "Help" (button)
3] "Credits" (button)
[3] Help Scene (game phase/menu)
[3] Headline: "Game Instructions" (text)
[3] Text: "(explain how to play)" (text)
[3] "Return" to Main Menu (button)
[3] Credits Scene (game phase/menu)
[3] Headline: "Credits" (text)
[3] Text: "(about me & partners)" (text)
[3] "Return" to Main Menu (button)
[2] Win Scene (game phase/menu)
[2] Headline: "You're Awesome!" (text)
[3] Text: "(List of Scores)" (text)
[3] [background Fireworks] (animation)
[3] "Return" to Main Menu (button)
[2] Lose Scene (game phase/menu)
[2] Headline: "So Sorry!" (text)
[3] Text: "Boo Hoo! Play Again?" (text)
[3] "Return" to Main Menu (button)

Notice that I've added a brief description in parenthesis after each item. It is a naming
“Category classification” | use in my game prototypes.

You can see my Excel spread-sheet can easily sort the priorities into game project

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 32

tasks, so you can easily see what you need to implement in each SCRUM Sprint'%4,
and you can always stop after a particular iteration and just be happy with what you've
made.

Sample Sprint Backlog by priority:

O© 00 I O O b W N =

NN NN NN NN R R R R s |y
W N 0O WN PR, O O N0 0w RO

Game has the following Game Mechanisms

(
[1
[1
[1
[1

N

— — — — o/ o /o

N DN N DNDDNDDNDNDN

(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]
(3]

1] User-controlled paddle (game object)
animated ball (game object)

Angled ball movement
Collision detection

Life display (text)
Score display (text)

]
] Multiple colored bricks (game object)
]
]

Sound effects

Main Menu Scene (game phase/menu)
Play (button)

Win Scene (game phase/menu)
Headline: "You're Awesome!" (text)
Lose Scene (game phase/menu)
Headline: "So Sorry!" (text)

Help (button)

Credits (button)

Help Scene (game phase/menu)
Headline: "Game Instructions" (text)
Text: "(explain how to play)" (text)
Return to Main Menu (button)

Credits Scene (game phase/menu)
Headline: "Credits" (text)

Text: "(about me & partners)" (text)
Text: "(List of Scores)" (text)
[background Fireworks] (animation)
Text: "Boo Hoo! Play Again?" (text)
Restart (button)

Refer: Sprint Backlog by priority here'%>

This next chart is my preferred method. It helps me identify how many items |
need to create. This Second attempt is the chart sorted alphabetically by Game

Mechanisms:

164https://www.scrum.org/resources/what-is-a-sprint-in-scrum
165https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog
https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog

O© 00 I O O b W N =

NN NN NN NN R R R R sl
W N 0 O WN PR, O O OO0 0 WwN RO

Game Studio & Project Preparations 33

// Second Chart: (Categories then original content)

(animation) [background Fireworks]
(button) Play

(button) Help

(button) Credits

(button) Return to Main Menu
(button) Restart

(coded) Angled ball movement
(coded) Collision detection
(coded) Sound effects

(game object) User-controlled paddle
(game object) animated ball

(game object) Multiple colored bricks

(game phase/menu) Main Menu Scene
(game phase/menu) Win Scene

(game phase/menu) Lose Scene
(game phase/menu) Help Scene
(game phase/menu) Credits Scene

(text) Life display

(text) Score display

(text) Headline: "You're Awesome!"
(text) Headline: "So Sorry!"

(text) Headline: "Game Instructions”
(text) Headline: "Credits"

(text) Text: "(explain how to play)"
(text) Text: "(about me & partners)"
(text) Text: "(List of Scores)"
(text) Text: "Boo Hoo! Play Again?"

Hint: The “400 Project Rule List” contains more than 100 game design rules.
It is an ongoing formal study of gaming rules, together with attribution, scope,
and trumping information that all may help create “game prototype categories.
Download the list from here."%®

If you scan through the first listing, you'll discover many items begin to cluster
together. For example (game object) are at the top of the list while (button) are mostly
a lower priority. Alternately, | could have created a separate spreadsheet column
for just those Game Mechanisms items and sort just those categories. (Refer to the
Second Chart above) Doing so would tell me “common” items in my game, and let me
write that code once and reuse it for similar items in other games as a component

166https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html
https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html

Game Studio & Project Preparations 34

prototype — this is the secret sauce in our Game Recipes™! Keep your “featured
ingredients” D.R.Y and use it everywhere in your game development! After a few
game development cycles, | can refer back to all those game prototypes that were
previously created. As you can quickly see — illustrated in the second listing above
— there's only four (4) visual Game Mechanisms items to create (buttons, objects,
menus and text), an animation effect (visual manipulation), and three (3) undefined
items which appear to be some sort of “functions or process”.

How will you encode it?

Now that you have an idea on what features you'll encode first, What variable or
functions names should you use in your program? How will we design our game
software? What is our game architecture?

?’ Exercise: Sneak ahead to Chapter 2: “4-Step Method”

1.5 Game Design Architecture

“Oh! OhY”

The answer comes from a phrase senior software engineers call “high level architec-
ture” design.'®’ Using Object-Oriented Analysis Design (OOAD)'®8 in your game de-
velopment process involves breaking your game's idea into parts (i.e., data structures);
and, then describing how those individual parts interact with each other. For example,
dissecting your game description into categories like “things” (aka “objects”), rules and
metrics (aka, “logic”), “human computer interaction”'%° (HCl), “user data” information,
and “camera viewports” (i.e., what the player see during the game progress) — then
think about how you might write those items as JavaScript code, such as object types,
functions, or variables. Here's another example:

+ Game Menus and Scenes (plural noun)
* Music Tiles (plural noun)
* Music sound files (plural noun)

167 https://en.wikipedia.org/wiki/Architectural_pattern
168https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
169https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Game Studio & Project Preparations 35

* Tool-tips text (a noun)
* User Interface button(s) for navigation (plural noun)
* Splash Screen (a noun)
+ Background theme music (a noun)
* Heads Up Display (a noun)
- Scores display (a noun)
- timer display (a noun)

In a very primitive way, we have just created a game using the Object-Oriented
Analysis Design (O0AD)'"’° method. From a different “Elevator Speech” and game
description | wrote, | collected all the nouns from the game’s description. This is
not yet executable JavaScript; it's called “pseudo-code” and we have a lot more to do.
“O0AD" should include some adjectives (properties of those noun-thingies'’! in our
game), adverbs and action verbs (how, when, and what those things do respectively).
For example,

When (an “adverb”) | click (a “verb”) a game tile (a “noun”), it should play (a “verb”) a
music file (a “noun”).

It becomes a trivial process to create games using just simple grammar.

Another side-benefit of using “OOAD” is an opportunity to test the game's “Enjoyable
Factor” (aka, is the game fun?). Collect all of the player's action verbs (such as shoot,
command, run, purchase, build, and look) and envision how a player might perform
each one. Then, for each of those “verbs”, ask yourself if that game action is fun. Again
ask yourself, if the target market — identifying our target audience is coming later
— would find it fun. Be objective! If those player “actions” are not enjoyable or fun,
substitute another action for the player to do that would be fun; otherwise, drop the
action-verb entirely.

® Exercise: Download my interpretation of “Comparison Chart of Fun to Human
? Emotions”'’? and a white-paper entitled, “MDA: A Formal Approach to Game
Design and Game Research”'’. This next reference was developed from a
small (60 total) population sample while attending a game convention (a
skewed population sampling). Regardless, it is still an interesting thesis about

the “4 Keys to Fun"""4

170https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented

171 https://www.urbandictionary.com/define.php?term=thingie
172https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
173https://makingbrowsergames.com/design/MDA.pdf
174http://www.xeodesign.com/the-4-keys-to-fun/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://www.urbandictionary.com/define.php?term=thingie
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/MDA.pdf
https://makingbrowsergames.com/design/MDA.pdf
http://www.xeodesign.com/the-4-keys-to-fun/
https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://www.urbandictionary.com/define.php?term=thingie
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/MDA.pdf
http://www.xeodesign.com/the-4-keys-to-fun/

Game Studio & Project Preparations 36

Sample Code derived from the “OOAD” Breakout Game Description Example:

* Objects:
- var Brick
- var Paddle
- var Balls as new Array()
* Scenes:
- Splash/Start
- Play Game
- Ending (Win and/or Lose)
- Credits
* Logic:
- Brick (.isHit())
- Paddle (.move())
- Ball (.move(); .droppedOut())
- Ball-brick collision (function, use bounding box)
- Build Brick Grid (function container)
- Paddle-ball collision (function, use bounding box)
- Paddle-ball angling (function, invert angle)
- Reset Game (function)
+ User Interaction & Heads-Up Display:
- Keyboard-paddle movement (keyPressed)
- Buttons for scene changes (mouseClicked)
- Text boxes (Score, Remaining Attempts)
+ Game data
- Ball Dropped Out (Remaining Attempts -1)
- Ball Hits Bricks (Score + 1)

o Note: | could have used this Chart “sorted by Items” instead of this listing above.

“Top-down”

Top-down design (aka Step-wise refinement) is another technique’’> — among
many; (click here to see the 10 most commonly used)'’® — that professional
programmers use when they have to go beyond simply identifying items — as we

175 https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
176 https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-aOb47a1e9013

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013

Game Studio & Project Preparations 37

did in the examples above. Top-down design helps define tasks inside of tasks. Small-
scale problems are usually composed of tasks all at the same level. This means that
there are few opportunities for a task to contain several other tasks (i.e., inheritance)
of which turn into JavaScript objects with method functions.

In a Top-down design, the solution to the problem is found by breaking down the
problem into solvable sub-problems. However, these sub-problems are not smaller
versions of the large problem. These sub-problems have these following characteris-
tics:

+ Each sub-problem must be solvable by a process or set of rules to be followed in
calculations or other problem-solving operations.

+ Each sub-problem should be independent of any other sub-problems.

* Solving a sub-problem should be significantly less complex than the main parent
problem.

* Solving the sub-problems should lead to solving the overall main problem by
jointly composing the solutions for all the associated sub-problems.

+ Performing step-wise refinement will lead to software functions and “classes”
nested in related “modules” when we begin writing our game’s source code.
(NOTE: more on JavaScript Modules in the Coding Appendix.)

“Bottom-up”

Bottom-up design occurs when you determine what programming routines are avail-
able to you already from the Phaser JavaScript Framework, and you'll selectively
use them to “build up” your program instead of creating that code yourself. Since we
are focusing on the Phaser JavaScript Framework, you'll discover 90% of the work
has already been done for you in your game's construction. All we need to do is simply
find those various pieces of code that our game requires from the Phaser API.

“Oh! Oh!” vs. Top-Down vs. Bottom-Up vs. OLOO

You might be wondering which design philosophy is the best one for you to adopt and
use: “OOAD", top-down, bottom-up or “Objects Linking to Other Objects”. In reality,
neither are better than the others. These processes are complementary. When you
have to design software from scratch or add to existing software, you are likely to use
any of those processes to help you achieve your best design.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 38

1.6 Game Project Summarized:

By now, you hopefully understand the Game Design System™ process for creating a
game project recipe. The most important thing is to “ACTUALLY START MAKING THE
DAMN GAME”, because that is where you'll learn the most, and also where you'll get
the most joy out of your creation, since you’re turning your dreams into a reality.

Game Recipe™ Process

Development

¢ Requirements
¢ Description

. * Mock-up
De5|gn e List Items

¢ Implementation

Encoding ¢ Testing
¢ Integration

Game Recipe™ Process

Concept Development:

1. Copy your a fresh/new ‘file structure’ into a new/separate project directory/folder.
A basic index.ntm1 file should be there already; just update the “<nead>“ metadata for
search engine optimization (SEO).

2. Describe what you're making in an elevator speech (aka, “Game Description” text
file).

Design:

3. Draft a “mock-up” sketch of the game phases and content for each game phase.
4. List the items, their priorities, and “Catalog their classification”. (with an Excel
spread sheet?)

5. Sort the items by either: 1) priorities, or 2) “Catalog classifications” — this is my
favorite method and easiest for me to encode content.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 39

Production Encoding:

0 Note: following the Principles of Software Engineering'”’

6. Use (aka “implement!”) “software architecture design”'’8 to break down (i.e.,
Deconstruct!) the various mechanisms and components into their logical elements.
Use a combination of “OOAD", top-down, OLOO, and/or “bottom-up” design methods.
7. Find those previously tested prototype items you've already created in other game
products — such as your “index.html” page — stored in the Game Recipes™ tool'’°.
Use those game prototypes. If they don't exist then go to step #8.

8. Create and integrate those missing game prototypes — using the 4-step method
(found in Chapter 2) Classify them with other similar components and include them
into your automation tools. It's worth mentioning again — this is the secret sauce in
our Game Recipes™! Keep your “featured ingredients” D.R.Y and use it everywhere
in your game development!

The core “Game Mechanics” (GM) are written in “pure” JavaScript functions (or ES6
“classes”'8%) which support the game’s logic, data, and rules. These components
will “chat” among themselves with whatever “JS Gaming Framework” you've se-
lected. This provides flexibility to exchange entirely different “Gaming Frameworks
Mechanisms” (GFM) — the “front-end visual elements” — without changing the
artwork theme nor game’s mechanics. The “mechanisms component” come from
your selected “JS Gaming Framework” and will handle the gamers’ displays and User
Interfaces (Ul). Much of the code written in the “front-end” Phaser Gaming Framework
is event-based. You'll define some behaviors for the gamer’s input, and then attach
those to “a triggering event” such as a button click or a press key from a keyboard.
The “artwork component” will supply the graphics and multimedia for and into the
“mechanism prototypes”. The “game mechanics and rules” | include in the “main.js”
(aka “game.js") to merge and minimize the number of files downloaded.

Download this FREE 400+ page ebook: “Game Development for Human Beings”
from GameDev Academy.8

177 https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
178https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
179https://makingbrowsergames.com/gameDesigner/
180http://know.cujojs.com/blog/oop-is-not-my-hammer

181 https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/gameDesigner/
http://know.cujojs.com/blog/oop-is-not-my-hammer
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/gameDesigner/
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47

Game Studio & Project Preparations 40

1.7 Summary

Let's review and take inventory of what we've covered so far. In Part IV, we will revisit
these steps again as we walk through the creation of several different games.

+ We have read pages of supplement content from 52 external sources.

+ Downloaded half-a-dozen additional Bonus Content files from reference links.

* We have set-up a workstation environment.

* We discovered helpful debug sites and data sources.

+ Chose and set-up an operational web-server.

* Created a file structure to become a consistent foundation for all on-going
projects.

* We learned what is and is NOT game development.

* Installed several development and supporting tools.

* Learned where to find $1,000+ of free software for game development.

+ Reviewed tools to migrate the HTMLS game onto various mobile platforms.

+ Constructed a game “front-door” with SEO.

* Understand the use of JavaScript Modules.

* Learn the Game Design System™ and how to make a game “recipe”.

+ Clarified what Copyright means from the US Copyright Office.

* Read several software architecture design concepts.

* Migrated all current game prototype mechanisms into a separate namespace.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 41

1.8 Chapter References:

Programming like a Pro'8? Chapter 8, by Charles R. Hardnett

Google Analytics'83

Getting Started Making Video Games'84 by John Horton.

Tools for Web Developers — Setting Up Your Dev Environment'8>

How to use browserify'8 to build modular applications. Free handbook.

Google Search for Text Editor for Source Code Development'8’

“Using ECMAScript 6 today”'88 gives an overview of ECMAScript 6 and explains
how to compile it to ECMAScript 5. If you are interested in the latter, start reading
in Sect. 2. One intriguing minimal solution is the ES6 Module Transpiler which only
adds ES6 module syntax to ES5 and compiles it to either AMD or Common]S.
Embedding ES6 modules in HTML: The code inside <script> elements does not
support module syntax, because the element’s synchronous nature is incom-
patible with the asynchronicity of modules. Instead, you need to use the new
<module> element. The blog post “ECMAScript 6 modules in future browsers”189
explains how <module> works. It has several significant advantages over <script>
and can be poly-filled in its alternative version <script type="module">.
CommonJS vs. ES6: “JavaScript Modules” by Yehuda Katz'?? is a quick intro to
ECMAScript 6 modules available on Github''. Especially interesting is another
page’?2 where CommonJS modules are shown side by side with their ECMAScript
6 versions.

Understanding ES6 Modules'3

How the Web works'?4 Mozilla Developer’'s Network (MDN) provides this Learning
Area designed to answer common questions that come up.

182http://amzn.to/2b8gvUr
183https://developers.google.com/analytics/devguides/collection/
184https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
185https://developers.google.com/web/tools/setup/
186https://github.com/substack/browserify-handbook

187 https://www.google.com/webhp?sourceid=chrome-instant&ion=18&espv=28&ie=UTF-8#q=text%20editor%20for%
20source%20code

188http://2ality.com/2014/08/es6-today.html
189http://2ality.com/2013/11/es6-modules-browsers.html

190http://jsmodules.io/

197 https://github.com/wycats/jsmodules

192http://jsmodules.io/cjs.html

193https://www.sitepoint.com/understanding-es6-modules/
194ht‘cps://developer.mozi|Ia.org/en—US/docs/Learn/Commcm_questions#How_the_Web_works

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2b8gvUr
https://developers.google.com/analytics/devguides/collection/
https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
https://developers.google.com/web/tools/setup/
https://github.com/substack/browserify-handbook
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
http://2ality.com/2014/08/es6-today.html
http://2ality.com/2013/11/es6-modules-browsers.html
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html
http://jsmodules.io/cjs.html
https://www.sitepoint.com/understanding-es6-modules/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions#How_the_Web_works
http://amzn.to/2b8gvUr
https://developers.google.com/analytics/devguides/collection/
https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
https://developers.google.com/web/tools/setup/
https://github.com/substack/browserify-handbook
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
http://2ality.com/2014/08/es6-today.html
http://2ality.com/2013/11/es6-modules-browsers.html
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html
https://www.sitepoint.com/understanding-es6-modules/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions#How_the_Web_works

Building a Game Prototype 42

2. Building a Game Prototype

“What’s a game prototype”, you say?

Game classification is diverse. So, I'd like to agree on some standard definitions as we
“cook up” our game using the Game Design system™ and its Game Recipes™ tools.

« game prototypes — Quoted from “Phaser Ill Game Design Workbook”, (page 69),
“By combining all of our game mechanisms, with a set of game mechanics and its
rules systems — as non-invasive aspects in our gaming product’ — along with
an artwork theme?, we're able to create multiple game products quickly. It simply
becomes a matter of exchanging any of those “3 cross-cut” components3 into a
new innovative mixture for a new game product. This is the secret in concocting
a new game* every month or even every week! For example, swopping a “Guitar
Hero” artwork theme with a “Plants & Zombies”. The new game uses the same
“Game Mechanics” and “Game Display Mechanisms” but with a “fresh organic-
garden” look and feell From Page 117, “... let me write that code once and reuse
it for similar items in other games as a component prototype — this is the secret
sauce in our Game Recipes™! Keep your “featured ingredients” D.R.Y and use it
everywhere in your game development!”

* mechanics — Quoted from “Phaser Il Game Design Workbook”, (page 68), “From
a game programming perspective, basic Game-Play can be deconstructed —
revealing tactical components inside a game's overall mechanics and rules. For
example, a fighting game deconstructs into various tactics such as attacks (or
punches, throws, and kicks), defensive moves, and dodges. These tactics are
assigned to game prototypes and mechanisms — input keys, mouse clicks, and
mobile screen interactions” and

* mechanisms — Quoted from “Phaser Il Game Design Workbook”, (page 85),
“The gameboard grid defines the Game Mechanics (GM) movement rules; how
the grid is drawn is the Game Framework Mechanism (GFM). Players will send
their decisions from their device’s inputs — keyboard, mouse, game-pad, etc. —
using their browser and the widget mechanisms we designate as drop-down
menus, buttons, and “sliders”. Mechanisms are the “displays elements” of the
Game Framework Mechanism (GFM).”

Thttp://know.cujojs.com/blog/oop-is-not-my-hammer
2https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
3http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
4https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct
https://www.vocabulary.com/dictionary/concoct
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct

Building a Game Prototype 43

So then, “What’s a game prototype”, you asked?
Answer: It is an operational gaming foundation that can:

. accept inputs (Gaming Framework Mechanism (GFM));

move game elements and components (Gaming Framework Mechanism (GFM));
the transition between game phases, and (Game Mechanics and display ele-
ments as visual components from the Gaming Framework Mechanism (GFM).)
4, reacts to internal game object collisions with visual feedback (both Gaming
Framework Mechanism (GFM)).

wn =

What are the benefits of creating a game prototype first?

Answer: See the latest comments from various gaming experts here> and here®; and
other software engineers’ opinions about prototyping in general — here’. In short,
you're trying to find if your game is “fun”!

My game design concept is clearly echoed in both Apple’s Game-Play Kit and Play
Canvas® as “Entities and Components”.® They plainly state, “The Entity-Component
design pattern is an architecture that favors composition over inheritance. To il-
lustrate the difference between inheritance-based and composition-based architec-
tures, consider how you might design an example “tower defense” style game, with
the following features ...". It's a wonderful feeling to discover after 20 years that other
prominent game developers are thinking along the same patterns of game prototype
development.

Shttps://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first#

6https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game

7https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm

8https://playcanvas.com/

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first
https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game
https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm
https://playcanvas.com/
https://playcanvas.com/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first
https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game
https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm
https://playcanvas.com/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Building a Game Prototype 44

Component Manger
Vi Wi

Physics

(Alien)

{Player)

(Target)

(Script Only)

{Grenade)

Figure2 Object composition using components, viewed as a grid.

Components and “Objects Linking to Other Objects” (OLOO)

® Exercise: Read “Apple’s Game-Play Kit: Designing with Entities and Compo-
? nents”."° and learn why Apple claims that “Inheritance-Based Architecture
Hinders Game Design Evolution” and their illustrations on how “Composition-

Based Architecture Makes Evolving Game Design Easy”.

Perhaps the most popular opinion — coming from one of my game development
heroes is:

How to Succeed at Making One Game a Month
Reach the Finish Line More Often

... "90% of game projects never see the light of day. My own personal experience
confirms this. I've been making games for over twenty years, and of all the games
| started - filled with enthusiasm, a detailed plan, and infinite brainstorms worth of
ideas - only a small percentage were ever released. This caused me years of heartache.
I was a good coder, | could produce acceptable artwork,” | had enough good ideas to
feel confident about my plans, and yet that wonderful state where the game is ready
for the public was an elusive target. ...

10https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Building a Game Prototype 45

#5. Make a No-Art Early Playable
The next major handy tip for this challenge is to make a playable game in the first
day. No title screen, only one level, and just the primary gameplay mechanic.

It won't be great, it won't be finished, and it certainly won't look that great or be all that
fun. That said, this step is your best weapon. Challenge yourself to create a codebase
that compiles and runs in the first few hours. Make it so that you can accept inputs,
move around, animate something, and trigger some sounds. This prototype, lousy a
game as it may be, is going to be your best friend.

The sooner you can have a working early playable prototype, the more likely you
are to succeed. It will be your first “save point” - a resting plateau on the way to the
top of the mountain that you can fall back on. It represents a vision of the working
game. From here on you will be able to polish your game for as long as you like with
the knowledge that you have something in hand that “works".

No-art prototypes also have one other major advantage: in previous games, | would
make beautiful mockups in Photoshop and gather hundreds of lovely looking sprites
in preparation for the game. After development was complete, the vast majority of
the art had to be replaced, resized, or thrown out. I've wasted thousands of hours
making game-ready artwork” before coding; these days I know that the tech specs
and evolving game-play mechanics will mean that much of what you make at the
start won’t make it into the finished game.”

Read more here.?

%https://www.gamedevmarket.net/?ally=GVgAVso)

bhttps://www.gamedevmarket.net/?ally=GVgAVso)

Chttp://www.lostgarden.com/2006/10/what-are-game-mechanics.html

dhttps://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-
month--gamedev-3695

’ Hint: If you're tired of starting over, stop giving up"

2.1 Creating Prototype Mechanisms — 4-Step method

The last step (i.e., #8) in our Game Recipes™ was to create missing game components
and prototypes. We'll follow these next 4-steps, from here on, whenever we need
to generate new game prototypes and component mechanisms. It'll become our
regimen’?;

1T https://www.youtube.com/watch?v=yze]77RNcjs
12 https://www.merriam-webster.com/dictionary/regimen

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://www.youtube.com/watch?v=yzeJ77RNcjs
https://www.merriam-webster.com/dictionary/regimen
https://www.youtube.com/watch?v=yzeJ77RNcjs
https://www.merriam-webster.com/dictionary/regimen

Building a Game Prototype 46

RELATIONSHIP BETWEEN Ul, HUD, GAME PLAY & GM

Game Play Mode

Interface

Model Actions
Rules

Game

—_—
Mechanics

HUD Output Camera Menu Changes
View

User Interface Game Play

Game Design System™ - Single Player
1st RULE: Always be consistent in placement, programming paradigm'3, JS coding
style'4, and naming schemes'>. It might be worth reviewing what others are doing'®
with their JS Styling'” and how they program JavaScript.'8

® Exercise: Learn how to out-perform senior programming developers'® in 3
? months time?! ... use game programming patterns?°.

Step 0) Preparation and Research

This is the fun part when developing a new game — so, enjoy! (Boy Scouts: Earn your
Merit Badge!?")

+ Research and play a similar gaming genre, currently on the market, that match
your ideas and appeal to similar target audiences. Record which sites host those
games and investigate their submission policies.

13https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20%26%200bject%20prototypes/ch6.md

14https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa

15https://en.wikipedia.org/wiki/Computer_network_naming_scheme

16https://standardjs.com/

17https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f

18https://github.com/getify/You-Dont-Know-)S

19https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-
developer-and-how-you-can-too-19bc6206fa68

20https://gameprogrammingpatterns.com/

21https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://en.wikipedia.org/wiki/Computer_network_naming_scheme
https://standardjs.com/
https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f
https://github.com/getify/You-Dont-Know-JS
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://gameprogrammingpatterns.com/
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf
https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://en.wikipedia.org/wiki/Computer_network_naming_scheme
https://standardjs.com/
https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f
https://github.com/getify/You-Dont-Know-JS
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://gameprogrammingpatterns.com/
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf

Building a Game Prototype 47

* Record their “Search Engine Optimizations” (SEO) — metadata descriptions,
keywords, where & who the game is hosted, etc.

* Create your game project “front-end index.html” file(s).

* Follow the Game Project Steps #1 through #8. or use the Game Recipe™ Tool?2,

Step 1) Generate Game Phases (as needed).

 initialize W L sptashis/) i
Game : Load \ plash.js/ % Main Game
o or Boot Language. | Play =
Clicked \Zj:ess) \zsets /’I/i\\js | \Menu Finished
+ Index.html -+ Boot.js * Preload.js r * Logon *mainMenu.js + Game.js - gameOver.js
+ Launch.js I (members) » Credits « Avatar.js * Scores.js
N Guest * Help + Enemy.js + Submit
| « Setting * Level.js « Share
. " « Options * Room.js
Networlk Cloud: ;
’ S * More « Treasure.js
- o I « License + Etc.
TCP / IP Impact’ i - Lovel
Eree online Course @ [Ble;
http:/ fwww.theube.com/ [
i

Typical Game Phases from “Phaser Il Game Design Workbook”
Once these are created, they should be “relatively” D.R.Y. (Don’t Repeat Yourself)

Step 2) Generate code for triggering events.

Much of the code written in the “front-end” Phaser Gaming Framework is event-
based. You'll define some behaviors for the gamer’s input, and then attach those to
“a triggering event” such as a button click or a press key from a keyboard. These —
listeners, observers, sensors, sentinels, web workers, etc. — will be placed in the “Play”
Game Phase since most of these relate to the visual “Game Framework Mechanisms”
(GFM) and display Components. See a flow chart?3> when and what scenes update,
and review the various scene event states?*.

22https://makingbrowsergames.com/gameDesigner/
23https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
24https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/gameDesigner/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events
https://makingbrowsergames.com/gameDesigner/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events

O U W N

Building a Game Prototype 48

RELATIONSHIP BETWEEN Ul, HUD, GAME PLAY & GM

Game Play Mode

Interface
Model Actions
Rules

Game

Mechanics
HUD Output Camera Menu Changes

View

User Interface Game Play

Relationship between Ul, HUD, Game Mechanisms, & Mechanics (Single Player)

Example of Phaser 3 triggering events

// an event listener as the 'handler' function.
// The 'this' argument is the context.
this.events.on('ohICU', handler, this);

// Native Scene's own 'EventEmitter' dispatchs our events
this.events.emit('ohICU");

Step 3) Generate transition

This code is also placed inside the “Play” Game Phase. Its primary purpose helps
transition “into and out from” the new game phase and their internal Phaser Il Scenes.
Once these are created, they should be “relatively” D.R.Y. (Don’t Repeat Yourself)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 49

CMS (Non-Traditional)

Game #1 Game #1

Inline Scripts Assels. Assets I |

Game #2 Game #2

o Asse 3 A f g . , w u s | |
s -::’. E] :
! J !ﬂ ﬁ Asse R— >
Plain HTMLS Canvas I - | - ﬂ

Canvas pages

Transitions using separate pages instead of a single Phaser canvas
Example of a “Non-traditional Phaser Il transitions”?> using individual web pages.
WHY? It's due to the “Phaser.cache” and artwork created for this game.

Step 4) Create your Game’s Core & auxiliary functions

SHARED MICROSERVICES GAME DEVELOPMENT

Reuse of a shared

iOS Ul
— \ 'V game app core
Facebook \ Android > For a single game with
ul

G ul i
\ ame different
Core Game y’ configurations

5\\ App
What is needed CON

AL

" F(;:derated
3 Access A Toon
When it is needed - \ £

From where it is needed b 'Backend
At the time it is needed \Stmge

Cloud-based Game Design - “Just In Time” Management
Building your core display mechanisms into components; this means that you request
“what” your game needs from “Infrastructure-as-a-Service”, “Platforms-as-a-Service”,
“Content-as-a-Service”, and “Data-as-a-Service”. It's the same concept as using “npm
and inserting dependencies” on steroids!

25https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html
https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html

Building a Game Prototype 50

® Exercise: Download this “template” as a new project reference. Open and
? watch the Developer’'s Console while running this template or simply click and
watch for these 4-Step numbers annotated inside the source code.:

https://makingbrowsergames.com/p3gp-book/standalone/

Warning: Avoid “Anti-patterns”?’ when developing your game source code

A when integrating others’ supporting functions, document any encroaching?
“Anti-patterns” you find, and share your findings in the Phaser forums. Book-
mark the following FREE online book: Essential JS Design Patterns by Addy
Osmani?®. It shows what to look for and how to resolve “Anti-patterns”
sneaking into the Phaser Libraries.

Once we have completed these steps for our new game phase, we must bring them
alive.3° To do this, we load the JavaScript module either through an inline “<script>*
tag in our “index.ntm1” file; or by importing it into our ES6 “index. js* file (if you are
using an ES6 structure, we'll learn how to automate this process later).

As we build our Game Prototypes it is helpful to use the browser's console and
developer tools. The browser console in the “Developer Tools”, tells us a lot about our
game’s performance. If you've never used the “Dev Tools” in the console, you might
take a side trip to “Mastering The Developer Tools Console”3" But first, we need a web
page to hold our game ...

Deeper Dive: Writing D.R.Y. JS code

Wait! How do | write D.R.Y. JavaScript source code? Ok, let's take a side-trip to Clean
Code concepts adapted for JavaScript® — (quote) “Software engineering principles,
from Robert C. Martin's book Clean Code (Amazon),” adapted for JavaScript. This is not
a style guide. It's a guide to producing readable, reusable, and refactor-able software
in JavaScript.”

Ihttps://github.com/ryanmcdermott/clean-code-javascript

bhttps://amzn.to/2WK2pAT
Chttps://github.com/ryanmcdermott/3rs-of-software-architecture

26https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
27https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
28https://www.dictionary.com/browse/encroaching
29https://addyosmani.com/resources/essentialjsdesignpatterns/book/
30https://idioms.thefreedictionary.com/bring+it+alive
31https://blog.teamtreehouse.com/mastering-developer-tools-console

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://makingbrowsergames.com/p3gp-book/standalone/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
https://www.dictionary.com/browse/encroaching
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://idioms.thefreedictionary.com/bring+it+alive
https://idioms.thefreedictionary.com/bring+it+alive
https://blog.teamtreehouse.com/mastering-developer-tools-console
https://github.com/ryanmcdermott/clean-code-javascript
https://github.com/ryanmcdermott/clean-code-javascript
https://amzn.to/2WK2pAT
https://github.com/ryanmcdermott/3rs-of-software-architecture
https://github.com/ryanmcdermott/clean-code-javascript
https://amzn.to/2WK2pAT
https://github.com/ryanmcdermott/3rs-of-software-architecture
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
https://www.dictionary.com/browse/encroaching
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://idioms.thefreedictionary.com/bring+it+alive
https://blog.teamtreehouse.com/mastering-developer-tools-console

Building a Game Prototype 51

2.2 Using “Box” Graphics

Since we are making a working “game prototype”, let's keep our artwork as generic as
possible, and save the efforts of art selection and consistent styling until a later step.
We will save ourselves those “thousands of hours”; and, for now, just simply set up
“block-style graphics” and assign basic colors to represent our gaming components.
Phaser v3.13.x offered a feature that simplifies building these “block-style graphics”.
The reason we are doing such simple “placeholders” is to learn if our game idea is
viable — if it’s fun?!

We will begin with a simple top-down (aka “Bird’'s Eye” view) game with an avatar
character, several walls, text narrative, “heads-up display” (aka HUD), and several
opponents. Doing so, we have a functional game prototype to use for other game
ideas. By swopping out these simple blocks for a variety of artwork themes, this
allows us to create 100s of games from similar game mechanics3? using different
theme settings.

We'll explore different game perspectives, mechanics, themes, and modes later
in this book and adjust these prototype mechanisms accordingly. For now,
review how to use “Isometric View in Phaser 3”33

?’ Exercise: Study the v3.13.0 “shapes features” by reading this DevLog 128*

32http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
33https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
34https://phaser.io/phaser3/deviog/128

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
https://phaser.io/phaser3/devlog/128
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
https://phaser.io/phaser3/devlog/128

Building a Game Prototype

Sample 2.1: Prototyping Graphics

// available since Phaser v3.13+.

// 2D: this.add.rectangle(x, y, width, height, color)

// AND even ...

// 2.5 & 3D as the new Phaser III "ISOBOX"

// new IsoBox(scene, x, y, size, height, fillTop, fillleft, fillRight])

// direct method using available internal Phaser geometry.
var shape = this.add.rectangle(400, 250, 32, 32, 0x0Q0FFQQ);

/7
/7
//0OR use our prototype method ...

var player1 = this.add.sprite(
100, 400, // display x and y coordinates.

box (
{who: this,
whereX: 100,
whereY: 350,
length:100,
width:100,
color: 0OxFFQ0QOQ,
border: OxFFFFFF}
) // call out to factory function

); //End sprite
); //new shiny graphics-box avatar!

/7
/7

//create a "box" on the HTML5 canvas.

function box(opt) {
//syntax: new Rectangle([x], [y], [width], [height])
//var bxImg = new Phaser.Geom.Rectangle(

// opt.whereX,
// opt.whereY,
// opt.width,
// opt.length);

// OR use rectangle:
var bxImg = opt.who.add.rectangle(

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 53

opt.whereX,
opt.wherey,
opt.width,
opt.length);
// decorate our shiny new "box"
var bxColor = opt.who.add.graphics(
{fillStyle: {color: opt.color},
lineStyle: {color: opt.border} });

bxColor. fillRectShape(bxImg); //fill box with color
bxColor.strokeRectShape(bxImg); //draws a border around it.
return bxImg;

};

?’ Exercise: Download the example above:

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

This new “shape”3> feature from v3.13.0 takes on the characteristics of a normal
“game Object” without having to “bake” a texture as you would have to do with a
graphics object.

What time did all that take? a couple of seconds? This way — using generic boxes
or the new Phaser v3.14+ “rectangle shape”3® — we can deploy them to represent
any game elements as well as player character(s), boundaries, walls, doors, treasures,
and opponent(s) entities.

By swopping out these simple blocks for a variety of artwork themes3’ settings, it
gives us the opportunity to create 100s of games along similar game mechanics32.

Hint: We'll explore different game perspectives, mechanics, themes, and
modes in later chapters and adjust these prototype mechanisms accordingly.
Here's an example of a side-view gaming prototype by another famous Phaser
v2.x.x author — Thomas Palef.*®

35https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
36http://labs.phaser.io/edit.ntml?src=src/game%200bjects/shapes/rectangle%20with%20arcade%20physics.js
37https://www.gamedevmarket.net/?ally=GVgAVso)
38http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
39http://www.lessmilk.com/tutorial/2d-platformer-phaser

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
http://labs.phaser.io/edit.html?src=src/game%20objects/shapes/rectangle%20with%20arcade%20physics.js
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.lessmilk.com/tutorial/2d-platformer-phaser
http://www.lessmilk.com/tutorial/2d-platformer-phaser
https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
http://labs.phaser.io/edit.html?src=src/game%20objects/shapes/rectangle%20with%20arcade%20physics.js
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.lessmilk.com/tutorial/2d-platformer-phaser

Building a Game Prototype 54

2.3 Game Practicum: Box Prototyping

Let's apply the knowledge we're learning is a simple 2D maze.

Phaser III Code Review

Play Phaser Ill demonstration here*°.

® Exercise: Download and use the following files with all the notes in this Code
? Review. Open the console and watch the internal operations.

* p3_ 2DRooms-mainJS.pdf*' — 4 pages.
* p3_ 2DRoomsDemoJS.pdf+2> — 8 pages.

Main]JS - p3_2DRooms-main]JS.pdf

* Lines 1 to 39 are general administration and acknowledgments.

* Lines 40 to 49 create the 2D array data structure with hexadecimal flags, a
graphics object, and game namespace.

* Lines 57 to 154 is the Game Mechanics (GM) Component. | placed the function
that handles character movement in the GM component. It could just as easily
appeared in the “Game Framework Mechanisms” (GFM) Component for better
“Separation of Concerns”. See the illustration below.

* Lines 170 to 201 is the Phaser3 configuration object.

* Lines 203 to 207 launches the game using browser document instead of “win-
dow.onload”.

DemoJS - p3_2DRoomsDemo]S.pdf

* Lines 1 to 53 are general administration, data structures, and acknowledgments.
* Lines 54 to 59 create “Game Framework Mechanism” variables, and a graphics

objects.
40https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/

4T https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-main)S.pdf
42https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemo)S.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-mainJS.pdf
https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemoJS.pdf
https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-mainJS.pdf
https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemoJS.pdf

Building a Game Prototype 55

Lines 61 to 292

Lines 61 to 292 is the Game Mechanisms (GM) and Phaser JS Component. | don't use
any artwork nor images. | create the room’s wall using a “pseudo” graphics method
in my game prototype.

Canvas Graphics - Box function

279 //

280 //==================================

281 //create a box Image (pseudo graphics) for the HTML5 canvas.

282 box: function (options) {

283 //var bxImg = this.add.bitmapData(options.length,options.width);
284 var bxImg = game.add.rectangle(options.length, options.width);
285 bxImg.ctx.beginPath();

286 bxImg.ctx.rect(@, 0, options.length, options.width);

287 bxImg.ctx.fillStyle = options.color;

288 bxImg.ctx.fill();

289 return bxImg;

290 }

Lines 293 to 298

* Lines 293 to 298 handles the avatar collision with walls.

Avatar bumps into Walls

293 //

294 // ==
295 function bumpWall() {

296 player.body.velocity.x = 0;

297 player.body.velocity.y = 0;

208 1;

299 //

300 // ==

Lines 301 to 315

* Lines 301 to 315 handles the avatar collision with doorways.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

316
317
318
319
320
321
322
323
324
325
326
327

Building a Game Prototype 56

Avatar bumps into Doors

/7
/7

function bumpDoor(player,door) ({

// 1f a player moves into a doorway.
Q;
9;

console.log("LN 305: Bumped into Door "+door.name);
// which doorway? Is it visible???

// BUG: going through invisible doors? Why?

player.body.velocity.x

player.body.velocity.y

// FIX: if visible, then allow passage, otherwise, stop
if(door.visible){

newRoom(door) ;

resetRoom();

}
player.body.velocity.x

I
(]

player.body.velocity.y

I
[

};
//
//

Lines 318 to 376

* Lines 318 to 376 handles moving the avatar into the new room via a specific
doorway.

Determine new Room Entered

// http://www.html5gamedevs.com/topic/5304-how-to-restartreload-a-state/
/7
//Main Door click handler
function newRoom(door) {

// 2 Options:

// - reset this phase with new room characteristics OR

// - have a '"repaint" function to adjust the entered room.
// Option 1: this.scene.restart();

// Option 2: separation of concerns - new function
Rooms2D.LastRoom = Rooms2D.CrntRoom;
player.setPosition(64, 64);

var LastDoor = door.name;

Copyright © 1972-2017 Stephen Gose. All rights reserved.

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Building a Game Prototype 57

me);

console.log('Last Door Used: ' + door.name);

switch (LastDoor) {
case "North":
//Rooms2D.CrntRoom -= 4, // or GRID_ROWS or MT.length
Rooms2D.CrntRoom = Rooms2D.LastRoom - 4;
Rooms2D.CrntRoomY -= 1;
//Leave via North; enter new room from South-side
Rooms2D.pPosX = config.width / 3;
Rooms2D.pPosY = 320;
break;
case "East":
Rooms2D.CrntRoom += 1;
Rooms2D.CrntRoomX += 1;
//Leave via East; Enters new room from the west-side
50;
Rooms2D.pPosY = config.height / 2;

Rooms2D . pPosX

break;
case "South":

Rooms2D.CrntRoom += 4; // or GRID_ROWS or MT.length

Rooms2D.CrntRoomY += 1;
//Leave via South; enter new room from North-side
Rooms2D.pPosX = config.width / 3;

Rooms2D.pPosY = 50;

break;
case "West":
Rooms2D.CrntRoom -= 1;
Rooms2D.CrntRoomX -= 1;
//Leave via West, enters new room from east-side
Rooms2D.pPosX = 340;
Rooms2D.pPosY = config.height / 2;

break;
}
player.setPosition(Rooms2D.pPosX, Rooms2D.pPosY);
console.log("New Room #: " + Rooms2D.CrntRoom + "; Door Clicked: " + door.na\
SRk

//sfx camera fadein/out

this.cameras.main.once('camerafadeincomplete’', function (camera) {

Copyright © 1972-2017 Stephen Gose. All rights reserved.

371
372
373
374
375
376
377
378

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

Building a Game Prototype

camera. fadeOut (1000);

});

this.cameras.main. fadeIn(1000);

*/

resetRoom();
};
//
/7

58

Lines 379 to 431

* Lines 379 to 431 handles the new room “set-up”.

Reset Room properties

/7
/7

function resetRoom() {

//Room Exceptions

//Hard-coded Error corrections for 2DRooms array:

if (Rooms2D.CrntRoomX < 0) {
Rooms2D.CrntRoomX = 0;

}

if (Rooms2D.CrntRoomX > 3) {
Rooms2D.CrntRoomX = 3;

}

if (Rooms2D.CrntRoomY < @) {
Rooms2D.CrntRoomY = 0;

}

if (Rooms2D.CrntRoomY > 3) {
Rooms2D.CrntRoomY = 3;

//redraw the new room,; hard-code room door exceptions
if ((Rooms2D.CrntRoomY == @) || (Rooms2D.CrntRoomX == 2)) {
doorN.visible = false;
doorN.setInteractive(false);
} else {
doorN.visible = true;
doorN.setInteractive(true);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

Building a Game Prototype 59

if ((Rooms2D.CrntRoomX == 3)
|| (Rooms2D.CrntRoomX == 1 && Rooms2D.CrntRoomY == 1)) {
doorE.visible = false;
doorE.setInteractive(false);
} else {
doorE.visible = true;
doorE.setInteractive(true);
}
if ((Rooms2D.CrntRoomY == 3) || (Rooms2D.CrntRoomX == 2)) {
doorS.visible = false;
doorS.setInteractive(false);
} else {
doorS.visible = true;
doorS.setInteractive(true);
}
if ((Rooms2D.CrntRoomX == @)
|| ((Rooms2D.CrntRoomX == 2) && (Rooms2D.CrntRoomY == 1))) {
//Left Column doesn't have Western doors
doorW.visible = false;
doorW.setInteractive(false);
} else {
doorW.visible = true;
doorW.setInteractive(true);
}
//update Room HUD information
newHUD = "Room #" + Rooms2D.CrntRoom +
"\nUse arrow key to move or\nClick on doorway.\nGrid: [" +
Rooms2D.CrntRoomX + "][" + Rooms2D.CrntRoomY + "] \n

"

Visible doorway: ";

Phaser v2.x.x Code Review

Play Phaser v2.x.x demonstration here*3.

Phaser v2.x.x is not compatible with Phaser v3.24+. The more “pure JavaScript”
we use in our game projects the more “compatible” Phaser v2 becomes to Phaser

43https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/

Building a Game Prototype 60

v3. Therefore, we should always create our Game Mechanics (i.e., the rules and
logic) in “pure” JavaScript and any “Canvas Visual Elements” are placed in the “Game
Mechanisms” file unique to the Phaser APl implemented.

The Phaser v2.x.x code uses the same logic as found in Phaser v3.16+ above. The only
difference is “how to say” those instructions with Phaser v2.x.x syntax.

?’ Exercise: Download and use the following files with all the notes in this Code
Review.

* v2_phaser2DRoomsJS.pdf+*
* v2_phaser2DRoomsDemoJS.pdf+

Main]JS - v2_phaser2DRooms]S.pdf

* Lines 1 - 28 are general administration and acknowledgments.

* Lines 29 to 37 create the 2D array data structure with hexadecimal flags, a
graphics object, and game name-space.

* Lines 38 to 127 is the Game Mechanics (GM) Component. | placed the function
that handles character movement in the GM component. It could just as easily
appear in the Game Framework Mechanisms (GFM) Component for better “Sep-
aration of Concerns”.

* Lines 129 to 138 is graphic box function. Once again, this could move to the Game
Mechanisms Component for better “Separation of Concerns”.

* Lines 203 to 207 launches the game using browser document instead of “win-
dow.onload”.

Demo]S - v2_phaser2DRoomsDemo]S.pdf

* Lines 1 to 25 are general administration and acknowledgments.

* Lines 27to 211 create game mechanism variables, and standard Phaser Essential
Functions — “create” and “update”.

