

Phaser Game Prototyping
Building 100s of games using HTML5 & Phaser.js Gaming
Frameworks (6th Edition includes v2.x.x & v3.24+)

Stephen Gose

This book is for sale at http://leanpub.com/LoRD

This version was published on 2021-05-28

ISBN 978-1-952635-04-5

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© Copyright, 1972 - 2017, Stephen Gose. All rights reserved.

http://leanpub.com/LoRD
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Stephen Gose by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I’m making HTML games using Phaser Game Prototyping workbook.

The suggested hashtag for this book is #PBMCube.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#PBMCube

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20making%20HTML%20games%20using%20Phaser%20Game%20Prototyping%20workbook.
https://twitter.com/search?q=%23PBMCube
https://twitter.com/search?q=%23PBMCube

For my students

@ Culpeper Public Schools, Culpeper, VA;

@ ITT Technical Institute, Tempe, AZ;

@ Early Career Academy, Tempe, AZ; and

@ University of Advancing Technology (UAT), Tempe, AZ

CONTENTS

Contents

Distribution Permission . i
Supporting website . i

Forwards . ii

Disclosures . iii

Disclaimer . iv

About this Workbook: . v
Viewing the Source Code . vi
Links and References . vi
Who should use this workbook? . vii
Your newly obtained skills… . viii

Game Design System™ . x
Game Studio - Book Series . x
Game Studio - Online Courses . xi
“Making Browser Games” - Books Series . xii
“Making Browser Games” Series - online Courses xiii
Programming Courses . xiii
“Walk-Thru Tutorial” Series - Online Courses . xiii

Part I: Product Management 1
1. Game Studio & Project Preparations . 1

1.1 Workstation Setup . 2
Batteries not included … Web Server Required 3
Deeper Dive: Testing “MMoGs” Locally??! . 4
Development Tools . 5

1.2 Project Setup . 7
Deeper Dive: Project Data Structure . 7
Deeper Dive: And its name shall be called … 8
Project Directories & Files . 10

1.3 Game Project “Concept & Design” . 14

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Introduction to Game Design System™ . 14
What makes a Good Game? . 16

1.4 Preparing a “Gaming Product” . 17
Why are you doing this? . 18
What are you making? . 19
What technology will you use? . 19
“Loose lips sink ships” … and revenues! . 23
What features are included? . 25
What features are mandatory? . 30
How will you encode it? . 34

1.5 Game Design Architecture . 34
“Oh! Oh!” . 34
“Top-down” . 36
“Bottom-up” . 37
“Oh! Oh!” vs. Top-Down vs. Bottom-Up vs. OLOO 37

1.6 Game Project Summarized: . 38
Concept Development: . 38
Design: . 38
Production Encoding: . 39

1.7 Summary . 40
1.8 Chapter References: . 41

2. Building a Game Prototype . 42
2.1 Creating Prototype Mechanisms — 4-Step method 45

Step 0) Preparation and Research . 46
Step 1) Generate Game Phases (as needed). 47
Step 2) Generate code for triggering events. 47
Step 3) Generate transition . 48
Step 4) Create your Game’s Core & auxiliary functions 49

2.2 Using “Box” Graphics . 51
2.3 Game Practicum: Box Prototyping . 54

Phaser III Code Review . 54
Phaser v2.x.x Code Review . 59

2.4 3D Prototypes . 62
2.5 “ToTo, … we’re not in Kansas anymore” — Dorothy 64
2.6 Starting Your “Game Recipe”™ . 66

Step #0) the Front-Door . 66
Task #1-1 Instructions: . 67
Compare your code . 69
Mobile “Single Web Page Applications” (SWPA) 69
Cocoon.js - Cloud Alternatives . 71
Task #2: Launching a Game . 72
Deeper Dive: Launching a Phaser III Game. 77

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Game “Config” . 77
2.7 Deeper Dive: To Infinity and Beyond! . 80
2.8 Summary . 81
2.9 Chapter References: . 81

3. Game Phases, Scenes & Roses. 83
3.1 Bare-Bones Prototypes . 83
3.2 Using a Phaser Scene as a “Game Phase” . 85
3.3 9 Essential Functions of a Phaser “Scene” . 86
3.4 Game Phases as Modules . 91

“Phaser.Game” — One File to Rule them all … 91
Main.js (aka “launch” or index.js) . 92
Boot.js . 93
Preload.js . 94
Deeper Dive: Artwork & Resources Security 94
Deeper Dive: Phaser Cache . 95
Deeper Dive: Loader Examples . 97
Splash.js or Language.js? . 99
Main Menu.js .102
Play.js .105
Deeper Dive: JS Modules .105

3.5 Step #1 of 4: Generate Game Phases .107
Dynamically Including Game Phases .108
Deeper Dive: D.R.Y. Stand-alone .110
Step #3 of 4: Game Phase Transitions .111
Deeper Dive: The CMS “Game Shell” .112
Deeper Dive: When to use a game shell .113