* Lines 212 to 294 makes the Room Doors “clickable”. This is an alternate method
for the avatar to travel around the environment. Let's be HONEST! Did you really
like all that “traveling” in Diablo*6??

44nttps://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRooms)S.pdf
45https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemo)S.pdf
46https://en.wikipedia.org/wiki/Diablo_IV

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsJS.pdf
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemoJS.pdf
https://en.wikipedia.org/wiki/Diablo_IV
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsJS.pdf
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemoJS.pdf
https://en.wikipedia.org/wiki/Diablo_IV

Building a Game Prototype 61

Lines 212 to 294
The difference in Phaser v2.x.x from the Phaser Ill code above is the use of “cam-
era.fade”, delayed time events, unique syntax of “game.world.centerx” and “centery”

and restarting a “Phaser State”. Otherwise, the avatar placement is written in “pure”
JavaScript which draws both Phase APIs closer and cuts development time.

Lines 294 to 306

Creates the walls and doors, in a pure JavaScript canvas-drawing, which is similar to
the Phaser Ill code.

Lines 305 to 350

These lines were consolidated into the “newroom” function, but were retained for your
study.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 62

2.4 3D Prototypes

You can substitute “rectangle shapes” for images and sprites, and apply movement
and physics reactions. It's even possible to build 2.5D and 3D games with just
“isoboxes”.

Quote about the IsoBox Shape’ “... is a Game Object that can be
added to a Scene, Group or Container — WARNING: “some mas-
sive changes coming in v3.17+ about “containers. It provides
a quick and easy way for you to render this shape in your game
without using a texture, while still taking advantage of being fully
batched in WebGL. You can treat it like any other Game Object
v3.16.1 3D isobox in your game, such as tween it, scale it, rotate it, alpha it, blend
mode it, change its origin, give it a Camera scroll factor, put it inside a Container
or Group, give it input abilities or even give it a physics body. It is ... a normal Game
Object. The only difference is that when rendering it uses its own special bit of display
code. .."

This shape supports only fill colors and cannot be stroked.

An “IsoBox” is an ‘isometric’ rectangle. Each face of it has a different fill color. You can
set the color of the top, left and right faces of the rectangle respectively. You can also
choose which of the faces are rendered via the “showTop”, “showLeft”, and “showrRight™
properties. You cannot view an “IsoBox” from under-neath, however you can change
the ‘angle’ by setting the projection property.

9https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html

j Exercise: Research the Phaser 111.12 — Camera 3D Plugin®’

47https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html
https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d
https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d

g b W N =

Building a Game Prototype

Ensure the 3D Camera is loaded into a scene

63

this.load.scenePlugin({
key: 'Camera3DPlugin',
url: 'plugins/camera3d.min.js',
sceneKey: 'cameras3d'

});

// Deploy your 3D camera
var camera = this.cameras3d.add(85).setZ(500).setPixelScale(128);

Phaser 11 ISO demonstration using 1st Person view in “Rescue of NCC Pandora"™

See “Making ‘Collapsing Blocks’ Browser Games“® and its supporting website
demonstrations*.

Quoted from newsletter #144,°

“Phaser3D is a plugin that uses a new Extern Game Object and injects Three.js into
it. It configures it properly for you, so that three.js can happily write to the current

48https://leanpub.com/mbg-collapse
49https://makingbrowsergames.com/starterkits/collapsingblocks/index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/mbg-collapse
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html
https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://leanpub.com/mbg-collapse
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html

Building a Game Prototype 64

context and then restores itself cleanly when it's finished. Because Externs sit on the
display list like any other Game Object, you can layer your game content around a
three.js scene. This means you could add 3D backdrops behind your 2D games, or
3D objects over the top of a 2D game, or any combination of. Of course, you can fully
control three.js from Phaser too. This isn't some cut-down hobbled version of it, it's
literally the entire library. Every single thing three.js can do, you can do via Phaser3D.
There are loads and loads of helper methods to ease your workflow. These cover
features like creating all supported forms of geometry, add spot, point or hemisphere
lights, enabling shadows and fog, creating cameras, groups and all lots more. I've also
included support for GLTF Models. You can, of course, load any other format, but as
GLTF is the new standard, | included methods directly for it. Included in the bundle
are no less than 34 examples, covering all kinds of different features, from geometry
to cube maps to an example showing how to layer a normal 2D Phaser game over a
3D backdrop. There's even a little demo showing how to use Matter.js bodies for 3D
objects. It's a powerful combination and | hope Phaser backers have fun playing with
the demos and creating stuff.

| will release Phaser 3D publically in a few months time, but for now backers get to
play with this first, as they're the ones that enable me to work on Phaser full-time, so
it's my way of giving back to them. It was also a really nice creative break for me. |
had real fun putting the demos together and yet | only really scratched the surface of
what could be done with it!”

%https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-
f868549ae6f6d740beed7ce5868222c6f74abaaf

2.5 “ToTo, ... we’re not in Kansas anymore” — Dorothy

Welcome to OZ ... er! uHMM! “PHAZ3R", Dorothy!>°

Phaser pre-v3.16.x was not for the “faint-heated”. In those “early release months” (i.e.,
20170201 to0 20181025), due to the lack of hands-on tutorials and user documentation,
it was difficult to architect any games using the “Bottom-Up” design method. Once
documentation and a few great tutorials from William Clarkson (v3.9+)>" and Zenva
Online Game Academy (v3.12+)>2 began to appear, O0OAD>3 and “Bottom-up Design">*

S0https://www.youtube.com/watch?v=vQLNS3HWFCM

5Thttps://www.udemy.com/course/making-html|5-games-with-phaser-3/2ranMID=39197&ranEAID=pmlyJRiRSYE&
ranSitelD=pmlyJRiRSYE-.Om65WbGQTSnaliFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=
udemyads

52https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=
Phaser3GamePrototyping

53https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design

54https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom%2Dup%20approach%20is,
environment%20to%20form%20a%20perception.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://www.youtube.com/watch?v=vQLNS3HWfCM
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.
https://www.youtube.com/watch?v=vQLNS3HWfCM
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.

Building a Game Prototype 65

was then possible.

Phaser Il is a sophisticated re-write that reminds me of its “grand-sire”>> KiwiJ$S>®
— the grand-father of Phaser v2.x.x. Phaser Il replaced “p1x1* with native code, and
now supplies many new features that transcends any of its linage predecessors. In
fact, Phaser Il “scenes” remind me more of working with Flash MovieClips!

Quoting from the “DevLogs”, “Fundamentally, v3.x.x is completely different inter-
nally. There's almost no code left over from v2.x.x. being used” (ed.: ... as | mentioned
before, NOT EVEN PIXI! Yes, this is an incredibly bold business move, but they did it
anyway. This created additional work on the new APl and increased the restructuring
required. In fact, Phaser v3 has undergone several massive rewrites since the formal
conversion from “Lazer” into “Phaz3r™ in February 2017 until now (September 2018).
The quote continues,) “However, we were very careful to keep the API as clean and
friendly as possible.” — quoted from FAQ #2 http://phaser.io/phaser3/faq

“Phaser 3 is the next generation of the Phaser Game Framework. Every last element
has been rebuilt from scratch using a fully modular structure,” (ed.: Please read
“JavaScript Module Systems Showdown: Common/S vs AMD vs ES2015".) combined
with a data-orientated approach. It includes a brand-new custom WebGL renderer
(ed.: PIXI is not used as stated earlier) designed specifically for the needs of modern
2D games.” — quoted from R. Davey http://phaser.io/phaser3

“Phaser 3 is now built entirely with webpack2.? (ed.: research what webpack2 does®
to raw JavaScript code and how it works./) All of the code is being updated (or has
been updated) to use Common/S format modules. And webpack2 is managing the tree-
shaking and package building of the whole thing. There are no grunt or gulp scripts
to be seen anywhere, as we simply don’t need them. On a side note I've also been
using yarn for package management, and it's truly great! The speed is shockingly
impressive.” — quoted from R Davey https://phaser.io/phaser3/devlog/57

Ihttp://phaser.io/phaser3/history

bhttps://webpack.js.org/concepts/modules/
Chttps://auth0.com/blog/javascript-module-systems-showdown/
dhttps://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaumstw
€https://webpack.js.org/concepts/

fhttp://kangax.github.io/compat-table/es5/

“Webpack2"” outputs ES5 source code>’! Do we need to know this? Not just yet.
Bookmark these sites for later use:

* Beginners guide to webpack—How to start a basic application with webpack

55https://www.merriam-webster.com/dictionary/grandsire
56http://www.kiwijs.org/
57https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.merriam-webster.com/dictionary/grandsire
http://www.kiwijs.org/
http://phaser.io/phaser3/history
http://phaser.io/phaser3/faq
https://webpack.js.org/concepts/modules/
https://auth0.com/blog/javascript-module-systems-showdown/
http://phaser.io/phaser3
https://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaum5tw
https://webpack.js.org/concepts/
http://kangax.github.io/compat-table/es5/
https://phaser.io/phaser3/devlog/57
http://phaser.io/phaser3/history
https://webpack.js.org/concepts/modules/
https://auth0.com/blog/javascript-module-systems-showdown/
https://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaum5tw
https://webpack.js.org/concepts/
http://kangax.github.io/compat-table/es5/
https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
http://www.kiwijs.org/
https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9

Building a Game Prototype 66

258
« A Beginner’s Guide to Webpack 4 and Module Bundling>?®

™

2.6 Starting Your “Game Recipe”

There are so many cookbooks showing folks how to create delicious meals. It's time
to have a “recipe” to build some “scrumptious” games!

Step #0) the Front-Door

We need to load Phaser JavaScript Game Framework into a web page for it to work
properly. Let's create two distinctive “front-door delivery systems” for our games.
Once we have this setup, we can leave it alone; because, we will use D.R.Y (you
remember! “Don’t Repeat Yourself”) in our file names. The only thing we’ll need to
adjust is the page’s title and “netadata” inside each new project’s “index.ntm1”, Both
delivery methods are in the _v3.x.x-p3gp-book.zip®°

The first version is a standard “index.ntm1” web page, and the second version is tai-
lored for mobile devices as a “single web page application” (SWPA)®" or “Progressive
Web App” (PWA)®2. | recommend using a “mobile-first, responsive design”®3 for all
“"HTML" pages. There are two ways we can proceed:

1. the “traditional method” — see “Task #1-1" (below) or see the Appendix: Building
HTML5 Web Page®* (3-pages)
2. the “unorthodox method” for mobile devices — see Task #1-2

For now, let's just follow the “traditional method” for a “Standalone” game. This tra-
ditional method needs two files; one file must be labeled “index. ntm1”; unfortunately,
this is NOT a choice in our game development. As for the other file, name it whatever
you like. I'll entitle mine as “main. js* and place it inside the subordinate directory/-
folder labeled “js” — for JavaScript. The “main.js” holds my “Game Mechanics”.

58https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-
ebed3172fa8c

59https://www.sitepoint.com/beginners-guide-webpack-module-bundling/

60https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip

61 https://en.wikipedia.org/wiki/Single-page_application

62https://developers.google.com/web/progressive-web-apps/

63http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-
responsive-design/

64https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.sitepoint.com/beginners-guide-webpack-module-bundling/
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://en.wikipedia.org/wiki/Single-page_application
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://www.sitepoint.com/beginners-guide-webpack-module-bundling/
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://en.wikipedia.org/wiki/Single-page_application
https://developers.google.com/web/progressive-web-apps/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf

Building a Game Prototype 67

Note: If you're curious as to why we must have an “index.html”? Answer: There
are three (3) “default” pages used by most web server configurations. Those
are“index.html”, “index.htm”, and on most Microsoft servers it is “default.ntm”.
Here's how a webserver responds to a request. Whenever, a gamer makes
a connection to a website, without specifying any URL file, most webservers
will return the configured “default” page (aka “landing page"). For example,
a gamer goes to “https://www.renown-games.com/”%>, my server would find
and return the URL “https://www.renown-games.com/index.html”. Webmas-
ters could configure their servers to use a different “landing file name”, but only
if they're bored or have time which is not the case in reality. Many will keep the
defaults and spend their time on more pressing network matters.

Task #1-1 Instructions:

1. Make a new copy of your Chapter 1 project directory for this new game project.
(Refer Game Recipe™ Step #1 above.)

2. Update the “index.ntm1” header “metadata™ and content with details about this
project to improve Search Engine Optimization (SEO). (Game Recipe™ Step #1)

3. Either download this example 6-page worksheet #1-1% from here, refer to the
Appendix: How to create an HTML5 web page®’, or review the project starter
index.html%8 with “web socket” launched. Use the developer console to watch
the internal operations.

® Exercise: Observe a live “Bare-bones” “Index” Page® here. This is an example
? of an “index. ntm1” that is used for game prototyping only.

Note: You might like to try the “15 seconds” HTML page creation tool.”® This
responsive template comes with the “Golden Ratio” already pre-configured.
You can read more about the “Golden Ratio” here’". The Golden Ration is a
weird mathematical proportion that our visual perception prefers. Learn even
more about cutting-edge web design using the Golden Ratio here’?> and in
Phaser Game Design Workbook. Otherwise, if you've previously worked with
“Bootstrap”, you might like using their new Drop-n-drag Layout Builder’>.

65https://renown-games.com./
66https://makingbrowsergames.com/book/Projectindex.pdf
67https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
68https://makingbrowsergames.com/p3gp-book/standalone/index.html
69https://makingbrowsergames.com/book/demos/bareBonesindex.html
7Ohttp://www.initializr.com/

"Thttps://www.goldennumber.net/
72https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
73http://www.layoutit.com/build

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://renown-games.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/book/demos/bareBonesIndex.html
http://www.initializr.com/
https://www.goldennumber.net/
https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
http://www.layoutit.com/build
https://renown-games.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/book/demos/bareBonesIndex.html
http://www.initializr.com/
https://www.goldennumber.net/
https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
http://www.layoutit.com/build

Building a Game Prototype 68

You shouldn't have to change too much in this “index.ntm1” file; you only need to
modify the “<nead>” metadata for each project. But look over my examples to ease
your mind. This is, debatably (See Warning below)’4, the absolute barest essentials
for a properly formatted “index. htm1“ page. In our Phaser Ill Design Guide workbook,’>
we go into greater details concerning web pages and search engine optimization (SEO).
You should find the complete “index.htm1” in the Source Code Appendix’®.

Warning: Google AMP’’ “index.htm1” page requires the head and body tags
in browser documents. Read more about it here’®.

Inside your “index. htm1* you need to choose which Phaser version to use in your game.
Notice that the Phaser scripts are minified and already come from the appropriate
Content Delivery Networks (CDN). ALWAYS use the CDN versions for the fastest load
times since Phaser v3.24.1 (minimized and zipped) is over 7MB and 43+ MB unzipped!
“Why?", you ask? Because the minified CDN version of Phaser Framework are moved
closer to your gamers and reduce their download time. It further increases the chance
that a gamer may have Phaser lll already in their browser cache which results in
0 download time! If you develop your own unique version of Phaser, then you're
gambling that someone from somewhere has played your game and migrated your
“special pet files” to their local Internet Tier-3 Access Point. Read Yahoo's analysis on
“empty cache” vs. “full cache” the “Surprising Results”’° (excerpt from Yahoo blog)

® Exercise: Study which CDNs are the fastest (click here)®. This is a critical
? element in Massive Multi-Player online Games (MMoG).

There's more than what you see here! Download the following “Production” grade
“index.htm1” pages and read their source code annotations:

* Production Optimized “index.htm1” Analysis®’

* AMP Mobile “index.htm1” Analysis®?

* Neither of these use “window.onload”! Refer to this article for more details on
WHY!83

74https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
75http://leanpub.com/phaser3gamedesignworkbook
76https://makingbrowsergames.com/p3gp-book/
77https://www.ampproject.org/learn/overview/
78https://www.ampproject.org/docs/getting_started/create/basic_markup
7https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
80https://www.cdnperf.com/
81https://makingbrowsergames.com/book/Projectindex.pdf
82https://makingbrowsergames.com/book/Projectindex-Mobile.pdf
83https://javascript.info/onload-ondomcontentloaded

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
http://leanpub.com/phaser3gamedesignworkbook
https://makingbrowsergames.com/p3gp-book/
https://www.ampproject.org/learn/overview/
https://www.ampproject.org/docs/getting_started/create/basic_markup
https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
https://www.cdnperf.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/ProjectIndex-Mobile.pdf
https://javascript.info/onload-ondomcontentloaded
https://javascript.info/onload-ondomcontentloaded
https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
http://leanpub.com/phaser3gamedesignworkbook
https://makingbrowsergames.com/p3gp-book/
https://www.ampproject.org/learn/overview/
https://www.ampproject.org/docs/getting_started/create/basic_markup
https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
https://www.cdnperf.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/ProjectIndex-Mobile.pdf
https://javascript.info/onload-ondomcontentloaded

Building a Game Prototype 69
Compare your code

Here's the Chapter 1 “Break Out” (Phaser Ill full source code) as a bonus download:

* Phaser Il full source code?*
* Phaser v2.x.x full source code®>

Here's what mine looks like, with all the ‘bells & whistles’:86

« My traditional “index.html (v2.x.x)8’" for a Dating game — use the Developer’s
Console to watch some interesting dissection of the Phaser v3.16+88 version.

* My unorthodox method: “index.html (v2.x.x)%°" for the same Dating game. — use
the Developer’s Console to watch some interesting dissection of Phaser v2.x.x.

* In my “game.js,”®" | kept the game object inside this file for consistency.

Mobile “Single Web Page Applications” (SWPA)
B rcconsole [l Mobile

& Handheld gaming
gaming

150

Video game market revenue worldwide by Instabug Blog

?’ Exercise: Read this report from Instabug on Mobile Game Development®’.

84https://leanpub.com/c/p3gdc/c/Tx4iHQ6mM64c5
85https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
86https://www.phrases.org.uk/meanings/bells-and-whistles.html
87https://makingbrowsergames.com/starterkits/quiz/game3/index.html
88https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
89https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html|
9Ohttps://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
9https://instabug.com/blog/mobile-game-development-tools/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://www.phrases.org.uk/meanings/bells-and-whistles.html
https://makingbrowsergames.com/starterkits/quiz/game3/index.html
https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://instabug.com/blog/mobile-game-development-tools/
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://www.phrases.org.uk/meanings/bells-and-whistles.html
https://makingbrowsergames.com/starterkits/quiz/game3/index.html
https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://instabug.com/blog/mobile-game-development-tools/

Building a Game Prototype 70

Let's look at the tailored “unorthodox” mobile device “index” page — Task #1-2. This
construction is different than before; my goal is to load as much as possible into a
single page without exceeding the “20 seconds” rule imposed by app stores. | have
two different styles of mobile device pages. The example below creates a normal
JavaScript link to the “main. js* (Or “game.js”). | take a “less formal” approach in the
mobile versions and try to “in-line” scripts inside the “index. htm1” <div> tags. The single
web page application is divided into “«div>* sections. Each “«div>* section represents
a single game phase menu and the “game. js“ is placed into the “play game” “«div>". If
the game is small enough, | will simply insert the entire raw “game. js“ contents directly
into a “script” tag and thus avoid an additional file to download. Doing so ensures all
the game’s content is an embedded part of the “index. htm1* page.

Single Web Page Application (SWPA mobile)

<ldoctype html>
<html lang="en">

<head> ... </head>
<body>
<I-- Mobile Dating game -->

<div class="ui-content" data-theme="b" data-role="page" id="game">
<div data-role="header">
<h1>(Your Game Title here)</hi>

non

Home

</div>

<div id="game-area" data-role="main" class="ui-content">
</div>

<I-- import external file or simply include its full contents -->
<script src="game. js"> </script>

<div class="ui-content center footer" data-role="footer">

<hr class="center" style="width: 60%" />

<nav class="menu"><a href=

"http://www.copyright.gov/fls/f1108.pdf"' target='_blank'> Copyright
1978-2016, <a class="w3-btn btn-footer w3-hover-deep-orange

w3-theme-d3 w3-round-xlarge w3-border w3-text-shadow "

href="http://www.stephen-gose.com/en/"' target='_blank'> Stephen Gose LLC

.
 All Rights Reserved.

Questions or comments?

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 71

<a class="w3-btn btn-footer w3-hover-deep-orange w3-theme-d3
w3-round-xlarge w3-border w3-text-shadow "
href="http://www.stephen-gose.com/about/contact/"> Please Contact

<hr class="center" style="width: 60%" />

</nav>

</div>

</div>

<I-- End Game Page -->

All that remains is a method to bind all these into a single web page application
(SWPA)°2. Using a single monolithic file has advantages per Google's Accelerated
Mobile Pages Project (AMP)?3. We'll do this through our game’s “index.htm1” page.
Many authors create yet another script file, but | prefer to use inline scripting for
mobile devices.

?’ Exercise: Worksheet #1-2 Mobile “index.ntm1”. You can see this “live example”
at:

https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-
SWPA.html

Cocoon.js - Cloud Alternatives

20190228: Cocoon Termination of the Service. Unable to access Cocoon. Customer
service closed. They will not retain copies of any of your data from that date forward.
Accordingly, you are encouraged to download and keep copies of your data if you
wish to have access to it in the future.

In case you prefer not to use the Apache Cordova CLI¢ for building your apps, there
are a few Cordova base cloud services that might serve the purpose as long as you
update the config.xml to not use Canvas+ or Webview+.

9https://cordova.apache.org/

92https://www.seguetech.com/what-is-a-single-page-application/
93https://www.ampproject.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.seguetech.com/what-is-a-single-page-application/
https://www.seguetech.com/what-is-a-single-page-application/
https://www.ampproject.org/
https://www.ampproject.org/
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://cordova.apache.org/
https://cordova.apache.org/
https://www.seguetech.com/what-is-a-single-page-application/
https://www.ampproject.org/

Building a Game Prototype 72

* Phonegap Build®* — From the team behind Apache Cordova, the Adobe®
PhoneGap™ framework is an open-source distribution of Cordova — providing
the advantage of technology created by a diverse team of pros along with a
robust developer community — plus access to the PhoneGap toolset, so you can
get to mobile faster. Write a PhoneGap app once with HTML and JavaScript
and deploy it to any mobile device without losing features of a native app.
Adobe® PhoneGap™ is a standards-based, open-source development frame-
work for building cross-platform mobile apps with HTML, CSS, and JavaScript for
i0S, Android™, and Windows® Phone 8. Simply upload your HTMLS5, CSS, and

JavaScript assets to the Adobe® PhoneGap™ Build cloud service and they do

the compiling for you.

lonic Framework®> — Learn the difference between hybrid and native. They

break down all the myths and misconceptions in their FREE ebook®°.

* Monaca®’ — makes HTML5 hybrid mobile app development with Adobe® Phone-
Gap™/Cordova simple and easy. Monaca is the most open hybrid app develop-
ment platform available and ready to be immediately plugged into your existing
work-flow and development environment. From Cloud IDE, CLI to debugger, and
remote online build, everything you need for your hybrid app development is
there.

® Exercise: Read about the differences between Cordova and PhoneGap®.
? Exercise: Read how to migrate from Cocoon.js to Cordova®.

Task #2: Launching a Game

Phaser I, v2.6.2, and CE versions are all launched from within a web page as either
an inline JavaScript script or from an external file using JS modules. What happens
next differentiates each Phaser API family versions from its siblings. The official
examples'%0 put the game launching code and all the “Phaser Essential Functions”
into a single “index.ntm1” file. | prefer using separate files while developing my game.
Because it helps me focus on the task at hand and localizes software bugs to the file
currently under development.

94http://docs.phonegap.com/phonegap-build/

95https://ionicframework.com/docs

9%https://ionicframework.com/books/hybrid-vs-native

97https://monaca.io/

98https://ionicframework.com/resources/articles/what-is-apache-cordova

9https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/
100http://labs.phaser.io

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://docs.phonegap.com/phonegap-build/
https://ionicframework.com/docs
https://ionicframework.com/books/hybrid-vs-native
https://monaca.io/
https://ionicframework.com/resources/articles/what-is-apache-cordova
https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/
http://labs.phaser.io/
http://labs.phaser.io/
http://docs.phonegap.com/phonegap-build/
https://ionicframework.com/docs
https://ionicframework.com/books/hybrid-vs-native
https://monaca.io/
https://ionicframework.com/resources/articles/what-is-apache-cordova
https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/
http://labs.phaser.io/

58
59
60
61
62
63
64
65
66
67
68
69

Building a Game Prototype 73

Sample: Phaser v3.x.x ‘Essential Functions’ as an Anti-Pattern in Official methods

Vess
* Anti-Pattern Warning:
*
* Polluting the global namespace with global context variables
*
* init: function init() {}, //initial game phase data
* preload: function preload() {}, //queue & download game assets
* create: function create() {}, //make cached assets available
* update: function update() {}, //begin the game loop
* render: function render() {}, //render current display
* shutdown: function shutdown() {} //close and garbage collection?
*
*/

examples “verbatim” as “holy writ”, you will soon discover that you're “painted
into a corner”'°" when using your Phaser lll Scenes as if they were Phaser v2.x.x
“States”.

0 Phaser.io examples are “just that” — examples! If you attempt to follow these

It's time to return to our “game. js“ (or Create it now with whatever name you'd like).
In this file, let's fill it with the following downloaded content available in the online
Source code Appendix.’92

Example: 2.2 Launching a Game - two methods.

// window.GAMEAPP.main(); //name space activation

// console.log("Game obj: === Ext? "+Object.isExtensible(GAMEAPP));
// console.log(Object.values(GAMEAPP));

// console.log(Object.getPrototypeOf(GAMEAPP));

// console. log(0Object.getOwnPropertyDescriptors(GAMEAPP));

10T https://idioms.thefreedictionary.com/paint+into+a+corner
102https://makingbrowsergames.com/p3gp-book/index12.html#12.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://idioms.thefreedictionary.com/paint+into+a+corner
https://idioms.thefreedictionary.com/paint+into+a+corner
https://makingbrowsergames.com/p3gp-book/index12.html#12.3
https://makingbrowsergames.com/p3gp-book/index12.html#12.3
https://idioms.thefreedictionary.com/paint+into+a+corner
https://makingbrowsergames.com/p3gp-book/index12.html#12.3

70
4!
T2
73
74
5
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Building a Game Prototype 74

// OR: global variable launched, similar to Phaser v2.6.2

// Example: 2.2b Launching as a Global variable.

// var gWidth = 800; //Using Golden Ration is important.
// var gHeight = 500; //Using Golden Ration is important.
// Lessons learned from colleagues

// initial size determined

// creates a global variable called game

var game = {};
var gWidth, gHeight;
var isMobile=navigator.userAgent.indexOf("Mobile");

if (isMobile != -1) {
//-1 is desktop/anything other than mobile device
console.log("isMobile="+isMobile);
gWidth = window.innerWidth * window.devicePixelRatio;
gHeight = window.innerHeight * window.devicePixelRatio;
//resize();

I'm building a unique “name-space”'°3 for my game prototype in this second example.
In Bob Nystrom’s book, “Game Design Patterns”,'%* he warns about using object
expressions as “singletons”. This is “mandatory” reading for everyone with less than
15 years in software engineering — | have 37 years in networking; so, this includes
me too! He states, “Despite noble intentions, the Singleton pattern described by the
Gang of Four usually does more harm than good. “... Like any pattern, using Singleton
where it doesn't belong is about as helpful as treating a bullet wound with a splint.
Since it's so overused, most of this chapter will be about avoiding singletons, but first,
let's go over the pattern itself. ...” (Nystrom)

This creates a new blank “<canvas>“ as our game's stage; it has a black background
that is 800 pixels width by 500 pixels tall — the “Golden Ratio”. All of our game
elements will be inside of this game “world” box. Time to double-check our work so
far; save everything. Then double-click on your “index.ntm1” file; your browser should
open to show a large black rectangle. Right?

103https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
104http://www.gameprogrammingpatterns.com/singleton.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://www.gameprogrammingpatterns.com/singleton.html
https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://www.gameprogrammingpatterns.com/singleton.html

94

95

96

o7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Building a Game Prototype 75

4

Advanced Exercise: Compare your work to another example.'® Open the
Developer’s Console and study what I've done with the “Game Object” name-
space and “Phaser.Game” object in the console’s drop-down menus. This exam-
ple also provides a timing test between the window.onload VS. document.onload.
Exercise: Read about using the “Singleton pattern” in game design and devel-
opment from Bob Nystrom’s book, “Game Design Patterns”'°®,

Exercise: Download this 3-page “main.js” example file'” | use as my standard
prototype foundation and Refer to lines 112 to 150 in the file (you just
downloaded? Right?).

Example: 2.2 continued.

//Closes any previous scripts

// creates our Phaser Game configurations.

/7

dozens of configurations parameters;

var config = {

width: gwidth || 800, //Using Golden Ration is important.
height: gHeight || 500, //Using Golden Ration is important.
type: Phaser .AUTO,

//Game Title
title: 'Phaser3 Game Prototyping Starter Kit',

//Game URL
url: "https://makingbrowsergames.com/p3gp-book/",

//https://semver.org/ + DATE
version: '0.0.1.2016 semver ',

//Custom RGB color or "#369"
backgroundColor: 0x336699,
input: {

keyboard: true,

mouse: true,

touch: true,

gamepad: false

},
physics: {

105https://makingbrowsergames.com/p3gp-book/standalone/
106 http://www.gameprogrammingpatterns.com/singleton.html
107 https://makingbrowsergames.com/p3gp-book/_mainp3.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/standalone/
http://www.gameprogrammingpatterns.com/singleton.html
https://makingbrowsergames.com/p3gp-book/_mainp3.pdf
https://makingbrowsergames.com/p3gp-book/standalone/
http://www.gameprogrammingpatterns.com/singleton.html
https://makingbrowsergames.com/p3gp-book/_mainp3.pdf

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Building a Game Prototype

default: 'arcade',
arcade: {
// Debug turned on for arcade physics

debug: true

},

scene: {
main: main,
combat: combat,
gameOver: gameOver
1,
pixelArt: false, //set TRUE for retro styling
antialias: true
//parent: document . body
b
console.log("Configure Obj: Ext? "+Object.isExtensible(config));
//console.log(Object.values(config));
//console. log(Object.getPrototypeOf(config));
console.log(Object.getOwnPropertyDescriptors(config));

76

* Line 94: | used a ”; “. Why? Well, there are a lot of folks telling everyone you
don't need to use the “semi-colons” because JavaScript automatically inserts the
semi-colons for you; so, let's just forego typing them. Well, hold onto you hats'%8
cowboy! Read what Javascript Gardens has to say about using semi-colons'®,
JavaScript gets a lot of “back-wash” about how terrible the language is, when in
reality, it's the lazy programmers who incite JavaScript to “read their minds”. Oh!
and while I'm on the topic of poor programming, you must always use the curly
braces (“f }*)too. Here's JavaScript Garden's take on those topics.

Quote: “It is highly recommended to never omit semicolons. It is also recommended
that braces be kept on the same line as their corresponding statements and never
omit them for single-line if / else statements. These measures will not only improve
the consistency of the code, but they will also prevent the JavaScript parser from

changing code behavior.”

108 https://youtu.be/EpgP2Gtx8QY
109https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://youtu.be/EpgP2Gtx8QY
https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon
https://youtu.be/EpgP2Gtx8QY
https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon

Building a Game Prototype 77

® Exercise: Download this example from: _p3-demos/game.js'"°
? Advanced Exercise: Review advanced game setup using “ index.html”"""
Advanced Exercise: Review advanced game setup using “index-
mobilep3.html”""? in the browser’s console

Deeper Dive: Launching a Phaser III Game.

When Phaser v3.x.x boots, it creates an instance of a “Phaser.Game”. It could load an
optional Game configuration object (ed.: which is now mandated in Phaser v3.x.x),
which is passed into the Config handler (see source code)’, and all the various things
it needs are extracted from the “config object”.

Ihttps://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/
core/Game.js#L388

http://phaser.io/tutorials/getting-started-phaser3 OR
Run in the Cloud: http://phaser.io/tutorials/getting-started-phaser3/part3

Game “Config”

Game “config” has been around since before v2.4.2.113 It's a JavaScript “object” that
holds all the initial game configurations.

Open “main.pdf” (3-pages you downloaded from above) and read lines 160 to 163. This
waits for the browser to finish the Document Object Module (DOM) and then calls the
“window.GAMEAPP.main()" which begins on lines 118 to 140. Line 120 creates an internal
variable “this.game” that holds the “new Phaser.came” object.

110https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
11 https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
12https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
113https://labs.phaser.io/index.html?dir=game%20config/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
http://phaser.io/tutorials/getting-started-phaser3
http://phaser.io/tutorials/getting-started-phaser3/part3
https://labs.phaser.io/index.html?dir=game%20config/&q=
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://labs.phaser.io/index.html?dir=game%20config/&q=

Building a Game Prototype

Sample: Bare-bones v3.X.X config object & Phaser.Game

78

<script>

var config = {
width: window.GAMEAPP.viewportWidth, //x width using main. js
height: window.GAMEAPP.viewportHeight, //y height using main.js
type: Phaser.AUTO, //.WEBGL or .Canvas
parent: gameCanvas //canvas container
scaleMode: Phaser.ScaleManager .EXACT_FIT //NOT available in v3.x.x

};

//Deeper Dive with Analysis

console.log("Configure Obj: Ext? "+Object.isExtensible(config));
console.log(Object.values(config));
console.log(Object.getPrototypeOf(config));
console.log(Object.getOwnPropertyDescriptors(config));

/** Phaser III config as a function?

// config experiment as a function.

// best placed in the index.html file since functions are hoisted.

function config() {
var width = window.GAMEAPP.viewportWidth, //x width using main.js
height = window.GAMEAPP.viewportHeight, //y height using main. js
type = Phaser.AUTO, //.WEBGL or .Canvas
parent = gameCanvas; //canvas container

};

*/

/** Phaser III config as a lambda? (as of 20181223)

See: http://labs.phaser.io/edit.html?
src=src/scenes/change%20scene%20from%20ob jects. js
/A
class SceneC extends Phaser.Scene {
constructor() {
super('SceneC');

}
create() {
console.info('SceneC started.');
this.add.image(160, 120, 'aqua_ball')
}

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype

//NOTICE: the config object is simply embedded!
// experiment with this.
var game = new Phaser.Game({

type: Phaser.AUTO,

parent: 'phaser-example',

scene: [SceneA, SceneB, SceneC]

});
*/
ok
* DEPRECATED METHOD - NEVER EVER USE THIS AGAIN!
* See "Phaser Game Design Workbook" for complete explanation
* http://leanpub.com/phaser3gamedesignworkbook
*
* window.onload = function () {
* // local scope used????
* let game =
*)
*/

//Global name-space used

var game = {};

//preferred game launch method.
document .addEventListener('DOMContentLoaded', function(){
//standard Phaser III launch method
game = new Phaser.Game(config);
Ve
//Strangely, old v2.6.2 also works in Phaser III!!!
// try it out and learn what happens!
game = new Phaser.Game(
gWidth, gHeight, //width and height of canvas
Phaser . AUTO, // how to render canvas
"gContent"); // place canvas inside div
*/
console.log("Game obj: Ext? "+
Object.isExtensible(game));
//console.log(Object.values(game));
//console. log(Object.getPrototypeOf(game));
console. log(Object.getOwnPropertyDescriptors(game));

console.log("Phaser.Game prototype: Ext? "+

79

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 80

Object.isExtensible(Phaser));
//console.log(Object.values(Phaser));
//console. log(Object.getPrototypeOf(Phaser));
console. log(Object.getOwnPropertyDescriptors(Phaser));
}, false);
// Example: 2.2 ends

</script>

Do you need to do something as extensive as I've provided in my examples “in-
dex.html™ and “main. js* files? No, not really.

® Exercise: Compare what we're doing with my examples''* to the “Official
? Phaser v3.x.x. tutorial”''>

2.7 Deeper Dive: To Infinity and Beyond!

Notice how Phaser v3.x.x uses its configuration object."'® Let’s take the next step!
This “config” object could easily become a “sson” data object passed into a Phaser
v3.x.x game. This permits dynamic game set-ups based on who plays, what permis-
sions they are granted, and how they access various game phases. Furthermore, we
can create a separate “config” for each game scene. We could go so far as to define
“a different config” for every level inside our game; or better yet, display separate
game editions for those who have “FREE” access from those who have membership
“PAID” access. Let your imagination run wild! Truly, Phaser v3.x.x opens up more game
management and access possibilities than the former v2.x.x.

f Exercise: Review the default parameters for the Phaser v3.x.x. config'"’

Warning: There is a limit of 255 arguments passed into a JavaScript function
per MDN."8

14https://makingbrowsergames.com/p3gp-book/_p3-demos/

115http://labs.phaser.io/

18https://github.com/photonstorm/phaser/blob/dd39f9ab08d57falbacd1287ccadb03fb3151267/src/core/Game.js#
L25

17 https://github.com/photonstorm/phaser/blob/dd39f9ab08d57falbacd1287ccadb03fb3151267/src/core/Game.js#

L25
118https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/
http://labs.phaser.io/
http://labs.phaser.io/
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://makingbrowsergames.com/p3gp-book/_p3-demos/
http://labs.phaser.io/
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Building a Game Prototype 81

2.8 Summary

Whew! Chapter 2 down! Here's what we've covered.

Examples: https://makingbrowsergames.com/p3gp-book/_p3-demos/

* Understand what a game prototype contains.

* Learned the benefits of building a game prototype.

+ Discovered OOP is NOT the best approach for game design as stated by Apple
Game Developers.

+ Read insightful tips from various developers about how to rapidly build games.

+ Saved 1,000s of hours in development time.

* Practiced the 4-steps of creating new game mechanisms and prototypes.

* Built our game’s “front door” in various delivery styles.

* Downloaded helpful resources in game development.

+ Differentiated between various Phaser v3.x.x. formats for production & develop-
ment.

* Studied how a Content Delivery Network impacts a client's enjoyment.

+ Discovered which CDN has the best performance.

* Researched Google's AMP.

*+ Learned about encroaching “Anti-patterns” slipping into Phaser.

* Understand how to filter clients using config.

* Read about alternate methods for re-size our game.

2.9 Chapter References:

« Apple Game Developers GameKit''®

* Intel: Resources for Game Developers'2°

* MDN - Implementing game control mechanisms'?
* Aspect-oriented programming’?2

* mv+ frameworks'?3

* Rewriting A WebApp With ECMAScript 6'>*

* How to create Phaser v3.16.x Graphics'2>

119https://developer.apple.com/documentation/gamekit
120https://software.intel.com/content/www/us/en/develop/topics/gamedev.html

121 https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
122https://en.wikipedia.org/wiki/Aspect-oriented_programming

123http://todomvc.com/
124https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
125https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/
https://developer.apple.com/documentation/gamekit
https://software.intel.com/content/www/us/en/develop/topics/gamedev.html
https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://todomvc.com/
https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html
https://developer.apple.com/documentation/gamekit
https://software.intel.com/content/www/us/en/develop/topics/gamedev.html
https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://todomvc.com/
https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html

Building a Game Prototype

* Turning static graphics into Sprites’2°
« Sample Stacker Game using “shapes”'?’

126https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
127 http://labs.phaser.io/view.html?src=src%5Cgame%200objects%5Cshapes¥%5Cstacker%20es6.js&v=128

82

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
http://labs.phaser.io/view.html?src=src%5Cgame%20objects%5Cshapes%5Cstacker%20es6.js&v=128
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
http://labs.phaser.io/view.html?src=src%5Cgame%20objects%5Cshapes%5Cstacker%20es6.js&v=128

Game Phases, Scenes & Roses. 83

3. Game Phases, Scenes & Roses.

“A rose is a rose ... by any other name”, paraphrased from ...
“Rose is a rose is a rose is a rose.” — Gertrude Stein'; and
“What's in a name? That which we call a rose, By any other name, would smell as sweet.”
— William Shakespeare?.

The “Game’s logical flow” is the path our gamers follow despite which Phaser version
we've deployed — or any JavaScript Gaming Framework for that matter. When a
gamer launches our game from its “index.html” page, we lead them through a series
of stages that | call “game phases”. Some developers call these “game states” from a
reference to Finite State Machine (FMS)3. Eventually, our gamer will arrive at a “play”
button somewhere on the “main menu” to start the “Gaming Play Loop “ (aka “the
event loop”).

3.1 Bare-Bones Prototypes

The illustration below is common to any game found on the Internet; it is NOT unique
to Phaser]S Gaming Frameworks. It is a design concept and progression a player takes
through a game. Notice that there are two aspects.

Thttps://en.wikipedia.org/wiki/Gertrude_Stein
2https://en.wikipedia.org/wiki/William_Shakespeare
3https://en.wikipedia.org/wiki/Finite-state_machine

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Gertrude_Stein
https://en.wikipedia.org/wiki/William_Shakespeare
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Gertrude_Stein
https://en.wikipedia.org/wiki/William_Shakespeare
https://en.wikipedia.org/wiki/Finite-state_machine

Game Phases, Scenes & Roses. 84

MMO GAME FLOW — THE PHASE STATES

< ---MMoG App Svr Activities - - - > Gamer’s Activities

4 Pla
Game Initialize Splash / \ L Game
Clicked or Boot Language Y (Smart or Finished
\ Dumb?)

» Stop point » Stop point * Pre-Game ? * Stop Point
* Logon = CMS Pages * Per Gamer ! * Wins | | Lose

(bers) . i . loop? *Submi
web Socket & members| Game Logic Game loop ::crr:;l

« Game loop * Real-Time?

CDN Netwo rk :;‘:::"S‘am * Turn-based?

= Data
Structures ?

* Restart

Game Phases as JS Modules in a Massive Multi-Player online Game (MMoG)

* Delivering the game across the “Cloud” (Internet, WAN, telcos, the name keeps
changing based on marketing services.)
+ Content is placed on the local gamer’s device.

What I'm calling a “game phase” is a place during our game's flow. For example,
many games provide a “splash screen” — showing sponsorship, advertisements,
logos, a “downloading progress bar” and such — while booting-up the initial game
settings and downloading most of the game’s assets. Another example is the game’s
“Main Menu” from which a player can choose various options as pictured above.
Many game developers simply refer to these “game phases” as “states” — from a
programming technique known as a “finite state machine” (FMS). The “FMS" helps
us “bookmark” where a player is inside our game (i.e., their progression) and helps
us determine what to show them. Obviously, the gamer can switch between game
phases and return to former game phases, but there is ever only one active game
phase presented at any time. For example, moving into the “Game Finished phase”
from awin or Lose event and then returning to the game's “Main Menu” phase. For this
very reason, many Phaser games are just simple “single staged” game-plays — they
DO NOT USE a game shell.

All of our games follow this similar game-flow pattern — despite which Phaser version
used or whether we're using another Gaming Framework altogether! As the gamers
migrate through our game(s), they have options; it doesn't matter what we call these
sections — “roses”4, phases, states, menus, scenes, screens, thingies, dumaflache,>

4https://www.thefreedictionary.com/rose-like
Shttps://www.urbandictionary.com/define.php?term=dumaflache

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.thefreedictionary.com/rose-like
https://www.urbandictionary.com/define.php?term=dumaflache
https://www.thefreedictionary.com/rose-like
https://www.urbandictionary.com/define.php?term=dumaflache

Game Phases, Scenes & Roses. 85

or “Aardvarks!”® It's just a matter of focusing on what the gamer is allowed to do
inside each “part” of our game. In the Phaser community, there is a lot of confusion
over these “roses” — resulting from vague descriptions and inarticulate definitions
about what they are. In the new Phaser Ill, 'm seeing the same confusion beglnnlng
all over again. As a review, think of a “game phase section” as if they were “nenus” — in
other words, simply individual “JavaScript modules” — those various JavaScript files
you create to concoct’ your game-flow migration. Basically, if you took your game
and separated it into various “phase sections”, such as a splash screen, main menu
screen, the game-play itself, and so on (ed.: sounds like the drill we did in Chapter
1? Right?), each of these “chunks” would match a phase in the gamer’s progress
through a game — each phase has its own separate and internal collection of “Phaser
Essential Functions”. In short, the new “Phaser.Scene” in v3.24+ reminds me more of
an Adobe Flash MovieClips on its main timeline.

3.2 Using a Phaser Scene as a “Game Phase”

Inside a “scene”, Phaser uses 9 internal “Essential Functions”. Many Phaser game
developers, at this point, will create a new separate JavaScript file (i.e., a module)
for each “game phase” to act as a stand-alone “Phaser Ill Scene” with its “9 essential
functions”. But for now, we will keep this simple; later in this chapter, we'll begin to
separate our game phase prototypes into separate JavaScript modular files. This will
provide the maximum flexibility in our software development when we begin to mix-
and-match and re-use our “D.R.Y. code”.

Each of these “game phases” (aka movieClips, screens, scenes, states, or “Roses”), as
we discussed above, has “its own internal essential functions”. These functions
give us a way to organize our code inside each separate “game phase” module and
ensure that only the minimal game assets (for the current phase) are supplied at
just the proper time. These “essential functions” help us isolate distinct “game flow
events” from each other. For example, booting the game, loading assets, main menu,
playing levels, winning, losing, all have their unique individual “initiate”, “preload”,
“create”, and then “update” and “render” essential functions.

The goal we achieve, by using this “Finite State Machine (FSM)” (aka “game phases”)
structure, makes our game development simpler and less painful to support.

Now that we understand this, let's talk about Phaser Il “Scenes”. You can have
multiple Phaser Ill Scenes inside a single Game Phase. In the following game
phase, | have 5 “Phaser lll Scenes” all running at the same time in the “Play” phase. |

Bhttps://en.wikipedia.org/wiki/Aardvark
7https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Aardvark
https://www.vocabulary.com/dictionary/concoct
https://en.wikipedia.org/wiki/Aardvark
https://www.vocabulary.com/dictionary/concoct

Game Phases, Scenes & Roses. 86

use Phaser Ill Scenes as | did with “movieClips” in Adobe Flash. I have the main timeline
(aka “Play phase”) with multiple movieClips (i.e., “Phaser lll Scenes”) for various display
sections,

Demo Game

5 - Adequate

2 —for hire

| LAY

3 - for hire

2l

e ‘ = ‘
‘ - ; r’),} r)) \>)
L = { L e ——)

Elven Holy Place
Click to view its summary.

"Phaser Il Scenes” inside the “Play Game” Phase

Play the demonstration here® from “Making RPG Browser Games™?.

?’ Exercise: Read DevLog #119 https://phaser.io/phaser3/devlog/119

3.3 9 Essential Functions of a Phaser “Scene”

Official Phaser tutorials!"® So folks, let’s call a spade a spade, and not a
gardening tool'" shall we?!?!

0 Note: “... Essential Functions ...” is not a term | invented! It comes directly from

8https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://leanpub.com/mbg-rpg
10https://phaser.io/tutorials/making-your-first-phaser-2-game
1M https://en.wikipedia.org/wiki/Call_a_spade_a_spade

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://leanpub.com/mbg-rpg
https://phaser.io/phaser3/devlog/119
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://en.wikipedia.org/wiki/Call_a_spade_a_spade
https://en.wikipedia.org/wiki/Call_a_spade_a_spade
https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://leanpub.com/mbg-rpg
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://en.wikipedia.org/wiki/Call_a_spade_a_spade

Game Phases, Scenes & Roses. 87

PHASER3 & V2.X.X ESSENTIAL FUNCTIONS PER GAME SCENE

)

— —

\ ’ > \
Initiate Preload Update Render Shutdown
Attempts
« \ _ \ 60 fps.

The Game Loop

“Phaser Essential Function” found inside every Scene

Phaser JavaScript Game Framework — any version! — uses several encoded “func-
tions” to process itself. Quoted from “Making Your First Phaser Game”'> — “Phaser
supports a full “State” system allowing you to break your code into much cleaner
JavaScript single-objects. But for a simple Getting Started guide such as this we'll use
this approach as it allows for faster prototyping ... “; and, in this book, so will we!
The two most important “Essential Functions” are the “create()” and the “update()”
functions within a single game scene “life-cycle”. The “create()” function places all
the game’s visual elements inside an HTMLS5 canvas; the “update()” function attempts
to refresh the display 60-times per second.

Phaser Il Scene Constants:'3 Each Game Phase also has these additional functions
(sorted alphabetically with its sequence of execution):

(@]
=
o
o
=

Name
CREATING:
DESTROYED:
INIT:
LOADING:
PAUSED:
PENDING:
RUNNING:
SHUTDOWN:
SLEEPING:
START:

NNoouvuoow =0 b

12http://phaser.io/tutorials/making-your-first-phaser-3-game
13https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/tutorials/making-your-first-phaser-3-game
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js
http://phaser.io/tutorials/making-your-first-phaser-3-game
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js

Game Phases, Scenes & Roses. 88

INSIDE A SINGLE-PLAYER GAME LOOP

O Render

Attempts 60 fps

* Pre-Updates * Scene.sys Updates
* Tween Manager * Tween Manager * Post render
+_Update List * Update List = Post events
* Game Objects * Post Updates

Phaser Ill Game Updates and Render Displayed

0 Flow chart of the Phaser Ill Game Loop.'* here.

During these updates, Phaser checks for:

+ any player’s inputs from the keyboard, touch and/or mouse clicks;
+ calculates any collisions between game objects;
+ and further processes anything else we want our game to do.

Then Phaser “paints” these changes to the HTML5 “canvas” in the output “render”
phase. After “rendering”, Phaser returns, once again, into the “update” function checks
for new “inputs to process” to begin the next “Circle of Life” for the game loop event.'?

We can associate all these essential functions inside each “Scene”. When a Phaser
Il “this.scene.add” is created, it automatically has the following systems set inside it.
Examples of the Scene Systems are:

* The Game Object Factory
* The Loader

* The Main Loop

* The Update Manager

+ A Camera

14https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
15https://www.youtube.com/watch?v=GibiNy4d4gc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
https://www.youtube.com/watch?v=GibiNy4d4gc
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
https://www.youtube.com/watch?v=GibiNy4d4gc

Game Phases, Scenes & Roses. 89

+ Event Dispatcher

https://phaser.io/phaser3/deviog/121 describes the new capabilities that a “Phaser. Scene”
offers. In my mind and coming from an Adobe Flash background (as Davey has too!),

the new Phaser Ill Scenes behavior reminds me of multiple Flash movieciips along its
timeline. Other commonly used “Essential Functions” inside of a “Phaser.Scene” are
charted here’®:

* initialize'’ — A method called when any Scene starts. It is passed as an argument
variable to facilitate data-sharing among the different Scenes. It must be called
initialize or you risk adopting the default Phaser Il object.

* preload'® — A method called whenever any Scene begins. It is used for loading

your game's resources and assets before their use. Normally, in Phaser Ill, you'd

load your game assets just for the current Scene. Each scene in Phaser Il now
has its own Load manager. If you call any “this.10ad” method from outside of
the “scene.preload” function, you need to start the Loader yourself by calling

“Loader.start ()" — it's only automatically started during the “scene preioad”. Game

assets, loaded by a “scene” Loader, are placed into global game-level caches. You

shouldn't create or make any objects during the preloading. Since the load scene

may take up to 20 seconds, this a good time to use a “Splash Game Phase”. A

Splash phase shows a game’s title, sponsors, and legal copyright notices. You

should build a gamer’s anticipation for the upcoming gameplay. A progress bar

aids in that anticipation; it is your “launch count down” to “fun”. Another dynamic
element, in addition to the progress bar, is a “spinner” — it tells the gamer that
your game code is still running and nothing's crashed.

create'® — A method called automatically after preload finished; it is used for

generating game objects. If you didn't actually load any game assets at all or

didn't use the preload function, then create is the first function executed by the

Phaser lll engine. Use create to set-up the bulk of your visual elements from the

downloaded game assets.

* update?® — The “work-horse” of the Phaser JavaScript Framework. The update
method is left empty for your own use. It is called during the core game
loop AFTER debug, physics, plugins and the Stage have had their “pre-Update”
methods called. It is used for user input polling and game object collisions and
detection. This method is often used to capture game events (such as key presses,
button clicks, mouse movement, etc.), and then update those variables as a result.
It is called on every frame. The engine attempts to execute, at best efforts, 60

16https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart

"7 https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
18https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
19https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L.639
20https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager .js#L628

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/121
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L639
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L628
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L639
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L628

Game Phases, Scenes & Roses. 90

times per second, but that is not guaranteed. It is called BEFORE Stage, Tweens
(see Deeper Dive 3.19+ Tweens), Sounds, Input, Physics, Particles, and Plugins
have had their “post-Update” methods called.

render?' typically follows “update”; it flushes the information to the display.
Nearly all display objects in Phaser render automatically, you don't need to tell
them to render. Richard Davey warns that “The render function is called AFTER
the WebGL/canvas and plugins render has taken place, so consider it the place
to apply post-render effects or extra debug overlays.” You're able to do any final
post-processing style effects here. Note that this happens before plugins “post-
Render” takes place.

shutdown?2 — A method called when a scene shuts down (i.e. you switch
to another scene from the current one). You could consider this a “garbage
collection” routine that cleans up orphaned game objects.

n Warning: Remember JavaScript is a prototype-based language. If you try to

store these functions as objects or as arrays, mutating any member of the
object or array will mutate the member for every instance that shares the
prototype. In order to preserve instance safety, you need to make a copy of
the scene.??

21 https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
22https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L.1203

23https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#
.iy7efb917

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L1203
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L1203
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917

Game Phases, Scenes & Roses. 91

3.4 Game Phases as Modules

>

came |, niiziee
Clicked P Finished
\i:ess %
* Index.html + Boot.js * Preload.js _ *+ Logon * mainMenu.js + Game.js + gameOver.js
+ Launch.js (members) + Credits « Avatar.js « Scores.js
i Guest * Help + Enemy.js + Submit
« Setting « Level.js « Share
arvle ¢ . + Options * Room.js
N etWO,r;k C| ou d S * More « Treasure.js
* License « Etc.

TCP / IP Impact*

Eree online Course @
It/ www.theube.comy/

* Level
+ Etc.

Game Flow Phases with Defined JS Modules
We'll follow this chart in the order of appearance. The only phases we need to revisit,
tweak?* and re-validate might be the “main menu” with new business drivers or the
“language menu” when new languages are added. Here's a game programming flow
chart?> located in your bonus download content it demonstrates the same concepts

as pictured above. Notice it has nothing to do with any Phaser version we’re using!!
This applies to ANY JS Gaming Framework.

https://makingbrowsergames.com/starterkits/ GameFlowChart.pdf;

NOTE: Some Game Distribution Channels will reject your game if you use any
text. They require only universally understood symbols.

“Phaser.Game” — One File to Rule them all ...

QUOTE:?% “"Ash nazg durbatul(k, ash nazg gimbatul, ash nazg thrakatuldk, agh
burzume-ishi krimpatul”
(Note: Do NOT utter these words aloud ... you've been warned!)

24https://www.urbandictionary.com/define.php?term=tweak
25https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
26https://www.youtube.com/watch?v=IMSLM33PQDM

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.urbandictionary.com/define.php?term=tweak
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://www.youtube.com/watch?v=lMSLM33PQDM
https://www.urbandictionary.com/define.php?term=tweak
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://www.youtube.com/watch?v=lMSLM33PQDM

Game Phases, Scenes & Roses. 92

Yes, Gandalf got it wrong!

The actual literal translation from the Grimoire — “Lore of Phaser v3.x.x"? is:

One File to rule them all — (phaser.Game the God-class!’),

One File to find them — (Phaser . Boot)",

One File to bring them all — (Phaser.Load)",

and in the darkness bind them! — (Phaser. Scenes)®
Ihttps://en.wikipedia.org/wiki/Grimoire
bhttps://photonstorm.github.io/phaser3-docs/Phaser.Game.html
Chttps://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
dhttps://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
€https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html

Main.js (aka “launch” or index.js)

Let's review each JavaScript file in the skeleton header. The main.js (aka “launch.js”
or index.js):?’ file “IS" the game’s genre's foundation. It contains all the particular data,
rules, and logical configurations for our game(s). If we build a similar genre, this file
should be relatively D.R.Y It is the first external JS game file loaded, immediately after
the Phaser Il framework, in the “index.html”. | take a “less formal” approach than
before inside the mobile version. As explained earlier for mobile single web page
applications (SWPA), | insert the entire raw main. js script as an inlined script tag.

® Exercise: Review the source code; it is thoroughly annotated and documented
? to reduce the price of this book.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/mainp3.pdf

Hint: Review the two demonstration games at https://makingbrowsergames.
com/p3gp-book/_p3-bloodPitv1/ and open the browser console to watch the
Phaser Game Framework in the Developer Console. If you've never used the
Developer's Console, please read How to Run JavaScript Code?.

27https://makingbrowsergames.com/p3gp-book/index3.html#9.1
28https://fireship.io/courses/javascript/beginner-js-survival-guide/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Grimoire
https://photonstorm.github.io/phaser3-docs/Phaser.Game.html
https://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html
https://en.wikipedia.org/wiki/Grimoire
https://photonstorm.github.io/phaser3-docs/Phaser.Game.html
https://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://fireship.io/courses/javascript/beginner-js-survival-guide/
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://fireship.io/courses/javascript/beginner-js-survival-guide/

Game Phases, Scenes & Roses. 93
Boot.js

Our boot.js: (aka “initialize”)?® phase was launched from the game’s “index.html”
page. This game phase has the responsibility of configuring and setting-up the HTML5
<canvas>, and game physics. As its name suggests, its purpose prepares the web
browser and sets the game dimensions — loading various game assets and storing
them in the Phaser “cache”, having them readily available when needed throughout
the game. Once the <canvas> is prepared, it will typically hand-off control toward the
next phase called the “load” phase. You can “control” its behavior from within the
“config” object — which we placed inside either the “index.htm1* Or “main. js* file.

Modification to this file should be minimal as long as you follow a standard naming
convention across all your games. Loading the standard game phase menus, images,
and buttons are already listed. There should not be anything in this file you need
to modify nor change. "Why's that?”, you ask! Because if you maintained the same
consistent naming conventions for your new artwork and graphics as presented in the
boot . js file, everything just overwrites the former artwork. Do you remember reading
earlier:

“If we create new graphics files, but call them by the same names we have in our
game shell. We are simply replacing (i.e., over-writing!) the game art with new art
(with the same file names) and VOILA! NEW GAME ... same mechanics, same source
code, yet with different “look & feel” — this is the secret sauce for cranking out a
game per week.”

Typical Boot internal functions:

* initialize function — prepares critical variables for game usage

* preload function — manages downloaded game assets.

* create function — manages the game re-size (min and max), alignment, and input.
* enterIncorrectOrientation function — notify gamer

* leavelncorrectOrientation function — adjust game

Note: You can download this “11-page example file” from
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/boot.js

29https://makingbrowsergames.com/p3gp-book/index3.html#9.2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index3.html#9.2
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/boot.js
https://makingbrowsergames.com/p3gp-book/index3.html#9.2

Game Phases, Scenes & Roses. 94

?’ Exercise: Review the source code above

P Hint: To further preserve this file’s integrity and keep it D.R.Y, you might
consider having the “boot.js” simply upload a JSON data file (aka “Asset Pack
File”3° and is a built-in feature of the Phaser Editor 2D') with all the game

resource unique to this project. This is the way Phaser Editor 2D performs.

Preload.js

This Game Phase manages our listed game assets into a queue for parallel download-
ing. It will place the game assets into the Phaser “cache” for immediate use across all
game phases. You should optimize this process with the fewest possible downloads
that are immediately required by your game. In a normal CMS game (discussed later),
| “inline” the normal “boot. js” into the “index. htm1* and consolidated everything else
into a “p1ay. js”; by doing so, | have deferred several potential downloaded files with
this single combined file.

Many developers use Browserify3? to the same effect. The formal and separate

“preload. js“ NOw becomes a simple JavaScript object in a “single web page application”
(SWPA)

Note: You can download an example “1-page file” from
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/load.js

Deeper Dive: Artwork & Resources Security

The most exciting thing is the game assets protection now available by using the “set
Base URL” feature in Phaser Ill. You should see inside the “preioad” essential function
a statement such as

30https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
3Thttps://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
32http://browserify.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
http://browserify.org/
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/load.js
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
http://browserify.org/

© 00 N O O b W N =

N
[\

Game Phases, Scenes & Roses. 95

this.load.setBaseURL(‘your domain’)

When you run this statement all the assets are loaded directly from your domain’s
designated directories. This is asset security at its BEST! You maintain control over all
your gaming artwork while your games are in the “wild”. Simply modifying or updating
your game assets dynamically on your website, updates all your clients world-wide.
Furthermore, it permits updates to your artwork and the client gamers will get those
updates directly from your centralized source, or through your CDN. Naturally, you
must have Cross-Origin Resource Sharing (CORS)>3 enabled.

Deeper Dive: Phaser Cache

As soon as the game boots, a global game-wide “cache” is created. This cache is
the gatekeeper to the various subordinate caches created for each game asset and
resource. For example, you could access any text by simply using “cache. text”. Here's
an example of the resource caches created after booting.

Phaser Cache for various resources.

this.binary = new BaseCache();
this.bitmapFont = new BaseCache();
this. json = new BaseCache();
this.physics = new BaseCache();
this.shader = new BaseCache();
this.sound = new BaseCache();
this.text = new BaseCache();
this.tilemap = new BaseCache();
this.video = new BaseCache();
this.xml = new BaseCache();

You can manage your cached content using common access methods such as ”.add”,

a“ ” u

.has”, “.get”, or even “.remove”; you will use string-based keys with these methods to
designate which resource.

33https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Game Phases, Scenes & Roses.

96

Working with the Phaser Cache:

Paraphrased from
http://www.htmI5gamedevs.com/topic/5683-add-bitmapdata-to-cache-as-image/

Phaser has one single cache in which it stores all assets.

The cache is split up into storage compartment (aka sections; such as images, sounds,
video, JSON, etc). All assets are stored using a unique string-based name (e.g.: its index
key) as their unique identifier and path locations. Assets, stored in different areas of
the cache, could use the same key indexing names. For example, playerwalking could
be used as a key for both a sprite sheet and an audio file, since they are unique and
different data files, stored in separate sections areas.

The cache is automatically populated by the Phaser.Loader state. When you use this
loader to pull external assets — such as images, they are automatically placed into
their respective cache sections.

You can access the Phaser cache from inside any State using this.cache. You can pull

any public method from the cache.

Normally, the cache will return a reference handle to items stored. This means, that
whenyou retrieve an item and then modify it, the original item in the cache is modified
too. The stored item is passed by its handle reference.

By default, when you change States, the cache is not cleared. However, there is an
option to clear the cache ifyou require it. In a typical game, during the boot and pre- load
states use the cache as storage.

Note: Tiled** is a free software package designed specifically for creating “tiled
maps”. Another licensed application is Texture Packer>> that will also help you
create sprite sheets and their atlas. Texture Packer can also create “tile maps”.
Shoebox>® is similar to Texture Packer except that it is FREE.

34http://www.mapeditor.org
35https://www.codeandweb.com/texturepacker
36http://renderhjs.net/shoebox/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.html5gamedevs.com/topic/5683-add-bitmapdata-to-cache-as-image/
http://www.mapeditor.org/
https://www.codeandweb.com/texturepacker
http://renderhjs.net/shoebox/
http://www.mapeditor.org/
https://www.codeandweb.com/texturepacker
http://renderhjs.net/shoebox/

Game Phases, Scenes & Roses.

Deeper Dive: Loader Examples

Each “Phaser Il Scene” is responsible for loading its own resources and gaming assets
when it starts. Scene loading runs in parallel; meaning that a scene will load its

resources even if another scene is currently loading.

The “BaseLoader” class governs this loading process. It is responsible for the “queue

management”, “dispatching events”, and “load management”. The “BaseLoader” class

n i

handles the following file types using its “addfile” method:

* Animation JSON File

Atlas JSON File
Binary File

+ Bitmap Font File

GLSL File
HTML File

* Image File

JSON File

* SpriteSheets
* SVG File
* Text File
* XML File

)
A

(4 4

Hint: Each Scene can further use “this.load.image”, “this.load.json”, and

“”,

this.load.atlas”. YOU can also pass configuration objects to these methods.

Warning: “load.path” and “load.baseURL” are acknowledged when “relative”
paths are used. Absolute URL — those starting with “attp” or “* (ed.: not
recommended) — are ignored.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses.

Samples from phaser.io/phaser/api/loader

// Original image loader signature:
this.load.image('bunny', 'assets/sprites/bunny.png');

// Object based
this.load.image({ key: 'bunny', texture: 'assets/sprites/bunny.png' });

// Allows for arrays of objects

this.load.image([
{ key: 'bunny', texture: 'assets/sprites/bunny.png' },
{ key: 'atari', texture: 'assets/sprites/atari4@e.png' },
{ key: 'logo', texture: 'assets/sprites/phaser2.png' }

1);

// Object based including XHR Settings
this.load. image({

key: ‘'bunny',

texture: 'assets/sprites/bunny.png’,
//ext: 'jpg', // png is the default
xhr: {

user: 'root',
password: 'th3G1lbson',
timeout: 30,
header: 'Content-Type',
headerValue: 'text/xml'

1),

// Auto-filename based on key:

// Will load bunny.png from the defined path,
// because '.png' is the default extension.
this.load.image({ key: 'bunny' });

// Will load bunny.jpg from the defined path,
// because of the 'ext' property.
this.load.image({ key: 'bunny', ext: 'jpg' });

/e

// Texture Atlas Examples
S/ e

// Original atlas loader signature:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 99

// this.load.atlas(

key,

textureURL,

atlasURL,

textureXhrSettings,

atlasXhrSettings)
this.load.atlas('levell', 'assets/levell/items.png',

'assets/levell/items. json');

// Object based
this.load.atlas({

key: "levell',
texture: 'assets/levell/items.png’,
data: 'assets/levell/items. json' });

Preload JSON Samples

function preload() {
this.load. json('jsonData', 'assets/atlas/megaset-0.json');

function create() {
console.log(this.cache. json.get(' jsonData'));

Splash.js or Language.js?

We arrive at our splash.js or language.js3’ phase; it will adapt text information vari-
ables to the gamer’s chosen language. It is one of the first “stopping points” after the
“network cloud access” (hopefully within 20 seconds?). If our game takes longer than
20 seconds to activate, it stands rejection from most “app stores”. Here is an excellent
place to inform our gamers about our sponsorship, provide advertisements(?? See
Phaser Game Design chapter 1!), offer language selections, and present your own logo
or “White Label” branding. I prefer to offer my gamers a “language screen” instead of
an initial “splash screen”. While the gamer pauses to select their language, it allows
our game more time to download more appropriately targeted game resources or
(better yet!) launch a web socket connection. This phase further allows me to set
the mood/theme music, provide a background narrative in their native language. The

37https://makingbrowsergames.com/p3gp-book/index3.html#9.4

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://makingbrowsergames.com/p3gp-book/index3.html#9.4

Game Phases, Scenes & Roses. 100

more standardized these screens are ... the better! — resulting in a savings of our
development time.

What | do, when presenting a “language menu” to my gamers, is to let them select
— dynamically on-demand!! — their native language for continued game-play and
interaction. | set a global variable3® to their “language index” and attach their
language JSON file to all the game's “text variable”. I'll not download every language
lexicon known to mankind at this point — just their language lexicon; and, of course,
we should steer clear of “Enochian’?° ... we'll have none of that here; they can go
“somewhere else and play”.

The natural choice for “language selection” is a visual button mechanism designed
around the gamer’s national flag — “iconic symbols” ARE the universal (international)
language. When our gamer glides over any nation’s flag, the “tool-tip text” changes
into that nation’s predominant language. Mesmerized by the sudden display of
various languages and spellings, our gamers — doing what they do best (i.e.: “play”)
— might spend, perhaps, a whole 3-seconds goofing around, thus providing us more
time for downloading game resources through perhaps a newly activated web socket
(click here for a demonstration from your “Bonus Content”)*°. Naturally, there must
be a different method to handle mobile touch input. Clever as our gamers are, they
will “select-click” the flag button representing their native language as their visual clue.
On that “click-event”, the internal game functions will send a request to download
that specific “uson” language file and dynamically populate (e.g.: substitute) all text
variables inside our game to their language content. Read some interesting facts
about the Internet and who your “real” target audience is becoming!*'

0 Note: More about international targeting in the Phaser Game Design Work-
book.

38https://www.w3docs.com/learn-javascript/variable-scope.html
39https://en.wikipedia.org/wiki/Enochian
40https://makingbrowsergames.com/p3gp-book/standalone/index.html
4 http://www.internetworldstats.com/stats.htm

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3docs.com/learn-javascript/variable-scope.html
https://en.wikipedia.org/wiki/Enochian
https://makingbrowsergames.com/p3gp-book/standalone/index.html
http://www.internetworldstats.com/stats.htm
https://www.w3docs.com/learn-javascript/variable-scope.html
https://en.wikipedia.org/wiki/Enochian
https://makingbrowsergames.com/p3gp-book/standalone/index.html
http://www.internetworldstats.com/stats.htm

Game Phases, Scenes & Roses. 101

LR
Adventurers of Renown

Gaming Series - More Adventures!

Default Language: English
Select language then click arrow to enter.

EF XL

araed

Copyright @ Stephen Gose, 1974 - 2015. All rights reserved.

Adventurers of Renown: The Ruins of Able-Wyvern™
Live language demonstrations: Ruins of Able-Wyvern™ (as pictured above)*’

For our Mobile “SWPA" or “PWA”, we'll use another “«div>* tag inside the “index.html”
file. Review the mobile “index.html|” source code, and you find that the “splash scene”
and “language menu” are mere “«div>* tags using Bootstrap CSS!

Modifications for the splash.js or language.js** should be minimal as long as you
use a consistent information and menuing system** across all your games. Loading
standard game phase menus, images, buttons are already inside your Bonus Con-
tent/standalone*>. There should not be anything in these files you would need to
modify nor change ... unless we have a new sponsorship or perhaps adding a new
targeted language.

?’ Exercise: Review the source code from language.js.*®

42https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
43https://makingbrowsergames.com/p3gp-book/index3.html#9.4
44nttps://en.wikipedia.org/wiki/Menu_(computing)
45https://makingbrowsergames.com/p3gp-book/standalone.zip
46https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://en.wikipedia.org/wiki/Menu_(computing)
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://en.wikipedia.org/wiki/Menu_(computing)
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js

Game Phases, Scenes & Roses. 102

Main Menu.js

Our next phase is the game's “main menu” — the central hub of all the game’s activity.
The more standardized this screen is ... the better. (NOTE: Again, this is another
“stopping point”) It is during this game phase our loaded “language text” kicks-in for all
tool-tips, feedback, and menus.

Reference

1 preload function — not used; everything was downloaded in
the boot. js

2 create function — links downloaded assets for use during
the game.

3 beginGame function — manages theme music

4 gameCredits function — manages theme music and game
author information

5 MoreGame function - manages theme music, and provides

access to more games from the author

NOTE: You can download an example file from

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/menu.js

Warning: Some Game Distribution Channels restrict the number of “out-going
links".

On the main menu, you should offer your gamers several options before starting
their game's play in earnest. The following scripts are not included and would be
handled better as separate HTML web pages from a Content Management System
(CMS) rather than trying to stuff everything inside a single game “canvas” tag. That
would merely bloat our final gaming file. Remember the HTML5 “canvas” tag is merely
a graphical display; in essence, it replaces the former Adobe Flash plugin. (NOTE: End
of life for Flash plugins is 20201231) Visit other games on this book’s website for
examples of a Content Management System (CMS).

* Rulers of Renown™: The Emancipation*’
* Adventurers of Renown™: The Ruins of Able-Wyvern+?
« Adventurers of Renown™: The Blood Pit*°

47https://www.adventurers-of-renown.com/quests/rrte.php
48https://www.adventurers-of-renown.com/quests/arra.php
49https://www.adventurers-of-renown.com/quests/arbp.php

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/menu.js
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/arbp.php
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/arbp.php

Game Phases, Scenes & Roses. 103

* Adventurers of Renown™: The Rogue Prince>°
« Adventurers of Renown™: The Rescue of NCC Pandora~’

A mass

e
7 N

[@ About |this Game.

\ 2

\,'/ & Step 1: Get \:I the Game Rules.
Sailagle iy

—_—
(& Step 2: Enter \/I the realm of Rulers.

e

{ —-\
I| @ Affiliates Welcome ||
N v

————— S N -

s SO \ B N
| ®QuidProQuo || (U Privacy Policy ||| Donations || (Join ||
e AN /N AN >

PP -

® 1997—2017, Stept

- 4
Questions or comments? \)

20 year anniversary providing online entertainment!

Simple CMS or PWA “game-shell”
Typical pages within a Content Management System (CMS) are not directly related to
the actual game mechanics nor gameplay. These pages enhance or support several
business aspects surrounding our game and develop customer loyalty and a sense
of community. So, why should we bloat — and clutter — our Phaser game with
superfluous information.>?> Example of such candidate pages placed outside the
Phase Game “canvas” are:

* “About.js” — a page biography to enhance your portfolio and resume. In our
mobile demonstration, the “about page” is used to enhance SEO and page
content since it is simply another “«div>“ tag.

* “Credits.js” — a page giving attributions.

* “Donations.js” — a crowd-funding page requesting financial support.

* “Instructions.js” or “help.js” — a page offering helpful hints, walk-throughs,
achievement, awards, entitlements, or game rules. If the game instructions are

S0https://www.adventurers-of-renown.com/quests/arrp.php
5Thttps://www.adventurers-of-renown.com/quests/arnp.php
52https://www.merriam-webster.com/dictionary/superfluous

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arnp.php
https://www.merriam-webster.com/dictionary/superfluous
https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arnp.php
https://www.merriam-webster.com/dictionary/superfluous

Game Phases, Scenes & Roses. 104

minimal in content, it could be combined with another page as typically seen in
various “splash pages”.

“Language.js” — a page offering gameplay in their native language. It downloads
a specificlanguage “dictionary” and populates all text displays and HUD with their
native language content.

“More-Games.js” — a redirection page to your whole collection of games; used
to build a loyal fan base. This is the #1 Marketing Tip from various successful
game indies.

“Options.js” — a configuration page used to set keyboard, input, and the like.
A live example at https://www.adventurers-of-renown.com/quests/arra.php/
welcome/lobby.html

“Scores.js” — pulls from a master database (back-end) of recorded scores. It's
also possible to simply use the browser “1ocalstorage”.

“Share.js” — a page to enhance the viral distribution of your game or announce-
ments within the game. See the twitter enhancement here>3.
“Submit-Scores.js” — collects and transmits the current game session for perma-
nent storage either locally and/or remotely.

- “wins.js” — records information into the gamer's registered account.

- “loose.js” — records information into the gamer’s registered account.

* “Webmasters.js” — a page offering license and distribution information.

Play game.

T L. T T T T T T T

More Games Copmgm‘ﬁstephen.ﬁnse A824-7009 Al R)ahls RO Sied™ e e as AR pemone

Adventurers of Renown™: “The Blood Pit” (Main Menu)

53https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancement]S.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.adventurers-of-renown.com/quests/arra.php/welcome/lobby.html
https://www.adventurers-of-renown.com/quests/arra.php/welcome/lobby.html
https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancementJS.pdf
https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancementJS.pdf

Game Phases, Scenes & Roses. 105
Play.js

Finally, we arrive at what this book is all about — the “Play” game phase (aka “game
event loop” or “life cycle”)! This phase dives straight into creating our gameboard
entities and components as a browser display. It is here that our “Gaming Frame-
work Mechanisms” appear — the User Interface controls, head-up-display (HUD),
and supporting function about “how” the game is displayed. We should be able to
exchange this file with a different “Gaming Framework Mechanisms” file, of the same
genre, and have a visually new game.

NOTE: You can refer to the “Skeleton Game Phase”. Download from

https://makingbrowsergames.com/p3gp-book/ p3-demos/js/state/play.js

Deeper Dive: JS Modules

As you have seen, separating our code into these various files is a very good practice
during the first developmental stages of our game. It also gives us more focus on
those immediate game actions and logic driving our game while we prototype. Most
importantly, we can re-use our source code — mix, match, and arrange our “ROSES”!

Nearly every programming language has the concept of modules — a way to include
code written in one file and insert it inside another file. Senior programmers have
used external coded libraries for inclusion into their projects for over half a century!
JavaScript did not originally include modules until ECMAScript 6 at the end of July 2014.
Until that time, the JavaScript developers’ community invented clever work-rounds.
Perhaps, you may have heard of:

+ CommonJS Modules: — The dominant use of this standard is found in Node.js
(NOTE: Node.js modules>* have a few features that go beyond Common]S).
CommonJS has several characteristics such as:

- Compact syntax
- Designed for synchronous loading
- Primarily used on the server-side

+ Asynchronous Module Definition (AMD): — The most popular use of this stan-
dard is RequireJs. AMD has these characteristics:

- Slightly more complicated syntax, enabling AMD to work without eval() (or a
compilation step).

- Designed for asynchronous loading

- Primarily used on the client-side browser

54https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/play.js
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/

Game Phases, Scenes & Roses. 106

Note: These generalized features are simply an overview. You can dive deeper
into these formatted modules from “Writing Modular JavaScript With AMD,
Common/S & ES Harmony”>> by Addy Osmani.

There are many reasons to use “JavaScript modular files” while coding your game
project. Since ES6 now includes modules, you can go beyond the CommonJS and AMD
capabilities. If designed properly, these “JavaScript modular files” help in the game’s
portability, and its “reusable chunks of code” (i.e., game prototypes and components).

Browser JavaScript modules versus inline scripts:

Elements Modules Scripts
Default mode strict non-strict
Execute sync/asyn imports yes no

File extension Js Js
HTMLS tag <script type="module”> <script>
Programmatic (Promise API) yes yes
Top-Level Value of “this” undefined window
Top-Level Variables are local to module® global

Note: If you're not familiar with “JavaScript modular files”, read this chapter
about “Modules”>’ from the FREE online book “Eloquent JavaScript” by Marijn
Haverbeke>® or you might review this superior article by Preethi Kasireddy's.>°

QUOTE from Phaser Ill Game Design Workbook® “Development source code is what
you read and write, and “check-in” to your source control system such as GitHub.”
It should be highly modular (i.e., split across many files), extensively commented,
and should make liberal use of white-space to indicate formatting structure. On the
other hand, Machine code is what gets served up to a browser. It should consist of a
small number of merged files and should be stripped of any developer's comments
and unnecessary white-space. Your “build” process — refer to Google Developer:
Setup Your Build Tools — is a step in which you apply these transformations; many
developers use the automated “Grunt”.¢

Finally, your web server should deliver the machine code with gzip compression for
extra speediness.” Read more tips here.¢

%https://leanpub.com/phaser3gamedesignworkbook

55http://addyosmani.com/writing-modular-js/
56https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
57https://eloquentjavascript.net/10_modules.html
58https://eloquentjavascript.net/index.html
59https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://addyosmani.com/writing-modular-js/
http://addyosmani.com/writing-modular-js/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/index.html
https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc
https://leanpub.com/phaser3gamedesignworkbook
https://github.com/PBMCube
https://developers.google.com/web/tools/setup/setup-buildtools
https://developers.google.com/web/tools/setup/setup-buildtools
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://leanpub.com/phaser3gamedesignworkbook
http://addyosmani.com/writing-modular-js/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc

123
124
125
126
127
128
129
130
131
132
133
134
135
136

Game Phases, Scenes & Roses. 107

bhttps://github.com/PBMCube
¢https://developers.google.com/web/tools/setup/setup-buildtools

dhttps://24ways.org/2013/grunt-is-not-weird-and-hard/
€https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/

3.5 Step #1 of 4: Generate Game Phases

Now that our game’s “index” page is in place and loads our Phaser Gaming Framework
— or any JavaScript Gaming Framework for that matter — we'll turn our efforts
toward our core gaming code and then the “Gaming Loop’s event 1ogic”.

We also have a couple of choices in this construction. We can build either a single
web-page game or a full-blown “Content Management System (CMS)” game shell.
Examples of single-page games drop the gamer directly into the “play phase” with
little warnings. This is typical of most games you find. Examples are:

« Our Breakout sample game®® we started in Chapter 1 — and will continue
referring to it throughout this book.
« All the Official Phaser Il Games examples®’

Example 3.1: Creating Game Phase (traditional object 1iterai method)

// Examples 3.1 to 3.19: Creating Game Phase (traditional method)
// This is an Anti-pattern: polluting the global namespace.

// Step #3) new game state additions:
Y

// Notice: This could be placed into a separate module file.

var main = {
// Essential Functions found inside this state.
// Phaser v2.x.x called this "init"
initialize: function(){
//stuff to generate this function

// debug header information

60https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
61https://labs.phaser.io/index.htmi?dir=games/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/PBMCube
https://developers.google.com/web/tools/setup/setup-buildtools
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
https://labs.phaser.io/index.html?dir=games/&q=
https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
https://labs.phaser.io/index.html?dir=games/&q=

137
138
139
140
141
142
143
144
145
146
147
148
149
150

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Game Phases, Scenes & Roses.

3

create: function() {
// oo ———
// Example 2.6: Additional Phaser Properties begins
// ———————————=—

console.log("mainState Ready!");
//stuff to generate for this scene.

Y, //the comma is very important.

update: function() {
//frame refresh and display updates

}

}; //the semi-colon is very important.

108

f Exercise: The example above refers to:

//makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Dynamically Including Game Phases

Example 3.1a: Creating Game Phases from Dynamically loaded files

https:

[/ SEESEESSsSsssssssssssssssssssssssssss
// Step #1) Let's tell Phaser about our new phase

//Phaser uses our code and gives it a name of 'main'.

main: function main(){

this.game = new Phaser.Game(config);

// This is the SECRET SAUCE!!
// add all game phases into Phaser III scenes.
for(var stateName in window.GAMEAPP.state)({
console.log("Creating Crnt State: "+stateName);
this.game.scene.add(
stateName,
window.GAMEAPP .state[stateName]);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

214
215
216
217
218
219
220
221
222
223

Game Phases, Scenes & Roses.

} //End For Loop

//using v3? use this manual start method below.
console.log("Leaving GAMEAPP.main -> boot"); //debug
//tells Phase to start using it.
this.game.scene.start('boot"');

// Example 3.7: ends

109

0 Note: Review complete example in the Source code Appendix.5?

Example 3.1b: Creating Skeleton Game Phase - per Phaser Labs

// dozens of ways to launch Phaser III Scenes?

// pick one and be consistent.

// Refer to: http://labs.phaser.io/index.html?dir=scenes/&q=
var <GamePhaseName> = new Phaser.Class({

Extends: Phaser.Scene,

initialize: function <GamePhaseName> (config) {
Phaser.Scene.call(this, { key: '<GamePhaseName>', config });

}I

init: function (data) {},

preload: function () {
this.load.image(' <GamePhaseNameBackGround> ",

'assets/images/<GamePhaseName> .png');

}I

create: function (data) {
this.add.image(@, 0, '<GamePhaseNameBackGround>').setOrigin(Q)
this.input.once('pointerdown', function () {
console.log('From <GamePhaseName> to <NextPhaseName>');
this.scene.start (' <NextPhaseName>");
}, this);

62https://makingbrowsergames.com/book/index12.html#12.3

14

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/index12.html#12.3
https://makingbrowsergames.com/book/index12.html#12.3

Game Phases, Scenes & Roses. 110

}/

update: function (time, delta) {}

});

Deeper Dive: D.RY. Stand-alone

Sample: Game Launch in game. js with Name Space - D.R.Y. method

203 //

204 S e

205 // Main game Handler methods

206 /Ll

207 / /**TODO**

208 // re-factor and adjust for your game deployment

209 // remove console debug information BEFORE public deployment
210 //

211 // Step #1) Let's tell Phaser about our new phase

212 // ============

213 //Phaser uses our code and gives it a name of 'main'.
214 main: function main(){

215

216 this.game = new Phaser.Game(config);

217

218 // add all game phases into Phaser v3.x.x scenes.
219 for(var stateName in window.GAMEAPP.state)({

220 console.log("Creating Crnt State: "+stateName);
221 this.game.scene.add(

222 stateName,

223 window.GAMEAPP .state[stateName]

224);

225 }

226

227 //v3 manual start method below.

228 console.log("Leaving GAMEAPP.main -> boot"); //debug
229 //tells Phase to start using it.

230 game.scene.start('boot');

231 // Example 3.7: ends

232 /) ============

233

Copyright © 1972-2017 Stephen Gose. All rights reserved.

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

Game Phases, Scenes & Roses. 111

Rk

// main function - using Object.create experiment!

main: function(){

this.game = Object.create(Phaser).Game(

this.viewportWidth,
this.viewportHeight,
Phaser . AUTO,
document. body,
window.GAMEAPP. state.boot);

1

*/

// here we will store all game phase/states
// state object filled as js files load.
state: {},

You'll recall that I said earlier, “I do not place my game scenes inside the “config” object.
You can see how | inform Phaser about my game’s phases in “main.pdf” lines 119 to
126%3. | add the game scenes directly into my game instance. Then on Line 125, | tell
Phaser to move to my initial boot scene.”

| follow this method so that, whatever game phases I'm using, they will be automat-
ically identified and loaded. | can now pick and choose which game phase files to
load from one place — its “index.ntm1” — and those phases will appear in my game
without touching any code.

?’ Exercise: The example above refers to Lines 203 to 242: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Step #3 of 4: Game Phase Transitions

f Exercises: Review DevLog #120 https://phaser.io/phaser3/devlog/120

63https://makingbrowsergames.com/p3gp-book/mainp3.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://phaser.io/phaser3/devlog/120
https://makingbrowsergames.com/p3gp-book/mainp3.pdf

© 00 N O O b W N =

T S =Y
O O B W N =~

Game Phases, Scenes & Roses. 112

Sample from v3.5.0

this.scene.transition({

//allowlnput: false, // set true to enable input system
// of current scene and target scene

data: {x: x, y: y}, // an object containing any data you wish
//passed into target scene init. methods.

duration: 1000, // 1In milliseconds

//moveAbove: true, // move the target Scene above this current
// scene before the transition starts

//moveBelow: true, // move the target Scene below this current
// scene before the transition starts

//onUpdate: null,

//onUpdateScope: scene,

//sleep: false, // set true to sleep this scene,
// set false to stop this scene

target: 'nextScene' //, the scene key name to transition into

});

Deeper Dive: The CMS “Game Shell”

A Content Management System (CMS) is “game shell” that surrounds the “Play
Phase” and is merely a simple method toward building a Progressive Web App (PWA)®.
It reliably and instantly loads the gameplay content, and is similar to what you would
see in native mobile applications.

The “game shell” has the minimal required technologies of HTML, CSS, and JS to
display the game’s browser interface. When it is cached offline, it ensures instant,
reliably good performance to gamers in their returning gaming sessions. The network
provides the newest or updated gaming content and assets.

For games — “a single web-page application with heavy JavaScript architectures” —
using a “game shell” is “THE go-to approach”.%> The “game shell” approach relies on
aggressively caching the “shell” content using a web-service worker®® to get the game
up and running. Next, the dynamic game content and artwork loads for each game
phase. The secret sauce that a “game shell” provides is: Getting the initial HTML into
a user’s device and display it without any help from the network connection!

In other words, the “game shell” is similar to the code you'd publish to any “app store”
when building a native mobile app. The “game shell” is a skeleton (aka Bare Bones

64https://developers.google.com/web/progressive-web-apps/
65https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
66https://developers.google.com/web/fundamentals/primers/service-worker/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developers.google.com/web/progressive-web-apps/
https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
https://developers.google.com/web/fundamentals/primers/service-worker/
https://developers.google.com/web/progressive-web-apps/
https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
https://developers.google.com/web/fundamentals/primers/service-worker/

Game Phases, Scenes & Roses. 113

Prototypes) of your game’s user interface (“Ul”) and all those prototype components
necessary to launch your game from the ground up ... but doesn’t include the game’s
“data logic.”

Note: Try the First Progressive Web App (PWA)®’ to learn how to architect and
implement your first generic mobile application shell. The “Instant Loading
with the App Shell model”® video also walks you through this design pattern.

Deeper Dive: When to use a game shell

Building a PWA does not mean starting from scratch. If you are building a modern
single-page app, then you are probably using something similar to a “game shell”
already whether you call it that or not. The details might vary a bit depending
upon which gaming libraries or frameworks you are using, but the concept itself is
framework agnostic!

The “game shell” architecture makes the most sense for any game project with
relatively unchanging navigation but changing internal content — the canvas?! Many
JavaScript Gaming Frameworks and libraries already encourage splitting your game
logic from its content (aka “Separation of Concerns”), making this “game shell” design
appealing. For certain types of games — that only have static content — you can
still follow the same idea but the game’s “canvas” tag becomes 100% of the “game
shell” — this is what you find in the majority of published Phaser v2.x.x & v3.15+
games — single-page games described earlier that use a single static “canvas” tag
with all various game “roses” one is accustom to expect (aka menus, movieClips,
parts, phases, sections, stages, states, scenes, screens, thingies, dumaflache,®® or
“Aardvarks!”70).

® Exercise: Let's see how Google builds its typical mobile-app shells. Take a look
? at Building the Google I/0 2016 Progressive Web App.”" This real-world mobile
app started with a SPA to create a PWA that pre-caches content using a web-
service worker, dynamically loads new pages, gracefully transitions between

views, and reuses content after the first load.

The benefits of using this “game shell” architecture and a web-service worker’? are:

67https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
68https://www.youtube.com/watch?v=QhUzmR8eZAo
69https://www.urbandictionary.com/define.php?term=dumaflache
7O0https://en.wikipedia.org/wiki/Aardvark
7Thttps://developers.google.com/web/showcase/2016/iowa2016
72https://developers.google.com/web/fundamentals/primers/service-worker/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.urbandictionary.com/define.php?term=dumaflache
https://en.wikipedia.org/wiki/Aardvark
https://developers.google.com/web/showcase/2016/iowa2016
https://developers.google.com/web/fundamentals/primers/service-worker/
https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.urbandictionary.com/define.php?term=dumaflache
https://en.wikipedia.org/wiki/Aardvark
https://developers.google.com/web/showcase/2016/iowa2016
https://developers.google.com/web/fundamentals/primers/service-worker/

Game Phases, Scenes & Roses. 114

* Reliable performance that is consistently fast across all your game projects.
Repeat visits are extremely quick. Static assets and the Ul (e.g. HTML, JavaScript,
images, and CSS) are cached on the first visit so that they load instantly on repeat
visits. Content may be cached on the first visit, but is typically loaded as needed
— “justin time!”

Native-like interactions. By adopting the game shell model, you can create experi-

ences with instant, native-application-like navigation and interactions, complete

with offline support.

+ Economical use of game assets. Design for minimal resource usage. Be judicious
in what you immediately cache because loading non-essential files (i.e., large
images that aren’t shown on every page) will result in browsers downloading
more game assets than is used immediately. Even though WAN bandwidth is
available in western countries, this may not be the case in emerging game
markets where connectivity is expensive and data is costly.

3.6 Encoding Phaser Scenes as a “Game Phase”

"“*n\\c yr p.
W,

B { Preload b L 2
. oot reloa anguage s i .
i Progress Assets Chaice / Bain Menu Play

F

Game
Terminates

Game
Clicked

Initialize

\

.

Game Phases Reviewed

Let's review those game phases which compose a “game shell”. Since each phase
performs a similar task, it is easy to keep them D.R.Y. So, once we’ve written a game
phase for our “game shell”, we're done! We never have to touch it again — unless
you want to muck around with some tweaks’3 — such as small unique modifications
or features we might want to include inside the core “Play” phase. Each game phase
could become siloed’* as a separate JS module file and prototype! We can mix, match,
and arrange our “rose” bouquet’> any way we want! When we eventually create our
final artwork — and assign them the same file names we have inside our “game shell”
— we are simply replacing the original “block-style graphics” with new art (by using
the same file names; we are intentionally overwriting the “block-style graphics),
and thus, VOILA! NEW GAME ... same game mechanics, same source code, yet with
different “look & feel” coming from the newly imported artwork’® — this is the
secret sauce for cranking out a game per week! (Refer back to chapter 1)

Vanilla, Chocolate, or Strawberry Creme-filled?

73https://www.collinsdictionary.com/us/dictionary/english/muck-around
T4https://en.oxforddictionaries.com/definition/siloed
75https://www.merriam-webster.com/dictionary/bouquet
76https://www.gamedevmarket.net/?ally=GVgAVso)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.collinsdictionary.com/us/dictionary/english/muck-around
https://en.oxforddictionaries.com/definition/siloed
https://www.merriam-webster.com/dictionary/bouquet
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.collinsdictionary.com/us/dictionary/english/muck-around
https://en.oxforddictionaries.com/definition/siloed
https://www.merriam-webster.com/dictionary/bouquet
https://www.gamedevmarket.net/?ally=GVgAVsoJ

Game Phases, Scenes & Roses. 115

Sample: Step 3) Vanilla Phaser Scene as a function object

//Step 3) new game state additions as a function
// Notice: This could be inside a separate module file.
//This is a namespace. Replace <Phase_Name> :
window.GAMEAPP .state. <Phase_Name> = function(game){
// Phaser v2.x.x called this "init"
initialize: function(parameters) {
// any required initialization for this phase?
//This is the first function called when any Phase State begins
// and launched prior to preload, create (or anything else).