3.6 Encoding Phaser Scenes as a “Game Phase”114
Vanilla, Chocolate, or Strawberry Creme-filled?114
Overriding Essential Functions inside Phaser.Scene116
Creating Scenes using ES5 Prototypes .116
Creating Scenes using Phaser.Class .118
Creating Scenes by extending Phaser.Class118
ES6 Considerations: “Strawberry” .119
Creating Scene Configuration files .120
Deeper Dive: Defining Other Scene Properties121
Deeper Dive: ES9 Modules .124

3.7 Summary .125
3.8 Chapter References: .126

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Part II: Mechanisms vs. Mechanics127
4. Building Game Prototypes, Mechanisms & Tools128

4.1 Task #3: Mini-Me .129
Creating an Avatar - “visual display” .129
Deeper Dive: Display selected frames from a sprite-sheet.132
Deeper Dive: Using Base64 Images .133
Creating an Avatar’s metadata .134
Deeper Dive 3.19+ Tweens .136

4.2 Task #4: Moving Game Elements .137
Deeper Dive: Phaser III Input Manager .140
Deeper Dive: Future Proofing your source code.141
Deeper Dive: Configuring the Keyboard (Phaser v3.16+ updated)143

4.3 Task #5: Things that go bump … .143
Walls and Camera boundaries .143
Interior Decoration .145
Deeper Dive on Game Objects hit areas. .147
Doors, Knobs, and Buttons .149
Deeper Dive: Writing Optimized Code .154
Deeper Dive: Buttons as a “Class” or “Scenes”?!!?155
Deeper Dive: Button size considerations .155
Deeper Dive: Adding Buttons & Mobile Touch156

4.4 Task #6: When Worlds Collide … .157
4.5 Task #7: It’s curtains for you … .161
4.6 Other Game Mechanics Categories .165
4.7 The Finish Line: You’re AWESOME … Gloat, Gloat …169
4.8 Chapter Source Code & Demo .170
4.9 Summary .171
4.10 Chapter References .172

5. Dem’s fightin’ words .173
5.1 Launching Web Sockets .173
5.2 Dynamic Combat Menus .175
5.3 So, Give Me Some Space … .178

Melee Weapons .181
Ranged Weapons .181

5.4 OO!, OW! AH!, OW! Stayin’ alive! Stayin’ alive!185
Grid-less Combat .185
Grid-ed Combat .188

5.5 Tactical Tiled-Maps .188
5.6 Squares and Checkered Grids .189

Deeper Dive: Phaser III Grids .192
Hexagonal Grids .194

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Deeper Dive: Real hexagonal grids .195
Squishes .196

5.7 Rules of Engagement: Take 5 paces, turn, and …196
Been there … done that … .196

5.8 “Where’s the beef?” .197
Click-fest .198
Guitar hero - Time to get it Right! .200
Days of our Lives - Drama Theater .201
SCA Virtual “Fighter Practice” by Steve Echos202
En Guard method .204
Yeap! Ya betcha’ ‘ur life! .205

5.9 Story narrative .206
5.10 Frisking, Fondling, or Groping .207
5.11 Chapter Source Code .207
5.12 Complete Combat Prototypes .208
5.13 Summary .208
5.14 Footnotes .209

6. Game Mechanism Components .211
6.1 Phaser III inline script - Reviewed .211

Phaser v2.x.x inline script - Reviewed .212
Adding Display objects .212
Adding Control Mechanisms .218
Adding Buttons & Mobile Touch .219
Phaser III “Actions” .221
Components .222
DOM .224
Game Objects .224
System Components .224

6.2 Tile Map .225
Tilemap Rendering - new Dynamic method225
Tilemap Rendering - new Static method .226

6.3 Phaser III Systems .227
v3 Boot .227
v3 Cache .231
v3 Device Manager .232
v3 Events .232
v3 Input Manager .234
Deeper Dive: v3.16+ New Keyboard rewrite!235
v3 Loader .237
v3 Sound .239
v3 Scene Manager .240
v3 Texture Manager .243

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

v3 Tween Manager .244
Deeper Dive 3.19+ Tweens .245

6.4 Phaser3 Finish Line: You’re AWESOME … Gloat!, Gloat!245
Phaser v3 Source Code & Demos .245

6.5 v3 Animations .246
Deeper Dive: History of Animation .248
Animation Today .249
Animation Recommendations .250
Frame Rates Recommendations .251
Tweens .252

6.6 Camera & Viewports .253
6.7 Summary .256
6.8 Chapter Footnotes: .256

7. Whazzz-sUP! …. HUD Development .258
7.1 HUD Housing Development .259
7.2 HUD as Panels .263
7.3 HUD Panels outside the Canvas?!? .264
7.4 HUD Demos .266
7.5 Summary .268
7.6 Footnotes .268

8. Don’t make me think or “Artificial Intelligence for Dummies”269
8.1 The “6 of 9” .269
8.2 Chasing .270
8.3 Evading .270
8.4 Patterns .271
8.5 Fuzzy logic .273
8.6 Finite State Machines (FSM) .273