}, //comma is very important

preload: function() {
// load required resources for this phase
// for example:
this.load.image("preloaderBar", "assets/images/preloader-bar.png");
this.load.spritesheet("button",
"images/buttons/mmm-sprites.png",129,30);
}, //comma is very important

/** Creates the sets-up game environment.
This is called once immediately after the preload function completes.
If you do not have a preload method then
create is the first method called after init.
*/
create: function() {
//OR create items to display on this game scene.

}, //comma is very important

update: function () {
//used for verification that game assets are available.
} //no comma here
3
o

var params = ['L1', 'L2'];

var autoStart = true;

var sceneConfig = { ... }

this.scene.start('Phase_Name', sceneConfig, autoStart, params);

//See notes from:

//https://rexrainbow.github. io/phaser3-rex-notes/docs/site/scenemanager/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

o N O O b W N =

© 00 N O O b W N =

O S e
O b W0 N =~ O

Game Phases, Scenes & Roses.

Overriding Essential Functions inside Phaser.Scene

// NOTE: this style could be applied to ANYTHING inside Phaser!

var

demo = new Phaser.Scene('Demo');

// Phaser v2.x.x called this "init"

demo.initialize = function initialize (data){ ... };
demo.preload = function preload (){ ... };
demo.create = function create (data){ ... };
demo.update = function update (time, delta){ ... };

Creating Scenes using ES5 Prototypes

var

MyGame = {

};

MyGame.Boot = function () {

b

//stuff boot game phase performs.

MyGame .Boot . prototype.constructor = MyGame.Boot;

MyGame .Boot .prototype = {
// Phaser v2.x.x called this "init"

b

4

initialize: function initialize (data) { ... },
preload: function preload () { ... },

create: function create (data) { ... },
update: function update (time, delta) { ... }

Exercise: Using the sample code above, create each of the following game
phases for future use. These new files, you are creating, will become our
“game container” or “game shell”. Refer to the following in the Source Code

appendix.”’

Exercise: Study the various combinations of creating JavaScript Object creation
patterns’® and styles from Code reuse patterns’®

77https://makingbrowsergames.com/p3gp-book/index9.html
78https://www.jspatterns.com/category/patterns/object-creation/
79https://www.jspatterns.com/category/patterns/code-reuse/

116

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index9.html
https://makingbrowsergames.com/p3gp-book/index9.html
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/code-reuse/
https://makingbrowsergames.com/p3gp-book/index9.html
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/code-reuse/

Game Phases, Scenes & Roses. 117

Sample: Step 3) Chocolate: ES6 Phaser Scene.

//Generated by Phaser v3 Typescript example

Rk
NOTE: the alternate acceptable form for ES6 and TypeScript
Classes are NOT hoisted.

*
*

*

* Alternate syntax per

* "Professional JavaScript for Web Developers 3rd Edition" pg: 873
*

class <Phaser_State_Name> prototype Phaser.Scene {
*/

class <Phaser_State_Name> extends Phaser.Scene {
constructor() {
//super(); if needed.
//only properties are allowed here per MDN

initialize() {

}

preload () {
}

create() {

}

// state-methods-begin
// user code here
// state-methods-end

}

// end generated code

// user code here

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 N O O & W N =

=
g b 0w N =~ O

Game Phases, Scenes & Roses. 118

Quote from Wikipedia:2° “TypeScript is an open-source programming language
developed and maintained by Microsoft. It is a strict syntactical superset
of JavaScript and adds optional static typing to the language. TypeScript
is designed for the development of large applications and transcompiles to
JavaScript (ed.: ES6!).”8" Per this website®> and after 6 years from the initial
release, only 24% of web developers use Typescript.

Creating Scenes using Phaser.Class

Using the phaser. class is an interesting option. If you study the Phaser source code83 —
starting from line 171, itis simply using the ES5 “.app1y” method. The “app1y” method
is similar to the “ca11” method; the only difference is that “app1y” takes arguments
in an array. “Phaser.Class” creates a new class with the given descriptor; the normal
OOP constructor is labeled by the name “initialize” and is an optional function. If
unspecified (i.e., using “init” instead of “initialize” an anonymous function will be used
which will call the parent class.

Creating Scenes by extending Phaser.Class

var MyScene = new Phaser.Class({
Extends: Phaser.Scene,
initialize: function MyScene (config) {

Phaser.Scene.call(this, config)
// add more internal variables as needed.

1,

// typical "Phaser Essential Functions" for this scene.
initialize: function initialize (data) { ... },
preload: function preload () { ... },

create: function create (data) { ... },

update: function update (time, delta) { ... }

});

80https://en.wikipedia.org/wiki/TypeScript

81https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-
solution-looking-for-a-problem/

82https://www.jetbrains.com/research/devecosystem-2018/javascript/

83https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/TypeScript
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171
https://en.wikipedia.org/wiki/TypeScript
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171

Game Phases, Scenes & Roses. 119

ES6 Considerations: “Strawberry”

Sample: Step 3) ES6 Game

import Boot from 'js/states/boot’;

import Preload from 'js/states/preload’;
import Main from 'js/states/main’;

import GameOver from 'js/states/gameOver';

* Alternate syntax per

* "Professional JavaScript for Web Developers 3rd Edition" pg: 873

* class <Phaser_State_Name> prototype Phaser.Game {

*/

class GAMEAPP extends Phaser.Game ({

constructor() {

super('100%', '100%', Phaser.AUTO, 'gContent');
//scene.add (key, sceneConfig, autoStart, data)
this.scene.add('boot', boot, false);
this.scene.add('preload', preload, false);
this.scene.add('main', main, false);
this.scene.add('gameOver', gameOver, false);
this.scene.start('boot"');

}

new Game();

Hint to REMEMBER: ES6 classes in JavaScript are not blueprints as found in
other Object-Oriented (OO) languages. They are simply “defined objects” that
are modified “at-will” during run-time. Refer to A prototype-based language®

Compare the “2016 ES6 format” to the TypeScript format. They are similar because
they are transpilers. They translate down into acceptable ES5 JavaScript code for
older browsers used today. | anticipate current browsers to uphold the ES6 to ES9
standards.?> This means that all your game prototypes should be compatible with the
current ES5 JavaScript standards; you must “future proof” your efforts — make your
code simple and correct; then make it fast and small, but only if necessary. Here’s an
example from this article.8°

84https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
85https://kangax.github.io/compat-table/es6/
86http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://kangax.github.io/compat-table/es6/
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html

© 0O =N O O & W N =

W oW NN NDNDDNDDNDNDNDN DN A Rl oy
, O © 0 N 0 U s WN SO O 0N 0N,

Game Phases, Scenes & Roses. 120

P Hint: The current JavaScript standard is ES10%7 (as of FEB 2019).

Creating Scene Configuration files

Each scene in Phaser lll can load its unique configurations — even from remote JSON
files. Here's a standard sets of configuration options:

var config = {
key: "',
// active: false,
// visible: true,
// pack: false, //see JSON file pack below
// cameras: null,
// map: {},
// physics: {},
// loader: {},
// plugins: false,
// input: {}

)

// JSON file pack example
// use: scene.load.pack(key, url, dataKey);

{
"dataKey': {
// "prefix": "...", // optional, extend key by prefix
// "path": "...", // optional, extend url by path
// "defaultType": "image", // optional, default file type
"files': [
{
"type': 'image',
'key': "o,
‘url': ! '
}
{
"type': 'image',
'key': "o,
'url': ! !

87 https://www.w3schools.io/javascript/es10-features/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.io/javascript/es10-features/
https://www.w3schools.io/javascript/es10-features/

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Game Phases, Scenes & Roses. 121

Y/
]
},
'node@' : {
"nodel': {
'node2': {
"files': [
/S

}
// dataKey: 'node@©.nodel.nodeZ'

Deeper Dive: Defining Other Scene Properties

We can provide other basic properties in our Phaser lll game by describing more
settings. For example, we might set a background color or we could set up a “physics
reaction system” that will define how game objects interact with each other. In the
former Phaser v2.x.x, Game Objects (such as Sprites) could only belong to 1 physics
system at a time, but you can have multiple physics systems active within a single
v2.x.x game canvas. “In v3.16+, all this has changed! A Scene can only have 1 physics
system running at once, never more than this. The difference is that in v3.x.x you can
have multiple Scenes and they each could have their own physics system (if required).
(ed.: Scenes, in v3.x.x, are sub-sections of a single game phase all running in parallel.
Their new behavior reminds me of Adobe Flash MovieClips on the timeline. Refer to
the Phaser Il Game Design Workbook®® a sister companion to this book.), “ (Quoted
from Phaser newsletter no. 94 Examples http://labs.phaser.io/ » physics » impact »
multiple 20 scenes.)

Here is some examples that you might add inside the “create()” function:

88https://leanpub.com/phaser3gamedesignworkbook

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaser3gamedesignworkbook
http://labs.phaser.io/
https://leanpub.com/phaser3gamedesignworkbook

Game Phases, Scenes & Roses. 122

Example 3.4: Additional Phaser Ill Properties

211 // ============

212 // Example 3.4: Additional Phaser Properties begins

213 // ============

214 // remote URL to game assets

215 // Cross-origin resource sharing (CORS)

216 this.load.setCORS = 'anonymous';

217 this.load.setBaseURL('<URL to>/images/');

218 console.log("Additional Phaser Properties set in preload!");
219 //Example 3.4: ends

220 /) ============

221

222 //Set a neutral background color

223 //notice we used the shorthand version; instead of #FFO00OO
224 //photonstorm/phaser/blob/v3.14.0/src/boot/Config. js#L532
225 //This sets up Phaser's Arcade physics engine,

226 // which are simple but effective for arcade-style games.
227 //this.physics.startSystem(Phaser.Physics.ARCADE);

228 //this.renderer.renderSession.roundPixels = true;

229

230 //this applies physics to every item.

231 //.enable(object, [bodyType array or group])

232 //.enableBody (object, DYNAMIC_BODY) or

233 //.enableBody (object, STATIC_BODY)

234 //this.physics.world.enableBody(key, CONST.DYNAMIC_BODY),
235

236 //0R ...

237 this.scene.physics.world.enable(this);

238

239 console.log("Additional Phaser Properties set in preload!");
240 //Example 3.4: ends

241 // ============

242 1,

243

244 //Recommended scaling for Phaser III

245 // managed by CSS.

246 function resize() {

247 var canvas = document.querySelector("gameCanvas");
248 var gWidth = window.innerWidth;

249 var gHeight = window.innerHeight;

250 var gRatio = gWidth / gHeight;

251 var gameRatio = config.width / config.height;

Copyright © 1972-2017 Stephen Gose. All rights reserved.

252
253
254
255
256
257
258
259
260

Game Phases, Scenes & Roses. 123

if (gRatio < gameRatio) {
canvas.style.width = gWidth + "px";
canvas.style.height = (gWidth / gameRatio) + "px";
} else {
canvas.style.width = (gHeight * gameRatio) + "px";
canvas.style.height = gHeight + "px";

Note: The example above comes from:
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

The this.scene.physics.world.enableBody above applies physics to every item we create
in our game. The pPhysics Manager is responsible for looking after all of the running
physics systems in Phaser Ill. Phaser Il currently (as of 20181212) supports three
different physics systems:

* Arcade Physics (available in both V2.x.x and v3.x.x)8° — “The Arcade Physics Plu-
gin belongs to a Scene and sets up and manages the Scene’s physics simulation. It
also holds some useful methods for moving and rotating Arcade Physics Bodies.”
You can access it from within a Scene using this.physics.,

« Impact JS° — “... a compatible physics world, body and, solver, for those who
are used to the Impact way of defining and controlling physics bodies. Also works
with the new Loader support for Weltmeister map data.”,

* Matter®® — "“The Matter.Body module contains methods for creating and ma-
nipulating body models. A Matter.Body is a rigid body that can be simulated
by a Matter.Engine. Factories for commonly used body configurations (such as
rectangles, circles, and other polygons) can be found in the module Matter .Bodies.”

89https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
9Ohttps://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
91 https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html|

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html

Game Phases, Scenes & Roses. 124

® Exercise: Review completed examples in the Phaser Il Game Prototype Library
? on the book’s website®>.

Exercise: Review the Phaser's Official examples®.

Exercise: Learn more about the various Phaser physics engines in the docu-
mentation®.

Exercise: Research these references about using multiple physics engines at
the same time. Which Physics System To Chose?

Deeper Dive: ES9 Modules

Why mentions this??

Because in release v3.16.2 (newsletter #139 20190211), we have “scenefiles”. “Scene
Files"?® are down-loadable configurations to manage and active scenes ON THE FLY!
This is THE feature I've been waiting for; it means that | can dynamically influence the
gamer's sessions by loading membership entitlement, enticements, or rewards.

this.load.sceneFile(’keyName’, ‘path’)
// allow time to download and processing by the Scene Manager, then
this.scene.start('keyName’);

The key given must be the class name of the newly downloaded Scene. Once the
scene is downloaded by the Loader, it's added into the DOM with a script tag and
then processed by the Scene Manager.

92https://makingbrowsergames.com/p3gp-book/
93http://labs.phaser.io/index.htmi?dir=physics/&q=
94https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
95http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
9%https://labs.phaser.io/index.htmi?dir=scenes/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/p3gp-book/
http://labs.phaser.io/index.html?dir=physics/&q=
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
https://labs.phaser.io/index.html?dir=scenes/&q=
https://labs.phaser.io/index.html?dir=scenes/&q=
https://makingbrowsergames.com/p3gp-book/
http://labs.phaser.io/index.html?dir=physics/&q=
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
https://labs.phaser.io/index.html?dir=scenes/&q=

Game Phases, Scenes & Roses. 125

Enabling dynamically loaded parts of a JavaScript application at runtime

import(" ./section-modules/${1link.dataset.entryModule}. js)
.then(module => {
module.loadPagelnto(main);
b
.catch(err => {
main.textContent = err.message;

});

3.7 Summary

Examples:

* https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesindex.html
* https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html

Chapter 3 done! Here's what we've covered.

+ Distinguished between game flow control and internal “Phaser Essential Func-
tions".

+ Identified the various game phases and those names used to describe them.

+ Learned the two aspects of game delivery.

+ Understand the impact of writing D.R.Y code.

+ Discovered the secret to cranking out a game per week.

* Studied a standard game “flow chart.”

+ Compared “Lord of the Rings” to a grimoire — “Lore of Phaser v3.x.x” — hOW Phaser
111's framework architecture works.

* Reviewed JavaScript modules formats.

* Matched various game phases to the JS modules used.

* Learned how to “arrange rose bouquets”.

+ Identified the internal “Phaser Essential Functions”.

+ Dissected the “Game Loop event logic”.

* Understand the new twist on multiple scenes in Phaser v3.16.x.

+ Studied how multiple scenes are used.

* Reviewed the new “Game Loop cycle”.

+ Discovered the hottest target markets for games.

+ Reasoned the correct presentation order of game phases.

* Learned the importance of coding consistency in styling and paradigm.

* Discover several FREE online resources.

+ Studied deeper implications on security and asset caching.

+ Differentiated core game mechanics from supporting auxiliary support.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html

Game Phases, Scenes & Roses. 126
3.8 Chapter References:
(See more references in front)

* Plain English Guide to JavaScript Prototypes®’
* JavaScript Classes®

97http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
98https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Part II: Mechanisms vs. Mechanics

P e
Game
Mechanics

\& Rules

P s

“Separation of Concerns”
> Permits Rapidly

New

)W\Game!

" Mechanism Imported

Q’Wwpes \Artwork

Game Design System™

Launched Games!

Game Design System™ creating new Games from 3 Components!
Part Il covers Game Recipes™ from the Game Design System™. This is the “production
phase” of my project management. We've created various common “visual compo-

nents” in both Phaser Ill and v2.x.x, and prepared our Part I prototypes for use in this
Part II's Game Mechanics (GM), rules, data, and logic.

Building Game Prototypes, Mechanisms & Tools 128

4. Building Game Prototypes, Mechanisms &
Tools

Our goal in this chapter is to have a fully functional Game Prototype. From that
foundation, we can branch, combine various mechanisms and components into
various Game Mechanics found in Part Il or from the Phaser Ill Game Starter Kit
Collection.’

There are simple worksheets for each task we plan to do. By the end of this chapter we
will have created everything a game uses and a tool that will automatically generate
Game Recipes™..

Interactions between game elements,

Collecting players’ input from the keyboard, mouse pointer, or mobile touch,
Detecting collisions among various game units,

Representing visual avatars and their associated data structures,

Monitoring the gaming loop,

Migrating to various menus, Scenes, and heads-up displays/changes.

E

Chapter 4: Game Prototype Project

Thttp://leanpub.com/p3gskc/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://leanpub.com/p3gskc/
http://leanpub.com/p3gskc/
http://leanpub.com/p3gskc/

Building Game Prototypes, Mechanisms & Tools 129

® Exercise: Download the resources from
? https://makingbrowsergames.com/p3gp-book/ p3-demos.zip
or start a new project following Task #1 & #2 from previous chapters.

4.1 Task #3: Mini-Me

To represent a player’s avatar in our game(s), we need to define two things:

1. avisual image that represents our gamer and their location in relation to things

on the gaming stage; and
2. a separate data object describing that avatar’s characteristics and skills.

Note: We've already discussed the “Principles of Software Engineering”?> and
the “Separation of Concerns™ as effective software engineering principles

from Chapter 1.

Creating an Avatar - “visual display”

Let's deal with the “visual display” first. Of course, to do
that, we must have some artwork to create our visual
avatar. Fortunately, there are dozens of artwork refer-
ences in the Appendix that are free and open source. We
could use these image files; but, if we want to tailor them
that means we either have to purchase, create our own
with an image editing program, or perhaps we could
hire a graphics artist. We could spend hours possibly
thousands of hours?! — Remember? — in this search.

0,1 1,1

.setOrigin(x, y);

When placing any Phaser Ill Game Object (GO), you
must remember that visual elements are “centered” by
default — except for text(!??!) which for some reason, not revealed yet, are “center”
by the “top-left”. Personally, | feel this should be reversed. In Phaser v2.x.x, we used
“setting anchor(0.5,0.5)" to have its “anchor” (i.e., its origin point) in the center. If you
do not want all visual objects “centered”, then use ...

2https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
3https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos.zip
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Building Game Prototypes, Mechanisms & Tools

Review Example 4.1: Prototyping a Visual Avatars

130

// create a character avatar sprite

// playeri1 = this.add.sprite(-100, -100,

// box({who: this, whereX: 150, whereY: 100,
// length:32, width:32, color: OxOO0OFF,

// border: OxFFFFFF}));

// OR just assign the box prototype method
player = box(

{who: this,
whereX: 150,
whereY: 100,
length: 32,
width: 32,

color: 0Ox00VOFF,

border: OxFFFFFF}
)i
// add physics characteristics
this.physics.add.existing(player);
console.log("Blue avatar created as a 'player' variable.");
S/ e
// OR the direct method using either rectangle or graphics
// and set movement velocities.
var avatar = this.add.rectangle(100, 100, 32, 32)

.setStrokeStyle(5, 0x3399CC);

var graphics = this.add.graphics({ fillStyle: { color: 0xFF000Q } });

graphics.lineStyle(10,0x6699CC,0Q);
graphics.strokeRect (100, 100, 32, 32);

graphics. fillRectShape(avatar);
this.physics.add.existing(avatar);

//non-controlled movement (usage AI bot, see Chapter 6)
avatar.body.velocity.x = 50;

avatar.body.velocity.y = 10;

//non-controlled movement (usage AI bot, see Chapter 6)
this.physics.add.existing(graphics);
graphics.body.velocity.x = 50;

graphics.body.velocity.y = 50;

console.log("Moving Red avatar variable.");

/) mmmmmmnens

Copyright © 1972-2017 Stephen Gose. All rights reserved.

o7
98
99
100
101

Building Game Prototypes, Mechanisms & Tools 131

// create an opponent - direct rectangle method

var monster = this.add.rectangle(180, 60, 32, 32, 0x00FFQQ);
console.log("Green monster avatar created as 'monster' variable.");
// Example 4.1: ends

44
Lesson 4: https://makingbrowsergames.com/p3gp-book/ p3-demos/ch4-
examples/lesson04.html

j Exercise: Refer to these resource files: Phaser Ill Game Prototyping: Chapter

The main »>> create »>> this.player = this.add.sprite experiment — commented out —
placed a box shape “off-screen” from the top-left. We drew this image using the “box”
function using the parameters delivered to it:

* the starting coordinates (150,100, ...) and
* its dimensions “(... options.length, options.width)”.

The “Blue Avatar” used just the box function; the moving “Red avatar” was another
method. The Phaser lll game uses a coordinate system just like the ones used in CSS
positioning; the upper-left corner of a game world is: (x=0, y=0). Finally, we filled the
box image with our selected colors. Refresh your browser and you should see both
the player avatar box and another box.

Review completed examples in this chapter’s resource file:
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/

There are other clever v3.x.x methods at Phaser.io> that we could have used; those
are found in the Phaser.io v3 examples®. We could reuse our new “box” function to
define any colored rectangle as a game object prototype.

4https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
Shttp://labs.phaser.io/index.html?dir=game%200objects/&q=
Shttp://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
http://labs.phaser.io/index.html?dir=game%20objects/&q=
http://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
http://labs.phaser.io/index.html?dir=game%20objects/&q=
http://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=

Building Game Prototypes, Mechanisms & Tools 132

TOOSEXYTOOSE VT 00 !
SAXVTOOSEXVIOZEXYTOC .2 CCSERVTOOSEXYT
TOOSL IVTOOLEXVTOOLL « CEVTOOLLXVTOOLE
CIYTOOSENYTOORY V™00 b4 AWADVTOOLENYTD
LXVTOOSEL e LT AVTOCRE X

e
XY TOCAL XV T OOAe XY PO Xv T O0re Xy 1004

Rendenng ime 1 seconds

Sample image from text-image.com. See! Base64 Retro is TOO SEXY!
| use these two favorite resources to build sprites and “spritesheets” for my game
collection.

* Charas’ — the online resource generators and review their sample games at
https://charas-project.itch.io. The “Charas Project” is a community founded back
in 2003. It's a community for indie-game development with a focus on the “RPG
maker” tools. But all forms of development are welcome. If you're not into game
development but just want to hang out, you are of course, welcome too. On this
itch.io page8, they share their community games and projects.

* Universal LPC Sprite Sheet® — Create a character sprite sheet for your games
using 100% open art. I've used “LPC sprites” for my own games with their
enhanced “universal spriteSheet”. Our GitHub repository'® is modified for our
game prototypes in this book.

Deeper Dive: Display selected frames from a sprite-sheet.

Displaying a particular sprite from sprite-sheet

Paraphrased from:® Phaser Ill has support for two types of sprite sheet: the “classic”
ones, where every frame is the same size, and the “texture atlases” that are created
with the help of a third-party app like Texture Packer, Shoebox or Flash CC and require

7http://www.charas-project.net/charas2/index.php

8https://charas-project.itch.io

http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
10https://github.com/MakingBrowserGames/Universal-LPC-spritesheet

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.charas-project.net/charas2/index.php
https://charas-project.itch.io
https://charas-project.itch.io/
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
https://github.com/MakingBrowserGames/Universal-LPC-spritesheet
http://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
http://www.charas-project.net/charas2/index.php
https://charas-project.itch.io/
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
https://github.com/MakingBrowserGames/Universal-LPC-spritesheet

Building Game Prototypes, Mechanisms & Tools 133

an associated JSON file.

You could load the “classic” version with “game. load. spritesheet”. YOu must specify its
width and height of the frames, and optionally the number of frames. For example ...

game.load.spritesheet('uniqueKey’, ‘cubee.png’, 37, 45, 18);

To use a texture atlas you must use the “game. 1oad.at1as”. You'll find several examples
in the Phaser Examples®.

Once loaded, create your sprite:
var sprite = game.add.sprite(x, y, ‘<spriteSheetKey>");

This tells Phaser to use the image with the key “spritesSheetkey” as its texture. By
default, it always jumps to the sprite sheet “frame 0", but you could change it to jump
to any frame with the command “sprite. frame” within the spriteSheet.

If the sprite uses an “atlas”, it's easier to change its frames based on the given “frame
name”. For example, “sprite. frameName = 'card4'“ wherein the name is exactly specified
in the texture atlas JSON file (open and reference its label!).

Ihttp://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
bhttps://labs.phaser.io/index.html?dir=game%200bjects/sprites/&q=

Deeper Dive: Using Base64 Images

Another consideration is using base64 images in Phaser. Many image formats can be
converted into “base64”'". If you're unfamiliar with what “base64” is or why it exists
take a look here'?> and here."?

" https://www.base64decode.org/
12https://en.wikipedia.org/wiki/Base64
13https://tools.ietf.org/html/rfc4648

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://labs.phaser.io/index.html?dir=game%20objects/sprites/&q=
http://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
https://labs.phaser.io/index.html?dir=game%20objects/sprites/&q=
https://www.base64decode.org/
https://en.wikipedia.org/wiki/Base64
https://tools.ietf.org/html/rfc4648
https://www.base64decode.org/
https://en.wikipedia.org/wiki/Base64
https://tools.ietf.org/html/rfc4648

O O W N

Building Game Prototypes, Mechanisms & Tools 134

How to use Base64 as an image

function create () {
this.textures.once('addtexture', function () {
this.add.image(400, 300, 'brain');
}, this);
this.textures.addBase64('brain', imageData);

See the entire Base64 example at labs.phaser.io'.

Creating an Avatar’s metadata

Keeping the visual display separate from its data allows us to “re-use” the graphicsin
a multi-player environment. By changing the colors, the graphics, and customization,
it becomes an added benefit when stored inside each unique avatar's data structure.

Note: Review completed examples in the Ruins of Able-Wyvern Source code
Appendix.'

This data information becomes the descriptive variables about the native abilities and
skills of the visualized gamer’s avatar. We will use these characteristics to process
many outcomes in the Artificial Intelligence state machine.

Sample: Avatar metadata

function PersonClass(
pl, p2, p3, p4, pd5, p6, p7, p8, p9, plo,
pl1,p12,p13,p14,p15,p16,p17,p18,p19,p20,
p21,p22,p23,p24,p25,p26,p27,p28)

{

this.PID = p1; //default - ©

this.CID = p2; //default - 1

this.Name = p3; //default: Common Adventurer
this.Score = p4; //0

this.TempScore = 0;
this.Category = p5; //Warrior

14http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
Shttps://makingbrowsergames.com/p3gp-book/index12.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
https://makingbrowsergames.com/p3gp-book/index12.html
https://makingbrowsergames.com/p3gp-book/index12.html
http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
https://makingbrowsergames.com/p3gp-book/index12.html

Building Game Prototypes, Mechanisms & Tools 135

this.Health = p6; //Healthy
this.Race = p7; //Folks
this.Stmn = Number(p8); //12

this.ModStmn = Number (p9);
this.Fatigue = Number(p1Q);
//p11? - future use
this.Coor = Number(pi12); //12
this.Psych = Number(p13); //8
this.ModIQ = Number(p14); //8
this.Renown = Number(p15); //1
this.HGold = Number(p16); //0
this.HGem = Number(pi7); //0
this.Movemnt = p18; //10
this.MegaSQ = 1;
this.Room = 6;
this.Food = Number(p19); //1
this.WSRaw = Number(p20); //2

this.WSCmbt = p21; //NO
this.BSRaw = Number (p22); //2
this.BSCmbt = p283; //NO

this.AtkFlag = 0;
this.MisFlag = ©
this.PryFlag = ©
this.HitFlag = ©;
this.EngFlag = 0
this.MovFlag = 0
this.Target = 6;
this.TLoc = 2;

this.TotalAP = Number(p24); //2

this.Shield = p25; //Shield Name?
this.Arrows = Number(p26); //0

this.AName = p27; //Body Armor Name
this.WName = p28; //Primary Weapon Name

// PersonClass Inherited Methods:
this.ModMove = function () {

return this.Movemnt-(this.A[Q].MoveMod+this.A[2].MoveMod);
b
this.ModCoor = function () {

return this.Coor-(this.A[Q].CoorMod+this.A[2].CoorMod);
b
this.Level = function () {

return (((this.Stmn+this.Coor+this.Psych)-26)/6);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 136

};
this.WS = function () {
return ((this.Stmn*2)+(this.WSRaw*5));
b
this.BS = function () {
return ((PersonClass.prototype.ModCoor*2)+(this.BSRaw*5));
¥
this.PS = function () {
return ((PersonClass.prototype.ModCoor*2)+(this.WSRaw*5));
b

// End PersonClass

Live Phaser Ill Demonstration: Ruins of Able-Wyvern™'® Watch the developer's
console.

Deeper Dive 3.19+ Tweens

The updated Tween system introduced in release v3.19 is a huge overhaul and has
extended the framework capabilities significantly; | would advise a review of any
released games using the old Phaser Ill tween system (pre-v3.19+) before migrating
to this newest Phaser Ill. Tweens are fully documented."’

Some new Tween Events are ‘compLETE” or REPEAT’; these allow triggered actions without
creating callbacks. Another example from v3.19+ is that tweens can implement both
‘to’ and ‘from’ values. This is a handy addition whenever you'd like to start from a
specific frame in any tweened asset property. Tween.hasStarted alerts you concerning
a running tween. There's even a new Tween seeking function that provides a search
to any point in time across a tween.

Other useful tools newly added in Phaser 111.19 are:

* 'StaggerBuilder' — This provides “staggered offsets” to a collection of tweening
targets. You might use this while staggering targets across grid layouts and in
preferred directions by merely setting a starting value.

16https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
17https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html|

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

Building Game Prototypes, Mechanisms & Tools 137

* Shader.setRenderToTexture — provides a redirection of a shader to its own frame-
buffer or WebGL texture instead of using display lists. You might even consider
piping one “output” shader as the input to a following shader!

* RenderTexture.snapshot — iS the answer to a popularly requested feature. This new
feature allows a “snap-shot” on any rendered texture in a point in time and then
convert that snap-shot to an image asset for the Texture Manager or as a newly
saved image in the file system. I've been waiting for this feature for years!

4.2 Task #4: Moving Game Elements

Wouldn't it be nice to click any arrow key — or virtual “arrow key for mobile devices
— and have our avatar character respond? Phaser has some nice built-in support just
for that purpose. Inside the main.create() function, let's add the following line of code
to define a keyboard input. We will use it to detect which arrow key was pressed and
then have our character avatar reacted to it:

// Line 69 - NEW Input Manager v3.24+
/1 See https://labs.phaser.io/index.html?dir=input
cursors = this.input.keyboard.createCursorKeys();

Note: Add a mouse with this. input.mousePointer (always refers to the mouse if
present). This is the safest method if you only need to monitor the mouse.

Phaser’'s main.update() function checks for input events; remember, update() attempts
to run at 60 times per second. The main.update() function is our game loop, which
continues to run until we exit this game phase. So any animation, state, display
changes, or game events will be in here.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 N O O b W N =

T N = =N
© 00 N O O b W N =~ O

64
65
66
67
68
69
70
71
72
73
T4

Building Game Prototypes, Mechanisms & Tools 138

Phaser Il Game Loop per Scene (as of 20170815; subject to change)

Game.step();
L MainLoop.step
— All Active Scenes:
I Scene.sys.begin (called once per active state)
| L Iterates Scene.children,
| if child exists, call child.preUpdate
- While (frameDelta within step range)
| | Scene.sys.update
| L Scene.update
- Renderer .preRender
- Scene.sys.render
- Update Manager Start (Scene.sys.updates)
- Game.renderer.render (if Scene is visible)
| | Renderer set—-up (blend mode, clear canvas, etc)
| | Batch Manager Start
| ' SceneManager.renderChildren
| L Iterates all children, calling child.render on each
- Update Manager Stop (Scene.sys.updates)
L- Scene.sys.end (resets frame delta and panic flags)

Let's turn our attention to the speed and velocity of our avatar. We should set a fixed
movement speed; you might want to “tinker”'8 with this number until it “feels” correct
and proper. We should also set our “velocity” parameter to zero; because doing so,
will prevent the avatar's movement until an arrow key is pressed. Place the following
snippet in the mainMenu update() function.

Example 4.2: Prototyping Movement Properties in v3

// Example 4.2: Prototyping Movement Properties
// frame refresh and display updates

cursors = this.input.keyboard.createCursorKeys();

speed = 250;

player.setBounce(0.2); // our player will bounce from items
player.setCollideWorldBounds(true); // don't go out of the map
0;

-

!

player.body.velocity.x

player.body.velocity.y

console.log("Movable Black character avatar");

18http://dictionary.cambridge.org/us/dictionary/english/tinker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://dictionary.cambridge.org/us/dictionary/english/tinker
http://dictionary.cambridge.org/us/dictionary/english/tinker

5
76

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Building Game Prototypes, Mechanisms & Tools 139

// Example 4.2: ends

With these parameters set, let's use an if statement to determine which arrow key was
pressed, and then assign a velocity to our character avatar. Our validation should look
something as follows in the mainMenu update() function:

Example 4.3: Movement - Arrow Keys Integration

// Example 4.3: Movement Arrows Integration begins
// NOTE: combination arrow directions are now
// possible with this format

player.body.velocity.x = 0; //nothing pressed.

player.body.velocity.y Q; //nothing pressed.
if (cursors.left.isDown){
// 1f the left arrow key is down
player.body.setVelocityX(-speed); // move left
}
if (cursors.right.isDown){
// 1f the right arrow key is down
player.body.setVelocityX(speed); // move right
}
if ((cursors.down.isDown)){
player.body.setVelocityY(speed); // move down
}
if ((cursors.up.isDown)){
player.body.setVelocityY(-speed); // move up

}
// Example 4.3: ends

Note: Refer to this resource file: https://makingbrowsergames.com/p3gp-
book/ p3-demos/ch4-examples/lesson05.html

Let's test our new code; refresh the index.ntm1 page from your web-server; then, in
the browser, press an arrow key to move the “black” avatar box (because there’s no
texture assigned) around the stage. Press two or three arrown key combinations

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html

Building Game Prototypes, Mechanisms & Tools 140

simultaneously and learn what happens. Adjust the speed variable and observe
how it affects your character's movement. Later in this book, we will consider creating
various power-up attributes that will increase the speed, or magic spells that might
even slow down our avatar. Phaser handles game collisions automatically for us. Add
this new line of code to keep the player’s avatar inside the visible game stage. You'll
discover the “black” avatar box cannot penetrate the room’s walls — yet all the others
can, and the “black” avatar box glides through all the other objects easily.

/1 See line 71
player.collideWorldBounds(true);

Deeper Dive: Phaser III Input Manager

Phaser Il handles inputs differently than v2.x.x. In v3.14+, “move events” are a hew
feature — that is completely rewritten as 20181021. phaser . Input iS the Input Manager
for all types of user input; it includes the mouse, the keyboard, mobile touch, and
“Game-Pad”. The Input manager is updated automatically from the core game loop.

Quoted from Dev Log 90 & Dev Log 133!

updated in Dev Log 20181203 for v3.16+°
The Input Manager consists of two parts: The Global Input Manager, which is owned
by the Game itself, and the Input Manager, which is a Scene level system.

The Global Input manager is responsible for monitoring and processing user input,
regardless of the input method. It starts and handles the DOM event listeners for the
keyboard, mouse, and mobile-touch inputs. It then queues these events which are
processed every game step.

At the moment we have completed the development of the Keyboard Handler
(as of 20180804; rewritten and updated again 20181203), Mouse Handler, and
Touch Handler (v3.16+). Gamepad and Pointer Lock will be added shortly. (ed.: as
of 20171207, Input Manager is 70% completed and new rewrite completed 20181203
v3.16.1.)

These events are dispatched whenever a pointer is in the processing of moving across
an interactive object. It doesn’t have to be pressed down or dragging, it just has to be
moving. As part of the event, you are sent the local coordinates of the pointer within
the sprite. So you could use it for a ‘sliding’ Ul element that you control by just sliding
a finger up and down it, such as a volume meter.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/133

Building Game Prototypes, Mechanisms & Tools 141

Callbacks and Events

In v2.x.x nearly all input was handled via Signals. You'd listen to a signal bound to a
specific sprite to know if the pointer was pressed down on it.

In v3.16+, you can use both callbacks and events. The events belong to the Input
Manager itself, not the game objects. So, you could listen for a Pointer Down event
from the Input Manager. As part of the event properties, you are given a list of all
the Game Objects that the pointer went down on, as well as the top-most one in the
display list.

The callbacks, however, belong to the Game Objects. You can set a callback for every
type of input event: “over”, “down”, “up”, “out”, “move”, and the drag events: “start”,
“drag”, and “end”. Callbacks are invoked on a per-Game Object basis and are sent a
bunch of useful arguments as well. Depending on the type of game you're building you
may favour one approach over the other, or maybe just out of personal preference
too. By having both options available though it gives you the flexibility to decide, rather

than enforcing it upon you.

//Phaser v3 method is extremely easy to activate
var mySprite = this.add.sprite(400, 300, ‘texture’).setInteractive();
mySprite.setOrigin(0,0); //set sprite anchor to upper left corner

NEW in v3.16.x (JAN 2019!)

The Key class now extends EventEmitter and emits two new events directly: down
and up. This means you can listen for an event from a Key you've created, i.e.:
yourKey.on(‘up’, handler).

The order has also now changed. If it exists, the Key object will dispatch its “down
event” first. Then the Keyboard Plugin will dispatch keydown_cope and finally the least
specific of them all, keydown will be dispatched.

Ihttps://phaser.io/phaser3/devlog/133

Deeper Dive: Future Proofing your source code.

Not every gamer uses a “gwerty” keyboard; in fact, there are differences between USA
and UK keyboards. Many game developers assume the use of “WASD” as substitute
arrow keys. Wikipedia summarizes keyboard layouts as, “A keyboard layout is any
specific mechanical, visual, or functional arrangement of the keys, legends, or key-
meaning associations (respectively) of a computer, typewriter, or another typographic

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/133

Building Game Prototypes, Mechanisms & Tools 142

keyboard.

* Mechanical layout: The placements and keys of a keyboard.

* Visual layout: The arrangement of legends (labels, markings, engravings) that
appear on the keyboard keys.

+ Functional layout: The arrangement of the key, their associations, as determined
by the software, on all the keyboard keys.”

KeyboardEvent.keyCode - Updated Sept 23, 2016, 12:45:21 PM°

Deprecation Warning: This feature has been removed from the Web standards.
Though some browsers may still support it, it is in the process of being dropped.
Avoid using it and update existing code if possible; see the compatibility table’ at
the bottom of this page to guide your decision. Be aware that this feature may cease
to work at any time.

The KeyboardEvent.keyCode read-only property represents a system and implemen-
tation dependent numerical code identifying the unmodified value of the pressed key.
This is usually the decimal ASCII (RFC 20¢) or Windows 1252 code corresponding to the
key. If the key can't be identified, this value is 0.

The value of a “keypress” event is different between browsers. IE and Google Chrome
set the KeyboardEvent . charCode value?. Gecko sets 0 if the pressed key is a printable key,
otherwise, it sets the same keyCode as a keydown or keyup event.

You should avoid using this if possible; it's been deprecated for some time. Instead,
you should use keyboardevent . code?, if it's implemented. Unfortunately, some browsers
still don't have it, so you'll have to be careful to make sure you use one which
is supported by all target browsers. Google Chrome and Safari have implemented
KeyboardEvent . keyIdenti fier/, which was defined in a draft specification but not the final
spec.

Web developers shouldn't use the keyCode attribute for printable characters when
handling keydown and keyup events. As described above, the keyCode attribute is not
useful for printable characters, especially those input with the sni ft or A1t key pressed.
When implementing a shortcut key handler, the keypress event is usually better (at
least when Gecko is the runtime in use). See Gecko Keypress Event for detailss.

9https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
bhttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
Chttp://tools.ietf.org/html/20
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
€https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
fhttps://developer.mozilIa.org/en-US/docs/Web/API/Keyboa rdEvent/keyldentifier
&https://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
http://tools.ietf.org/html/20
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyIdentifier
https://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
http://tools.ietf.org/html/20
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyIdentifier
https://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event

Building Game Prototypes, Mechanisms & Tools 143

® Exercise: More examples about how to “Future Proof” your game source code
? in this article."

Exercise: Read more about the differences between US and UK keyboards
here®°

Exercise: Investigate various International keyboard layouts used by your
gamers.?’

Deeper Dive: Configuring the Keyboard (Phaser v3.16+ updated)

The keyboard is typically another input source. New in Phaser v3.16.1 added the
KeyboardPlugin.resetkeys a@s @ method that resets the property state of any key object
created within a Scene through its Keyboard Plugin. This is automatically called during
the scene’s “shutdown” method as a part of the Keyboard Plugin. What this meansiis, as
the plugin begins its shut down process or when stopping a Scene, the KeyboardP1ugin
will reset the property state of any key held inside the plugin. It furthermore clears

the queue of any pending events.

“New in v3.16 (JAN 2019) is the ability to receive a global “keydown™ or “keyup” event
from any key on the keyboard. Previously, it would only emit the event if it came from
one of the keys listed in the keyCodes file. Now, those global events will fire for any
key, regardless of location.” Read More about all the changes in v3.16+ here®

Ihttps://phaser.io/phaser3/devlog/134

4.3 Task #5: Things that go bump ...

You noticed, by now, that our avatar runs through other objects and stops at the edge
of the room (the camera.view). Let's fix that.

Walls and Camera boundaries

Let's now place some walls and immovable objects in our game prototype. For now,
we'll put walls on all four sides of the game stage, and then place a few inner walls

19http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
20https://en.wikipedia.org/wiki/British_and_American_keyboards
21 https://en.wikipedia.org/wiki/Keyboard_layout

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/Keyboard_layout
https://en.wikipedia.org/wiki/Keyboard_layout
https://phaser.io/phaser3/devlog/134
https://phaser.io/phaser3/devlog/134
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/Keyboard_layout

Building Game Prototypes, Mechanisms & Tools 144

as decorations. We can use our “box” function to create these walls. You'll observe
that our avatar already stops at the edge of the “camera.view”; the walls will provide a
rational reason for it to stop at the edge of the screen.

Return to the main create(), and add the following code which will construct a wall
along the top of the game stage.

Example 4.4: World Boundaries Integration

94 /) ============

95 // Example 4.4: World Boundaries Integration begins

% // ============

97 //Create Room Walls using rectangles

98 //this.Room = this.physics.add.staticGroup();

99 Room = this.physics.add.group();

100

101 // Creating rectangles, review console in this experiment

102 this.NorthWall = this.add.rectangle(400, 7, 800, 16,0x999999);
103 this.EastWall = this.add.rectangle(793, 234,16,800,0x999999);
104 this.WestWall = this.add.rectangle(7, 234,16,800,0x999999);
105 this.SouthWall = this.add.rectangle(400, 493,800,16,0x999999);
106 console.log("Room external walls created.");

107 console.log("NorthWall: Ext? "+Object.isExtensible(NorthWall));
108 console.info(NorthWall);

109 console.log("Room external walls created.");

110 console.info(Room);

111);

112 // Example 4.4: ends

113 // ============

0 Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/ p3-demos/ch4-examples/lesson06.html

What did we just do? Firstly, we created a “Room” as a group for our “wall box”
rectangular sprites. We could have created a “Static Group” also. This lets us assign
properties to a collection (to the group) of wall boxes. For example, we just enable
a physics reaction system on the entire group instead of on each individual wall box.
Isn't Phaser too cool?! A“group” permits you to (Quote from “Making your first Phaser
1l game”)?2"... group together similar objects and control them all as one single unit.

22http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

Building Game Prototypes, Mechanisms & Tools 145

You can also check for collision between Groups and other game objects. Groups are
capable of creating their own Game Objects via handy helper functions like “create”.
A “Physics Group” will automatically create physics “enabied” children, saving you
some leg-work in the process. ... When a Physics Sprite is created it is given a “body”
property, which is a reference to its “Arcade Physics Body". This represents the sprite
as a physical body in Phaser’s Arcade Physics engine. The body object has a lot of
properties and methods that we can play with.”

Quote:® “... In Arcade Physics there are two types of physics bodies: Dynamic and
Static. A dynamic body is one that can move around via forces such as velocity
or acceleration. It can bounce and collide with other objects and that collision is
influenced by the mass of the body and other elements.

In stark contrast, a Static Body simply has a position and a size. It isn't touched by
gravity, you cannot set velocity on it and when something collides with it, it never
moves. Static by name, static by nature. And perfect for the ground and platforms
(ed.: walls, doors, treasure chest) that we're going to let the player run around on.

Phttp://phaser.io/tutorials/making-your-first-phaser-3-game/part4

We created a “North wall” and assigned a rectangle box along the entire game stage
width starting at position (0,0). This wall's thickness is 16 pixels. Lastly, “Northwal1.body"
isimmovable because itis a member of a “staticGroup”; this way when another moving
piece hits this wall, they will ricochet off. If we didn’t have this parameter, then anyone
colliding with this wall would move the wall too.

Hint: There's a trick to setting-up the South, West, and East wall groups. They
cannot overlap; otherwise, the walls will send needless update messages and
results in a sluggish game. For the “South wall”, copy the North wall but change
the (0,0 ... to (0, config.height - 16 The West and East wall groups can not
overlap either of the North or South walls. This means that the West and East
wall need to be 32 pixels shorter than the North nor South walls since both of
those are only 16 pixels wide.

Interior Decoration

Lastly, let's add some interior walls to our dungeon-studio room. I'll let you decide
how wide and where you'd like to place them. Remember that you can use the
“config.height” and “config.width™ as reference points inside the game stage,; it's also

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

Building Game Prototypes, Mechanisms & Tools

smarter to use relative positions instead of hard-coded and fixed pixel locations. To
find the absolute middle of your game stage, take the world’s width then divide by
two to get the central X-coordinate, and then take the world’s height divided by two

to get the central Y-coordinate. Here's a sample:

Example 4.5: Interior Boundaries Integration

/7

};

Internal1l = this.add.rectangle(120,105,16,180,0xCCCCCC);
Internal2 = this.add.rectangle(214,250,400,16,0xCCCCCC);
console.log("Created 2 internal walls.");
// add all wall to the Room Group
Room.addMultiple(

NorthWall,

EastWall,

SouthWall,

WestWall,

Internalt,

Internal2);
// debug feedback
console.info(Room);
console.log("Room Grp obj: Ext? "+Object.isExtensible(Room));
console.info(Room);

// separate group for monsters and treasure
Tribe = this.physics.add.staticGroup();
Tribe.add(monster);

// what to do when
this.physics.add.collider(player, Room, bumpWall, null, this);

//0n collision with the monster
this.physics.add.collider(player,monster,bumpMonster,null,this);
Example 4.5: ends

function bumpWall(){

I
]

player.body.velocity.x
player.body.velocity.y

I
S

Copyright © 1972-2017 Stephen Gose. All rights reserved.

149
150
151
152

Building Game Prototypes, Mechanisms & Tools 147

function bumpMonster(){

I
(]

player.body.velocity.x

I
N

player.body.velocity.y

o Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html

You've noticed that our avatar was running through and into the room'’s walls. Well,
we fixed that by adding the highlighted code above. Anytime our avatar bumps into
an exterior or interior wall, we set its “velocity” to zero in the “bumpwa11” function. You'll
notice our avatar still plows through the monster; we'll create another “this.physics”
collider to handle that situation. Yes, we could use the same “bumpwa11” function, but,
to provide more flexibility in our gameplay, we should create a separate function.

There's still one small bug in our code. Can you find it? | knew you could! When our
avatar slides into the monster, our hero pushes him out of the room through the walls.
A couple of ways we could correct this: 1) we could add the monster into the Room's
“staticGroup”, and it would adopt all the characteristics of the walls. Well, | don’t think
our monster is a “wall-flower” ... oh no! So let's create a separate group for monsters
and treasures.

Deeper Dive on Game Objects hit areas.

All Game Objects (GO) in Phaser Ill now have a “hitArea” and a “hitAreaCallback™
properties. By default, these are set to nuLL. You can either call setHitArea directly
on a Game Object, which would return a reference into the GO itself (allowing you to
further chain methods through delegation), or you could call the setHitArea from the
Input Manager — this provides a bit more flexibility. For example, you could pass an
array (or Group) of GOSs to enable Or enableBody.

Currently, the “setHitArea” method takes two arguments: 1) an assigned shape object
and 2) a callback function to invoke when a pointer slides over its shape. This
“shape hitArea” could be any of the geometry objects available. In this example,?3
there're 5 sprites each of which has their own differently described shape as unique
geometry hit area — a circle, rectangle, ellipse, triangle, and finally a polygon. There
are interesting side-effects about using “shapes” as their “hit areas”. Firstly, more than

23http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js
http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js

© 00 N O O b W N =

W oW WNNNDNDDNDIDNDNDDNDN DN A Rl o
N m O © ® 9 0 O b W N~ O O W 3 0 U b Wwh 4~

Building Game Prototypes, Mechanisms & Tools 148

one Game Object can share the same “shape hit areas”. This example?* demonstrates
400 sprites aligned within a grid, however, all of them share the same “Rectangie”
shape hit area. Each sprite does not create its own unique “rectangie” hit area. This
preserves memory usage in your game — in other words, the less unique objects
created, the better!

Sample: One Shared Hit Area

function create () {
// Create a little 32x32 texture to use to show where the mouse 1is
var graphics = this.make.graphics(
{ x: 9, y: 0, add: false,
fillStyle: { color: 0xffooff, alpha: 1 }
1)

graphics.fillRect(0, @, 32, 32);
graphics.generateTexture('block', 32, 32);

var highlighted = this.add.image(16, 16, 'block');

var hitArea = new Phaser.Geom.Rectangle(0, 0, 32, 32);
var hitAreaCallback = Phaser.Geom.Rectangle.Contains;

// Create 400 sprites aligned in a grid
group = this.make.group({
classType: Phaser.GameOb jects.Image,
key: 'bobs',
frame: Phaser.Utils.Array.NumberArray(0, 399),
randomFrame: true,
hitArea: hitArea,
hitAreaCallback: hitAreaCallback,
gridAlign: {
width: 25,
height: 25,
cellWidth: 32,
cellHeight: 32

});

this.input.on('gameobjectover', function (pointer, gameObject) {
highlighted.setPosition(gameObject.x, gameObject.y);
1)
}

24http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js
http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Building Game Prototypes, Mechanisms & Tools 149
Doors, Knobs, and Buttons

There are two ways to create doorways: 1) Doors are immovable “static” objects, and
when an avatar collides with it, the avatar appears to have moved into a new room or
a new game phase level; OR 2) Doors are “clickable buttons” that provide the same
transition actions of entering into a new room. In our game prototyping, | like doors to
have both actions. Providing both options gives our players a choice of keeping their
hands on their keyboard or mouse while playing.

Example 4.6: Phaser Ill Doors as Buttons

// Phaser III - clicking on a doorway

// Example 4.6: Doors as Buttons

// Creating door rectangles, review console in this experiment
// placed on a wall with 2px extended into the room
doorN = this.add.rectangle(35,0,60,18,0x000000)
.setInteractive({ useHandCursor: true })
.setOrigin(Q);
this.physics.add.existing(doorN);
doorN.enableBody = true;
this.physics.add.collider(player, doorN, changeRooms, null, this);

/**
OR (following is NOT Optimized code!)
this.doorN = this.add.image (400,252, 'woodenDoor ")

.setInteractive({ useHandCursor: true })

this.doorN.setFrame(1);
this.doorN.setOrigin(0.5,0);
this.doorN.setScale(0.7,0.7);
this.doorN.name = "north";

this.doorN.on('pointerover', function (pointer){
console. info(this.doorN.name + " over. ");
this._toolTip.setText(GAMEAPP. _toolTip);
this.doorN.setFrame(2);

}, this);

this.doorN.on('pointerout’', function (pointer){
console.info(this.doorN.name + " out. ");
this._toolTip.setText("");
this.doorN.setFrame(1);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 150

165 }, this);

166 this.doorN.on('pointerdown’', function (pointer){

167 console. info(this.doorN.name + " clicked down. ");
168 this.doorN.setFrame(0);

169 }, this);

170 this.doorN.on('pointerup', function (pointer){

171 console. log(this.doorN.name + " click released.");
172 changeRooms (this);

173 console. log("north door entered");

174 this.doorN.setFrame(1),;

175 }, this);

176 }

177 */

178 // check for collision

179 this.physics.add.collider(player,doorN,changeRooms,null,this);
180

181 console. log("Northern Door created.");

182 // Example 4.6: ends

183 }

184 /) ..

185

186 function changeRooms(){

187 console.log("Leaving Room via Northern Door.");

188 // change scene to a new room

189 // Refer to Part IV - Project Walk-Thu: Rogue Prince Quests™
190 };

o Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html

The special “Button sprite”?> does not exist in Phaser lll as it does in Phaser v2.x.x;
we must take a sprite, image, or graphic and simply chain (aka “append”) the ”.set-
Interactive()” or if you'd like the “hand cursor” to appear then use ”.setInteractive({
useHandCursor: true })”. Now our visual component can accept “Pointer events”
automatically. What did we just do? This created a Northern exit button-sprite with
physics and clickable input. In other words, a gamer could slide into the door and
transition into the next room as a “scene” change OR — and since traveling is not
much fun! Admit it! All that traveling in Diablo ... did you really enjoy all that??!! —

25https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e

Building Game Prototypes, Mechanisms & Tools 151

the gamer could simply “click” on the door, as any regular button, and enter the next
room as a “scene” change.

+ We should assign a “name” for the door for further processing such as anima-
tions.

« We'll eventually assign a spriteSheet frame to display; but for now, we'll just use
rectangle prototypes.

+ We assign physics to stop the avatar on collision and make the door immovable.

* Finally, we assign “the clickable” (when mouse up or down event trigger) for the
door; when clicked we move to the next room. During the game update, we watch
when the avatar touches the door and launch the room transition function.

Buttons have four internal states that could have different and uniquely separate
visual elements, frames, or activated sound effects. This also reminds me of Adobe’s
Flash button movieClips. Frames can be specified as either an integer (i.e., the frame
ID#) or a string (i.e., the “frame name”; again very similar to Flash Labeled time-line);
these same values can be used in a Sprite’s construction. Buttons respond when the
mouse is:

n

* “pointerover” — whenever a Pointer moves over (aka “hover
object. Mobile devices use only the “down-state” below.

* “pointerout” — whenever a Pointer was previously over a Button and then “moves
out” away from it. Mobile devices use only the “up state” below.

* “pointerdown” — when the Pointer is pressed down while over a Button game
object (or “touched” on a touch-enabled device).

* “pointerup” — whenever a “pressed down” Button was released again.

) a Button game

Note: | highly recommend this button plugin®® from “rexRainBow” or William
Clarkson'’s style for buttons.?’

26https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
27https://phasergames.com/how-to-make-buttons-in-phaser-3/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
https://phasergames.com/how-to-make-buttons-in-phaser-3/
https://phasergames.com/how-to-make-buttons-in-phaser-3/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
https://phasergames.com/how-to-make-buttons-in-phaser-3/

Building Game Prototypes, Mechanisms & Tools

BACKGROUND COLOR

» Using background color hides a
multitude of sins!

* Notice that doorways jut out 2 pixels
from the walls.

» This permits the avatar to collide with
the door and make transitions to other
rooms.

Sample from Part lll: 2D Array and Door Placement

?’ Exercise: Try the live v2.x.x demonstration here*® or v3.16+ demonstration
here*

Sample: Move into New Rooms

152

/7

//Main Door click handler

function newRoom(door) {
// 2 Options:

// - reset this phase with new room characteristics OR

// - have a '"repaint" function to adjust the entered room.
// Option 1: this.scene.restart();

// Option 2: separation of concerns - new function
Rooms2D.LastRoom = Rooms2D.CrntRoom;
player.setPosition(64, 64);

var LastDoor = door.name;

1

console.log('Last Door Used:
+ door.name +" | Toggle: "
+bumpToggle);
switch (door.name) ({
case "North":

//Rooms2D.CrntRoom -= 4; // or GRID_ROWS or MT.length

28https://makingbrowsergames.com/book/ch6/index.html
29https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/

Building Game Prototypes, Mechanisms & Tools 153

Rooms2D.CrntRoom = Rooms2D.LastRoom - 4;
Rooms2D.CrntRoomY -= 1;
//Leave via North; enter a new room from its South-side
Rooms2D.pPosX = config.width / 3;
Rooms2D.pPosY = 320;

break;

case "East":
Rooms2D.CrntRoom += 1;
Rooms2D.CrntRoomX += 1;
//Leave via East;, Enters a new room from its West-side
50;

’

Rooms2D . pPosX
Rooms2D.pPosY = config.height / 2;

break;

case "South":
Rooms2D.CrntRoom += 4; // or GRID_ROWS or MT.length
Rooms2D.CrntRoomY += 1;
//Leave via South, enter a new room from its North-side
Rooms2D.pPosX = config.width / 3;
Rooms2D.pPosY = 50;

break;

case "West":
Rooms2D.CrntRoom -= 1;
Rooms2D.CrntRoomX -= 1;
//Leave via West, enters a new room from its East-side
Rooms2D.pPosX = 340;
Rooms2D.pPosY = config.height / 2;
break;

player.setPosition(Rooms2D.pPosX, Rooms2D.pPosY);
console.log("New Room #: " + Rooms2D.CrntRoom + ";
Door Clicked: " + door.name);

2z

// sfx camera fadein/out

this.cameras.main.once('camerafadeincomplete’', function (camera) {
camera. fadeOut (1000) ;

});

this.cameras.main. fadeln(1000);

*/

resetRoom();

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 154

bumpToggle = false;
}

Try the live v2.x.x demonstration here° or v3.16+ demonstration here>'
Download the Phaser lll source code from:
https://makingbrowsergames.com/p3gp-book/p3_2DRoomsDemo.pdf

Let's review the room state transitions. We delivered to this function the door our
avatar used. We then record the current room and the room the avatar is leaving
(GAMEAPP . LastRoom) SO that we can manage a “return path” or “the back-azimuth”.32 The
“if" statement could be a “switch” statement; either way, we determine which door
was used to change rooms. We send some “debug” info to the console to watch our
code and then perform some “magic special effects” — similar to slide transition in a
business meeting PowerPoint presentation — to transition into the new game state
(aka room). All this is explained later in detail.

Deeper Dive: Writing Optimized Code

Another item, that should help you in developing a game at a rapid pace, is learning
to write simple, modularized code. Here are some guidelines for doing so:

* Make your code easily readable: The closer your code looks like your native
language, the easier it becomes to read, debug, and maintain. This means using
a descriptive method, function, and variable names so if someone else were to
read your source code, they would easily be able to tell what your intent was.

* Minimize code repetition: Whenever you notice similar code in more than one
place such as doors and walls above, immediately consolidated it into a separate
method; this lets you call it from wherever it is needed. Having your common
code, in a single place, makes it easier to modify and maintain, and debug.
By putting it inside a method with a clearly understandable name, your code
becomes easier to read.

+ Convert code into reusable modules: If your code could be used in most of your
game products, abstract it out>3 into separate functions or file modules for easy
reuse.

f Exercise: Read “Clean Code”3* by Robert Martin converted in JavaScript.

30https://makingbrowsergames.com/book/ch6/index.html
31https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
32https://en.wikipedia.org/wiki/Azimuth
33https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
34https://github.com/ryanmcdermott/clean-code-javascript

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/p3gp-book/p3_2DRoomsDemo.pdf
https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
https://github.com/ryanmcdermott/clean-code-javascript
https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
https://github.com/ryanmcdermott/clean-code-javascript

Building Game Prototypes, Mechanisms & Tools 155
Deeper Dive: Buttons as a “Class” or “Scenes”?!'?

The definition of “Ninja”, per Doug Crockford’s meaning, is “... someone who finds a
mistake in the language’s design, decides it’s cool, and then abuses it.” Now, let me
show you a “ninja trick” on buttons.

Obviously, a game phase will have a lot of Ul controls elements in its heads up display
(HUD) and menus. It only becomes natural to make a “Button Class” cookie-cutter3>
and “stamp” out3® all our pretty buttons for our user’s interface(s). Well, you could
make an “O0P Class”, but ... Phaser.Scenes are also an “O0 Class” that can run in
parallel with their own physics, camera, and managers for loading and input. SO,
why not make every button (or HUD Menu chock-full?’ of buttons) their very own
Phaser.Scene?!? Think of the possibilities ... ninja!

Deeper Dive: Button size considerations

Quote:® Apple’s iPhone Human Interface Guidelines® recommends a minimum target
size of 44 pixels wide x 44 pixels tall. Microsoft’'s Windows Phone Ul Design and
Interaction Guide suggests a touch target size of 34px with a minimum touch target
size of 26px. ...

A touch target that's 45 — 57 pixels wide allows the user's finger to fit snugly inside
the target. The edges of the target are visible when the user taps it. This provides
them with clear visual feedback that they're hitting the target accurately. They're also
able to hit and move to their targets faster due to its larger size. This is consistent
with Fitt’s Law, which says that the time to reach a target is longer if the target is
smaller. A small target slows users down because they have to pay extra attention
to hit the target accurately. A finger-sized target gives users enough room to hit it
without having to worry about accuracy. ...

For users who use their thumbs, 72 pixels does marvels. They're easier and faster
to hit because they allow the user’s thumb to fit comfortably inside the target. This
makes the edges visible and easy to see from all angles. This means that users don't
have to reorient their thumb to the very tip to see it hit the target. Nor do they have
to tilt their thumb to the side to hit it. One tap with their thumb pad is enough to do
the trick.

Another study on Touch Key Design for Target Selection on a Mobile Phone? also
found that the number of errors decreased as the touch key size increased. In
addition, it was provided that the larger the touch key size, the higher the success
rate and pressing convenience.

%https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-
sizes/

35https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
36https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
37https://en.wiktionary.org/wiki/chock_full

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://en.wiktionary.org/wiki/chock_full
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://en.wikipedia.org/wiki/Fitts's_law
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://en.wiktionary.org/wiki/chock_full

Building Game Prototypes, Mechanisms & Tools 156

bhttps://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

¢https://en.wikipedia.org/wiki/Fitts%27s_law

dhttps://makingbrowsergames.com/png-book/_Touch_key_design_for_target_selection_on_a_mobiIe_
.pdf

Deeper Dive: Adding Buttons & Mobile Touch

By default, Phaser lll starts with only 2 pointers (just enough for 2 fingers to smudge
your cell-phone display at the same time). To add more pointers use addrointer; this
tells Phaser to add more pointers to the Input. The most recently activated pointer
is a reference from “game. input.activePointer”. Phaser defines “active” as the pointer
generating the most recent event on the mobile device. On a non-surface desktop,
this would be the mouse. On an iPhone, for example, it would be the most recent
finger actively touching the screen.

Pointers are issued as each new finger is pressed on the screen sequentially. So, if
you pressed 3 fingers down, then “pointer” 1, 2, and 3 would become active. If you
then removed your 2nd finger, then “pointer2” would become inactive; but, “pointers”
1 and 3 are still active. If you put another finger down, then that touch fills-in the 2nd
gap and becomes “pointer2” again.

In Phaser v3.16.138 the Touch Manager was “... rewritten to use declared functions for
all touch event handlers, rather than bound functions. This means they will now clear
properly when the TouchManager is shut down. There is a new Input constant TOUCH_-
CANCEL which represents canceled touch events.”

/1 Phaser llI
game.input.addPointer();
game.input.x | | .y = the most recently active pointer coordinates.

Warning: Note:*° For iOS, you'll active the minimize app gesture as soon as you
use the 6th finger — and there's nothing Phaser can do to stop it.

38https://madmimi.com/p/6f870d
39http://labs.phaser.io/index.html?dir=input/multitouch/&g=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://en.wikipedia.org/wiki/Fitts's_law
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://madmimi.com/p/6f870d
http://labs.phaser.io/index.html?dir=input/multitouch/&q=
https://madmimi.com/p/6f870d
http://labs.phaser.io/index.html?dir=input/multitouch/&q=

130
131
132
133
134
135
136
137
138
139
140
141
142
143

Building Game Prototypes, Mechanisms & Tools 157

4.4 Task #6: When Worlds Collide ...

There’s one small glitch; our avatar character can walk through the walls. Save this
idea for feature enhancements and doors later, but let’s fix this for normal gameplay.

A “collision” occurs when two different things touch. You'll discover this concept
in many arcade games. Take PacMan for example; during the gameplay whenever
PacMan bumps into a dot, the dot disappears. When PacMan touches a ghost, a life
is subtracted.

About now, you might be thinking that we'll write a series of i f statements; but, Phaser
v3.x.x anticipated all this and does everything for us inside the mainMenu update()
function. | just love Phaser! Here's the code we should add:

//Line 138
this.physics.add.collider(player, Room, bumpMonster, null, this);

Yeap! that's it! Our character avatar will bounce off the walls, and Phaser Il handled
all that detection automatically. But, how do we handle the situation when our
avatar bumps into an opponent or a door? When the player’s avatar bumps into an
opponent, let's follow the PacMan example and subtract a life from our character.
For now, the player’s avatars only have one life to live — so as to illustrate this next
feature. Inside the mainMenu update() function, add this code at the end:

Example 4.7: Collision Detection Integration

// Example 4.7: Collision Detection Integration

// Step 2) Generate sensors | listeners | observers that trigger it.
// When overlapping, unlike collide, the objects are NOT automatically
// separated nor have any physics applied,

// they are merely tested for an overlap condition results.

// ============

this.physics.add.collider(player, Room, bumpWall, null, this);
this.physics.add.collider(player, monster, bumpMonster, null, this);

// using overlapping without a collider
// var isOverlapping = Phaser.Geom.Rectangle.Overlaps(rectA, rectB);
If (Phaser.Geom.Rectangle.Overlaps(player, monster)){

// transition into combat scene.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

Building Game Prototypes, Mechanisms & Tools

handlePlaye
// we use t
// must cha

var config = {

rDeath();
his for rectangles and

nge when the final artwork is available.

e
physics: {

default: 'arcade',

arcade: {
// x: 0,
/Sy o,
// width: scene.sys.game.config.width,
// height: scene.sys.game.config.height,
// gravity: {
/7 x: 9,
/7 y: o
/0
// checkCollision: {
// up: true,
// down: true,
// left: true,
// right: true
/7,
// fps: 60,
// timeScale: 1, // 2.0 = half speed, 0.5 = double speed
// overlapBias: 4,
// tileBias: 16,
// forceX: false,
// 1sPaused: false,

/7
/7
/7
/7
/7
/7
/7

debug: false,

debugShowBody : true,
debugShowStaticBody: true,
debugShowVelocity: true,
debugBodyColor: Oxffooff,
debugStaticBodyColor: 0Ox0000ff,
debugVelocityColor: 0x00ffo0,

// maxEntries: 16,
// set false if amount of dynamic bodies > 5000

/7

useTree: true

158

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 159

187 }
188 }
189 /).

o Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/ p3-demos/ch4-examples/lesson09.html

This code snippet tells Phaser that when the avatar over1aps an antagonist, consult the
handlePlayerDeath function. The handlePlayerDeath function is a new additional block of
code written outside the mainMenu update() and mainMenu create() functions. Notice also
in Phaser I, we could set over1apBias inside the game’s configurations.

Instead of treating the monster as an object, we could have treated it as a “zone”.
See how to use Phaser Ill Zones here°.

So, we have “thingies” checking whenever an avatar is in contact with a monster. When
the avatar moves into a monster or whether the avatar is “overlapping” a monster.
Which is better? Do we need both? Well, if you'll remember, we wanted to include a
treasure chest inside the monsters group. We could designate them separately. The
only thing to take away from this is that one method is using a “collider” to determine
when two “physics enabled” objects are in contact or separate from each other while
the other validation (i.e., overlapping) is only used when “separation” is not a concern.
In our case, consider using “overlapping” when the player is touching a treasure chest.
There might arise a situation when the player is touching both a treasure trove and
the monster using Al (See chapter on Artificial Intelligence) Return and add this new
snippet of code:

Example 4.8: Collision Results Determination

181 /) ============

182 // Example 4.8: Collision Results Determination

183 // Step 2) Insert NEW function for character's death
184 // function to calculate the outcome.

185 // ============

186 function handlePlayerDeath(player,enemy){

187 //kill off the avatar

188 //player.destroy();

40https://codepen.io/samme/pen/ygloym?editors=0010

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://codepen.io/samme/pen/yqJoym?editors=0010
https://codepen.io/samme/pen/yqJoym?editors=0010

189
190
191
192
193
194
195
196
197

Building Game Prototypes, Mechanisms & Tools 160

//change to Game Over scene

// This method used in AR Series
//game.scene.stop();
//game.scene.start("gameOver").bringToTop();

window.open("lessoniia.html", "_self");
}
// Example 4.8: ends
// o=

o Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html

Our new function — handlePlayerDeath — accepts both our avatar and the opponent it
is touching as input parameters. The Phaser Il JavaScript Game Framework already
has a pre-programmed ki11() function that removes any graphics sprite from our
game stage. Ab-bra Cabrera, POOF! Our avatar disappears — all by simply defining a
separate function to take care of all that “touching” — we'll have none of that here ;)

?’ Exercise: Reflect on what we just learned, and apply it to:

bullets hitting a target object;

* an avatar “picking up” an item;

« PacMan touching a pill or ghost;
intersecting with doors; and

* touching treasure troves.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html

23
24
25
26
27
28
29
30
31
32

Building Game Prototypes, Mechanisms & Tools 161

4.5 Task #7: It’s curtains for you ...

Game Over

Press the SPACE bar to start again

New Game Over Scene

It’s curtains*', our avatar died; the game is over. I'm starting to “tear-up”2 Our
game locks-up, because there is no character-graphics symbol to process. So, let's
move our game into a new phase called “Game Over”. We simply define another new
“game phase” with its own gameOver create() and gameOver update() functions. Many
Phaser game developers, at this point, will create a new JavaScript file for this “Game
Over” phase; however, we want to keep this simple for now, and just add this into our
current game. js file instead.

Example 4.9: New Game Over State

// Example 4.9: New Game Over State begins

// Step 3) Transition to the new game menu function for resolution.

var gameOverState = {
create: function(){
}, //comma very important here
update: function(){
}
)

For Phaser to recognized this new game-transition, we must add it to the list of game
scenes either in the game’s configuration — or as I recommended earlier — as a new
script inside the index page. We have a couple of development path options:

4T https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
42http://www.macmillandictionary.com/us/dictionary/american/tear-up_2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
http://www.macmillandictionary.com/us/dictionary/american/tear-up_2
https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
http://www.macmillandictionary.com/us/dictionary/american/tear-up_2

Building Game Prototypes, Mechanisms & Tools 162

type the new scene into the config.scene array; or

add it using the game.scene.add('gameOver', gameOver); OF;

launch a new html page from the CMS or

create a separate script file for this new “game phase” and tell the index.html to
load this additional external script.

PON=

Which is better? You've learned that we've automated our “rose bouquet” process;
anytime an external “game phase” (i.e., module file) is discovered, it is automatically
added into our “game.scenes”. This is the “D.R.Y.”-est approach and is already in place.
The first two options “muck around”*3 with our development regimen. But to prove

the point of adding “cruft”+* into our game, add the following code and conduct some
experiments:

/1 See Line 50
game.scene.add(“gameOver”, gameOverState); //mucking around!

OR
add “gameover: gameover” into config.scene array. //mucking around!

CMS (Non-Traditional)

Game #1 Game #1

Inline Scripts

Assets
Needed |

Plain HTML5 Canvas I el N v s

Canvas pages

Launching a New Game Phase as a separate HTML5 page.
Inside this gameover create() function,*> we will learn how to define a text label that
displays “Game Over” — a simple “Heads Up Display” (HUD). We'll place this text in
the middle of the game stage. Here's our code snippet to do this:

43https://idioms.thefreedictionary.com/muck+around
44https://en.oxforddictionaries.com/definition/cruft
45https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://idioms.thefreedictionary.com/muck+around
https://en.oxforddictionaries.com/definition/cruft
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://idioms.thefreedictionary.com/muck+around
https://en.oxforddictionaries.com/definition/cruft
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Building Game Prototypes, Mechanisms & Tools 163

Example 4.10: Elementary HUD Creation

// Example 4.9: New Game Over State begins
// Step 3) Transition to the new game menu function for resolution.

var gameOver = {
create: function(){
S/ e
//Example 4.10: Elementary HUD Creation begins
S/ mmmmmm e
var label = this.add.text(
config.width/2, //centering HUD horizontally
config.height/2, //centering HUD vertically
"Game Over \n Press the SPACE bar to start again",
{font: "22px Arial", fill: "#FFF", align:'"center"});
label .setOrigin(0.5,0.5);
//Example 4.10: ends
S/ e

Y, //comma very important here

o Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/ p3-demos/ch4-examples/lesson11.html

If you ran this, you'll find the error message “gameOver is not defined”. Why? Because
our new game phase is an object literal. So! What does that mean? Object Literals are
not hoisted to the top of the compiled code as functions are. This is a critical concept
to understand because JS needs to know about “thingies” before it can use a “thingy”.
It's worth mentioning also that JavaScript, at runtime, internally changes our code and
moves all variable declarations to the top of its function. This is known as variable
hoisting. Variables declared using 1et in ES6+ will have block scope and will not get
hoisted. So, if we try to access those variables outside of their block scope, we'll get a
reference error saying the variable is not defined. ES6+ “const” variables are similar to
the “1et” keyword with this additional feature — once they are declared and defined,
their state value cannot change. But | digress. Returning to our original problem, the
fix is not to sort our code blocks alphabetically as we have been doing, but to move
our new “gameOver” to the top of the JS file ourselves. Many web developers use
tools to “blindly” automate this hoisting process for them; and have forgotten to pay
attention to this as a result.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

57
58
59
60
61
62
63
64
65
66
67
68
69
70
4!
T2
73
74
75
6
7
78
79
80
81
82
83
84
85
86
87
88
89
90

Building Game Prototypes, Mechanisms & Tools 164

Similarly to our graphic’s placements, we can place text wherever we choose. Further-
more, we can update that text information using the “gameover update()” function. This
hint is the foundation for building future “heads-up displays” (HUD).

We told the gamer to press the “SPACE” bar to restart the game; so, we had better
create a function to accept that input. In the “gameover create()” function, let’s insert
this code:

Example 4.11: Collecting User Input

// Example 4.9: New Game Over CMS page begins
// Step 3) Transition to the new game menu function for resolution.

function create() {

YA

//Example 4.10: Elementary HUD Creation begins

S/ mmmmmm e

var label = this.add.text(
config.width/2, //centering HUD horizontally
config.height/2, //centering HUD vertically
"Game Over \n Press the SPACE bar to start again",
{font: "22px Arial", fill: "#FFF", align:'"center"});

label .setOrigin(0.5,0.5);

//Example 4.10: ends

YA

//Step 2) Generate sensors/listeners/observers that trigger it.

J) e

// Example 4.11: Collecting User Input

S/ e

var spaceBar = this.input.keyboard.addKey

(Phaser . Input.Keyboard.KeyCodes.SPACE);

this.input.keyboard.on('keydown', playAgain, this);

function update() {
//not used
¥
A
// Example 4.12:Responding to User Input
S -
function playAgain() {
// return to previous game phase

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 165

N window.open("lesson11.html", "_self");
92 };

0 Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/ p3-demos/ch4-examples/lesson11.html

Let's not forget to insert some code in the “gameover update()” function to deal with that
“SPACEBAR” input signal. That's how easy it is with Phaser. When Phaser processes the
“playAgain()” function whenever the space-bar is down, Phaser returns to the game-
play phase.

® Exercise: Test what we've just added. Bump into the opponent. Does the game
go to the “Game Over” scene? If you press the “spacesar”, does the game move
to the initial game launch?

4.6 Other Game Mechanics Categories

RELATIONSHIP BETWEEN Ul, HUD, GAME PLAY & GM

Game Play Mode

Interface

Model Actions
Rules

Game

——
Mechanics

HUD Output Camera Menu Changes
View

User Interface Game Play

Review Game Design System™ (Single Player) from Chapter 2
Other “Game Framework Mechanisms” (GFM) (i.e., displayed elements, widgets, and
input controls) support several more (or less) well-defined categories, along with basic
Game-Play, Game Rules (aka heuristics), mode (i.e., single-player or multi-player),

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

Building Game Prototypes, Mechanisms & Tools 166

and genre (i.e., groupings of similar “Game Mechanics"). Game Mechanics (chapter 5)
helps define a game’s rules and Game-Play strategies. Many of the following may or
may not have visual representation; they may be simply abstract data structures,*®
or sentinel variables*’. Yes, by mixing and matching various Game Framework
Mechanisms (GFM) or Game Mechanics (GM) in a game, it changes a game into a
new product release.

Need Proof? Return to this file*®®* and change Line 209 “handlePlayerDeath();"” to
“combatEncounter()" and watch how you have simply entered a “new game rule” to
modify the gameplay! Yes! These rules could be in external JavaScript Modules that
are loaded dynamically on-demand during play. More about that process in the
coming chapters in Part Il.

Hint: You must use my file (not yours!) because you don't have the function
“combatEncounter()” nor the new game phase “combat” created yet.

Here are a few suggestions from Chapter 5 Game Mechanics & Rules (aka Heuristic*).
Many of these could be re-usable components and generalized prototypes for any
game. We could “mix and match”, “pick and choose” various combinations to generate
new “Game Mechanics” (GM) from the following components. We could even go so far
as to randomly select and combine these mechanics. (See Game Recipe™ Automation
Tool at the end of this chapter.)

« Action points: is a budget of activity allocated to restrict what a player may do
within their game turn.

currentActions -=1;

« Agents, Goals, and behaviors: (See Al chapter and Apple’s Game-Play Kit>°) Use
this simulation to let game characters move themselves based on high-level goals
and react to their surroundings.

46https://computersciencewiki.org/index.php/Abstract_data_structures

47https://en.wikipedia.org/wiki/Sentinel_value

48https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

49https://en.wikipedia.org/wiki/Heuristic

50https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#
//apple_ref/doc/uid/TP40015172-CH8-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://computersciencewiki.org/index.php/Abstract_data_structures
https://en.wikipedia.org/wiki/Sentinel_value
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://en.wikipedia.org/wiki/Heuristic
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1
https://computersciencewiki.org/index.php/Abstract_data_structures
https://en.wikipedia.org/wiki/Sentinel_value
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://en.wikipedia.org/wiki/Heuristic
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1

Building Game Prototypes, Mechanisms & Tools 167

« Artificial Intelligence Strategist: (See Al chapter and Apple’s Game-Play Kit>")
Use “MinMax” to provide computer opponents the power of decisions. “MinMax”
is a classic Al algorithm that is well suited for turn-based games. Additionally, it
could be built into richer systems if you stop thinking about game-turns and start
thinking about state transitions

* Auction or bidding: Players make competitive bids to determine which player gets
the privilege to perform particular actions during a game turn. Bids are wagered
with some type of collected resource within the game (e.g., game money, points,
etc.)

Capture/eliminate: the number of tokens a player has on the game board
is related to his current strength in the game. How tokens are captured is
the mechanics using movement into the same area (immediate elimination or
deterministic combat), jumping over and across an opponent as in checkers,
producing a “checkmate” event from which the opponent has no movement
options. Many online games define the capture mechanics as a “kill count or
wounds” that reflects the sum of opponent tokens eliminated during the game.

Catch-up: This mechanics is designed to provide increased barriers as the player
progress closer to final victory goals. The idea is to allow trailing gamers an
opportunity to catch-up and win. This appears in racing games that have a fixed
finish line. The opposite approach is to make the leading player more capable of
achieving victory (e.g., Monopoly-style games). In such cases, this is desirable in
zero-sum games.

Dice as Randomizers: (See Apple’s Game-Play Kit>2) The most common use is
to randomly determine an outcome of a game interaction. This is a deeper
problem than most folks will admit. You are often looking for a specific statistical
distribution (NOTE: if you haven't played AD&D>3, then think about the bel1 curve
derived from rolling two six-sided dice, the most frequently appearing results
(68% of the time)>* lays in the center). Apple’s Game-Play Kit provides all you
need, with a variety of cost models (how expensive it is to generate the next
random number, versus how actually random it is). Use these robust, flexible
implementations of standard algorithms as the building blocks for many kinds
of game mechanics.

results = currentSkill - randomDiceRoll;
if (results <= to CharacterSkill){ ... Do something ... }

5Thttps://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.
html#//apple_ref/doc/uid/TP40015172-CH2-SW1
52https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
53https://en.wikipedia.org/wiki/Editions_of_Dungeons_%26_Dragons
54http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://en.wikipedia.org/wiki/Editions_of_Dungeons_&_Dragons
http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://en.wikipedia.org/wiki/Editions_of_Dungeons_&_Dragons
http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html

Building Game Prototypes, Mechanisms & Tools 168

* Game modes: One of the most common examples of a “game mode” is the single-
player versus multi-player choice in online games. Multi-Player game can further
be subdivided into cooperative or competitive play. Changing modes during a
game increases the difficulty and provide additional challenge, or as a reward for
player successful action. For example, power-ups are temporary gaming modes
or that change only one or more game rules such as pellets in Pac-Man.

* Heuristics & Rule Systems: (See Al chapter and Apple’s Game-Play Kit>>) Sep-
arating game mechanics from its “display code” will optimize your gameplay
rendering cycles. Implementing “fuzzy logic reasoning” (such as “A*” or “A-Star”>°
and code samples here>’) adds realistic behaviors to your computer-controlled
game components.

* Movement: How game tokens are permitted to move (physics), and when (action
points), is controlled by movement mechanics. The current game area may affect
movement (e.g., forest areas are more difficult to cross than open prairies.

* Playing Cards: Decks of cards act as a “randomizer” and/or to act as tokens to
keep track of states in the game. Players draw cards and retain them for later
use in the game, sometimes without revealing them to other players. When used
in this fashion, cards form a game resource. See Dice and Random Number
Generators (RNG) below

* Resource management: an accounting system that monitors the collection (i.e.,
income) and expenditure (i.e., expenses) of assets. The game will have heuristics
that define how players can collect, accumulate, spend, or exchange their re-
sources. Skillful resource management under such game mechanic rules allows
players to influence the outcome of the game.

« State Machines: (See Al chapter and Apple’s Game-Play Kit>8) — Use this archi-
tecture to untangle complex procedural code in your gameplay designs. States
can capture intent (for example ‘am | hunting, hiding, fleeing’ using “Path-finding”
algorithms such as A-star) or overall state (running, jumping, waiting), and of
course, you may have more than one state machine in operation. Apple’s Game-
Play Kit provides support for both grid-based and one open-world Path-finding
models.

* Tile-laying: Many games use a grid on a world surface to form a tessellation.
Usually, such grids have patterns or symbols on their surfaces, which combine
when the playing surface is displayed. The grid defines the movement rules; how
the grid is drawn is a “Game Framework Mechanism”.

* Turns: A game turn is an important fundamental concept; it could be an abstract
representation to regulate gameplay or denote a passage of time or distance in
a game set aside for certain player actions to happen before moving to another

55https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.
html#//apple_ref/doc/uid/TP40015172-CH10-SW1
56https://www.redblobgames.com/pathfinding/a-star/introduction.html
57https://www.geeksforgeeks.org/a-search-algorithm/
58https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1

Building Game Prototypes, Mechanisms & Tools 169

turn. In simulation games, turns represent time and distance in an abstract
fashion. War-games usually specify an amount of time each action simulates and
are executed sequentially or simultaneously. Even in real-time computer games,
there are often certain periodic effects that could be considered the surviving
hint of the turn concept.

gameTurn +=1;

* Resource Deployment (aka technology tree): is a game mechanics where players
allocate a limited number of token resources (lumber, gold, iron, “workers") to
multiple stations that provide various defined actions. This is commonly used in
Tower Defense games.

Note: Apple’s Game-Play Kit>° provides seven core areas of functionality, which
you can combine or use independently to create your game. Because Apple’s
Game-Play Kit is independent of high-level game engine technologies, you can
combine it with any of those technologies to build a complete game such
as: “spritekit” for 2D games,®°® “scenekit” for 3D games,®' or a custom or
third-party game engine using “wetal”®? or “opencL Es”.®® For games with less
demanding graphics needs, you can even use Apple’s Game-Play Kit®* with
“vrkit” (in iOS or tvOS) or “appkit” (in OS X).

4.7 The Finish Line: You’'re AWESOME ... Gloat, Gloat ...

If the game is fully operational at this point, it’s “Miller Time"®>, but remember to be
humble and kind!®® Celebrate! You have a fully function Phaser v3.x.x game prototype
that:

59https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//
apple_ref/doc/uid/TP40015172-CH1-SW1

60https://developer.apple.com/documentation/spritekit
61https://developer.apple.com/documentation/scenekit
62https://developer.apple.com/documentation/metalkit
63https://developer.apple.com/documentation/opengles
64https://developer.apple.com/documentation/gameplaykit
65http://www.urbandictionary.com/define.php?term=miller%20time
66https://www.youtube.com/watch?v=awzNHuUGqoMc&list=PLuvCpe8H09C8VIEKy04Qz025)UazilEpK

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/scenekit
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/opengles
https://developer.apple.com/documentation/gameplaykit
http://www.urbandictionary.com/define.php?term=miller%20time
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/scenekit
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/opengles
https://developer.apple.com/documentation/gameplaykit
http://www.urbandictionary.com/define.php?term=miller%20time
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK

Building Game Prototypes, Mechanisms & Tools 170

* accepts inputs.
* moves various game components, and,
* reacts to internal objects.

Using the Phaser.io documentation and the following remaining chapters in this book,
we'll have an “AWESOME SAUCE"®’ game collection. Making one game a month is now
a reasonable and achievable goal using our Game Recipe™ Automation tool.

4.8 Chapter Source Code & Demo

book website: https://makingbrowsergames.com/p3gp-book/
Complete Chapter Source Code in the online appendix.%®

Play Il Game Prototype Demo thus far®®

« Example 2.4 Bare-bones Index Page - Traditional Method’°
« Example 2.5: Starting the Game.js’’

« Example 3.1a: Creating State Objects in Game.js - traditional method’>
« Example 4.1: Prototyping a Visual Avatars’?

« Example 4.2: Prototyping Movement Properties in v3’4

« Example 4.3: Movement Arrows v3 Integration’>

« Example 4.4: World Boundaries Grouping’®

« Example 4.5: World Boundaries Integration’’

« Example 4.6: Interior Boundaries Integration’s

« Example 4.7: Collision Detection Integration’®

« Example 4.8: Collision Results Determination8®

« Example 4.9: New Game Over State?®'

67 http://www.urbandictionary.com/define.php?term=Awesomesauce
68https://makingbrowsergames.com/p3gp-book/tools.html
69https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
7Ohttps://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesindex.html
7Thttps://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
72https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
73https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
74https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
75https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
76https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
77 https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
78https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
7https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
80https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
81https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.urbandictionary.com/define.php?term=Awesomesauce
https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html
http://www.urbandictionary.com/define.php?term=Awesomesauce
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html

Building Game Prototypes, Mechanisms & Tools 171

« Example 4.10: Elementary HUD Creation82
« Example 4.11: Collecting User Input?3
« Example 4.12: Responding to User Input?*

4.9 Summary

Examples:

* https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesindex.html
* https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
* https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html

Here's an inventory of what we've learned thus far.

+ Game Prototyping uses simple graphics and focuses on game mechanics.8>

*+ Created Game Prototype that accepts inputs.

* Created Game Prototype that moves various game components.

* Created Game Prototype that reacts with internal objects.

* Created a web page to launch our Phaser Prototype.

* Learned about Content Delivery Networks.

+ Discovered various game phases and states to modularize8 our game.

+ Learned the 9 Phaser essential functions of which the “create”, “update” and
“render” are the most active.

+ Studied a typical Skeleton state file.

Reviewed the traditional game menu states.

* Discovered a Phaser game can use multiple physics engines, but only one physic

engine is assigned to one graphics sprite.

Created a gamer’s representation in the game world.

Learned how to generate sprite graphics from code.

Attached speed and velocity to moving game objects.

* Attached various input signals to manipulate game objects.

Attached reactions to immovable and movable objects.

* Learned how to trigger various behaviors.

* Created game stage boundaries.

+ Discovered how to transition game between states.

82https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
83https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
84https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
85http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
86http://www.dictionary.com/browse/modularize

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize

Building Game Prototypes, Mechanisms & Tools 172

4.10 Chapter References

* How to Prototype a Game in Under 7 Days®’

* MDN Game development?&?

« Game Design Concepts 5.1: Prototyping®°

* Plain English Guide to JavaScript Prototypes®°

* JavaScript Classes®’

* https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.
html

* https://www.bitlaw.com/copyright/database.html

* https://data.research.cornell.edu/content/intellectual-property

* https://en.wikipedia.org/wiki/Sui_generis_database_right

* https://www.michalsons.com/blog/the-rights-to-a-database/2937

87 https://www.gamasutra.com/view/feature/130848/
88https://developer.mozilla.org/en-US/docs/Games
89https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
9Ohttp://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.gamasutra.com/view/feature/130848/
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.bitlaw.com/copyright/database.html
https://data.research.cornell.edu/content/intellectual-property
https://en.wikipedia.org/wiki/Sui_generis_database_right
https://www.michalsons.com/blog/the-rights-to-a-database/2937
https://www.gamasutra.com/view/feature/130848/
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Dem’s fightin’ words 173

5. Dem’s fightin’ words

In this chapter, we will develop several methods for “conflict resolution” (aka “combat”)
between the player’s avatar and their antagonist(s). We will also add several new game
prototype enhancements:

* Launching Web Sockets,

* Dynamic menus,

* Melee, hand-to-hand, and ranged combat,
+ Tactical movement styles,

“Tile Maps” for tactical movement,

+ Conflict resolutions: who, what, when, how
+ Story narratives,

Post Combat.

Note: Refer to these resource files:
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

5.1 Launching Web Sockets

We talk more in depth about WebSockets and how to use them properly in Massive
Multi-player Games'; but for now, here's how to include WebSockets in your game
products. You can also experiment with our MMoG server.>

Thttps://leanpub.com/rrgamingsystem/
2http://mmog.pbmcube.net/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://leanpub.com/rrgamingsystem/
https://leanpub.com/rrgamingsystem/
http://mmog.pbmcube.net/
https://leanpub.com/rrgamingsystem/
http://mmog.pbmcube.net/

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64

Dem’s fightin’ words 174

Example 7.1: Launching Web Sockets.

<I-- Creating Client WebSocket -->
<script >
function WebSocketTest() {
if ("WebSocket" in window) {
alert("WebSocket is supported by your Browser!");
// Let us open a web socket on local development site;

//TODO: Change the URL to point to your live production server.
//Classic OOP style creates object/function:
var ws = new WebSocket("ws://localhost:9998/echo");

/7
// 4 WebSocket Protocol Msg
//

ws.onopen = function onopen(event) {

// Web Socket is connected, send data using send()
ws.send("Test Message sent");
alert("Test Message away, away ... Captain!");

ws.onmessage = function onmessage(event) {
var received_msg = event.data;
alert("Incoming Messages ... brace for impact, Captain!");

ws.onclose = function onclose() {

// websocket is closed.

alert("Connection is closed...");
};
//
// End of WebSocket Protocol
V4
} else {

// The browser doesn't support WebSocket
alert("WebSocket NOT supported by your Browser!");

}

</script>

Note: Refer to these resource files:
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
lesson01.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html

Dem’s fightin’ words 175

5.2 Dynamic Combat Menus

What would be extremely nice, is to tell the player when they can “attack”. So let's put
some dynamic menu buttons that appear only when an avatar is engaged in “hand-
to-hand or Melee conflicts. BUT ONLY, if they have a readied melee weapon. When an
avatar is not “touching” (i.e., engaged) in melee combat, AND has a missile weapon
readied then let's show a “FIRE” button to launch a missile attack.

Example 7.2: Dynamic Combat Menus

609 //

610 function combatEncounter(){

611 // ============

612 // Example 7.2: Changing Game Scenes

613 // Step 2) Exchange character's death to Combat

614 // function to calculate the outcome.

615 // Step 3) Transition to the new game menu function for resolution.
616 // New Combat Scene begins with a scene transition

617 // ============

618

619 // previously, Chapter 4 method moved to a new page

620 // window.open("lessonida.html", "_self");

621

622 Viato

623 // Chapter 7.2 methods move to a new scene and conducts "Combat"

624 // using Phaser III new scene.transition feature

625 // NEW Phaser III scene.transition feature

626 scene.scene. transition({

627 target: nextScene, // the next Scene key to transition into

628 data: null, // a data object containing anything you wish
629 // passed into the target's init or create methods.
630 moveAbove: false, // move the target Scene above this current
631 // scene before the transition starts

632 moveBelow: false, // move the target Scene below this current
633 // scene before the transition starts

634 duration: 1000, // delay processing duration in ms

635 sleep: false, // true = to sleep current scene;

636 // false = to stop current scene

637 allowInput: false, // true = to enable input system of current
638 // scene and target scene

639 onUpdate: null, // function to call; example "this.transitionOut"
640 onUpdateScope: scene

Copyright © 1972-2017 Stephen Gose. All rights reserved.