FSM Resolving Combat Outcomes .275
FSM Resolving AI behaviors .277

8.7 Recursive World Feedback .279
Probability Data Tables .280

8.8 Complete AI Prototypes .281
8.9 Chapter Source Code .281
8.10 Summary .281
8.11 Footnotes .282

Part III: “Walk-thru” Tutorials & Resources .283
9. Game Prototype Libraries .284

9.1 Walk-through Tutorial Series .284
Introductory (Difficulty Rating #1) .284

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Intermediate (Difficulty Rating #2 to #3) .285
Advanced — “The Full Monty!” (Difficulty Rating #4)285

9.2 References: .287

10. What’s next? .288
10.1 Game Distribution & Marketing .288

Introduction: 8-Step Deployment Method.288
10.2 Book Review Protocol .290
10.3 Tell the world about your game! .292

Appendix .293
More Resources .294

JavaScript Garden .294
Additional Appendices .294
Other resources: .295
Selling your Game Assets .296

Appendix: Online Game Development .298

Appendix: Making WebXR Games! .299

Appendix: Phaser III Plugins .301

Appendix: Network Concepts .302
Security Concerns .303

Protecting Game Assets .303
Use of <iframe> .304
Bad Bot! .305
Other Considerations .307

Game Services (Back-end) .307
CMS - Server-side Frameworks .310
Index Page (Non-Traditional Method) .311

High Scores Services .312
Membership Login .313
Production release version. .314
CodeIgniter & Phaser Integrated CMS .315

CodeIgniter Prep Step-by-Step .318
Game Shell (click dummy) .320

Summary .323
Chapter Footnotes .323

Appendix: “How to Start a WebSocket” .324
Testing Your Browser .326

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

WebSocket Protocol Handshake .327
Deeper Dive: WebSocket API .328

Sample Source Code: Client-side WebSocket .334
Step #1: Game index page .336
Step #2: Generate Event handlers .337

Appendix: Project Mgmt Methods .343
Prototyping .346

Basic Principles .346
Strengths: .347
Weaknesses: .348
Situations where most appropriate: .349
Situations where least appropriate: .350

Incremental .350
Basic Principles: .350
Strengths: .351
Weaknesses: .352
Situations where most appropriate: .352
Situations where least appropriate: .352

Spiral .353
Basic Principles: .353
Strengths: .354
Weaknesses: .354
Situations where most appropriate: .355
Situations where least appropriate: .355

Rapid Application Development (RAD) .355
Basic Principles:** .356
Strengths: .357
Weaknesses: .358
Situations where most appropriate: .359
Situations where least appropriate: .360

Test-Driven Development .361
Basic Principles: .361
Expected Benefits .361
Common Pitfalls .362
Typical team pitfalls include: .362
Signs of Use .362
Skill Levels .362
Further Reading on Test Driven Development363

Game Project Management Foot Notes: .363

Appendix: Consolidated Phaser Examples .364
Phaser III (1st to 6th editions): .364

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Demonstrations: .364
Searching for Game Mechanics and Mechanisms.364
Content Management System embedded in HTML5 <canvas> tag. . . .364

Phaser III Examples .365
Phaser III Game Prototyping Demonstrations366
Game Mechanics & Mechanisms identified367
WebSockets, Dynamic Menus, Combat, and FSM367

Appendix: Game Automation Tools .369
Deeper Dive: Database Protection Considerations371
Database Schema Construction (Copyright-able!!)371

Database Record Construction .373
Database structure .374

Remote Codebase Using AppML .374
Building an AppML application .376
Sample AppML codebase (Public Access) .376
Remote codebase Using JSON .377

Per-user storage .377
Chapter Source Code & Demo .379
Summary .380
Chapter References .381

Appendix: OLOO - Safe JavaScript .382
Deeper Dive: JS Delegation (aka “Inheritance”?) .384
The old way .385
Objects Linking to Other Objects (OLOO) .391
Compare your code .392
Object.create .392
Exercise Lesson 9: .394
Game Singletons .395
Deeper Dive: Object Manipulation objects in ES5/6397
Lesson Summary .398
Resource References: .398

Appendix: Common Pitfalls .399
Lacking Debugging Tools? .399

Deeper Dive: Console Commands .400
Same “Name-spaces” .407
Callbacks .407
Missing Documentation .408

Deeper Dive: What is Dragon Speak .409

Copyright © 1972-2017 Stephen Gose. All rights reserved.

CONTENTS

Answers to Exercises .410
Appendix .410

Appendix: OLOO - Safe JavaScript .410

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Distribution Permission i

Distribution Permission

All rights are reserved under the Pan-American and International Copyright Con-
ventions. You may not reproduce this book, in whole or in part, in any form or by
any means electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system that is now known or hereafter invented,
without written permission from the author. Brief quotations in critical reviews or
articles are permitted without the author’s permission.