641
642
643
644
645
646
647
648
649
650
651

Dem’s fightin’ words 176

})
*/

console.log("%c Entering combat game phase. \n

The main Scene goes to sleep! ,

"color:white; background:blue");

game.scene.sleep('main').sendToBack();
game.scene.start('combat');

P Hint: This complete source is available from the website Lesson 2.3

In the example above, we created our “attack” and “fire” buttons and placed them
in separate “containers” — an “engaged” and “disengaged” containers, then we
positioned “engaged container out of sight”. In the “update” essential function, we will
swap the container’s locations as soon as the antagonists collide — become “engaged”
in melee. This is a “carry-over” from my former Flash game development days when
| simply created everything and moved the inactive “movieClips” off stage.

| could have just toggled the “visibility” of each button. Phaser Gaming Frameworks
give us more flexibility than Flash when creating Dynamic Menus. There are several
design options we could use for games discussed later; some of these options are:

1. OR, we could create “menu option sets” inside of “containers” (Read more details
both pros and cons here.);* then, move those buckets of content onto and off of
the stage.

// Menu HUD containers
engageC=this.add.container(1000,0, [attackButton,attacktxt,disEngtxt]);
disengageC = this.add.container(@,0, [fireButton,firetxt]);

3https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
4https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
T
718
719
720
721
722
723
724
725

Dem’s fightin’ words 177

2.

3.

OR simply toggle this Menu HUD container’s visibility. These design options are
discussed later.

Create Phaser Ill HUD Scenes and shuffle those “HUD Scene stacks” to the
front/back OR create/sleep then this following command is required:

this.input.setGlobalTopOnly(true);

Example 7.3: Dynamic Combat Menus supporting function

html

// NEW melee combat: Dynamic Menu, engaged in melee

//
function meleeEncounter(){
/7
// Example 7.3: Dynamic Combat Menu Buttons
// Design Options:
//
// 1) Follow Flash games placing menu buttons in & out of the stage
/7
// 2) Create containers to mimic former Flash Movie Clips
// placing menu inside then shuffle HUD container(s) on & off stage
// a. Phaser III using "Groups"? Problems are:
// 1) "Group membership is non-exclusive."
// 2) "Groups aren't displayable, can't be positioned,
// rotated, scaled, nor hidden."
/7
// b. Phaser III using Container(s)? Problems are:
// Read pros and cons from Phaser III docs
// https://photonstorm.github. io/phaser3-docs/Phaser.GameObjects.Container. \

/7

// 3) Create Phaser III HUD Scenes

// shuffle HUD Scene stacks to the front/back OR create/sleep
// then this following command is required:

// "this.input.setGlobalTopOnly(true);"

/7

// 4) Create simple click-able text menus -

// 1.e., retro dumb terminal or BBS style.

/)
// Design Options #2
engageC.setX(0);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 178

726 disengageC.setX(1000);
727 gameStatus = 1;

Review this source code at either:

* https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
* https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Combat Encounter. Beware, a Goblin is here!

Character Stats: Exp:
Stamina: 20 Renown
Attack: 50% Gold:
Defend: 50% Food:
Weapons: Short Sword [2]
Ammor: Leather Jerkin

Monster Stats: Warrior
Stamina: 13 Renown: 2
“ - 38% Gold: 52
De

fend: 32% Food:

: Short Sword [2]

- Leather Jerkin [2]

@iSearcn DA@ven o DM @Ak D) TR . e -
se 4 w keys ngage in comba
@R

Attack button only appears when engaged in melee Combat

5.3 So, Give Me Some Space ...

“The Four Virtues of a good tactical turn-based combat system”

So let's get specific. There is a veritable cornucopia of techniques that game de-
velopers have used in the past to make their turn-based combat systems sparkle
with tactical possibilities, and | want to see new RPGs start using them with greater
regularity. Perhaps the most powerful technique is simply to:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/

Dem’s fightin’ words 179

1. Use space. Adding a spatial dimension to combat increases its complexity ex-
ponentially without making it substantially harder for the player to understand.
Most people have played games like Candyland® or Monopoly”, to say nothing
of Checkers® and Chess’. Everyone (even your mom) intuitively understands the
concept of moving pieces between spaces.

By using space in your battles, you add a new dimension to combat both figuratively
and literally: the concept of attack range comes into play, and the player gains direct
control of actions like fleeing and protecting weaker characters behind stronger
ones.

Of course, you aren't required to have a grid-based (or hex-based) map with movable
characters to create a good tactical combat system, but it’s an awfully effective way
to introduce complexity using simple rules. This alone will put your game far ahead
of most jRPG combat systems.¢

%http://amzn.to/211flud
bhttp://amzn.to/2mfZ5uzZ
Chttp://amzn.to/2mg3YUT
dhttp://amzn.to/211qg)A
€http://amzn.to/2m1WdWm

“Engage or Not to engage that is the questions.” This one question adds all of the
“The Four Virtues of a good tactical turn-based combat system”; by simply adding an
“arena space” for antagonists to resolve their conflicts.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2l1fIud
http://amzn.to/2mfZ5uZ
http://amzn.to/2mg3YUT
http://amzn.to/2l1qgJA
http://amzn.to/2m1WdWm
http://amzn.to/2m1WdWm
http://amzn.to/2l1fIud
http://amzn.to/2mfZ5uZ
http://amzn.to/2mg3YUT
http://amzn.to/2l1qgJA
http://amzn.to/2m1WdWm

Dem’s fightin’ words 180

int y ai

There is but a single exit

to the south.

@cc: D
AT T T TR E AT T e e e

) el Al e A A e Al Bl e A A A Al o At s Bt s Bt i Pt o [
4 _ - n - ~ - L $ - -

] 2) T M A - = 3
e g N N N TN N Ny TN N N NNy TN

Upon entering a room, what’s a girl to do?
We will develop two different versions of combat along with these spacial aspects:
(not special; space ... the final frontier!)

* Grid-less: similar to our method of movement created in the last chapter; and,
* Grid-ed: regulating tactical movement using squares, hexagons, or squishes.

Why? Because a conflict between opponents can take place as either:

* “hand-to-hand / Melee” conflicts. In the last chapter, we developed source code
to recognize when objects were touching one another. That source code will
become our “hand-to-hand” (aka “engaged” or “melee”) combat. There is a
subset of this combat | use by the same name. It is the situation when two
opponents are “wrestling” and “grappling on the ground”. Shorter weapons and
strength have the advantage here. | treat this differently than normal melee in
my games.

* “Ranged” conflicts. Ranged combat is a different story; it involves sending a
“missile” toward an opponent. Should the missile strike home, our opponent is
“hit”; the missile should disappear, and we reduce a life — or “hit points” — from

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 181

our targeted opponent. Sound familiar? We did all this before. In ranged combat,
the missile is a newly created game entity that speeds toward its intended target.
If it “touches” that target, we calculate the outcome. If it misses, the projectile
continues forward until it smashes into something (e.g.: the world boundaries?
a team member? another opponent?); and at that time, it is removed from play.
That was not revealed previously.

Melee Weapons

If two antagonists are “touching”, they are considered engaged in “melee” com-
bat. They will use one-handed or two-handed weapons. In “hand-to-hand combat,
“shorter” weapons, such as pistols, knives, daggers, brass-knuckles, will have normal
weapon damage; one- and two-handed weapons will have a disadvantage in weapon
damage.

Ranged Weapons

Phaser v2.x.x has 10 different styles for ranged weapons in their online examples;
these styles have their own separate class function; as Phaser Il “matures” | am
certain these 10 different styles will appear in Davey's scheduled book. | told you
that Phaser has thought of everything. There are several ‘combination” weapons
— which are essentially mixtures from those established 10 styles. This Phaser
Il weapon Plugin by “rexrainbow”> facilitates creating a “bullet pool” and manager
for projectiles. “Weapons fire” plugin generates sprites — as bullets — with a few
extra properties and “secret sauce”. Each bullet-projectile has its own Arcade Physics
property enabled. This class follows the same template process seen in Phaser Il]
Labs®. Consult the Rexrainbow’s documentation about his weapon P1ugin here’ and see
all the extraordinary options we could use. Let's create a generic missile object to toss
around in combat. This template will represent both “thrown” and “fired” missiles.

Launching thousands of bullets is fun in single-player games; but, you might consider
using a limitation in multi-player versions. Multi-player performance will improve by
using “pools” of available bullets® instead of “creating” and “destroying” bullets in an
endless loop per player.

The important concept to remember is when using “ordinary sprites” from a pool,
you should toggle the sprite’s “active” and “visible” properties on and off. This will

Shttps://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
6http://labs.phaser.io/edit.html?src=src/pools/bullets.js
7https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
8http://labs.phaser.io/index.html?dir=pools/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/index.html?dir=pools/&q=
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/index.html?dir=pools/&q=

© 00 N O O & W N =

.
[y

Dem’s fightin’ words 182

save CPU processing. Since bullet sprites have physics enabled, you should also toggle
its “body.enable” property too. Using the “enableBody ()" and “disableBody()” methods
sets all of these three (3) properties at the same time. Another benefit from using
“enableBody ()" is that it includes a “reset” option that will synchronize the sprite’s
location. You could set all the sprites inside a physics group with these parameters.

{ active: false, visible: false, enable: false }

Phaser Ill Top-down shooter examples from labs.phaser.io:°

* Average Focus'® — click while running the source code and observe how the
avatar spins to follow the target.

« Combat mechanics'' — click while running the source code and observe how the
avatar spins to follow the target. Sight the target over or beyond the antagonist
and then click to fire your weapon.

* Player Focus'? — click while running the source code and observe how the avatar
spins to follow the target. At first, this example seems to mimic the “Average
Focus” but use the “"WASD"” keys to move the avatar while targeting.

* Target Focus'® — click while running the source code and observe how the avatar
spins to follow the target. At first, this example seems to mimic the “Player Focus”
but use the “WASD" keys to move the avatar while targeting. You'll notice that the
camera stays focused on the target instead of the avatar.

Phaser lll Sample: Projectile Template

this.bulletGroup = this.physics.add.group();

function bullet(){
var bulletPoints = this getDirFromAngle(this.player.angle);

console.log(bulletPoints);

var bullet = this physics.add.sprite(
this.player.x + bulletPoints.tx * 30,
this.player.y + bulletPoints.ty * 30,
'bullet');

9http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
10http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
" http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
12http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
13http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js
http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Dem’s fightin’ words 183

bullet.angle = this player.angle;

bullet.body.setBelocity(
bulletPoints.tx*100,
bulletPoints.ty*100)

this.bulletGroup.add(bullet);
function getDirFromAngle(angle){
// Description:converts degrees to radians

// Use 3.142 and stop wasting battery power!
// var rads = angle * 3.142/180; // OR better still!!

var rads = angle * 0.01745; // just pre-calculate it!
var tx = Math.cos(rads); // see chapter footnotes
var ty = Math.sin(rads); // see chapter footnotes

return {tx,ty}

this.physics.add.collider(
this.bulletGroup,
<targetGroup here!>,
<what happens?>, null, this);

To preserve CPU processing and battery, pre-calculate math formula. Refer to
sine and cosine here'*. One radian equals'> 180°/ Tt = 57.30°. Use this online
calculator’® to help reduce CPU workload at runtime and thereby save battery
power. Refer to this article'’ for a gentle introduction (or reminder) on degrees,
radians, and angles.

A common mistake in game development s using “PI". The standards state that it is an
approximation which is approximately 3.1415926535897932. Do you truly need that
much accuracy? We're not sending “men to the moon.” Why burn CPU processing and
consume battery power when you could have simply provided the number 3.1415
and not make the game calculate for each bullet. It's small things, such as this, that
accumulate and slow down your game’s responsiveness.

14http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
15https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
16https://www.rapidtables.com/calc/math/Cos_Calculator.html
17https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/
http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

Dem’s fightin’ words 184

In the example template above, notice that the missiles are created inside of a “Group
object” with “arcade Physics” already enabled. You can do anything with a Group
(such as move it around the display list, etc.) that you normally would do with sprites.
“Bullets” can have textures and even animations. You can control the speed, angle, and
rate at which they are fired, and even set additional properties such as gravity. Just
keep in mind that each bullet is a game object that requires CPU processing, memory,
and rendering onto the display. To conserve on these, | chose to simply have a “FIRE”
button to abstract missile combat.

Here is a Phaser Il Bullet plugin documentation here'® and source code at GitHub"®
And other sample tutorials with (FREE!) source code:
1. Zenva Game Academy: “How to make a Tower Defense Game"?°

2. William Clarkson: “Phaser 3 Physics for beginners - Endless Bullets”?
3. Phaser3 Labs — Defenda!??

P Hint: We will revisit these missile functions when we create “magic missiles”.

Since our Game Prototype uses the “top-down or Bird’s Eye” perspective, gravity won't
play a part in our ranged combat. If our Game Prototype used a “side-scroller” view,
gravity would add “juice”?® to our game. We'll touch on different game perspective
views later (i.e., 3rd person and 1st person).

Is your game ‘juicy’ enough?

Now what exactly does that mean? “Juicy things are things that wobble, squirt,
bounce around, and make little cute noises; it's sort of a catch-all phrase for things
that make a game more satisfying to interact with,” Jonasson explained during his
presentation at GDC Europe.” “Juice is typically auditory or visual, but it doesn't really
need to be ... it's about the maximum output for the minimum input.”

Here are some ways to enhance missile combat:
* Turn it side-ways and create a vertically scrolling shooter instead.

18https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
"9https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js

20https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/2a=47&campaign=
Phaser3GamePrototyping

21 https://phasergames.com/phaser-3-physics-beginners/
22http://labs.phaser.io/edit.html?src=src/games/defendar/test.js
23http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://phasergames.com/phaser-3-physics-beginners/
http://labs.phaser.io/edit.html?src=src/games/defenda/test.js
http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html
http://www.gamasutra.com/view/news/178938/Video_Is_your_game_juicy_enough.php
https://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://phasergames.com/phaser-3-physics-beginners/
http://labs.phaser.io/edit.html?src=src/games/defenda/test.js
http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html

Dem’s fightin’ words 185

* Give the missile’s acceleration; instead of velocity then watch them increase in speed
over time.
* Give the missiles a “waypoint” in order to “home in” on targets.

Ihttps://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/

5.4 00!, OW! AH!, OW! Stayin’ alive! Stayin’ alive!

We have our two combat functions; let's now review Tactical movement styles. As
mentioned earlier, a combat encounter could have two spacial (as in space the final
frontier) aspects:

* Grid-less: similar to our method of movement created in the last chapter; and,
* Grid-ed: regulating tactical movement using squares, hexagons, or squishes.

Grid-less Combat

In short, ‘Grid-less Combat” is a copy of the Part | examples. when our avatar
bumps into an opponent, we transition our game into a “combat scene”, instead of
“killing the player” and declaring the game finished. Earlier, when our avatar died, we
moved directly into the “gameOver scene”;>* we will exchange that scene for our new
“combat encounters” scene. Now, when bumping into an opponent, we will move
into a new game phase that focuses on combat tactics, using the same techniques
we learned before in Part I. In this new “Combat Encounter Scene” we will conduct
our deadly conflict until a victory is determined. Of course, if our player’'s avatar is
defeated, our game will go to the normal “Game Over” scene as we did once before.

The “gamecombat™ scene will have its own “gameCombat create()” and “gameCombat update()"
functions (as do all game phases; nothing new so far). These will handle our conflict
and collect player’'s input and tactics from dynamic menus — this is new! We will
provide feedback on selected tactics through a head-up display (HUD) and the story
combat narrative.

this.physics.add.collider(player, monster, bumpMonster, null, this);

24https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Dem'’s fightin’ words

Example 7.5: Grid-less Combat Movement Lines 81 - 292

186

//Process conflict instead of "Game Over" phase
var combat = new Phaser.Class({
Extends: Phaser.Scene,
initialize: function combat(){
Phaser.Scene.call(this, {key: 'combat'});
this.player;
this.monster;
this.attackButton;
this. fireButton;
this.label;
this.attacktxt;
this. firetxt;
1,

preload: function preload(){
console.log(" %c\n Loading Combat phase. ",
"color:white; background:green");

this.load.crossOrigin = 'anonymous';

//game background;static title and copyright
this.load.spritesheet('button’,
"images/spriteSheets/mmog-sprites-silver.png',
{frameWidth:129, frameHeight: 30});
1,

create: function(){
// ... similar to "mainExplore" class
Y, //comma very important here

update: function(){

// Example 4.3: Movement Arrows Integration begins

// NOTE: combination arrow directions are now
// possible with this format

// o=
player.body.velocity.x = 0;
player.body.velocity.y = 0;

if (cursors.left.isDown){

Copyright © 1972-2017 Stephen Gose. All rights reserved.

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Dem'’s fightin’ words

});

}
if

}
if

}
if

/7

// 1f the left arrow key is down
player.body.setVelocityX(-speed); // move left

(cursors.right.isDown){
// 1f the right arrow key is down
player.body.setVelocityX(speed); // move right

((cursors.down.isDown)){
player.body.setVelocityY(speed); // jump up

((cursors.up.isDown)){
player.body.setVelocityY(-speed); // jump up

New keyboard listener

if(cursors.space.isDown){

}
s

// Option 1) go to
leaveCombat();

Example 4.3: ends

187

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 188

Bloodied Pit Duel. Match with Woodland Orc Warrior

Character Stats: Exp:
Stamina: 20 Renown: 1
Attack: 50% Gold
Defend: 50% Food
Weapons: Cutlass [2]
Armor:. Ring Mail & Shield [7]

Challenger: Warrior
Stamina: 11
Attack: 37%

Defend: 38%
You : a heavy slice Challenger: a smooth thrust
Challenger: a counter You : a counter
Challenger: not injurded! You : not injurded! Armor: Ring Mail [3]

Weapons: Short Sword [1]

&mc Challenger has the combat

initiative this turn

DORT TR TR TR TR ®

-] e M e bt e e e e e e R e e et | et o et e e
- - — - - " - o A w A " - - z
o

Play Above Demonstration: https://makingbrowsergames.com/p3gp-book/ p3-bloodPitv1

Hint: Yes, we will optimize this code later. This is provided as only a quick demonstra-
tion review from chapter 4.

Grid-ed Combat

Grid-ed Combat is similar to table-top board games such as checkers or chess. Using
grid-ed gameboards add a new dimension to our conflicts, that is namely: maneuvers.
We will create this gameboard using several methods such as “tiled-maps” OR the
new “grid” features in Phaser .

5.5 Tactical Tiled-Maps

Tile-Maps, in my opinion, tends to abuse the “separation of concerns”. Too many times
have | seen tutorials, examples, and raw source code on GitHub combine the visual

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1

Dem’s fightin’ words 189

display with its associated “metadata”?> in the game environment. Data is a subset of
the “Game Mechanics” (GM) Component; it is not a subset of the “Game Framework
Display” Mechanisms. By binding data into your sprites, you are locking yourselfinto a
specific “Front-end Gaming Framework”. | take the same approach with “Tactical Tiled-
Maps” as | do with the gamers’ Avatars — there is a “visual element” that is separate
from its metadata elements. The metadata elements for game boards are, what | call,
the “movement tables” (MT). Movement tables are a “super-set” to the Tiled-Maps
spriteSheets (i.e., their visual display elements).

Approaching this topic, we are teetering?® on the edge of leaving this generic Game
Prototype and entering into the realms of a specifically designed artwork theme. If
we use a “generic” naming convention for our artwork files, it becomes a simple task
to import new — and different — “game theme artwork” images with the same file
names. This will overwrite the current game prototype box-artwork. We will do all this
in later chapters. For now, we'll continue to use “rectangles” or “hexagons”.

ﬁ Warning: Software such as Texture Packer,”’ Adobe Animate (formerly called
Flash CC)?8, or Shoebox?® all generate texture atlases, not sprite sheets. You
must use the “Loader.atlas” instead. You can download a FREE Sprite Sheet

Packer here®,

5.6 Squares and Checkered Grids

Square-based tile-maps are the simplest game boards to create. We create boxes in
the same fashion as we did for walls in chapter 1 — only these squares will be larger
— to contain both our avatar and opponents. How big should these tiles be? We have
several decisions to make:

+ agrid-tile (aka cell) just big enough to hold a single avatar sprite. When the sprite’s
graphics are adjacent — “touching” another occupied square as we did in the
previous chapter; they are engaged in “melee/hand-to-hand” combat.

+ a grid-tile large enough to hold both our avatar and its opponent; this is similar
to checkers or chess. They are engaged in “hand-to-hand” combat when both
opponents occupy the same square space.

25https://labs.phaser.io/edit.ntml?src=src/components/data/change%20data%20event.js
26http://www.dictionary.com/browse/teetering
27https://www.codeandweb.com/texturepacker
28https://www.adobe.com/products/animate.html

29http://renderhjs.net/shoebox/
30https://www.codeandweb.com/free-sprite-sheet-packer

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://labs.phaser.io/edit.html?src=src/components/data/change%20data%20event.js
http://www.dictionary.com/browse/teetering
https://www.codeandweb.com/texturepacker
https://www.adobe.com/products/animate.html
https://www.adobe.com/products/animate.html
http://renderhjs.net/shoebox/
https://www.codeandweb.com/free-sprite-sheet-packer
https://www.codeandweb.com/free-sprite-sheet-packer
https://labs.phaser.io/edit.html?src=src/components/data/change%20data%20event.js
http://www.dictionary.com/browse/teetering
https://www.codeandweb.com/texturepacker
https://www.adobe.com/products/animate.html
http://renderhjs.net/shoebox/
https://www.codeandweb.com/free-sprite-sheet-packer

o N O O b W N =

290
291
292
203
294
295
296
207
208
299

Dem’s fightin’ words 190

* should we create numerous individual 16 x 16 px backgrounds? Remember each
object in a Scene must be processed every frame per second.
+ or simply integrate the tiles into the single background image as I've done below?

Example 7.6: Grid-ed Combat as individual background images

//NEW! Grid Tile-Map configurations

var map; //tile map as background

var layer; //tile map layer

var tileSize = 064; //twice avatar icon size? or same size?
var numRows = 4; //adjustable for your game

var numCols = 4; //adjustable for your game

var tileSpacing = 2; //adjustable for your game

//var tilesArray = []; //one way,; thousand more to choose

Example 7.7: Grid-ed Combat Squares traditional method

//New Combat Grid - generic square tiles
this.SQTilesFloor = this.add.group(); // optional staticGroup?
for(j=0; j<numRows; j++){

for(i=0;i<numCols;i++){

gameX = tileSize * i + tileSize/2 + tileSpacing;

gameY = tileSize * j + tileSize/2 + tileSpacing;
var tileGridSQ = this.add.rectangle(gameX,gameY,b 60,60,0x000000));
this.SQTilesFloor.add(tileGridSQ);

We still have one itty-bitty problem3' in our tiled combat encounter — the avatar is
still sliding across those tile images of the checkerboard and ignores any movement
restrictions. If your game requires turn-based limited movement, then we need to
resolve this. We can solve this easily by modifying the combat update() section that
monitors the player's movement input. Here are several solutions:

1. Each time an arrow key is pressed, we “jump” the avatar to the next grid-ed tile.
We can also fix the bug of “the sliding avatar off the grid-field” by simply counting
and storing the number of rows and columns (i.e.: locations on the grid) where
the avatar currently is (i.e., metadata).

31 https://www.merriam-webster.com/dictionary/itty- bitty

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.merriam-webster.com/dictionary/itty-bitty
https://www.merriam-webster.com/dictionary/itty-bitty

o N O O b W N =

Dem’s fightin’ words 191

2. Or, we could place “invisible” walls around the grid to prevent the avatar from
leaking outside the combat area. This ignores movement restrictions of the tiles.

3. Or, we could use a more traditional approach using tiles map layers and external
JSON data files from the following Mozilla Developers’ References below.

4. Or, we could simply place our avatar in every square and make it visible and
invisible as determined by our movement path. An example of this method is
here32.

Pure JS Sample: Grid-ed Movement

//for example, snapping a grid coordinate of 43 to the nearest
//multiple of the gride size:

var dx = 43; //distance of x from sprite or point.
var gridSize = 32; //assuming every grid square is 32px

var columnX = Math.round((dx / gridSize) * gridSize);

//This provides a snapped sprite column as the first column grid.

?’ Exercise: Download and study this source code>3.

References from Mozilla Developers:

* Square Grid Tile Maps samples:® A collection of resources used by Mozilla
developers for developers, technical evangelizing, and similar such content.

- JavaScript for game development:* A compilation of materials to learn JavaScript
and make HTML5 games.

+ JS Game development examples for Tilemaps”* Examples of tilemaps implemen-
tation with the Canvas API.

« HTML5 games workshop:® A workshop that teaches how to develop HTML5
games with JavaScript and Phaser. It is meant to last a full day, although it
includes sufficient guidance for people to finish it at home if only a short session
with a coach is possible.

Ihttps://github.com/mozdevs/gamedev-js-tiles
bhttps://github.com/mozdevs/js-for-gamedev

32https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-
wctam.html#game

33https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/js-for-gamedev
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects

Dem’s fightin’ words 192

Chttps://github.com/mozdevs/gamedev-js-tiles
dhttps://github.com/mozdevs/html5-games-workshop

Deeper Dive: Phaser III Grids

Phaser Ill has a new feature that makes grids very easy to build. Here's a demonstra-
tion from labs.phaser.io and a plugin.

* labs.phaser.io demo3*
* rexrainbow Ul plugin3>

Grid Plugin
var gridSizer = scene.rexUl.add.gridSizer(x, y, width, height, column, row);

* column : Amount of column grids.

* row : Amount of row grids.

* X, y : Position of gridSizer. Only available for top-gridSizer, children-sizers will be
changed by parent.

* width : Minimum width. i.e. Width of this gridSizer will bigger then this value.

* height : Minimum height. i.e. Hieght of this gridSizer will bigger then this value.

Source code available here?
Ihttps://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer

The new “Grid Shape” feature in Phaser Ill is actually a Game Object,?® and being
such, you could add grids to any Scene, either inside Group(s)3’ or Container(s).3¢ You
simply treat it like any other Game Object in your game. You can even tween, scale,
enable physics and input. See this example at labs.phaser.io.3° The “Grid” gives you

34http://labs.phaser.io/view.html?src=src/game%200bjects/shapes/grid.js
35https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
36https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
37https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
38https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
39http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://labs.phaser.io/view.html?src=src/game%20objects/shapes/grid.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer
https://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js
http://labs.phaser.io/view.html?src=src/game%20objects/shapes/grid.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js

Dem’s fightin’ words 193

an easy way to render square shapes into your game(s) without using any textures,
and furthermore, taking complete advantage of WebGL.

The Grid only supports color fills and cannot be stroked. But using clever grid spacing
correctly, you could accomplish a similar effect with cell outlines. Grids are available
only if the Grid Game Object was built into your Phaser framework. (Read more
here)*0

You can control the size of the overall grid and the width and height of each individual
cell. You can also set a fill color for each cell as well as an alternate color. When the
“alternate color”is set, the grid cells naturally alternate into a checker-board displayed
effect. Optionally, you can set an outline color as your border around each cell. This
setting draws lines between the grid’s cells. If you specify an outline color with an
alpha of zero, then it simply draws the cells as spaced out.

//https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Grid.html
new Grid(scene, X, y, width, height, cellWidth, cellHeight, fillColor, fillAlpha, outlineFill-
Color, outlineFillAlpha)

® Exercise: refer to https:/rexrainbow.github.io/phaser3-rex-notes/docs/site/
? gridtable/ Grid Table plugin and sample code.*'

Exercise: Using the Grid as a game construction tool! William Clarkson has
developed a clever use of this feature. He uses the grid to align the placement
of game objects during development. You can more about his strategy here.*

40https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
4Thttps://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
42https://phasergames.com/scaling-games-in-phaser-3/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Grid.html
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/gridtable/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/gridtable/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
https://phasergames.com/scaling-games-in-phaser-3/
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
https://phasergames.com/scaling-games-in-phaser-3/

Dem’s fightin’ words 194

Hexagonal Grids

Looks like squares -

Behaves like hexes!

Creating a Hexagonal Mega-Squares in a map grid

Many war-game simulations from the 1960s to present-day use hexagonal game-
board grids instead of square-based maps. Square-based grids share an edge with
only four other neighboring squares; but, they also touch another four neighbors
at just one point in the diagonal directions. This frequently compounds movement
distance along grids since diagonal movements are harder to equate properly to
cardinal directions. You are limited either to the four cardinal directions or eight
cardinal directions with squares. However, with hexagons, you have a compromise of
equidistant movement along with six directions. Hexagons don't touch any neighbor
at only a point; movement to adjacent places are only across borders. Hexagons have
a small perimeter-to-area ratio. Unfortunately, in our square pixel-screened world of
computers, hexagons are harder to use. Amit | Patel*3 has collected some articles that
may help you turn common square-grid algorithms into hex-grid algorithms.** Let me
present the following resource for hexagonal grid maps.

Red Blob Games

Hexagonal grids are used in some games but aren't quite as straightforward or
common as square grids. I've been collecting hex grid resources for nearly 20 years
and wrote this guide to the most elegant approaches that lead to the simplest code,
largely based on the guides by Charles Fu? and Clark Verbrugge.” Il describe the
various ways to make hex grids, the relationships between them, as well as some
common algorithms. Many parts of this page are interactive; choosing a type of grid

43http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
44http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www.redblobgames.com/grids/hexagons/
http://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

© 00 1 O O b W N =

[S = S S G = e Y
© © 00 N O O b W N =~ O

Dem’s fightin’ words 195

will update diagrams, code, and text to match.

Ihttp://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
bhttp://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html

Example: Dynamically Created Hexagonal Grid - traditional method

//New Combat Grid - simplistic hexagon grid tiles using mega-squares
this . HXTilesFloor = game.add.group();
var hxOffSetY = 0;
var spacingX = tileSize * 0.75;
for(j=0; j<numRows; j++){
for(i=0;i<numCols;i++){
// odd columns are pushed down half a square
if ((i % 2) == 1){
hxOffSetY = tileSize * 0.5;
lelse{
hxOffSetY

9;

}

gameX=tileSize*i+tileSize/2 +tileSpacing ;

gameY=tileSize*j+tileSize/2 +tileSpacing+hxOffSetY;

var tileGridHx = this.add.sprite(
gameX+(config.width/2), gameyY,
box({length:60,width:60,color: '#333'}));

this . HXTilesFloor.add(tileGridHx);

The illustration above shows the hexagonal grid in an East-to-West orientation. The
combat demo has the hexagonal grid in a North-to-South orientation. Adjusting for
either is a simple matter of “off-setting” either the rows or columns by “half an area”.
The example above uses a “modulo division” to learn if we are laying down an “odd
row or column” or an “even row or column”.

Deeper Dive: Real hexagonal grids

As you may have already guessed, “rexrainbow” has a wonderful Phaser Ill plugin that
creates hexagonal grids.*> in either North-South or East-West orientations.

45https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon

196

Dem'’s fightin’ words

var tileXYArray = scene.rexBoard.hexagonMap.hexagon(board, radius);
var out = scene.rexBoard.hexagonMap.hexagon(board, radius, out);

Squishes

This is just a short introduction. Squishes are mixed polygonal areas; they restrict
movement into adjacent areas only and neighboring areas are not predictably ar-
ranged as grids are. In my opinion, squishes are better used for strategic war-games
instead of tactical encounters. But then, game developers are creative types, and |
may have to “eat my words”4° at some point to come. If you would like to see a Phaser
Plugin for squishes download from here*’. Here's an illustration of squishes from the
Phaser Squish Generator:

Phaser Squish Plugin Map generator

5.7 Rules of Engagement: Take 5 paces, turn, and ...

Been there ... done that ...

The history and evolution of the “tactical role-playing game” (aka “TRPG") is a game
genre that incorporates elements of traditional role-playing games and emphasizes

46http://idioms.thefreedictionary.com/eat+words
47http://luckylooke.github.io/phaser-islandjs-plugin/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://idioms.thefreedictionary.com/eat+words
http://luckylooke.github.io/phaser-islandjs-plugin/
http://idioms.thefreedictionary.com/eat+words
http://luckylooke.github.io/phaser-islandjs-plugin/

Dem’s fightin’ words 197

low-level tactical combat rather than high-level strategic gameplay. Tactical RPGs tend
not to feature multi-player play, and a distinct difference between tactical RPGs and
traditional RPGs is the lack of exploration. Later, we will introduce this high-level
strategic RPG play. In Japan, these games are typically known as “Simulation RPGs”
(00000000 RPG?, abbreviated as SRPG).

Note: Ruins of Able-Wyvern™ (ARRA) has included both tactical combat and
strategic roleplay since 1993.

Learning the ropes*® about RPGs will provide us the “who’s done what and why it was
successful.” To gain this foundational knowledge, do the following three exercises to
understand why | selected these forms of combat resolution.

® Exercise: 1. Research other combinations on conducting combat here.*
? Exercise: 2. Research Controversy and Criticisms of preferred conflict resolu-
tion across cultures here.*°
Exercise: 3. Explore what has happened with RPG and what gamers currently
expect.”!

5.8 “Where’s the beef?”

How do we conduct combat and resolve a duel between two (or more) antagonists?
All combat systems boil down to just a few basic questions:>>

* What are the chances an avatar has to strike an opponent successfully?
* If a successful strike occurs, how much injury was inflicted? and finally,
+ What might other events happen to the participants?

It's time to write some code for various forms of combat resolution and then add
some dynamic menu. Here are six (6) different ways to resolve combat:

48http://idioms.thefreedictionary.com/learn+the+ropes
4https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
50https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
5Thttps://en.wikipedia.org/wiki/Role-playing_video_game
52http://www.roguebasin.com/index.phpztitle=Thoughts_on_Combat_Models

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://idioms.thefreedictionary.com/learn+the+ropes
https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game
https://en.wikipedia.org/wiki/Role-playing_video_game
http://www.roguebasin.com/index.php?title=Thoughts_on_Combat_Models
http://idioms.thefreedictionary.com/learn+the+ropes
https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game
http://www.roguebasin.com/index.php?title=Thoughts_on_Combat_Models

Dem’s fightin’ words 198

* Click fest! Originally deployed in Ruins of Able-Wyvern™ (ARRA) and Blood Pit™
(version 1).>3 Each click is a separate combat turn with attack and defense.

* “Guitar Hero” style combat — as modified by my game series Red Fountain
Swordsman™. This is an interesting version of combat that ties directly into a
player’'s personal coordination — refer back to GM Skills mechanics. This combat-
style is your choice if you're interested in limiting the advancement of an avatar
to its owner’s natural capabilities. You can find this combat style in the Bonus
Content download file in the Bonus Games directory.

* “Drama Theater” as seen in so many online games currently;>* acting out the
attacks as in “Street Fighter”.>> This combat system is heavily dependent on
artwork animation.

* The Society for Creative Anachronism>® virtual trainer, game design by Steve
Echols

* “En Guard!">’ a rival to D&D and still wildly popular today.

* Yeap! Ya betcha’ ‘ur life! — a “never-before-seen” combat system that “gambles”
on avatars. You can find this combat style in the Bonus Content download file in
the Bonus Games directory.

Click-fest

Ruins of Able-Wyvern™ (ARRA) Gaming System originally had a single “Fight” button.
Each click on this button represented one combat game-turn round — an exchange of
offensive and defensive moves per each antagonist. Later, | migrated the game to the
dynamic menu-style you've seen earlier in this chapter. If antagonists are “touching”
then an “Attack” button becomes available for melee combat. If antagonists are “not
touching” then only missile weapons are used.

In addition to these “combat buttons”, other tactical menu options become available.
The first of these actions is “Exchange” weapons. Clicking this button allows an avatar
to switch weapons in anticipation of either “hand-to-hand” grappling or disengaging
from their opponent while anticipating missile combat. The other combat options
are defensive in nature and permit the combatants to focus all their attention on
parrying, blocking in melee combat, or “dodging” incoming missiles. These combat
options appear dynamically according to the current combat situation using a “finite
state machine” (FSM).

53http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
54https://www.battleon.com/ag-play.asp

55http://gamequeryjs.com/

56http://www.sca.org/

57https://en.wikipedia.org/wiki/En_Garde!

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://www.battleon.com/aq-play.asp
http://gamequeryjs.com/
http://www.sca.org/
https://en.wikipedia.org/wiki/En_Garde!
http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://www.battleon.com/aq-play.asp
http://gamequeryjs.com/
http://www.sca.org/
https://en.wikipedia.org/wiki/En_Garde!

49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84

Dem’s fightin’ words 199

Pure JS Combat Finite State Machine

eapon

// Design notes: switch seems to be faster than the if statement combat.
// This is original "switched" version rv_8

//

// Menu Finite State Machine (as Global FSM - Ch. 8)

//

// Default is English, easily replace with native language text.

// Also used as simple text buttons with hit area.

var menu = [[]]; // [gameStateNdx] [available menu options]
menu[Q][0] = "Exit"; // always available

menu[Q] [1]="Disbelieve"; // always available;, a simple magic spell for everyone
// "disengaged" game state index

menu[@] [2] = "Dodge"; // available during "disengaged”

menu[Q] [3] = "Fire"; // available during "disengaged”

menu[Q][4] = "Throw"; // available during "disengaged", throw single-handed w\
menu[Q] [5] = "Spell"; // available during "disengaged", cast magic spell
// "engaged" game state index;

menul[1] = ["","Attack","Defend","H-2-H",6 "Disengage", "Exchange"];

// alternate format

//menuf1][o] = ""; // available during "melee"

//menu[1][1] = "Attack", // available during "melee"

//menu[1][2] = "Defend"; // available during "melee"

//menu[1][3] = "H-2-H"; // available during "melee"

//menu[1][4] ="Disengage"; // available during "melee"

//menu[1][5] = "Exchange"; // available during "melee"

// pre & post combat (i.e., "disengaged") game state index;

menu[2] = ["","Cook","Inventory", "Search","1st Aid","Learn"];

// alternate format

//menuf2][0] = ""; // always available

//menu[2][1] = "Cook"; // available pre or post combat
//menu[2][2] ="Inventory"; // available pre or post combat
//menu[2][3] = "Search"; // available post combat

//menu[2] [4] = "1st Aid"; // available during "melee" as potions?
//menu[2] [5] = "Learn"; // available post combat; gain experience

As mentioned earlier, combat has an engaged, disengaged status, and a pre- or post-
combat state. It becomes a simple matter to use a 2D array. The first dimension —
the columns — is the “combat status sentinel” of engaged, disengaged, or pre/post-
combat and the rows hold the various commands a player will issue inside that status.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 200

Separating our commands in this way always helps us in developing Massive Multi-
player online Games (MMoG) and placing our HUD options in various containers.

A “finite state machine” (FSM) is truly invisible to the gamers as they should “Pay no
attention to that man behind the curtain.” as the Wizard of OZ once said.>® We will
study further details about the FSM and recursive feedback in later chapters. Suffice
it to say for now, that a single click launches several algorithms:

« _combatRound: |s the administrative controller. It determines who goes first
in this round of combat. This combat initiative could be modified by previous
injuries, emotional predigest, winning, or losing. This function then calls the
combat round narrative.

« _combatNarrative: |s the work-horse for the combat turn. It generates a unique
narrative that occurred during this single combat action. It generates the random
events, compares combat skills with a helper function, evaluates the success or
failure of each antagonists’ attack and defense, and lastly calculates physical
damage imposed upon the body or equipment (i.e., damage to weapons or
shield/armor). All this from one simple click of a button.

® Exercise: Download and study the combat. js in the online Source code Ap-
? pendix.>®

Guitar hero - Time to get it Right!

* Red Fountain Swordsman (play the original flash game here)®: Take the same
martial-arts classes in swordsmanship as the Winx club specialists of Red Foun-
tain. Practice your sword skills and timing to become the perfect swordsman
specialist like Brandon and Sky.

* Play the Phaser demonstration here.®'

Note: There's a similar game to Guitar-Hero constructed in Phaser. | encourage
you to download and review their GitHub OOP source code.®?

58https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.htmi
59https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
60https://www.renown-games.com/winx/red-fountain-swordman/index.html

61 https://makingbrowsergames.com/book/_rfs-Phaser/
62https://github.com/PBMCube/banjo-hero

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://www.renown-games.com/winx/red-fountain-swordman/index.html
https://makingbrowsergames.com/book/_rfs-Phaser/
https://github.com/PBMCube/banjo-hero
https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://www.renown-games.com/winx/red-fountain-swordman/index.html
https://makingbrowsergames.com/book/_rfs-Phaser/
https://github.com/PBMCube/banjo-hero

Dem'’s fightin’ words 201

The Guitar Hero was a series of musical-rhythm games first published in 2005 by
RedOctane and Harmonix, and distributed by Activision, in which players use a guitar-
shaped controller to simulate playing guitar. In the original Guitar Hero game, a player
tried to press the correct guitar string at the correct time. It was a game that used
“Timing Elements"®3 tied into the gamer's personal coordination skills — refer to
Chapter 5 GM Skills. 1t mimicked many features of an actual guitar, including fast-
fingering riffs, “hammer-ons”, pull-offs, and a “whammy bar” to alter the notes’ tones.
The game was transcribed into Adobe Flash®4, from which came my idea for this
version of combat — the Red Fountain Swordsman game.

Hint: This complete source is available only in the Bonus Download con-
tent. Developer's Demo located at https://makingbrowsergames.com/book/
_rfs-Phaser/

Days of our Lives - Drama Theater

Conflict — as seen in so many current online games — acts out the conflict as
an animated movie such as that seen in “Street Fighter”. These conflict scenes
solicit tactics from the gamer then act out the chosen strategies compared to the
antagonists'. The best game, in my opinion, that demonstrates this, is “Adventure
Quest”®, | had many visits and exchanges with them in their earlier years at the
turn of the millennium (2000 - 2001); AQ sky-rocketed when they hired a professional
artist years later to support their online efforts! Their groundbreaking methods have
become the “bread and butter”®® of today's RPG combat as seen in this online course
below which mimics their combat style.

63http://www.roguebasin.com/index.php?title=Time_Systems
64http://guitarflash.com/

65http://www.battleon.com/
66http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.roguebasin.com/index.php?title=Time_Systems
http://guitarflash.com/
https://makingbrowsergames.com/book/_rfs-Phaser/
https://makingbrowsergames.com/book/_rfs-Phaser/
http://www.battleon.com/
http://www.battleon.com/
http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter
http://www.roguebasin.com/index.php?title=Time_Systems
http://guitarflash.com/
http://www.battleon.com/
http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter

Dem'’s fightin’ words 202

Sample of Single Page Combat from Zenva

* Single Page Combat from Zenva RPG Online Course®’ FREE Source Code available
in this excellent tutorial.

» Advanced Phaser 3 - Build an RPG® Master advanced skills in HTML5 Game
Creation as you build an RPG

SCA Virtual “Fighter Practice” by Steve Echos

The Society for Creative Anachronism is an international organization dedicated to
researching and re-creating the arts and skills of pre-16th-century Europe. Their
“Known World” consists of 20 kingdoms, with over 30,000 members residing in
countries around the world. Members, dressed in clothing of the Middle Ages and

Renaissance, attend events which feature tournaments, royal courts, feasts, dancing,
various classes & workshops, and more.

One of my life-long friends, Steve Echos, introduced me to a game he invented to

train S.C.A. warriors in their live combat. He has graciously allowed me to publish his
system for your enjoyment.

67https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=
Phaser3GamePrototyping

68https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping

Dem’s fightin’ words 203

Legs

Copyright © 1980, Steve Echos (Game Design)
Copyright 2017 Ethan Page (added features)
Copyright © 2017, Stephen Gose (Presentation & source code). Al rights reserved.

Rock, Paper, Scissor in a deadly combat system
How it works: “premeditate and execute”.

The game is a simple “rock, paper, scissors” style of combat; but is extended into both

hands — a weapons hand and a shield hand — instead of using the traditional one
hand.

1. Each player selects where to defend their body with their shield hand.
* A“Norman” shield will protect 2 adjacent locations. For example, a player with
a Norman shield protects “high” then both their “head” and “body” are protected
while their legs are exposed to any attacks.

* A “Saxon” shield only protects 1 area while the adjacent areas are exposed to
attack.

2. Each player selects where to attack their opponent as: “high” (the head), “middle”
(the body), or “low” (the legs).

3. Players reveal their choices; a successful hit on the head or body will kill their
opponent’s avatar. A hit on the legs is crippling; the player cannot move.

This is a wonderful combat system for online multi-player or table-top gaming. For a
single-player game, it is a simple matter of listing all the possible combat actions for
the computer’s Al; and then, perform random (or semi-intelligent) actions. Download
the pseudocode and flowchart.?® | encourage you to combine this “SCA Virtual

Trainer” with this interesting game called Color ZAP (book)’° by William Clarkson’'
for a single-player combat system.

69https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
7Ohttp://amzn.to/2njpDQn

7Vhttps://williamclarkson.net/courses/phaser-basics/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
http://amzn.to/2njpDQn
https://williamclarkson.net/courses/phaser-basics/
https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
http://amzn.to/2njpDQn
https://williamclarkson.net/courses/phaser-basics/

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

Dem'’s fightin’ words 204

SCAVT game: lines 292-318

/7
/7
/7
/7
/7
/7
/7
/7

/7
/7
/7
/7

/7
/7
/7
/7
/7
/7

/7
/7
//
//
/7
/7
//

Optional Game Turn Results (GTR) display formatting
1) Place GTR on a modal JavaScript alert pop-up
- alert(composedNarration);
- use jQuery ui
function showPopUp () {
//JQuery method to call the modal in Semantic UI.
$(".ui.modal").modal('show");

2) Place GIR on a modal Phaser Text pop-up with a continue button.
Others solutions are jquery, but the canvas focus will be lost.
it's better to place HUD in layers, containers, or groups then

change the visibility on or off (simply without animations).