Supporting website

https://makingbrowsergames.com/

Thank you for your patronage! I truly appreciate it.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/

Forwards ii

Forwards

• by Terry Paton: — “Copying or imitating is an awesome way to learn how to
do something, traditional artists have done it for centuries. This practice was
generally considered a tribute, not forgery1, — If you want to get better at
something, then trying to do it like those who already have mastered it.
Look at the choices they have made and consider why they made those decisions,
often important things are hidden in subtlety, and the only way we learn those
subtleties is by creating the same thing. The balance here is stealing versus
inspiration. “Ripping off” ideas from someone else in a way that harms their
hardwork compared to producing somethingwhich is inspired by their work.
If you plan on publicly releasing something, I recommend you should inject some
of your own vision into any game you make, take a concept but then extend or
change it to create something of your own.”

1http://en.wikipedia.org/wiki/Art_forgery

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://en.wikipedia.org/wiki/Art_forgery
http://en.wikipedia.org/wiki/Art_forgery

Disclosures iii

Disclosures

• Stephen Gose LLC reserves the right, at any time and without notice, to change
modify or correct the information contained in this publication.

• I refer to “Phaser v3.16+” under a moniker of “Phaser III” to distinguish it as a
clear demarcation from previous versions.

In this book, I am not paid to recommend any of the tools or services presented
but I do use affiliate links. Here’s how it works. When I find a tool, service, author’s
content, idea, or product I admire, I investigate if they have an affiliate program. If it
exists, I get a special link and when you click it or confirm a purchase I receive a small
percentage from that activity. In short, it’s the same methods everyone finds on any
typical website; only now, those links are available inside ebooks as substitute for
“crowd-funding”.

I think everyone, with any business savvy2, should do this too; especially when you
recommend your own books, services, and tools. Amazon and others offer affiliate
links. Whenever you recommend anything (hopefully this book? hint, hint!), use
your affiliate links.

By law, I must disclose that I am are using affiliate links. Amazon, in particular, requires
the following.

“We are a participant in the Amazon Services LLC Associates Program, an affiliate
advertising program designed to provide a means for us to earn fees by linking
to Amazon.com and affiliated sites.”

2https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html
https://www.inc.com/neil-patel/11-mental-habits-that-will-improve-your-business-savvy.html

Disclaimer iv

Disclaimer

• All the information, contained within, is for the convenience of its readers. It
is accurate, as can be reasonably verified, at the time of original publication.
However, this content may not reflect migrating industry recommendations after
the original publication date for ECMA-2623 (also known as (aka) “JavaScript”,
ES5, ES6, ES7, ES8, ES9 or ES10) or for any version of the Phaser.JS Gaming
Frameworks.

• All websites listed herein are accurate at the time of publication but may
change in the future or cease to exist. It is best to research these “dead
websites” links in “The WayBack Machine”4. The website references does not
imply my endorsement of a site’s contents.

• There are no guarantees nor warranties stated nor implied by the distribution
of this educational information. Using this information is at the reader’s own
risk, and no liability shall carry to the author. Any damage or loss is the sole
responsibility of the reader.

Warning: The Phaser newsletter dated 21 September 2018 includes projected
development on Phaser III. In August 2017, many features in pre-v3.16.x
were removed. There were many business decisions on why they were re-
moved based on financial support and sponsorship deadlines imposed. Phaser
v3.14.0 (released OCT 2018) saw the return of many deleted features. In other
words, Phaser v3.14.0 returns to the original vision of January 2017 after
several rewrites. Phaser v3.15+ was the next massive re-write (released OCT
2018); followed by v3.16.0 DEC 2018. Phaser v3.5 is nearing completion with
more “breaking changes”.

My best guess is that any books, tutorials, blogs, and “how-to” articles — written
before to Phaser v3.16+ (NOV 2018) — are not fully functional with Phaser III and
should be re-written to the Phaser v3.24+ minimum standard baseline. Hence the
reason this book is dedicated and updated to the official Phaser III (release v3.24+)
and has removed any references to previously released versions. (See newsletter
#139 dated 20190211) “Breaking Changes”5

3http://www.ecma-international.org/publications/standards/Ecma-262.htm
4https://web.archive.org/
5https://madmimi.com/p/f0b3bd

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/
https://madmimi.com/p/f0b3bd
https://madmimi.com/p/f0b3bd
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/
https://madmimi.com/p/f0b3bd

About this Workbook: v

About this Workbook:

This 6th edition offers additional production methods, beyond the former editions,
I call the Game Design System™ from which we’ll create Game Recipes™. Expert
game developers understand the “Don’t Repeat Yourself” (D.R.Y.) concept, yet few
have taken a step back to the “10,000-foot view”6 (i.e., “Executive level thinking”) on
their game production pipelines. We’ll do that aerial view in this book as we build
gaming prototypes, linked to “Headless” Game DesignTM7 mechanics, and artwork.
Then, “nose dive head-first” directly into game prototyping. I believe you will be
surprised how quickly and easily we can build 100s of games using this Game Design
System™ with its Game Recipes™ tools.

This workbook is intended to be a hands-on guide for “HTML5 Game Development”
with an emphasis on the Phaser JavaScript Gaming Frameworks. Yet, our game
production and project management could apply to any browser-based gaming
framework! It’s not exclusive to the Phaser III JS Gaming Framework.