3) Place GTR on a sliding HUD panel on either side
https://jqueryui.com/
https://codyhouse.co/gem/css-slide-in-panel
https://codepen.io/jasesmith/pen/ragBpm
http://wowslider.com/html5-slider-sunny-fade-demo.html
https://davidwalsh.name/css-slide

4) Place GTR in a 2-column table or single column on each side
5) Place GIR into a historical logging journal
- only reset journal upon new game sessions
- email the journal or preserve it:
- in localStorage permanently or
- sessionStorage per game play.
var emaillog += composedNarration;

« Demonstration single-player game here (v3.16+)’2
« Demonstration multi-player game (v3.16+)"3

En Guard method

En Guard was a rival to Dungeons and Dragons (D&D) and still wildly popular today.
Launched in 1975, it provided an “alternate RPG combat system” using tactics rather
than its “dice-rolling contender” D&D. The En Guard combat system is a Queued Turn

72https://makingbrowsergames.com/p3gp-book/p3-sca/
73https://leanpub.com/rrgamingsystem

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/p3-sca/
https://leanpub.com/rrgamingsystem
http://www.roguebasin.com/index.php?title=Time_Systems
http://www.roguebasin.com/index.php?title=Time_Systems
https://leanpub.com/rrgamingsystem

Dem’s fightin’ words 205

System (explained in detail here)’* — or a premeditate and execute. In this approach,
a gamer selects an attack option (cut, slash, lunge); each option is broken down into
“fix segments of time” to perform that action. For example, a “Cut” would require 4-
time segments: x-C-x-x. As you see, the “cut” happens in the 2nd time segment, the “x”
are movement actions into and out from that single maneuver. A Player has 12-time
segments (TS) per combat round; this “cut” action consumed 1/3 of the time so the
player could select other tactical options.

En Gard Combat Turn and timing segments

Turn 1 2 3 4 5 6 7 8 9 10 1 12
A X € X X X P X X € X X X
B X P X X € X X X € X X X

* C = Cut (X-C-X-X)
+ P =Parry (X-P-X)
* X =Rest or time to maneuver

Two antagonists are dueling. In time segment (TS) #2 B successfully parried A's
cutting attack. In TS #5, B's attack was successful since A’s parry came too late. Both
combatants struck simultaneously in TS #9.

This is a wonderful combat system for online multi-players or table-top gaming. For a
single-player game, it is a simple matter of listing all the possible combat actions for
the computer’s Al; and then, perform random (or semi-intelligent) actions.

The EnGard game system. Product info is available here.”>
Yeap! Ya betcha’ “ur life!

This is an interesting twist on combat systems since a gamer is “betting their skills
and avatar’s life in the process”. So why not turn the combat system into a “gambling”
game such as a “slot machine”?? There are GA-zillion examples for “slot machines with
the Phaser Framework”; all you would need is some interesting artwork. Each lever
pull could spin up the attacks and defenses for both attackers and antagonists. The
various combinations would translate into the combat rounds results. Studying the
up-coming chapter on Artificial Intelligence, you could skew each “slot machine pull”
using a probability table. Refer to my favorite author — Emanuele Feronato — for
source code and more ideas.’®

74http://www.roguebasin.com/index.php?title=Time_Systems
75https://amzn.to/2Ncimw6

76http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://amzn.to/2Ncimw6
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/
http://www.roguebasin.com/index.php?title=Time_Systems
https://amzn.to/2Ncimw6
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/

Dem’s fightin’ words 206

5.9 Story narrative

Nothing is more compelling than a background story explaining why your hero
is questing. The Ruins of Able-Wyvern™ (ARRA) and the Rescue of NCC Pandora™
(ARNCCP) Gaming System (source code in the appendix) provides such a narrative
during combat and for quests.

» >Step10of3 Your Quest's background story.

Here is Your Fantasy Quest ... —
As you wander through the streets of a large city. you soon meet
: a familiar face, who treats you to a meal In exchange for willing
ears. A noble of high esteem waits until most of the crowds have
® D&D Style drawn away from you before telling you any news beyond small

O Generic Style talk. Finally, the tale begins.
@ Simple Outline Recently. there has been rash of major thefts from the rich and
powerful. This obviously has many lecals concemned. Rumors
say it is the work of the corrupt commander of the local army, but
none Know the truth. It's up to you to get to the bottom of the
@Sci-Fi D controversy and learn what It means for all the folk and lands
around the family tombs of rich noblemen. In exchange for your
aid, you'll gain the reward of a minor magical item as well as
@ Simple Outline additional accolades as heroes of the family tombs of rich

® Warhammer 40K noblemen.

® Warhammer Style

O Generic Future

Questions or comments? Picase email supporti@@pbmeube.com

T e e T e L e e e B e e it e e e B e e e =]

Randomly Generate background stories

P Hint: This complete source is available in the online Source code Appendix’’.

77https://makingbrowsergames.com/book/index13.html#13.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/index13.html#13.3
https://makingbrowsergames.com/book/index13.html#13.3

Dem'’s fightin’ words 207

5.10 Frisking, Fondling, or Groping

Combat Encounter. Beware, a Goblin is here!

Character Stats: Exp:
Stamina: 15 Renown
Attack: 50% Gold:
Defend: 50% Food:

ﬁ Weapons: Short Sword [2]
‘ \ . Armor: Leather Jerkin

I\ @7

You : a smooth chop Monster : a heavy thrust
Monster : a failed block You : a parry
Monster : wounded! [2 pts] You : not injurded!

Y savage all food, gold

e L e L

] et _\-'-’\- e e _\. e Rty fGu Auties hetiey Grtel e el oiiad o

Our Avatar wins in Combat & Salvages rewards
After a combat encounter, our avatar has the option to search and rescue booty.

5.11 Chapter Source Code

https://makingbrowsergames.com/book/index.html

Book Combat demo (online)’®

P Hint: Use the Developer’'s Console to study the internal game operations.

78https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.thefreedictionary.com/frisking
http://www.dictionary.com/browse/fondle
https://www.merriam-webster.com/dictionary/grope
https://makingbrowsergames.com/book/index.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Dem’s fightin’ words 208

5.12 Complete Combat Prototypes

We have moved the Source Code Appendix onto the supporting website and removed
it from the 1st to 6th editions. This allows us to update code changes dynamically for
Phaser v3.x.x as it matures.

Combat Systems Game Prototype Library’?
Chapter 7 online Examples&°

5.13 Summary

Here's what we've fought for thus far...

Learned the 4 virtues of a good tactical combat system.

Separated Conflict spacial aspects;

Developed various modes of combat: ranged, melee, and hand-to-hand.
Provided gamers with correct weapon usage in various combat modes.
Created a dynamic menu responding to the current state of conflict.
Analyzed the Phaser Weapons function.

Researched the 3rd Person missile demo.

Discovered how to juice up games.

Developed two distinct tactical movement styles and matching tile-maps.
Contain combatants with a combat arena.

Programmed several inputs to control a player’s avatar.

Researched the Grid-less Combat demo.

Develop tactical maneuvers as an added feature.

Researched the Grid-ed Combat demo.

Discovered the proper “separation of concerns” for Tiled-Maps.
Developed movement tables as a super-set of Tiled-Maps.

Deployed square grids for various moves and combat engagement.
Deployed hexagonal grids with either a vertical or horizontal orientation.
Researched the Hex Grid Combat demo.

Deployed squishes as a movement and tile-map.

Discovered how to import new graphics art under the “separation of concerns”
game prototyping.

Found resource tools to develop movement tables and Tile-Maps.
Analyzed the difference in tile-map tools and importing into Phaser.

79https://makingbrowsergames.com/p3gp-book/index-combat.html
80https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index-combat.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://makingbrowsergames.com/p3gp-book/index-combat.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

Dem’s fightin’ words 209

+ Examined various Mozilla Game Developers References for Tiled-Maps creation.

« Examined various Red Blob References for square and hexagonal Tiled-Maps
creation.

*+ Researched 6 different conflict systems.

+ Studied popular conflict systems across various ethnic and cultural groups.

* Analyzed the “Click-fest” finite state machine.

* Learned about minimum button sizes for mobile games.

+ Adapted the “Guitar Hero"” style of conflict.

+ Discovered the Society for Creative Anachronism and their “Virtual Fighter Prac-
tice” combat system.

* Discovered “En Guard” queued turn system.

* Learned to adapt and innovate gambling games into a combat system.

+ Discovered how to enhance conflict systems with narrative storylines.

5.14 Footnotes

* To preserving CPU processing and battery, pre-calculate math formula. Refer to
sine and cosine here®'. One radian equals®? 180°/ t = 57.30°. Use this online
calculator®? to help reduce the CPU workload.

* T, A. (2017, January 17). Finger-Friendly Design: Ideal Mobile Touchscreen Target
Sizes - Smashing Magazine.8* Retrieved May 19, 2017,

« EnGard game system. Product info®>

+ Color ZAP (book)s®e

* Phaser Plugin for squishes.8’

* Hex grid resources®?

* References from Mozilla Developers: 82

* Square Grid Tile Maps samples®°.

* “The Four Virtues of a good tactical turn-based combat system"?"

JavaScript for game development??

* JS Game development examples for Tilemaps?3.

« HTMLS5 games workshop?4

« How to write a Rogue-like game in 15 Steps®?

81 http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
82https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
83https://www.rapidtables.com/calc/math/Cos_Calculator.html
84https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
85http://www.engarde.co.uk/useful.html#Top

86http://amzn.to/2njpDQn

87http://luckylooke.github.io/phaser-islandjs-plugin/
88http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
89https://github.com/mozdevs

9Ohttps://github.com/mozdevs/gamedev-js-tiles

9 http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
92https://github.com/mozdevs/js-for-gamedev
93https://github.com/mozdevs/gamedev-js-tiles

94 https://github.com/mozdevs/html5-games-workshop

95 http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.engarde.co.uk/useful.html#Top
http://amzn.to/2njpDQn
http://luckylooke.github.io/phaser-islandjs-plugin/
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps
http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.engarde.co.uk/useful.html#Top
http://amzn.to/2njpDQn
http://luckylooke.github.io/phaser-islandjs-plugin/
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps

Dem'’s fightin’ words 210

+ Rogue Basin articles on combat?®

9 http://www.roguebasin.com/index.php?title=Articles#Combat_2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.roguebasin.com/index.php?title=Articles#Combat_2
http://www.roguebasin.com/index.php?title=Articles#Combat_2

© 00 N O O b W N =

NN NN NN NN R S R Sl ol oy
W N0 U WN RO O 0N U WD,

Game Mechanism Components 211

6. Game Mechanism Components

This section was in the former Phaser Ill Game Design Workbook (5th edition), and is
preserved here as | update that book to its new 6th edition and this book’s content.

6.1 Phaser III inline script - Reviewed

Phaser Il Game Mechanics in main. js

// Main game Handler methods

/)

//**TODO** :

// refactor and adjust for your game deployment

// remove console debug information on public deployment
// ==

main: function(){

//Phaser v3.16+

game = new Phaser.Game(config);

console.log("Game prototype (Phaser.Game): Ext? "+Object.isExtensible(Phase\
r));

//console. log(Object.values(Phaser));

//console. log(Object.getPrototypeOf(Phaser));

console.log(0Object.getOwnPropertyDescriptors(Phaser));

// add all game states

for(var stateName in window.GAMEAPP.state){
console.log("Crnt State: "+stateName);
game.scene.add(stateName, window.GAMEAPP.state[stateName]);

//Dynamically assigned Game Mechanics from JSON Data file.
gameMechanics();

//move to next game phase

Copyright © 1972-2017 Stephen Gose. All rights reserved.

29
30
31

© 00 N O O b W N =

[S = S G S o = G S
© © 00 N O O b W N =~ O

Game Mechanism Components 212

console.log("Leaving GAMEAPP.main -> boot"); //debug
game.scene.start('boot');

}/

View the entire annotated “main.js” here.’

Download your v3 Project Template and demo? from
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.

zip

Phaser v2.x.x inline script - Reviewed

var gameWidth = 1024; //golden ratio set-up
var gameHeight = 640;

//create an "instance" of our Phaser Game framework to use and call
// from within our game.
var game = new Phaser .Game(

gameWidth,

gameHeight,

Phaser . AUTO,

'game');
game.state.add('Boot', BasicGame.Boot);
game.state.add('Credits', BasicGame.Credits);
game.state.add('Game', BasicGame.Game);
game.state.add('GameOver', BasicGame.GameOver);
game.state.add('Languages', BasicGame.lLanguages);
game.state.add('MainMenu', BasicGame.MainMenu);
game.state.add('MoreGames', BasicGame.MoreGames);
game.state.add('Preloader', BasicGame.Preloader);
//Now pass control over to the Boot state.
game.state.start('Boot"');

Adding Display objects

Game Objects — with its texture, animation capability, input events, and physics — are
called “sprites”. Sprites are an indispensable component in your game; they are used

Thttps://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
2https://makingbrowsergames.com/p3design/project-starterKit-demo/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.zip
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.zip
https://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/

Game Mechanism Components 213

for nearly everything that gamer sees. In contrast, an image, in the Phaser JavaScript
Framework, is a “lighter” Game Object with a texture and input but does not have
attached physics reactions nor animation handlers.

Sprites are computer graphics that are moved around the screen or otherwise
manipulated as a single entity by the gamer input controls (aka mechanisms). It is
the player's representation (aka avatar) in the game’s activities. At its most basic
composition a Sprite consists of:

+ a set of coordinates and a texture that is rendered to the canvas.
+ contain additional properties
- allowing for physics motion (via Sprite.body),
- input handling (via Sprite.input),
* events (via Sprite.events),
* animations (via Sprite.animations), and
« camera culling and more.

Phaser Ill example
this.<displayNameAssigned> = this.add.<Phaser-object-types>(this, x,y,key,frame)”

Phaser v2.x.x example
this.<displayNameAssigned> = game.add.<Phaser-object-types>(this, x,y,key,frame)?

Ihttp://labs.phaser.io/edit.nhtml?src=src/game%20config/multiple%20game%20instances.js
bhttp://phaser.io/docs/2.6.2/index#display

game.add, from the GameObjectFactory library, is the quickest way to create common
game objects. These newly created objects are automatically attached to their appro-
priate “Manager”, “World”, or manually specified parent “Group”. Phaser Ill currently
supports different objects? through the Game Object Factory compared to the former
V2.X.X.

NOTE: Refer to Phaser APl documentation for the various display objects. And,
review Part 2 - Loading Assets* in the official Phaser Tutorial Making your first
Phaser game>.

All sprites are typically loaded for each game phase during the “Boot”, “Preload” game
phases, or inside each scene’s “preload essential function”. Adding visual game pieces

3https://phaser.io/phaser3/contributing/part5
4http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
Shttp://phaser.io/tutorials/making-your-first-phaser-3-game

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/game%20config/multiple%20game%20instances.js
http://phaser.io/docs/2.6.2/index#display
http://labs.phaser.io/edit.html?src=src/game%20config/multiple%20game%20instances.js
http://phaser.io/docs/2.6.2/index#display
https://phaser.io/phaser3/contributing/part5
http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
http://phaser.io/tutorials/making-your-first-phaser-3-game
http://phaser.io/tutorials/making-your-first-phaser-3-game
https://phaser.io/phaser3/contributing/part5
http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
http://phaser.io/tutorials/making-your-first-phaser-3-game

© 00 1 O O b W N =

NN NN NN NN R R R Rl sl
W T 0 O WN PR, O O OO0 U WD RO

Game Mechanism Components 214

should appear in the internal “pre-load” functions; placing the game pieces onto the
game stage should appear in the internal “create” functions of each Phaser Il scene.

Phaser Ill example

"use strict";
/** game load assets **/

var load = new Phaser.Class({

Extends: Phaser.Scene,

initialize: function load (){

Phaser.Scene.call(this, { key: 'load' });

},

preload: function (){
console.log("Entering load -> preload"); //debug
this.load.image('loadScene', 'assets/images/loadScene.jpg');

// we have preloaded assets required for Loading group objects
// from the Boot state.

},

create: function(){
// loading has finished - proceed to where? demo state? languages?
this.add.image(@, 0, 'loadScene').setOrigin(Q);
//this. input.once('pointerdown’', function () {
console.log('From load to language');

this.scene.start('language');

//}, this);

),

f Exercise: Download this skeleton scene® file as your template.

Adding Player(s) and Opponent(s) sprites will follow similar mechanisms. Static ele-
ments, those having a fixed position, would use images. Now that the sprite sheet is
preloaded, place the sprite in the canvas by changing the “create function” this way:

Shttps://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js

© 00 N O O b W N =

I = U
W N s,

© 00 N O O b W N =

Game Mechanism Components 215

Phaser v2.x.x example

preload: function(){

//I want physics and animation handlers

this.sprite = game.add.sprite(200, 150, "spriteName");
//no physics nor animation handlers present

this.rock = game.add.image(100, 100, "imageName");

//this has animation frames.

game. load.spritesheet(
"spriteName2", //assigned variable name
"spriteGraphics.png", //graphics file name
spriteWidthSize, //dimensions
spriteHeightSize

Adding Player(s) and Opponent(s) sprites will follow similar mechanisms. Static ele-
ments, those having a fixed position, would use images. Now that the sprite sheet is
preloaded, place the sprite in the canvas by changing the “create function” this way:

Phaser v2.x.x example

create: function(){

// The difference between an Image and a Sprite
//1is that you cannot animate nor add physics to an Image
game.add. image(

100, //Xx coordinates

100, //y coordinates

"rock" //your assigned variable name

) o

Hint: You could download and create all your game tokens and place them
in the “wings” of your stage — just as actors waiting to enter a stage play.
The hidden secret is game.make. It is the quickest way to create common game
objects without adding them to the game world display! Phaser currently (as
of v2.6.2) supports 20 objects’ through the Game Object Creator.

Thttps://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html|

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html

© 00 N O O b W N =

[N T S T N T S N e T — S G G NS ¥
N P © © 00 1 O O b W N =~ 0O

Game Mechanism Components 216

4

Exercise: Create an add sprite/image for each control mechanism onyour main
menu scene.

Phaser Ill Example: Creating for Credits Scene

var credits = new Phaser.Class({

});

Extends: Phaser.Scene,

initialize: function credits (){
Phaser.Scene.call(this, { key: 'credits' });

},

preload: function (){

this.load.image('creditsScene', 'assets/images/creditsScene.jpg');

},

create: function (){
this.add.image(@, 0, 'creditsScene').setOrigin(9);
this.input.once('pointerdown', function () {
console.log('From credits to menu');
this.scene.start('menu');

}, this);

4
i

Exercise: Create an add sprite/image for each control mechanism on your main
menu scene.

NOTE: Refer, as we did earlier, to your Bonus Content® /MMM-js-
v0001/jsrc/Boot.js and Preloader.js files. | am using a button atlas to manage
my “multi-state” buttons.

8https://makingbrowsergames.com/p3design/bonusDownlLoads/MMM-]Source.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/bonusDownLoads/MMM-JSource.zip
https://makingbrowsergames.com/p3design/bonusDownLoads/MMM-JSource.zip

Game Mechanism Components 217

Hint: You could download and create all your game tokens and place them
in the “wings” of your stage — just as actors waiting to enter a stage play.
The hidden secret is game.make. It is the quickest way to create common game
objects without adding them to the game world display! Phaser currently (as
of v2.6.2) supports 20 objects® through the Game Object Creator.

You could create your own sprites; but, dozens of websites that offer “royalty-free”
graphics. It's your choice. #1 and #2 below are my strongest recommendations; the
following recommendations are offered in alphabetical order only with no preference
suggested.

GameDevMarket.net'? Collection of Music, Sound effects (sfx), 2D/3D/GUI Art.
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
http://spriteme.org/

GUI game kits'"

LN =

http://hasgraphics.com/free-sprites/

* http://opengameart.org

* http://spritedatabase.net/

* http://tsgk.captainn.net

* http://untamed.wild-refuge.net/rmxpresources.php?characters

* http://www.bogleech.com/games.html

* http://www.cgtextures.com/

* http://www.gameartguppy.com/

* http://www.hellsoft.net

* http://www.lemog.fr/lemog_textures/index.php

* https://lostgarden.home.blog/tag/free-game-graphics/

* http://www.makeflashgames.com/tutorialshtml5/draw-image.php
* http://www.pygame.org/wiki/resources

* http://www.retrogamezone.co.uk/

* http://www.rpg-palace.com/visual-resources/tilesets-rmxp

* http://www.spiralgraphics.biz/packs/

* http://www.spriteland.com/

* http://www.spriters-resource.com/

* http://www.sprites-inc.co.uk/

* http://www.videogamesprites.net/

* https://www.makegameswith.us/academy/art/set

* https://www.pinterest.com/eduardoonguard/free-game-sprites-and-assets/
* https://www.scirra.com/forum/kenney-s-free-assets-20-000-assets_t93518

9https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html|
10https://www.gamedevmarket.net?ally=GVgAVso)
" https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
http://spriteme.org/
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://hasgraphics.com/free-sprites/
http://opengameart.org
http://spritedatabase.net/
http://tsgk.captainn.net
http://untamed.wild-refuge.net/rmxpresources.php?characters
http://www.bogleech.com/games.html
http://www.cgtextures.com/
http://www.gameartguppy.com/
http://www.hellsoft.net
http://www.lemog.fr/lemog_textures/index.php
https://lostgarden.home.blog/tag/free-game-graphics/
http://www.makeflashgames.com/tutorialshtml5/draw-image.php
http://www.pygame.org/wiki/resources
http://www.retrogamezone.co.uk/
http://www.rpg-palace.com/visual-resources/tilesets-rmxp
http://www.spiralgraphics.biz/packs/
http://www.spriteland.com/
http://www.spriters-resource.com/
http://www.sprites-inc.co.uk/
http://www.videogamesprites.net/
https://www.makegameswith.us/academy/art/set
https://www.pinterest.com/eduardoonguard/free-game-sprites-and-assets/
https://www.scirra.com/forum/kenney-s-free-assets-20-000-assets_t93518
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Game Mechanism Components 218

Warning: Be selective! Be careful to match similar themes, artistic style, and
palettes when choosing “royalty-free” artwork. The hours you spend — time
IS MONEY — trying to make everything match up might have been spent
better as a cash transaction to an artist for hire. Always verify the quality
requirements you need; and more importantly, whether the graphics are
offered as a non-commercial or commercial license for game projects. Many
artists seek projects that recognize their contributions.

® Exercise: Review the entire list(!!!) and select (write down!) your preferences
? for your game's theme. If your selection is non-commercial, contact the artist
anyway and explain what you would like to do. Many artists are very eager to

display their works. It's another “feather in their bonnets” ... negotiate!

Adding Control Mechanisms

In Phaser Ill, an “Image” Game Object is a light-weight static graphics in your game,
such as logos, background scenery, or any other non-animated elements. Images can
accept input events and have physics bodies that could perform tweens, tints, and
scroll across the stage. The primary difference between an “Image” and a “sprite” is
that you cannot animate an “Image” — Images do not have an Animation component.

The “Input Manager” is the control mechanism for all types of player inputs such as
the mouse, keyboard, touch, “mspointer”, and all input sub-systems. The Phaser “core
game loop” will update its Input manager automatically.

* When an input device is “just pressed” or “just released”, the minimum default
sampling is 200 milliseconds.

* When an input (eg. Keyboard, Mouse, Touch) is “enabled”, it is processed pro-
vided that each element is also enabled.

* When not enabled, all input sources are ignored. To disable just one specific
input type — for example, the Mouse— you would use input .mouse.enabled = false.

o NOTE: How often should the input pointers be checked for updates? A value

of 0 means every Single frame (\60 fps or 16.667 ms); a value of 1 means every other frame (\30
fps or 33.33 ms) and so on. These are approximations based on your game
“workload”. More on this below in Advanced Concepts: Animations.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 219
Adding Buttons & Mobile Touch

Phaser v2.x.x has built-in functions for handling buttons; however, that is NOT the
case with Phaser v3.x.x (caveat: as of 20180729). The fact is that buttons — as clickable
game objects — are just as simple to make in Phaser v3.x.x. The “button” behavior
in Phaser Il are separate functions (such as hovering state, animations, and other
special visual effects (sfx)) are just “decorations”.

Everything created inside a “Scene” comes from the “Phaser > GameObjects > GameOb-
ject”. So any text we add to our v3 buttons comes from “Phaser. GameOb jects. Text” and
the button itself from “Phaser. GameOb jects.GameOb ject”. TO prepare an object to become
a clickable button, we turn on one simple game object property.

//Phaser v3.x.x enabling clickable input and emit input events directly.

<objectName>.setInteractive();
<objectName>.on(EVENT, CALLBACK, this)

//listens for a pointer down event anywhere on the game canvas
this.input.on(‘<objectName>’, this.onObjectClicked, this)

//assigning a callback function
onObjectClicked(‘pointer’, ‘<objectName>')

We could set this on our button text label or we could set our button’s body. If we
choose a game object without any geometry background, such as our text label,
Phaser v3.x.x will create a default rectangle for us. ”.setInteractive” cause the game
object to send “events”, but we need something to “listen” for those “events”. The
problem is understanding where are those “events” are coming from? How can we
identify which button was pressed? We also want to filter any “events” coming from
the “scene” in general too.

Any “gameObject™ With its ”. setInteractive()” enabled sends an Event Emitter 3 (EE3)'2
which are faster than the former “eventemitter2” events. We can listen and capture
EE3 using the Phaser v3.x.x “on” method.

//Phaser 3.x.x button
var button = this.add.text(100,100, “I'm a button”,);
button.setInteractive();

1Zhttps://github.com/primus/eventemitter3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/primus/eventemitter3
https://github.com/primus/eventemitter3

Game Mechanism Components 220

button.on(‘pointerover’,function (pointer) {

this.setTint(Ox00FF0O0);
console.log(‘Over the button now’);

D)

Using the code above we know our button is sending events. Other events available
in Phaser v3.x.x are:

* “pointerout” — this is the opposite of “pointerover”. It fires when the cursor leaves
the game object geometry area.

* “pointerdown” — this triggered when a click or a touch occurs on the game object
— when the mouse button is pushed down or when a finger touches down.

* “pointerup” — this is the opposite of “pointerdown”. This fires when the mouse
button is released or a finger is lifted off the game object.

Read more details about how to extend Phaser Ill with decorative ES6 frosting
from this article'>.

| am using “multi-state” buttons — a concept | learned while creating games using
Adobe Flash. When a gamer “rolls over”, “clicks” and “rolls off” my menu buttons, that
button changes colors (i.e., provides a visual clue). | use the standard (international)
colors of red (stop), green (go) to visually clue my gamers. Mobile devices are different
to simulate the same button behavior since it is impossible to “roll over” a navigation
button on a mobile device.

Buttons are deployed as sprite sheet animations. | have one frame for each state
(visual clue) my button will display — over, clicked, off. To begin, | create my button
animation in Flash. Notice the highlighting; it moves to give the illusions of animation.
| used Texture Packer' to build the JSON atlas for my buttons '

Button spriteSheet Frames

13https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
14https://www.codeandweb.com/texturepacker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
https://www.codeandweb.com/texturepacker
https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
https://www.codeandweb.com/texturepacker

© 00 N O O b W N =

10
11
12
13
14
15
16
17
18
19
20
21
22

Game Mechanism Components 221

Hint: | found a tool called “Flash to Phaser”'>. It is simply marvelous! | salvaged
all my flash animations from 265 games and converted them into HTML5
Phaser arcade games. This allowed me to keep my substantial investmentin a
“dead software package”'® and “re-tool” my current skill in ActionScript toward
ES5/6/7/8/9/10.

Phaser III “Actions”

Actions are a new set of functions in Phaser lll; they perform tasks on groups of
internal game objects. In Phaser v2.x.x, groups were used as game object pools; it
permitted you to manipulate their content. In contrast, Phaser Ill offers the same con-
venience but is not limited to groups only! “Actions” provide access from anywhere,
as long as you provide an array of game objects. For example, observe their impact
on a “game object layer”.

Example from http://phaser.io/phaser3/api/actions

angle: function (value) {

Actions.Angle(this.children.entries, value);

return this;

},

Veis

Depending on the Action it can also be used dynamically,

such as in an update function. Here we use the RotateAround

Action to rotate all the children of the Layer around the given point:
*/

function create (){

layer = this.add.layer();
for (var i = 0; i < 256; i++) {
var image = this.add.image(Phaser.Math.Between(200, 600),
Phaser .Math.Between(100, 500),

"diamonds', Phaser.Math.Between(0, 4));

layer .add(image);

15http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
16https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/
http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/

23
24
25
26
27
28

Game Mechanism Components 222

function update () {
layer .rotateAround({ x: 400, y: 300 }, 0.01);

Components

Phaser 2 used components to avoid duplicating Game Object code; components were
applied as “mixins” onto a Game Objects. In Phaser Ill, components perform the
same tasks with additional capabilities of “getters” and “setters”. Components are
not restricted to gaming objects only, they can “attach” from anywhere. Typically, a
game object describes which components are available; now they used as a mixin
array. For example:

What'’s the Difference Between Class & Prototypal Inheritance?
... you have to understand that there are three different kinds of prototypal OO.

Concatenative inheritance: The process of inheriting features directly from one object
to another by copying the source objects properties. In JavaScript, source prototypes
are commonly referred to as mixins. Since ES6, this feature has a convenience
utility in JavaScript called object.assign(). Prior to ES6, this was commonly done
with Underscore/Lodash’s .extend() jQuery’s $.extend(), and so on... The composition
example above uses concatenative inheritance.

Prototype delegation: In JavaScript, an object may have a link to a prototype for
delegation. If a property is not found on the object, the lookup is delegated to the
delegate prototype, which may have a link to its own delegate prototype, and so on
up the chain until you arrive at object.prototype, Which is the root delegate. This is
the prototype that gets hooked up when you attach to a Constructor.prototype and
instantiate with new. You can also use object.create() for this purpose, and even mix
this technique with concatenation in order to flatten multiple prototypes to a single
delegate, or extend the object instance after creation.

Functional inheritance: In JavaScript, any function can create an object. When that
function is not a constructor (or cilass), it's called a factory function. Functional
inheritance works by producing an object from a factory, and extending the produced
object by assigning properties to it directly (using concatenative inheritance). Douglas
Crockford coined the term, but functional inheritance has been in common use in
JavaScript for a long time.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 N O O b W N =

W DN DN DN DN DN NN DN DNDDND -~ s s, s, s, s,
© © 00 N O O b W N~ O O 0 3 O O bk Ww N~ 6

Game Mechanism Components

223

As you're probably starting to realize, concatenative inheritance is the secret sauce
that enables object composition in JavaScript, which makes both prototype delegation

and functional inheritance a lot more interesting.

When most people think of prototypal OO in JavaScript, they think of prototype
delegation. By now you should see that theyre missing out on a lot. Delegate

prototypes aren't the great alternative to class inheritance —object composition is.

Example from http://phaser.io/phaser3/api/components

var Image = new Class({

Extends: GameObject,

Mixins: [
Components.Alpha,
Components.BlendMode,
Components.Flip,
Components.GetBounds,
Components.Origin,
Components.RenderTarget,
Components.ScaleMode,
Components.Size,
Components.Texture,
Components.Transform,
Components.Visible,

ImageRender

] 7

initialize:

function Image (state, x, y, texture, frame)
GameObject.call(this, state, 'Image');

this.setTexture(texture, frame);
this.setPosition(x, y);
this.setSizeToFrame();
this.setOrigin();

});

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 224

DOM

Phaser v3 contains access to all document object model within a single namespace.
This provides v3 direct access into various DOM functions such as:

- AddEventListener

- AddToDOM

- Canvaslinterpolation

- CanvasPool

- DOMContentLoaded
- ParseXML

- RemoveEventListener
- RemoveFromDOM

- RequestAnimationFrame
- TouchAction

- UserSelect

This is important since it provides the use of orphans div that can bind to the DOM
upon request.

Game Objects

How Game Objects Work (20170601)"/

System Components

Some system-wide objects have their own components folder. Phaser v3is structured
in this way to avoid having too many lines of code in any single module. In turn, this
provides a faster lookup.

7https://phaser.io/phaser3/contributing/part6

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/contributing/part6
https://phaser.io/phaser3/contributing/part6

© 00 N O O b W N =

O S =Y
O b 0w N =~ O

Game Mechanism Components 225

Example of System-wide Component

Tween.prototype = {

calcDuration: require('./components/CalcDuration'),
init: require('./components/Init'),

loadValues: require('./components/LoadValues'),
nextState: require('./components/NextState'),

pause: require('./components/Pause'),

play: require('./components/Play'),

resetTweenData: require('./components/ResetTweenData'),
resume: require('./components/Resume'),

seek: require('./components/Seek'),

setEventCallback: require('./components/SetEventCallback'),
update: require('./components/Update')

b

6.2 Tile Map

During the development of Phaser v3, they discovered four different approaches
toward creating Tile-maps of which two proved to be equally powerful in different
gaming scenarios. So the team decided to provide us a choice of two different —
and most effective — Tile Mapping methods from all those studied. The difference
between the two chosen Tilemap renderer can be found in how tiles are prepared
for the GPU. The new Static Tilemap stores the map data in VRAM, thereby, avoiding
data surrendered to the GPU every frame. Whereas the new Dynamic Tilemap is built
especially for the “spriteBach” renderer; it pushes data into the GPU every frame. If
your data is constantly or even slightly changing, you will need this new dynamic
approach.

Tilemap Rendering - new Dynamic method

This approach (aka Dynamic Tile-map Renderer) follows the typical canvas rendering.
It pushes vertices into the GPU (graphics processing unit) in the same manner as
“BlitterBatch” Or “spriteBach”. It works by filling the vertex data array with vertices
every frame. Yes, this is slow and will produce lag as the CPU/GPU upload from
the element buffers. The dynamic tilemap generates an array of metadata tiles that

describe the tile that will be rendered. The tile description contains such properties

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 226

as alpha, tint, and visibility. This tile is also culled — based on the current camera —
so we don't render unnecessary tiles. Finally, the tiles are rendered by adding them
to the “spriteBach”. This generates all the vertices during runtime and loads them into
the GPU.

“Why do — or retain — this?”, you say. It is flexible; you could modify any tile-map
in “real-time” — an important consideration when the map must change constantly
as in an “endless runner” game. The recommendation is to keep the view-port small
since you won't be able to quickly fill large areas.

You would use this Dynamic method under the following circumstances:

Animated Tiles can be animated by way of modifying their tile ID.
Per-Tile Tint support (for WebGL only on a single tile)

Per-Tile Alpha and Visibility support (on a single tile)

* Real-time modifications

Tilemap Rendering - new Static method

This approach (aka Static Tile-map Rendering) is similar to the method above with
this exception. Instead of filling and updating the vertex buffer each frame, this
method only performs an initial load — similar to rendering static meshes stored
in VRAM. Doing so, avoids synchronization between the CPU and GPU by simply
submitting graphics library drawing commands with “N to N+M" vertices, and since
tiles are in sequential order, thus facilitating “back-face culling”'8. However, there are
drawbacks to this method; it does not permit “Dynamic rendering” as experienced in
the method above. However, what you lose in rapid updates; you gain in extremely
fast displays. Here are the test results for your consideration:

Quote from Devlog 82:

We used what we would consider an ‘extreme’ test map of 150 x 10,000 tiles (1.5
million tiles in total) and is rendered in a single draw call at a solid 60fps on dedicated
GPUs. On my rubbish Intel HD GPU, it managed it at 45fps. Not many games will need
1.5 million tiles, however, so if you bring this approach back down into the realm of a
normal title, it should cope even with integrated graphics.

IMPRESSIVE, Yes, indeed!
18https://en.wikipedia.org/wiki/Back-face_culling

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Back-face_culling
https://en.wikipedia.org/wiki/Back-face_culling

© 00 N O O b W N =

T = = =
0 N O O b W0 N =~ O

Game Mechanism Components 227

6.3 Phaser III Systems

v3 Boot

The new “boot™ is comprised of several methods both old and new.

* “came Config”: This accepts a configuration object into the Phaser.Game construc-
tor.

* “create Renderer”: This method work with the “Device Manager” and the “Game config”
to correctly select the proper renderer — currently Canvas or WebGL.

* “pebug header”: This method logs notifications to the console.log. It is significantly
different from v2.x.x. You could use this to promote your game or hide it
completely from the curious.

* “Game”: is the standard point of entry into “Phaser.Game”. It is now responsible for
creating all global systems.

* “rimeStep”: manages the “RequestAnimationFrame” Or “SetTimeout”. It also calculates
the delta time values, handles visibility loss, delta resets, and calls the “Game step”.

* “visibility Handler™: listens for DOM page visibility, blur, and focus events. It
sends those updates to the current Game Scene (formerly known as ‘state’).

Example from http://phaser.io/phaser3/api/boot

var config = {
width: 800,
height: 600,
resolution: 1,
type: Phaser .WEBGL,
parent: 'phaser-example',
scene: {
preload: preload,
create: create
},
callbacks: ({
preBoot: function () { console.log('I get called before all
of the Game systems are created,
but afterthe Device is available')},
postBoot: function () { console.log('I get called after
all of the Game systems are running,

immediately before raf starts')}

Copyright © 1972-2017 Stephen Gose. All rights reserved.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Game Mechanism Components

};

var game = new Phaser.Game(config);

Vot

Note that I could have simply inserted the config object directly.

*/

var game = new Phaser.Game(

);

//internalized configuration object

{

},

width: 800,

height: 600,

resolution: 1,

type: Phaser .WEBGL,
parent: 'phaser-example',
scene: {

preload: preload,

create: create

callbacks: {

preBoot: function () { console.log('I get called before all
of the Game systems are created, but after Device is
available')},

postBoot: function () { console.log('I get called after all
of the Game systems are running, immediately before

raf starts')}

} //End of config object

//End of game instance

228

n There is a limit of 255 arguments per MDN.'® passed into a JavaScript function.

What attributes are pre-configured in the new v3 configuration object? Here's what
we could currently find:

19https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

© 00 =N O O & W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Game Mechanism Components 229

//Phaser3 template modified from brunch Phaser
// See <https://github.com/photonstorm/phaser/blob/master/src/boot/Config. js>
// <https://github.com/digitsensitive/phaser3-typescript/blob/master/cheatsheets\

/game-config.md>

var GAMEAPP = new Phaser.Game(

//internalized configuration object

{
// For all newly added settings refer to

// <https://github.com/photonstorm/phaser/blob/master/src/boot/Config. js>

width: 800, //maintain Golden Ration
height: 500, //maintain Golden Ration
// zoom: 1,

// resolution: 1,

type: Phaser.AUTO,

// parent: null,

// canvas: null,

// canvasStyle: null,

// scene: {}, //new 20180401

// seed: null,

title: 'Phaser3 Game Prototyping Starter Kit', //Game Title

url: 'https://makingbrowsergames.com/', //Game URL location
version: 'semver 0.0.1.0', //semver.org v1.0.0.html
input: {

keyboard: true,
keyboard.target: window, //new 20180401
mouse: true,

mouse.target: null, //new 20180401
touch: true,

touch.target: null, //new 20180401
touch.capture: true, //new 20180401

gamepad: false
},
// disableContextMenu: false,
// banner: false
banner: {
hidePhaser: false,
text: 'white',
background: ['#eb54661', '#ffa644', '#008a2f', '#2c¢cH594f', '#002d40']
3
//Frame Rate config
//fps: {

Copyright © 1972-2017 Stephen Gose. All rights reserved.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86

Game Mechanism Components

//
//
//
//
//
/),

min: 10,

target: 60,

forceSetTimeout: false,
deltaHistory: 10,

panicMax: 120 //new 20180401

// pixelArt: false,

// autoResize: false, //new 20180401
// roundPixels: false, //new 20180401
// transparent: false,

// clearBeforeRender: true,
// backgroundColor: 0x000000, // black

//

Callbacks

// callbacks: {

//preBoot: NOOP,
//postBoot: NOOP,

//},
//Physics
// physics: {
// system: 'impact', // removed v3.23! 20200427
// setBounds: true,
// gravity: {},
// cellSize: 64,
// debug: false //new 20180401
/71
//default: false, //new 20180401
// Loader Defaults
loader: {
//baseURL : "', //site lock for game assets

path: 'assets/',

enableParallel: true, //new 20180401
maxParallelDownloads: 10, //varies by browser from 2 to 60
crossOrigin: 'anonymous', //required for affiliate usage
//responseType: ?, //new 20180401

asyn: true,

//user: 7?7 //new 20180401
//password: "',
//timeout: ©

1,

//images: {} //new 20180401

230

Copyright © 1972-2017 Stephen Gose. All rights reserved.

87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Game Mechanism Components 231

//images.default: ? //new 20180401
//images.missing: ? //new 20180401
scene: [

//require('scenes/boot '),
//require('scenes/default’'),
//require('scenes/menu’)

] !

});

GAMEAPP .scene.add('boot', window.GAMEAPP.boot);
this.scene.add('default', window.GAMEAPP.default);
this.scene.add('menu', window.GAMEAPP.menu);

this.scene.start('boot');

v3 Cache

As soon as the game boots, a global game-wide cache is created. This cache is

the

gatekeeper to the various subordinate caches created for each game asset and

resource. For example, you could access any text by simply using cache.text. Here's
an example of game resource caches created after booting.

this.binary = new BaseCache();
this.bitmapFont = new BaseCache();
this.json = new BaseCache();
this.physics = new BaseCache();
this.shader = new BaseCache();
this.sound = new BaseCache();
this.text = new BaseCache();
this.tilemap = new BaseCache();
this.video = new BaseCache();
this.xml| = new BaseCache();

You can manage cache contents using common access methods of .add, .has, .get, Or
even .remove; you Will use string-based keys for these methods.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 N O O b W N =

RN
= O

© 00 N O O b W N =

Game Mechanism Components 232

Examples from phaser.io/phaser/api/loader

function preload() {

this.load. json('jsonData', 'assets/atlas/megaset-0.json');

function create() {

console.log(this.cache. json.get(' jsonData'));

v3 Device Manager

Inspecting the users’ browser and its capabilities are now consolidated in this man-
ager. It determines the base operating system, browser currently used to access the
game, and various input support — such as audio, video, inputs, screen dimensions,
and canvas features.

Examples from phaser.io/phaser/api/loader

if (this.game.device.features.pointerlLock)

{
// It does

if (this.game.device.o0s.i0S && this.game.device.os.iOSVersion > 9)

{

// Device is 10S9 or above

v3 Events

Events use new customized independent dispatchers throughout the game systems;
you can also create your own events listeners and bindings. Access the new v3 is easy;
simply use this.events. Events could be filtered in the case of stacked objects; events
can have priorities or even stop event propagation.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 N O O & W N =

BB W0 W W W W W WW W WNNDNDDNDDNDDNDDNDDNDDNDDN -SSR,
, O © 00 N O O b W N =~ O © 0N O O bk W N = OO © 0 N O O bk w N =~ o

Game Mechanism Components 233

Examples from phaser.io/phaser/api/loader

//Dispatching a custom event via the States Event Dispatcher:
// Here is an Event ...
var playerEvent = new Phaser.Event('shoot');

// We'll use the States own EventDispatcher to listen for,

// and dispatch the events

// And here is the listener

this.events.on('shoot', handler);

// Dispatch the event
this.events.dispatch(playerEvent);

function handler(event) {

console.log('Event Received by Handler:', event);

//Events can also have priorities and have their propagation stopped:

// Here is an Event ...
var playerEvent = new Phaser.Event('shoot');

// And here are 2 listeners.
// The second listener has a higher priority than the first,
// so will be called first.

// We'll use the States own EventDispatch to listen for, and dispatch the event)\

this.events.on('shoot', handlert, 5);
this.events.on('shoot', handler2, 10);

// Dispatch the event
this.events.dispatch(playerEvent);

function handleri(event) {

console.log('Event Received by Handler One:', event);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

42
43
44
45
46
47
48
49
50
51

Game Mechanism Components 234

function handler2(event) {
console.log('Event Received by Handler Two:', event);
// This stops the event getting any further, so handler1 will never fire

event.stopPropagation();

v3 Input Manager

The input manager takes on the new role as a global input gatekeeper. It is now
responsible for monitoring and processing all user inputs. The “config” provides
the settings for the Input Manager to create various handlers. The Keyboard and
Gamepad are directly handled as plugins by an InputPlugin which is a Scene system
responsible for all input events with the parent Scene. The primary responsibilities of
the Input Manager are:

* manage the input event queue
* create various pointers, and
* manage various hit tests and related operations.

“Previously the Input Manager would create a Touch handler unless the
Game Config had “input. touch” set to “faise” (the default was true). If no such
property is set, it no longer defaults to true and instead is set to whatever
“Device.input.touch™ returns. On“non-touchscreen displays” this means it will
now only create a single Pointer, rather than two.”

Phaser lll handles movement differently than v2. In v3, “move events” are an updated
feature. Quoted from DevLogs 90,

The Input Manager consists of two parts: The Global Input Manager, which is owned
by the Game itself, and the Input Manager, which is a Scene level system.

The Global Input manager is responsible for monitoring and processing user input,
regardless of input method. It starts and handles the DOM event listeners for the
keyboard, mouse and touch inputs. It then queues these events which are processed
every game step.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 235

Key handling has changed significantly in 3.16,° Mouse Handler and Touch Handler.
Gamepad and Pointer Lock will be added shortly.

These events are dispatched whenever a pointer is in the processing of moving across
an interactive object. It doesn’t have to be pressed down or dragging, it just has to be
moving. As part of the event you are sent the local coordinates of the pointer within
the sprite. So you could use it for a ‘sliding’ Ul element that you control by just sliding
a finger up and down it, such as a volume meter.

Callbacks and Events

Inv2 nearly all input was handled via Signals. You'd listen to a signal bound to a specific
sprite to know if the pointer was pressed down on it.

In v3 you can use both callbacks and events. The events belong to the Input Manager
itself, not the game objects. So, you could listen for a Pointer Down event from the
Input Manager. As part of the event properties you are given a list of all the Game
Objects that the pointer went down on, as well as the top-most one in the display list.

The callbacks, however, belong to the Game Objects. You can set a callback for every
type of input event: over, down, up, out, move and the drag events: start, drag and
end. Callbacks are invoked on a per-Game Object basis and are sent a bunch of
useful arguments as well. Depending on the type of game you're building you may
favour one approach over the other, or maybe just out of personal preference too.
By having both options available though it gives you the flexibility to decide, rather
than enforcing it upon you.

//Phaser v3 method is extremely easy to activate
var mySprite = this.add.sprite(400, 300, ‘texture’).setInteractive();
mySprite.setOrigin(0,0); //set sprite anchor to upper left corner

Phttps://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-
features

Deeper Dive: v3.16+ New Keyboard rewrite!

Keyboard Input - New Features

Quoted from v3.16+ Change Log®

The specificity of the Keyboard events has been changed to allow you more control
over event handling. Previously, the Keyboard Plugin would emit the global key-
down_CODE event first (where CODE was a keycode string, like keydown_A), then it
would emit the global keydown event. In previous versions, Key objects, created via

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features

Game Mechanism Components 236

“this.input.keyboard.addKey ()", didn't emit events.