I’m assuming you already have a “working knowledge” of the “Front-end” technolo-
gies8 — specifically HTML59, CSS310, and JavaScript11 — in your arsenal. I know that
many senior “full-stack” and “front-end” developers do; but, I have received dozen
of emails about this book’s former editions as being “… too difficult for those
just starting their own game studios.” Therefore, if learning any of these web
development technologies12 is what you’re initially seeking, then I recommend
a quick visit to W3Schools13 as your first FREE starting point. By following their
instructions, you will learn a complete foundation in HTML5, CSS, and JavaScript in
a matter of hours! … then, return to this workbook and learn how to combine
those technologies into your own game creations.

6https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
7https://leanpub.com/hgd
8https://roadmap.sh/frontend
9http://amzn.to/2nAYjxr

10http://amzn.to/2mG01Zv
11https://amzn.to/2Iw9RZj
12https://github.com/kamranahmedse/developer-roadmap
13http://www.w3schools.com/js/default.asp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
https://leanpub.com/hgd
https://roadmap.sh/frontend
https://roadmap.sh/frontend
http://amzn.to/2nAYjxr
http://amzn.to/2mG01Zv
https://amzn.to/2Iw9RZj
https://github.com/kamranahmedse/developer-roadmap
https://github.com/kamranahmedse/developer-roadmap
http://www.w3schools.com/js/default.asp
https://en.wikipedia.org/wiki/Business_acumen#Executive_level_thinking
https://leanpub.com/hgd
https://roadmap.sh/frontend
http://amzn.to/2nAYjxr
http://amzn.to/2mG01Zv
https://amzn.to/2Iw9RZj
https://github.com/kamranahmedse/developer-roadmap
http://www.w3schools.com/js/default.asp

About this Workbook: vi

Viewing the Source Code

This e-Book includes source code which is optimally viewed in single-column, land-
scape mode with the font size adjusted to a comfortable setting.

Links and References

The Internet is a living, dynamic resource of information that doubles every 35 days!
There are several reasons this book points to external content. Because —

1. It provides you the “research path” I took to develop and present my ideas. It
takes all the guess-working and personal research out of it. This saves you 100s
of hours of your personal free-time searching for supporting facts and opinions.

2. It avoids copyright infringements and provides the required acknowledgments
to “Open-source authors” for use of their contributions and resources under the
various licenses and EULA14.

3. It provides external authors an opportunity to recant or update their content.
(Kindly review Phaser v3 DevLogs as an example.) Technology is a fast-moving
target, and what was once “cutting edge” becomes obsolete. For example, the
use of “window.onload“ was recanted by its originator back in 2014 as an unsafe
method for launching browser applications. (see Phaser Game DesignWorkbook,
pages 15-2215 for complete details.)

4. It reduces your initial purchase price from the reams of “padded source code
content” — don’t make me embarrass those authors who do this — while
keeping your investment in this book’s information “fresh”. This book would be
triple the size and “4x” the price if I had embedded all of the source code tutorial’s
as many others do.

All the source code is written in “pure” JavaScript (JS) and the Phaser.js Gaming
Frameworks; it doesn’t use any additional “abstraction layers” such as “TypeScript”,
“CoffeeScript”, or “JQuery” for obvious reasons.

You’ll find your Bonus content, source code, and references in …

• the footnotes links,
14https://choosealicense.com/licenses/
15http://leanpub.com/phaserjsgamedesignworkbook/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://choosealicense.com/licenses/
http://leanpub.com/phaserjsgamedesignworkbook/
http://leanpub.com/phaserjsgamedesignworkbook/
https://choosealicense.com/licenses/
http://leanpub.com/phaserjsgamedesignworkbook/

About this Workbook: vii

• external reference links, and in the file which are available directly from the
supporting website — without registration nor private logon thus keeping your
personal information safe!

• or from the latest and most current updates inside your LeanPub.com personal
library (assuming that you’re a LeanPub patron16).

Who should use this workbook?

This workbook targets both the learning novices17 — those who enjoy “learning by
doing” using “deliberate practice”18 — and the experienced expert programmers19

in web-application development; and, of course, those who want a finished game
from their own designs and efforts. If you are interested in making browser games,
especially for the Mobile/WebXR markets20, then this book is a perfect choice
along with its companion volumes: the Headless HTML5 Game DesignTM21, Phaser
Game Starter Kit Collection22, Phaser Game Design Workbook23, and Phaser Game
Prototyping24. With this in mind, you will do a lot of writing, thinking, and coding in
JavaScript throughout this workbook. You may prefer using paper (external physical-
or soft-“paper”) to organize your development ideas and processes.

I’ve “gone to great lengths”25 to make this book “skim-friendly” — even for my
International customers by emphasizing important concepts in bold font type. I have
provided links to “English (American) Jargon phrases”26 that will help translate this
content directly into your native language. I use “Notes”, “Tips”, “Warning” and “Best
Practices” icons to encapsulate those ancillary topics for your further education from
other experts in the gaming industry.

I further assume that many readers will want to use this book to quickly build
their bespoke27 game products. So, I’ve included references to other similar game
examples, gaming engines, frameworks, GUI game kits28, indie developers, authors,
their “open-source” contributions, articles, books, artwork29, application tools, and
their wisdom.

16https://leanpub.com/u/pbmcube
17https://www.nap.edu/read/9853/chapter/5
18https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
19https://www.nateliason.com/blog/become-expert-dreyfus
20https://immersiveweb.dev/
21http://leanpub.com/hgd
22https://leanpub.com/p3gskc
23https://leanpub.com/phaser3gamedesignworkbook
24https://leanpub.com/phaser3gameprototyping
25https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
26https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
27https://www.urbandictionary.com/define.php?term=bespoke
28https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
29https://www.gamedevmarket.net/?ally=GVgAVsoJ

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://www.nap.edu/read/9853/chapter/5
https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
https://www.nateliason.com/blog/become-expert-dreyfus
https://immersiveweb.dev/
http://leanpub.com/hgd
https://leanpub.com/p3gskc
https://leanpub.com/p3gskc
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/phaser3gameprototyping
https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
https://www.urbandictionary.com/define.php?term=bespoke
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://leanpub.com/u/pbmcube
https://www.nap.edu/read/9853/chapter/5
https://www.nateliason.com/notes/peak-anders-ericsson-robert-pool
https://www.nateliason.com/blog/become-expert-dreyfus
https://immersiveweb.dev/
http://leanpub.com/hgd
https://leanpub.com/p3gskc
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/phaser3gameprototyping
https://dictionary.cambridge.org/us/dictionary/english/go-to-great-lengths
https://www.smartling.com/blog/40-american-slang-words-and-phrases-you-need-to-know/
https://www.urbandictionary.com/define.php?term=bespoke
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://www.gamedevmarket.net/?ally=GVgAVsoJ

About this Workbook: viii

In summary, if you are a hobbyist, independent game developer, student, teacher,
or start-up game studio you will find a wealth of information on both product
and project management, game design, game mechanisms, game mechanics, and
“insider’s tips” about the Phaser JavaScript Gaming Frameworks.

If you’d like a link to your finished games in future updates, please usemy
contact information on LeanPub.com30 or Amazon.com Author’s page31.

Your newly obtained skills…

By the end of this workbook, you’ll have integrated into your own bespoke32 game
design:

• Step-by-step methods migrating older Phaser v2.x.x into III.
• Built “future-proof” and flexible game architectures.
• Used the “Headless” Game Design System™ which creates Game Recipes™33

from automated tools.
• Demystified Web Sockets for optimized game deployments.
• Adopted processes for business product/project management and “extreme
programming”34.

• Organized a standardized file structure for general game developments;
• Used a blank game template to scaffold further game projects;
• Converted and adopted new changes in the Phaser III API.
• Managed groups and layers of game objects with Phaser Frameworks;
• Imported resources and game assets;
• Displayed, animated, and moved game avatars on various screen renderings;
• Incorporated sound effects (sfx) and theme music across various game phases;
• Deployed “heads-up display” (HUD) on game scenes both inside and outside the

canvas;
• Used customized web fonts;
• Incorporated multiple game-inputs (touch, multi-touch, accelerometer, mouse,

and keyboard);
• Implemented several physics systems in both Phaser Gaming Frameworks;
• Created and managed various game deployments (CMS, PWA, & SWPA);

30https://leanpub.com/u/pbmcube
31https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&

pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
32https://www.urbandictionary.com/define.php?term=bespoke
33https://www.nateliason.com/blog/become-expert-dreyfus
34https://en.wikipedia.org/wiki/Extreme_programming

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.urbandictionary.com/define.php?term=bespoke
https://www.nateliason.com/blog/become-expert-dreyfus
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming
https://leanpub.com/u/pbmcube
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.amazon.com/kindle-dbs/entity/author/B01N780CUF?_encoding=UTF8&node=283155&offset=0&pageSize=12&sort=author-pages-popularity-rank&page=1&langFilter=default#formatSelectorHeader
https://www.urbandictionary.com/define.php?term=bespoke
https://www.nateliason.com/blog/become-expert-dreyfus
https://en.wikipedia.org/wiki/Extreme_programming

About this Workbook: ix

• Managed permanent cache assets across game phases;
• Optimized games for various mobile devices;
• Integrated several 3rd-party scripts and services.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Design System™ x

Game Design System™

“Game Recipe™” Courses (purchased separately on specific gaming mechanics) us-
ing the Game Design System™ management method and concepts. These courses
enhance your skills and are available from my educational websites (hosted by
LeanPub.com35) or Training By Blackboard, Books, and Browsers36.

You can earn your Game Development Certifications from my online courses37,
from Udemy (102-pages of online courses!)38 or Zenva (my personal favorite!)39; to
enhance your resume.

Game Studio - Book Series

Learn to build a Gaming Studio for passive (or secondary) income!