The Key class now extends EventEmitter and emits two new events directly: down
and up. This means you can listen for an event from a Key you've created, i.e.:
yourKey.on(‘up’, handler).

The order has also now changed. If it exists, the Key object will dispatch its down
event first. Then the Keyboard Plugin will dispatch keydown_CODE and finally the least
specific of them all, keydown will be dispatched.

You also now have the ability to cancel this at any stage either on a local or global level.
All events handlers are sent an event object which you can call “event. stopImmediatePropagation()”
on. This willimmediately stop any further listeners from being invoked in the current
Scene. Therefore, if you call “stopImmediatePropagation()” in the Key.on handler, then
the Keyboard Plugin will not emit either the “keydown_cope” or keydown global events.
You can also call “stopImmediatePropagation()” during the keydown_CODE handler, to
stop it reaching the global keydown handler. As keydown is last, calling it there has
no effect.

There is also the “stopPropagation()” function. This works in the same way as “stop
Immediate Propagation” but instead of being local, it works across all of the Scenes
in your game. For example, if you had 3 active Scenes (A, B and C, with A at the top
of the Scene list), all listening for the same key, calling “stoppropagation()” in Scene A
would stop the event from reaching any handlers in Scenes B or C. Remember that
events flow down the Scene list from top to bottom. So, the top-most rendering Scene
in the Scene list has priority over any Scene below it.

All the above also works for keyup events.

New in 3.16 is the ability to receive a global keydown or keyup event from any key on
the keyboard. Previously, it would only emit the event if it came from one of the keys
listed in the KeyCodes file. Now, those global events will fire for any key, regardless
of location.

%https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-
features

Add a mouse with game.input.mousePointer (always refers to the mouse if
present). This is the safest method if you only need to monitor the mouse.

Phaser’'s mainMenu update() function checks for input events; remember, update()
attempts to run 60 times a second. The mainMenu update() function is our game loop,
which continues to run until we exit the game. So any animation, state or display
changes or game events will be in here.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features

Game Mechanism Components 237

Let's turn our attention to the speed and velocity of our avatar. We should set a fixed
movement speed; you might want to “tinker”?° with this number until it “feels” correct
and proper. We should also set our “velocity” parameter to zero; because doing so,
will prevent the avatar's movement until an arrow key is pressed. Place the following
snippet in the mainMenu update() function.

v3 Loader

As in Phaser v2, the loader is still responsible for loading external game assets and
resources. But in contrast to the global role in v2, v3 now has a separate loader per
each game Scene (formerly called “state” in v2). Each game scene in v3 is responsible
for loading its own resources and gaming assets when it starts. This scene loading
runs in parallel; meaning that a scene will load its resources even if another scene is
currently loading.

The “BaseLoader” class governs the loading process. It is responsible for queue man-
agement, dispatching events, and load management. The “BaseLoader” class handles
the follow “filetypes” using the ”.addfile” method:

* AnimationJSON File
AtlasJSON File

* Binary File

* BitmapFont File
GLSL File

HTML File

* Image File
JSON File

* SpriteSheet

* SVG File

* Text File

« XML File

Each Scene can further use this.load.image, this.load.json, and this.load.atlas.
You can also pass configuration objects to these methods.

20http://dictionary.cambridge.org/us/dictionary/english/tinker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://dictionary.cambridge.org/us/dictionary/english/tinker
http://dictionary.cambridge.org/us/dictionary/english/tinker

© 00 N O O & W N =

BB W0 W W W W W WW W WNNDNDDNDDNDDNDDNDDNDDNDDN -SSR,
, O © 00 N O O b W N =~ O © 0N O O bk W N = OO © 0 N O O bk w N =~ o

Game Mechanism Components

Examples from phaser.io/phaser/api/loader

238

ngs)

// Original image loader signature:
this.load.image('bunny', 'assets/sprites/bunny.png');
// Object based

this.load.image({ key: 'bunny', texture: 'assets/sprites/bunny.png' });

// Allows for arrays of objects
this.load.image([
{ key: 'bunny', texture: 'assets/sprites/bunny.png' },
{ key: 'atari', texture: 'assets/sprites/atari4@@.png' },
{ key: 'logo', texture: 'assets/sprites/phaser2.png' }
1

// Object based including XHR Settings
this.load.image({
key: 'bunny',
texture: 'assets/sprites/bunny.png’,
xhr: {
user: 'root',
password: 'th3Glbson',
timeout: 30,
header: 'Content-Type',
headerValue: 'text/xml'

});

// Auto-filename based on key:

// Will load bunny.png from the defined path, because '.png'
// is the default extension.
this.load.image({ key: 'bunny' });

// Will load bunny.jpg from the defined path, because of the 'ext' property.

this.load.image({ key: 'bunny', ext: 'jpg' });

/) e
// Texture Atlas Examples

/e

// Original atlas loader signature:

// this.load.atlas(key, textureURL, atlasURL, textureXhrSettings, atlasXhrSetti\

Copyright © 1972-2017 Stephen Gose. All rights reserved.

42
43
44
45
46
47
48

© 00 N O O & W N =

T = U= U N
W N s,

Game Mechanism Components 239

this.load.atlas('levell', 'assets/levell/items.png',

'assets/levell/items. json');

// Object based
this.load.atlas({ key: 'levell', texture: 'assets/levell/items.png',

data: 'assets/leveli/items. json' });

v3 Sound

Managing sound and audio is completely different from v2.x.x. v2 used Audio Tags
and Web Audio as similar system files. v3 now properly separates the Audio tags from
Web Audio; this provides you the option to exclude legacy Audio tags from your game.

I'm excited about the dynamic sound generation feature in v3. This provides a better
solution than v2.x.x and examples are given in Phaser Game Design Workbook (6th
edition)?".

The current plans for Phaser Ill are to tie sounds into its parent Scene (aka: formerly
known as v2.x.x “State”); this provides unique volume, sound effects, and audio
contexts for each Scene. Unfortunately, legacy Audio is not part of the current
scope, and more planning and research must be performed. All sound effects will
be governed by the new Sound Manager.

Examples from phaser.io/phaser/api/sound-manager

var ctx = new AudioContext();

var explosionEffect = {
frequency: 16,
decay: 1,
type: 'sawtooth',
dissonance: 50

¥
new Phaser.Sound.Dynamic.FX(ctx, explosionEffect);

window.addEventListener('mousedown', function () {

new Phaser.Sound.Dynamic.FX(ctx, explosionEffect);

21https://leanpub.com/phaserjsgamedesignworkbook

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/phaserjsgamedesignworkbook

Game Mechanism Components 240

}, false);

v3 Scene Manager

From v2.x.x States to Scenes
Quoted from http://phaser.io/phaser3/deviog/89 and from
How “States” work in Phaser IlI° - R Davey

Since starting Phaser 3 development in earnest | have been carefully evaluating
everything that is going into it. 'm not just porting over v2 classes for the sake of it.
In fact, the vast majority of the code in v3 is brand new, written entirely from scratch.
However, the changes don't end at just the API - this is also the time to carefully reflect
on internal choices as well, including the naming of things.

One such thing is the State Manager. Phaser has always used the term ‘state’ since
day 1 because it was inherited from the Flixel project before it. Yet as a term it has
confused a number of developers over the years. So | did a little research to see what
terminology other frameworks used and the results were quite surprising. The most
common term was ‘Scene’, used to represent a collection of Game Objects (or nodes in
some frameworks). Lots of the more visual game engines use the term ‘Level’ instead,
and others like Game Maker use the term ‘Room’, but none used State.

As a result, | have changed the use of the term ‘State’ within v3 to ‘Scene’. There is
NOW a “SceneManager”, all Game Objects have a property called ‘scene’ which indicates
the scene responsible for them, and internally ‘scene’ is now used everywhere as well.
It actually changes nothing with regard to features, but it does require a change in
mindset. I've been typing in ‘state’ for so many years now that I'm still getting used
to ‘scene’ instead :) But it's a more logical name and now was the time to change it.
Game Objects will remain being called that however (just like in Unity) as | find the

term ‘node’ too generic.
9https://phaser.io/phaser3/contributing/part5

Phaser Il new “State” Manager maintains and runs multiple scenes in parallel. As
mentioned earlier, former “States” are now complete scenes worlds in their own right
(the “world” property is no longer used). In Phaser v2.x.x there was a concept of the
“Game World”, in which all Game Objects lived. This concept was removed in Phaser Il|
and replaced with the “Scene”, which maintains their own “worlds”. Scenes are created
in several ways:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/phaser3/devlog/89
https://phaser.io/phaser3/contributing/part5
https://phaser.io/phaser3/contributing/part5

© 00 N O O b W N =

NN
N O

Game Mechanism Components 241

* From Scene file payloads;
* From Classes;

* From Functions;

* From Instances; or

* From Objects.

Scenes (formerly known as v2.x.x “States”) are managed by a global Manager; it parses,
creates, and maintains all the game’s scenes! The global “Scene Manager” is created
during the “phaser.came boot phase”. The global “Scene Manager” has four important
properties it monitors:

+ the game: a single reference to Phaser.Game.

* the settings: defined by the game’s developer for each specific Scene — such as
fps, width, height, scale, etc.

* the system (“sys”): as the game State System property.

* the children: all display level objects in this scene.

When a Scene needs to reference another Scene, it must do so through the
“scene.sys” property. For example, to add an object to the display list, you
should use “scene.sys.add” and not the former v2.x.x method “state.add”.

Files payloads can be referenced in the Scene config now, and the files will be loaded
before the scene — meaning they're available even before the preload function (if set)
is called. This provides the opportunity for loading in small JSON config files or small
sets of assets required by preloader itself to use:

Example from http://phaser.io/phaser3/api/scene-manager

Rk
Here all we do is defined two functions, preload and create:

*/

var stateConfig = {
preload: preload,
create: create,
files: |
{ type: 'image', key: 'sonic', url:

'assets/sprites/sonic_havok_sanity.png' }

Copyright © 1972-2017 Stephen Gose. All rights reserved.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Game Mechanism Components

var config = {
type: Phaser.CANVAS,
parent: 'phaser-example',
width: 800,
height: 600,
scene: stateConfig

};

var game = new Phaser.Game(config);

//End of this example.

Vot

In this example we're creating 2 States using State Configuration Objects,

which are passed to the Game constructor.

*/

var backgroundStateConfig = {
key: 'background',
active: true,
create: createBackground,
render: renderBackground,
files: [
{ type: 'image', key:

b

var modalStateConfig = {
key: 'modal',
active: true,
renderToTexture: true,

x: 64,
y: 64,
width: 320,
height: 200,

create: createModal,
render: renderModal,
files: [

{ type: 'image', key:

'face', url:

'assets/pics/bw-face.png' }

url: 'assets/pics/agent-t-buggin-acf-logo.png' }

242

Copyright © 1972-2017 Stephen Gose. All rights reserved.

56
57
58
59
60
61
62
63
64
65
66

Game Mechanism Components 243

};

var gameConfig = {

type: Phaser.CANVAS,

parent: 'phaser-example',

width: 800,

height: 600,

scene: [backgroundStateConfig, modalStateConfig]
b

var game = new Phaser.Game(gameConfig);

v3 Texture Manager

The “rexture Manager” manages all game textures as a singleton class; this means
there should only be one active and bound to the “Phaser.Game”. The “Loader” passes
game assets and resources to the “Texture Manager” who will store them in their
appropriate local cache. The “rexture Manager” has several parsers to support the
following formats:

+ Canvas

« Image

Texture Atlas data in JSON arrays or JSON hash formats.
Pyxel files

Starling XML Atlas files and

Sprite Sheets.

Game Objects have immediate access to their textures from the “rexture Manager”. The
“rexture Manager” furthermore has several utility functions using the internal Phaser
Canvas Pool:

var canvas = this.textures.createCanvas('fill', 256, 256);

this.textures.get('mario_mask');

Copyright © 1972-2017 Stephen Gose. All rights reserved.

© 00 1 O O b W N =

NN NN N NN R 1 s sy
O O b W N, 0 O 03O0 O bk Ww N~ O

Game Mechanism Components 244
v3 Tween Manager

Each Phaser v3 Scene owns a “Tween Manager” whose task is managing all tweens within
the Scene. Making the “rween Manager” subordinate to each Scene State allows you
to create different moods or simply pause all tweens of a specified Scene. This is a
dramatic change from v2.

Tweens are created from a configuration object passed into the “Tween Manager.add”.
These configurations are sent to the “rweenBuilder” who is responsible for the execu-
tion. The “builder” returns a single object for the manager to add to the local pool
and manages its required updates. Tweens can support updating at different rates,
different ease settings, and durations — even on the same target object. Tweens
can perform “yo-yo” movement, play reverse sequence, and even seek a specific
animation point.

Example from http://phaser.io/phaser3/api/tween-manager

//A simple Tween that updates an Images x coordinate:
var image = this.add.image(100, 100, 'block');

var tween = this.tweens.add({
targets: image,
x: 600,
ease: 'Powerl’',
duration: 3000

});

Vet
This Tween updates two properties. Note how they have their own custom durations\

and eases:

*/
var image = this.add.image(100, 100, 'block');
this.tweens.add({

targets: image,

x: { value: 700, duration: 4000, ease: 'Power2' },
y: { value: 400, duration: 1500, ease: 'Bounce.easeOut' }

});

//An example of passing custom parameters to the ease function:

this.tweens.add({

Copyright © 1972-2017 Stephen Gose. All rights reserved.

27
28
29
30
31
32
33

Game Mechanism Components 245

targets: image,

x: 600,

duration: 3000,

ease: 'Elastic',
easeParams: [1.5, 0.5],
delay: 1000

),

Deeper Dive 3.19+ Tweens

The Tween system in release 3.19 is a huge overhaul and has extended the system
capabilities significantly; | would advise a review of any released games using the
old Phaser Il tween system (pre-v3.19+) before migrating to this newest Phaser IlI.
Tweens are fully documented.??

Some new Tween Events are “compLeTE” or “REPEAT”; these allow triggered actions with-
out creating callbacks. Another example from v3.19+ is that tweens can implement
both ‘to” and ‘from” values. This is a handy addition whenever you'd like to start from a
specific frame in any tweened asset property. Tween.hasStarted alerts you concerning
a running tween. There's even a new Tween seeking function that provides a search
to any point in time across a tween.

Other useful tools newly added in Phaser I1l.19 are:

* 'StaggerBuilder' — This provides “staggered offsets” to a collection of tweening
targets. You might use this while staggering targets across grid layouts and in
preferred directions by merely setting a starting value.

* Shader.setRenderToTexture — provides a redirection of a shader to its own frame-
buffer or WebGL texture instead of using display lists. You might even consider
piping one “output” shader as the input to another shader!

* RenderTexture.snapshot — iS the answer to a popularly requested feature. This new
feature allows a “snap-shot” on any rendered texture in a point in time and then
convert that snap-shot to an image asset for the Texture Manager or as a newly
saved image in the file system. I've been waiting for this feature for years!

6.4 Phaser3 Finish Line: You’'re AWESOME ... Gloat!, Gloat!

Phaser v3 Source Code & Demos

22https://photonstorm.github.io/phaser3-docs/Phaser. Tweens.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

O© 00 I O O b W N =~

NN
= o

Game Mechanism Components 246

Quote from Devlog 85

| appreciate it's quite a simple game but | feel like it has shown off a number of Phaser
3 features clearly: Layer Actions, which you can easily create your own to extend in all
kinds of directions. An easy to use Phaser Class construct and even Dynamic audio.

Because the Snake is a fully self-contained class there is nothing stopping you from
taking the code and using it elsewhere or even making a version where you have to
control multiple Snakes at once. You could add in objects to avoid, power-ups, flies or
different kinds of food. There are a lot of ways it could be expanded.

| hope you enjoyed this little trip into the works of using Phaser 3 for an actual game.
Next issue we'll resume with a normal Dev Log again, but if little tutorials like this
prove to be popular then I'll gladly write more in the future.

Source Code and tutorial http://phaser.io/phaser3/devlog/85

6.5 v3 Animations

NOTE: This is feature is not included in my Mozart's Music Match game; but, |
foresee | might use it for the follow-up expansions as illustrated by this clever
developer?® or this outstanding example®* and this one®.

function create() {

var mummy = game.add.sprite(300, 200, 'mummy');

//Here we add a new animation called 'walk'
//Because no other parameters were given, it
// makes an animation from available frames .
// In the 'mummy' sprite sheet

var walk = mummy.animations.add('walk");

//And this starts the animation by using
// its keyword ("walk"),

23http://mark-rolich.github.io/MemoryGame.js/
24http://jppresents.net/games/memory/
25http://igorminar.github.io/Memory-Game/app/index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/phaser3/devlog/85
http://mark-rolich.github.io/MemoryGame.js/
http://mark-rolich.github.io/MemoryGame.js/
http://jppresents.net/games/memory/
http://igorminar.github.io/Memory-Game/app/index.html
http://mark-rolich.github.io/MemoryGame.js/
http://jppresents.net/games/memory/
http://igorminar.github.io/Memory-Game/app/index.html

12
13
14
15

Game Mechanism Components 247

// at 30 frames rate per second (30fps)
// true == it will loop when it ends

mummy .animations.play('walk', 30, true);

One of my technology students had bought a new ultra-computer. He was so proud of
it; “... because | can get 600 frames per second!”, he boasted. |, of course, was stunned.

In the US, all electronic devices derive their power from the electrical grid and
transformers. Most devices operate at 60Hz; outside the US, it is common to see
electronics operate at 50Hz. The refresh rate of a digital display operates at the same
frequency because of the power consumed. This is **HOW" digital electronics work;
if fact, the monitor is “THE SLOWEST” networked device; it is restricted by current
electronics. It is the last device on a local area network (LAN) that the user sees. A
game can only send so much data to its display device before the next (upcoming
refresh screen) must be delivered. “WHAT” is displayed is a software concern, and
software engineers have concocted some clever schemes to overcome the 60Hz
(or 50Hz) restriction(s). The reason why | mention this is because, while the frame
rate may be higher than the monitor's refresh rate for displaying images, the three
variables are not dependent on each other. In other words, the number of times your
update loop is being called per second is completely independent from the number
of times you're refreshing the pixels on the screen, which is also independent from
the refresh rate of the monitor itself. The only exception to this is the frame rate that
you're using forimages on the display screen can never be faster than the update loop
is called per second (unless you keep them separate, which in my experience is never
a good idea, at least with web games).

The reason why GPU developers and game developers are so obsessed with the
monitor's frame rate is that it mandates two extremely important ideas. The first one
is the processing budget that you need to work within, and the second is the accuracy
and precision of certain calculations. Those clever schemes are the topics that follow.

The processing budget mandates how much time is available until the next frame is
sent. Consider this, if your game is running at 60 fps, you only have 16.67 ms to handle
the all following tasks:

* Pixels being painted on the screen
* Calling the next tick on the physics engine
* Updating variables, game state, and other objects

If for some reason your monitor is unable to process all those tasks in that amount
of time, you will skip a frame, which results in jerky and animation stuttering. For this
reason, some game developers choose to display graphics at 30 fps. So, instead of

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 248

having just 16.67 ms, they have 33.3 ms to process everything, leaving some room
to handle more demanding scenes or calculations. Others might choose to call the
update loop at 120 fps to have increased precision in physics calculations on the local
device, but only display graphics at a constant 30 fps.

Deeper Dive: History of Animation

Let's take a brief history lesson from Walt Disney -another one of my heroes. Film (aka
Movies) technology began in the 1890s; the concept was to simply “flash” multiple
pictures — each of which was slightly different. The viewer was fooled into “thinking”
they saw a “moving picture”. Walt Disney discovered that flipping 24 picture frames
per second were the optimal rate; he was awarded an Oscar for Snow White and the
Seven Dwarves. The cartoon animation Snow White was 119,550 frames (pictures)
in length. Divided by 24 frames per second, and 60 seconds per minute, that comes
to around 83 minutes. Research any movie website and discover that 83 minutes is
the duration of the Snow White movie. Another little-known fact is how his animators
drew this film.

Snow White and the Seven Dwarfs — in Blu-ray®

The famous Disney “everything in the frame is moving at the same time” isn't there.
While the central focus of the frame has movement (2 frames per move, i.e. 12
different frames per second) the backgrounds and those elements at the sides, stay
frozen for all time. The new multi-plane camera is used to beautiful effect.

Ihttp://www.hometheaterforum.com/community/threads/a-few-words-about-%E2%84%A2-snow-white-
and-the-seven-dwarfs-in-blu-ray.287313/

Disney set the industry standards for “frame rate” — how many pictures flipped per
second. The formal definition of frame rate, (also known as frame frequency), is the
frequency (rate) at which an imaging device is capable of displaying consecutive pic-
tures called frames. This definition applies equally to film technology, video cameras,
computer graphics, and motion capture systems.

Walt Disney, who had previously been in the short cartoon business, stepped into
feature films with the first English-speaking animated feature Snow White and the
Seven Dwarfs; released by RKO Pictures in 1937. 1939, a major year for American
cinema, brought such films as The Wizard of Oz and Gone With The Wind.

1982 also saw the release of Disney’'s Tron which was one of the first films from a
major studio to use computer graphics extensively.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/
http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/
http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/

Game Mechanism Components 249

During 1995, the first feature-length computer-animated feature, Toy Story, was
produced by Pixar Animation Studios and released by Disney. After the success of
Toy Story, computer animation would grow to become the dominant technique for
feature-length animation, which would allow competing for film companies such as
DreamWorks Animation and 20th Century Fox to effectively compete with Disney with
successful films of their own. During the late 1990s, another cinematic transition
began, from physical film stock to digital cinema technology. Meanwhile, DVDs
became the new standard for consumer video, replacing VHS tapes. History of film*°

%https://en.wikipedia.org/wiki/History_of film

Animation Today

When a movie?® is displayed, each film frame is flashed on a screen for a short
time (nowadays, usually 1/24, 1/25, or 1/30 of a second; translated as 41.6 ms, 40
ms, and 33.3 ms respectively)?’ and then immediately replaced by the next one.
Persistence of vision?® blends those frames together, producing the illusion®® of
a moving image. There is a point at which a human’s visual pathways are fully
saturated; it is somewhere around 70 (14.28 ms) — 80 (12.5) fps. This makes perfect
sense when compared to the fastest human reaction is the “blink of an eye” at 13
ms30, and the speed of the human nervous system is 4 ms.

The frame is also sometimes used as a unit of time so that a momentary event might
be said to last six frames, the actual duration of which depends on the frame rate
of the system?, which varies according to the video or film standard in use. In North
America and Japan, 30 frames per second (fps) is the broadcast standard, with 24 fps
now common in production for high-definition video shot to look like film. In much of
the rest of the world, 25 fps is standard.

In systems historically based on National Television System Committee (NTSC)? stan-
dards, for reasons originally related to the Chrominance subcarrier in analog NTSC TV
systems¢, the exact frame rate is actually (3579545 / 227.5) / 525 = 29.97002616 fps.
[See Information note below] This leads to many synchronization problems which are
unknown outside the NTSC world, and also brings about hacks such as drop-frame
timecode® [ed. NOTE: a software solution found in computer animation today.]

26https://simple.wikipedia.org/wiki/Movie

27 http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
28https://en.wikipedia.org/wiki/Persistence_of_vision
29https://en.wikipedia.org/wiki/Optical_illusion
30http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/History_of_film
https://en.wikipedia.org/wiki/History_of_film
https://simple.wikipedia.org/wiki/Movie
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Optical_illusion
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/SMPTE_timecode
https://en.wikipedia.org/wiki/SMPTE_timecode
https://simple.wikipedia.org/wiki/Movie
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Optical_illusion
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

Game Mechanism Components 250

In film projection, 24 fps is the norm, except in some special venue systems, such
as IMAX digital®, Showscan (60 frames per second - 2.5 times the standard speed of
movie film)y and Ilwerks 70 (in which 30, 48 or even 60 frame/s have been used). Silent
films and 8 mm amateur movies used 16 or 18 frame/s. Flash animations and games
range from a minimum of 12 up to 60 frames/s — 15 and 32 are most common.

Ihttps://en.wikipedia.org/wiki/Frame_rate
bhttps://en.wikipedia.org/wiki/NTSC
Chttps://en.wikipedia.org/wiki/Chrominance_subcarrier
dhttps://en.wikipedia.org/wiki/SMPTE_timecode
€https://en.wikipedia.org/wiki/IMAX
fhttps://en.wikipedia.org/wiki/Showscan

NOTE: In actual practice, the master oscillator is 14.31818 MHz, which is divided
by 4 to give the 3.579545 MHz color “burst” frequency, which is further divided
by 455 to give the 31,468.5275 kHz “equalizing pulse” frequency, this is further
divided by 2 to give the 15,734.2637 Hz “horizontal drive” frequency (also the
horizontal line rate), the “equalizing pulse” frequency is divided by 525 to give
the 59.9401 Hz “vertical drive” frequency, and this is further divided by 2 to
give the 29.9700 vertical frame rate. “Equalizing pulses” perform two essential
functions: 1) their use during the vertical retrace interval allows for the vertical
synch to be more effectively separated from the horizontal synch, as these,
along with the video itself, are an example of “in-band” signaling, and 2) by
alternately including or excluding one “equalizing pulse”, the required half-line
offset necessary for interlaced video may be accommodated.

Animation Recommendations

Let's say you have 300 fps, what that means is the Graphics Processing Unit (GPU) is
rendering 300 frames per second. However, it's not sending all of those frames to the
display monitor. The GPU sends frames, that are partially overwritten, without any
form of sync. So, depending on the frame rate:

* If your frame rate is higher than the monitor, parts of the rendered frames will
never be sent — sometimes entire frames are lost, or never sent. Generally,
this is great for performance — it tends to reduce input and display lag, but it
makes your GPU work at nearly 100% with no graphical benefit to speak when
compared to other options. If your GPU output is 300 fps but only 144 of them
are displayed that translates into 52% of the graphical workload was lost. You're
almost guaranteed that some frames will be completely dropped (about 1/3).
There are more efficient ways to reduce input lag.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/IMAX
https://en.wikipedia.org/wiki/Showscan
https://en.wikipedia.org/wiki/Showscan
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/SMPTE_timecode
https://en.wikipedia.org/wiki/IMAX
https://en.wikipedia.org/wiki/Showscan

Game Mechanism Components 251

* Ifyour frame rate is exactly equal to your monitor rate (which is not quite possible
without sync), all frames sent to the display are new, and all rendered frames are
sent — although they are sent in separately displayed frames, leading to tearing,
probably the worst tearing you could achieve since it would theoretically always
cut the screen at the same height, and thus very visible.

* If your frame rate is lower than the monitor’s rate, those frames contain parts
that were already sent to the display on the last refresh cycle.

® Exercise: Test your browser here https://www.testufo.com/gsync
? Exercise: Read more here®'

Frame Rates Recommendations

INSIDE A SINGLE-PLAYER GAME LOOP

O Render

— Attempts 60 fps

* Pre-Updates * Scene.sys Updates
+ Tween Manager = Tween Manager * Post render
= Update List * Update List * Post events
* Game Objects * Post Updates

Frame rate and human vision®

The temporal sensitivity and resolution of human vision varies depending on the type
and characteristics of visual stimulus; and, it differs between individuals. (Is the dress
White or Blue)’ The human optical system can theoretically process 1,000 separate
images per second; but, is not noticeable to the untrained eye after about 150 and
up to around 240 where motion looks realistic. [Chapter 5 footnote #2]

Modulated light, such as a computer display, is perceived as stable by the majority

3https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.testufo.com/gsync
https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/The_dress
https://en.wikipedia.org/wiki/The_dress
https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/

Game Mechanism Components 252

of participants in studies when the rate is higher than 50 Hz through 90 Hz. This
perception of modulated light “as steady” is known as the flicker fusion thresholde.
However, when the modulated light is non-uniform and contains an image, the flicker
fusion threshold can be much higher?. [Chapter footnote 3]

With regard to image recognition, people have been found to recognize a specific
image, in an unbroken series of different images, each of which lasts as little as
13 millisecondse. Persistence of vision/ sometimes accounts for very short single-
millisecond visual stimulus having a perceived duration of between 100 ms and 400
ms. Multiple stimuli, that are very short, are sometimes perceived as a single stimulus,
such as a 10 ms green flash of light immediately followed by a 10 ms red flash of light
perceived as a single yellow flash of lights.

Ihttps://en.wikipedia.org/wiki/Frame_rate
bhttps://en.wikipedia.org/wiki/The_dress
Chttps://en.wikipedia.org/wiki/Flicker_fusion_threshold
@https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
€http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
fhttps://en.wikipedia.org/wiki/Persistence_of_vision
&http://link.springer.com/article/10.3758%2FBF03211193

Tweens

Earlier, | have presented the secrets of my hero Richard Williams. His secret is 2
movements during 12 frames!. Negotiate with your artists or draft your animations
with this secret that | learned from Richard Williams3> — The Animator’s Survival Kit
Expanded edition (25 Sept. 2012)33

Computer Animation? tricks the eye and the brain into thinking they are seeing a
smoothly moving object, the pictures should be drawn at around 12 frames per
second or faster®. With rates above 75-120 frames per second, no improvement in
realism or smoothness is perceivable due to the way the eye and the brain both
process images. At rates below 12 frames per second, most people can detect
jerkiness associated with the drawing of new images that detract from the illusion
of realistic movement¢. Conventional hand-drawn cartoon animation often uses 15
frames per second in order to save on the number of drawings needed, but this is
usually accepted because of the stylized nature of cartoons. To produce more realistic
imagery, computer animation demands higher frame rates.

Films seen in theaters in the United States run at 24 frames per second, which is

32https://www.youtube.com/watch?v=Abkz-0J3HSs
33http://amzn.to/2dSSZ59

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
https://en.wikipedia.org/wiki/Persistence_of_vision
http://link.springer.com/article/10.3758%2FBF03211193
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/The_dress
https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
https://en.wikipedia.org/wiki/Persistence_of_vision
http://link.springer.com/article/10.3758%2FBF03211193
https://www.youtube.com/watch?v=Abkz-oJ3HSs
http://amzn.to/2dSSZ59
http://amzn.to/2dSSZ59
https://en.wikipedia.org/wiki/Computer_animation
http://amzn.to/2ecIHrO
http://amzn.to/2ecIHrO
http://amzn.to/2elnVqz
http://amzn.to/2elnVqz
https://www.youtube.com/watch?v=Abkz-oJ3HSs
http://amzn.to/2dSSZ59

Game Mechanism Components 253

sufficient to create the illusion of continuous movement. VCR display at 29.967fps
(Frames Per Second) for NTSC and 352x288 at 25fps for PAL-M‘. Peter Jackson's Lord
of the Rings series displays at 48 fps¢. The HTC Vive and Oculus Rift are virtual reality
headsets that refresh at 90 Hz'. YouTube allowed users to upload videos at 60fps in
June 2014. PC gaming monitors can display 144 Hz through 240 Hz8. 240fps is near the
limits of perceivable smoothness. Interpolated 300 FPS along with other high frame
rates have been tested by BBC Research for use in sports broadcasts”. 300 FPS can be
converted to both 50 and 60 FPS transmission formats without major issues. 300fps
is also the maximum frame rate for the HEVC format.
Ihttps://en.wikipedia.org/wiki/Computer_animation

bhttp://amzn.to/2eclHrO
Chttp://amzn.to/2elnVqz

dhttp://www.divx-digest.com/articles/vhs_capture.html
€https://en.wikipedia.org/wiki/Computer_animation
fhttps://en.wikipedia.org/wiki/Computer_animation
&http://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
hhttp://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf

Hint: Should | tell my high-school student? or let his parent pay the monthly
credit card payment PLUS interest???

?’ Exercise: Study this game developer’s use of tweens in Phaser>*. This guy is a
genius!

6.6 Camera & Viewports

® Exercise: Study this implementation of Camera and Viewports® in a multi-
? player environment. His source code is available from GitHub*®

A Camera is your “viewport™ into the game world. It has a position and size properties
and renders only those visual objects within the “viewport”. The game will create

34http://jppresents.net/games/memory/
35https://phaser-multiplayer-game.herokuapp.com/
36https://github.com/xicombd/phaser-multiplayer-game

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.divx-digest.com/articles/vhs_capture.html
http://www.divx-digest.com/articles/vhs_capture.html
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Computer_animation
http://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf
https://en.wikipedia.org/wiki/Computer_animation
http://amzn.to/2ecIHrO
http://amzn.to/2elnVqz
http://www.divx-digest.com/articles/vhs_capture.html
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Computer_animation
http://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf
http://jppresents.net/games/memory/
https://phaser-multiplayer-game.herokuapp.com/
https://github.com/xicombd/phaser-multiplayer-game
http://jppresents.net/games/memory/
https://phaser-multiplayer-game.herokuapp.com/
https://github.com/xicombd/phaser-multiplayer-game

© 00 N O O b W N =

Game Mechanism Components 254

automatically a single (Stage sized) camera upon boot-up. Use “Phaser.cCamera.x"” Or
“Phaser.Camera.y” to Move the camera “viewport” around the world.

See how | use Phaser Ill cameras and viewport in Jigsaw Puzzles as game
mechanisms in “Making Puzzle Browser Games”>’

new Camera(

game, //reference to the current game
id, //Not supported; but, will have more cameras
X, Y, //position of the camera on the grid

width, //same as the Game size
// and should not be adjusted for now
height //same as the Game size

// and should not be adjusted for now

The Phaser v2.6.2 Camera supports currently supports 32 properties and 15 special
effects3® through the Game instance global references. You can control the camera
via “this.camera® from any scene, or more specifically via the “game.camera” if the game
has been globally defined — as we already have done on our index page. The Phaser
lll can support “multiple cameras”.

As any movie director knows, camera shots enhance the emotional value of a film and
provide “suspended disbelief” — both of which are crucial in game development. This
could be the topic of an entirely different book; so, | refer you to these resources to
maintain our focus on Phaser development.

* “bounds” (@ “Phaser.Rectangle”) The Camera is bound to this rectangle and cannot
move beyond it. It is enabled and initially set to the world’s size by default.
This viewport rectangle can expose any surface of the world. The values can be
anything and are in World coordinates, with 0,0 being the top-left of the world. If
you wish to disable the Camera then set it to “null”.

« “£x" a Graphics object used to handle such view effects as fade and flash.

* “lerp” (a “Phaser.Point™) This is a linear interpolation value and used to follow a
target. The default value is 1 which means that the camera will instantly snap
to the set target coordinates. A lower value, for example, 0.1, means that the
camera will track slowly toward a target resulting in a smooth transition. You
can set either the horizontal and/or vertical values independently. You may also
adjust these values dynamically in real-time during your game.

37http://leanpub.com/mbg-puzzle
38https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://leanpub.com/mbg-puzzle
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html
http://leanpub.com/mbg-puzzle
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html

Game Mechanism Components 255

“target” (a “Phaser.Sprite”) tells the camera to track the designated sprite; other-
wise, the target is set to “null”.

“view"” (2 “Phaser.Rectangle”) This is the viewport into the world; by default, it is
the game dimensions. The “x” and “y” values are in world coordinates, not screen
coordinates; the “width” and “height” is the dimension and quantity of pixels to
render. If “sprite.autocul1” is set to “true”, sprites are not rendered if positioned
outside of this viewport.

“fade(color, duration, force)” This creates a camera fade effect. It works by filling
the viewport with a color specified, over a set duration in seconds, and ending
with a solid fill of the color specified initially. The game will remain filled at the
end of this effect. To reset this operation, you can call “camera.resetFx” to clear
the fade effect. Or you could call “camera. f1ash” with the same specified color as
the fade operation; doing so will reverse the process (fading the color's “alpha
to 0”), bringing the game back into view again. When the “fade” effect ends the
signal “camera.onFadecomplete” is dispatched.

“follow(target, style, lerpX, lerpy)” Tells the camera which target sprite to
follow. If a slight “jitter” effect is observed when following the target, it is probably
the results of sub-pixel rendering concerning the sprite’s position. This can be
disabled by setting the following code snippet to force full pixel rendering. Set
unfollow() to stop following the targeted sprite.

game.renderer .renderSession.roundPixels = true

o NOTE: Using any of the camera’s “shake” features consumes battery power

significantly on mobile devices.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 256

6.7 Summary

Another intensive chapter! Are you getting your money worth? Good!
Here's what we covered in this section:

* Dove into the Phaser Library and discover various items in a “Bottom-Up develop-
ment” approach.

* Studied the Input Manager

* Research 26 game.add objects

* Deploy sprites and images in the typical game states.

* Deployed sprites and sprite sheets

* Studied the game.make

* Research 40 artwork resources

* Create control mechanisms for keyboard, touch, tap, customized button, and device
buttons.

* Studied deprecated keyboard issue.

* Created pointers (mouse, touch, and tap.)

* Learned how to adjust control mechanism timing.

* Created, text, debug feedback, and Heads Up Displays.
* Created Tilemaps.

* Studied several innovative game developments.

* Discovered resources to build unique game worlds.

* Researched building a Game dynamic World editor.

* Created audio for a game.

* Distinguished various audio formats and which to use.
* The discovered mobile issue with the audio drivers.

* Determined whether customized font was essential.

* Learned secrets of computer animations

* Studied hardware capabilities about frame per second.
* Discovered limitations of human optics

* Developed motion cameras

* Discovered visual camera effects similar to movies

6.8 Chapter Footnotes:

1. Masson, Terrence (1999). CG 101: A Computer Graphics Industry Reference. page
148, Digital Fauxtography Inc. ISBN 0-7357-0046-X.

2. Paul; Meyer, Mark-Paul; Gamma Group (2000). Restoration of motion picture film.
Conservation and Museology. Butterworth-Heinemann. pp. 24-26. ISBN 0-7506-
2793-X.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 257

3. FREE BOOK3?: James Davis (1986), Humans perceive flicker artifacts at 500 Hz,
Wiley, PMC 4314649

39https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/

Whazzz-sUP! HUD Development 258

7. Whazzz-sUP! HUD Development

HUD Topics:

Review Phaser Il 68 Plugins'

Character Inventory & Development Scene (ARRAvV15)

* Forum discussions here?

* Best, in my opinion, supporting library for HUD Development https://www.zebkit.
com/

Variety of FREE online tutorial from Game Dev Academy:

* How to Create a Game HUD Plugin in Phaser.?
* Create a Game Ul with the HTML5 CANVAS*

The “heads-up display” is a critical part of your game flow in the “Play Phase”. It is the
one item that provides feedback on how well a gamer is playing. Sure, animations
and blood gushing everywhere can be entertaining(?), but the HUD tells the player
whose blood it is! It is the one item in your game that encourages your “customer” to
continue “spending their time” in your game; the better your customer feels about
their experience the more they spend. Now tell me, have you ever returned to a
restaurant that gave you bad service, poor quality, and awful food? Do you NOT
see a relationship between what you're serving up as a “tasty” game and other
entertainment services? The HUD should encourage, entice, taunt and titilize®, in
“Phaser Render phase”, for more of what's to come from your game!

Thttps://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
2http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
Shttps://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
4https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
Shttp://www.urbandictionary.com/define.php?terms=titilizing

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
https://www.zebkit.com/
https://www.zebkit.com/
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
http://www.urbandictionary.com/define.php?term=titilizing
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
http://www.urbandictionary.com/define.php?term=titilizing

Whazzz-sUP! HUD Development 259

. The RoguePririce: ﬂ‘ﬂ

Adventurers of Renoun Gami; byPB.M(‘ube

| Credlts__z_

More bhure ()ptums' Help

6 Save Game

6 Load Game
Smum almoonm .. 6 Difficulty Level

- 6 Register

6 Log on

I D T T A T T T D

Rogue Prince

a fantasy Role-Playing Game from
' Stephen Gose Game Studio.

Affiliates welcome;

game license available here.

dffiliated: pbmcube=" ="

HLID infarmatinn Tha Rnaciia Princa Main Manu

Richard Davey said this concerning HUDs, “No it's too game-specific, anything we
provide would only cater for a small set of games. I'd suggest you just create a Group
and put all your HUD related items in it then just keep that Group on the top of your
game.” Quote from Phaser.io Forum?
Ahttp://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/

Hint: | recommend that this HUD Group float, in a separate layer, above the
Tilemap inside the canvas or use the “DOM” feature external to the canvas.

7.1 HUD Housing Development

You can have multiple “Phaser Il Scenes” all running in parallel. This is similar in my
mind as Flash MovieClips running on their main time-line. Each section of your overall
stage could be divided into several “Scenes” views. The HUD leads players — with the

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/
http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/

© 0O N O O b W N =

[T N TR S O S S N = S N = =
, O © 00 N O O & W N =~ o

Whazzz-sUP! HUD Development 260

information the HUD provides — into decisions about what to do next in the game.
HUD placement should enhance gameplay; it should readily display the pertinent
information a gamer needs for their avatar's actions, and current gameplay. Here
are some suggestions from this excellent Game Dev Academy tutorial® showing the
“border layout” positioning style.

Phaser v3.17 has the features I've long waited for — DOM, CSS, load.css, and
Load.html. The new DOM elements can appear either above or below the game
canvas. The new CSS works to modify the DOM elements. Both act as a typical game
object. So, that means external html panels might be a thing of the past, and internally
controlled Phaser Il panels are the “go-to method”. Refer to the following links to
discover what you can do!

« About the new DOM elements’
« Examples in the Phaser Ill labs.?

Activate the new Phaser v3.17+ DOM elements

// Add to the config object
dom {

createContainer: true
}
J*
When this is added, Phaser will automatically create a DOM Container
div that is positioned over the top of the game canvas. This div is
sized to match the canvas, and if the canvas size changes, as a
result of settings within the Scale Manager, the dom container is
resized accordingly.

*/

// then inside a scene create
J*
You can create a DOM Element by either passing in DOMStrings,
or by passing in a reference to an existing Element that you wish
to be placed under the control of Phaser.
*/
var hud = this.add.dom(x,y, 'div',
// 4th parameter sets the CSS for the DOM element

'background-color': black;

6https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
7http://phaser.io/news/2019/05/phaser-3170-released
8http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
http://phaser.io/news/2019/05/phaser-3170-released
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
http://phaser.io/news/2019/05/phaser-3170-released
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=

22
23
24
25

Whazzz-sUP! HUD Development

width: 220px; height: game.height;

font: 48px Arial',

// last parameter is the key name of html DOM
'"Phaser');

Quote Newsletter 146

“You should ... always, without exception, use explicitly sized HTML Elements, in order
to fully control alignment and positioning of the elements next to regular game
content.

Rather than specify the CSS and HTML directly you can use the “1o0ad. ntm1* File Loader
to load it into the cache and then use the “createFromcache” method instead. You can
also use “createFromHTML” and various other methods available in this class to help
construct your elements.

Once the element has been created you can then control it like you would any
other Game Object. You can set its position, scale, rotation, alpha, and other
properties. It will move as the main Scene Camera moves and be clipped at the edge
of the canvas. It's important to remember some limitations of DOM Elements: The
obvious one is that they appear above or below your game canvas. You cannot blend
them into the display list, meaning you cannot have a DOM Element, then a Sprite,
then another DOM Element behind it.”

You can find lots of examples on using DOM Elements in the Phaser 3 Examples here.°
9http://labs.phaser.io/index.html?dir=game%200bjects/dom%20element/&q=

261

® Exercise: Learn more about the border layout style® from Oracle and Java
? implementation.

Ihttp://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
http://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm
http://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm

Whazzz-sUP! HUD Development 262

HUD information prior to combat
The HUD is composed of various items such as text, images, sprites, animations. These

should be contained within the new Phaser Il DOM element or use a separate Phaser
lll Scene.

Sample 8.1: Prototyping a HUD

//Load images during “preload’

this.load.image('background', 'assets/images/menubkgrnd.jpg');

//Assign variable and Add text parameters.

var playtxt = this.add.text(0, 0, "Play" , style); // "Play" text

//Assign text styles and placements with new Phaser III.17 CSS.
var style = {

font: "32px Monospace",

fill: "#C60",

align: "center"

//Assign variable and Add text parameters.
this.scoreText = this.add.text(5, 5,

"Score (hints off): " + (score * 2), style);

if(hints){
//Assign variable and Add text parameters.
this.scoreText = this.add.text(5, 5,
"Score (hints on): " + score, style);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Whazzz-sUP! HUD Development 263

//Assign variable and Add text parameters.
this.timeText = this.add.text(5, game.height - 5,
"Time left: " + timelLeft, style);

this.timeText.setOrigin(0, 1);

7.2 HUD as Panels

The illustrations, thus far, have shown HUDs in fixed positions. The HUD could be
created into a “group collection or container” as suggested earlier by Richard Davey.
A group is a “collection bucket” for any display objects. Groups and containers are
treated as sprites with physics and movement. For example, all the children, inside a

” u ” u

group collection, are also “moved”, “rotated”, “scaled” when its containing parent group
iS “moved”, “rotated”, “scaled”. This allows the group to act a sliding panel onto and
from the game area using Phaser. Groups are also displayed objects; this means
that groups could nest children within larger parent groups. Lastly, groups utilize fast

pooling and object recycling.

new Group(game, parent, name, addToStage, enableBody, physicsBodyType)

Remember the “Dynamic Combat Menu” mentioned earlier? Instead of merely mov-
ing buttons in and out of the viewport, we could move an entire Phaser v3.17 DOM
element instead of a “group” with its buttons, graphics, and text information as a
single DOM element. We can create standard html pages and load them into the
game cache, and then use them, either above or below. These new DOM elements
are managed as we would any typical game object.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Whazzz-sUP! HUD Development 264

Demo Game

ocutwn

Elven Holy Place

Elves

5 - Adequate
2?72

2 - for hire

- f ﬁ W&.,J_LJ
3 "‘-f:_'l- [[

Elven Holy Place
Click to viewits summary.

CI|ck|ng the Menu buttons reveals HUD Panels as Phaser Ill Scenes

Play the Rogue Prince™ demonstration here'°

7.3 HUD Panels outside the Canvas?!?

Phaser helps display an “htmi5 canvas” element; in Phaser v3.17, we can use the new
load.html for DOM elements and load.css into the Phaser cache. Why should we limit
ourselves only to HUDs only inside canvas elements? It's a simple matter to leverage
our front-end development skills and let Phaser Il manage our DOM elements. If
you have studied mobile web design, as suggested by Josh Morony,"" it becomes an
innovation to have HUD Panels controlled by the Browser, jQuery, and CSS. However,
with the Phaser v3.17 features, we can control those same HUD Panels from our
Phaser framework. It becomes a simple matter to have a sliding HUD information
panel on one or both sides of the canvas game.

f Exercise: Review examples at w3Schools.com:'2

10https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
1T https://www.joshmorony.com/mobile-development-for-web-developers/getti