• Game Studio Starter Kit Bundle40 — Start your own Game Studio for passive or
secondary income! This bundle shows you how to develop product and project
management in the gaming industry from my 23 years of experience. You’ll learn
how to quickly build game prototypes in any genre, launch, and then distribute
your games. You’ll also have 16+ popular game genres to choose for your product
line with 19 subgenres to to expand upon. Learn how to capture various game
industry market shares.

• Headless HTML5 Game Design (Vol. I)41 — Creating Cloud-based “Content-as-a-
Service” (CaaS) games for Any Gaming Device.

• Making Massive Multi-Player Online games (Vol. II)42 — Creating Multi-Player
Online games using the Full-stack, White-labeled, and “Content-as-a-Service”
(CaaS) Architectures.

35https://leanpub.com/u/pbmcube
36http://tbcube.com./
37https://leanpub.com/u/pbmcube
38https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%

2Fcourses%2Fdevelopment%2Fgame-development%2F%3Fsearch-query%game%2Bdevelopment
39https://academy.zenva.com/?a=47&campaign=RPGCaaS
40https://leanpub.com/b/gssk
41https://leanpub.com/hgd
42https://leanpub.com/mmmog

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/u/pbmcube
https://leanpub.com/u/pbmcube
http://tbcube.com/
https://leanpub.com/u/pbmcube
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://academy.zenva.com/?a=47&campaign=RPGCaaS
https://leanpub.com/b/gssk
https://leanpub.com/hgd
https://leanpub.com/mmmog
https://leanpub.com/u/pbmcube
http://tbcube.com/
https://leanpub.com/u/pbmcube
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://click.linksynergy.com/deeplink?id=pmlyJRiRsYE&mid=39197&murl=https://www.udemy.com/courses/development/game-development/?search-query%25game%2Bdevelopment
https://academy.zenva.com/?a=47&campaign=RPGCaaS
https://leanpub.com/b/gssk
https://leanpub.com/hgd
https://leanpub.com/mmmog

Game Design System™ xi

• Making Multi-Player Online games43 — A Game Development Workbook for any
Phaser JavaScript Gaming Framework. This book is a thorough review of MMoG
mechanics for both client- and server-side APIs using Block-chain, WebRTC, RPC,
MoM, SSE, Cloud Services, and Web Sockets (Berkeley). I do not recommended
for entry-level developers; mastery of several IT technologies44 is required.

• Phaser JS Game Design Workbook45 — 6th Edition for v2.x.x and v3.16+ —
guidance on project and product management in the gaming industry.

• Phaser Game Prototyping46 — 6th Edition for v2.x.x and v3.16+
• Phaser Game Starter Kit Collection47 — 6th Edition for v2.x.x only.
• Phaser III Game Prototyping48 — 6th Edition for v3.16+ only.
• Phaser III Game Starter Kit Collection49 — 6th Edition for v3.16+ only.

Game Studio - Online Courses

• Phaser Game Design Workshop Course50 — guidance on programming your first
game in v2.x.x.

• Phaser Starter Kit Game Collection51 for either Phaser v2.x.x or Phaser III.
• Phaser III Game Design Workshop Course52 — guidance on programming your

first game in v3.16+.
• Game Studio Starter Kit Collection (basic)53 — 3 courses are included in this

Business starter kit for Game Studios … “Making Dating & Quiz Browser games”,
“Making Online Dress-UP Fashion games”, and “Making Puzzle Browser games”
with Phaser v2.x.x.

• Ultimate Game Studio Starter Kit Collection54 — 6 course-set are included in this
Business starter kit for Game Studios. Build your own Game Studio business for
as little as $17.99.

43https://leanpub.com/rrgamingsystem
44https://github.com/kamranahmedse/developer-roadmap
45https://leanpub.com/phaserjsgamedesignworkbook
46https://leanpub.com/LoRD
47https://leanpub.com/pgskc
48https://leanpub.com/phaser3gameprototyping
49https://leanpub.com/p3gskc
50https://leanpub.com/c/phasergamedesignworkshop
51https://makingbrowsergames.com/p3gskc/
52https://leanpub.com/c/p3gdc
53https://leanpub.com/set/leanpub/gsskit
54https://leanpub.com/set/leanpub/ugsskitc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/rrgamingsystem
https://github.com/kamranahmedse/developer-roadmap
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://leanpub.com/pgskc
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/p3gskc
https://leanpub.com/c/phasergamedesignworkshop
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/c/p3gdc
https://leanpub.com/set/leanpub/gsskit
https://leanpub.com/set/leanpub/ugsskitc
https://leanpub.com/rrgamingsystem
https://github.com/kamranahmedse/developer-roadmap
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://leanpub.com/pgskc
https://leanpub.com/phaser3gameprototyping
https://leanpub.com/p3gskc
https://leanpub.com/c/phasergamedesignworkshop
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/c/p3gdc
https://leanpub.com/set/leanpub/gsskit
https://leanpub.com/set/leanpub/ugsskitc

Game Design System™ xii

“Making Browser Games” - Books Series

Individual Chapters —sold separately from the “Phaser Starter Kit Game Collections
books”55 — contain both the Phaser v2.x.x and Phaser “III” (3.16+) examples, source
code, and game license. Find and select your favorite game genre.

Chapter 1 — Action & Arcade56

Chapter 2 — Adventure Mazes & Story Plots57

Chapter 3 — Collapsing Blocks58

Chapter 4 — Connect 4 & Go59

Chapter 5 — Dating Simulations & Quizzes60

Chapter 6 — Defensive Towers61 — the typical tower-defense constructionswith two
innovative variations.
Chapter 7 — Dress-Up & Fashion62

Chapter 8 — Hidden Objects63

Chapter 9 — “Jump to Capture”64

Chapter 10 — MahJong — available only in the “Phaser Starter Kit Game Collec-
tions”65 volumes or the “Memory Match” mega-chapter.
Chapter 11 — Match-3 & Trace 3+66

Chapter 12 — Memory Match67 for Pairs (either “Open” or “Hidden”) & Sequence
matching — a “mega-chapter” with 5 games and licenses.
Chapter 13 — Music & Rhythm68

Chapter 14 — Puzzle (both Jigsaw & Sliders)69

Chapter 15 —Role-PlayingCharacterDevelopment—available only in the “Phaser
Starter Kit Game Collection”70 volumes. Role Playing Content-as-a-Service (CaaS)71

— a “mega-chapter” developing content for B2B, Affiliate Syndicates, and clients is
NOT available in the “Phaser Starter Kit Game Collections”72 volumes.
Chapter 16 — Simulations — available only in the “Phaser Starter Kit Game

55https://makingbrowsergames.com/p3gskc/
56https://leanpub.com/mbg-action-arcade
57https://leanpub.com/mbg-adventure
58https://leanpub.com/mbg-collapse
59https://leanpub.com/mbg-connect4
60https://leanpub.com/mbg-dating
61https://leanpub.com/mbg-towers
62https://leanpub.com/mbg-dressup
63https://leanpub.com/mbg-hidden
64https://leanpub.com/makingjump2capturebrowsergames
65https://makingbrowsergames.com/p3gskc/
66https://leanpub.com/mbg-match3
67https://leanpub.com/mbg-memory
68https://leanpub.com/mbg-music
69https://leanpub.com/mbg-puzzle
70https://makingbrowsergames.com/p3gskc/
71https://leanpub.com/mbg-rpg
72https://makingbrowsergames.com/p3gskc/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-action-arcade
https://leanpub.com/mbg-adventure
https://leanpub.com/mbg-collapse
https://leanpub.com/mbg-connect4
https://leanpub.com/mbg-dating
https://leanpub.com/mbg-towers
https://leanpub.com/mbg-dressup
https://leanpub.com/mbg-hidden
https://leanpub.com/makingjump2capturebrowsergames
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-match3
https://leanpub.com/mbg-memory
https://leanpub.com/mbg-music
https://leanpub.com/mbg-puzzle
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-rpg
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-action-arcade
https://leanpub.com/mbg-adventure
https://leanpub.com/mbg-collapse
https://leanpub.com/mbg-connect4
https://leanpub.com/mbg-dating
https://leanpub.com/mbg-towers
https://leanpub.com/mbg-dressup
https://leanpub.com/mbg-hidden
https://leanpub.com/makingjump2capturebrowsergames
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-match3
https://leanpub.com/mbg-memory
https://leanpub.com/mbg-music
https://leanpub.com/mbg-puzzle
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-rpg
https://makingbrowsergames.com/p3gskc/

Game Design System™ xiii

Collections”73 volumes.
Chapter 17 — Strategy & Tactics74

“Making Browser Games” Series - online Courses

• Making Browser games — Tower Defense75 with Phaser v2x.x and v3.16+.
• Making Dating & Quiz Browser games76 with Phaser v2x.x.
• Making Online Dress-UP Fashion games77 with Phaser v2x.x.
• Making Peg Solitaire Browser games78 with Phaser v2x.x.
• Making Phaser III Peg Solitaire Browser games79 with Phaser v3.16+.
• Making Puzzle Browser games80 with Phaser v2x.x.
• Making RPG Browser games81 with Phaser v2x.x.

Programming Courses

See the growing catalog of courses for college credit, home schooling or personal
skills development at Training by Blackboard, Books & Browsers82

• Using JavaScript OLOO in game development83 (learn JavaScript development)

“Walk-Thru Tutorial” Series - Online Courses

These courses are “step-by-step” guides to create specifically designed games with
some explanation as to why we do this (which is typically found in most online
tutorials).

• “Walk-Thru Tutorial Series” - Blood Pit™ (IGM)84

73https://makingbrowsergames.com/p3gskc/
74https://leanpub.com/mbg-strategy
75https://leanpub.com/c/mbg-p2p3-towerdefenses
76https://leanpub.com/c/mbg-dating
77https://leanpub.com/c/mbg-dressup-p2
78https://leanpub.com/c/mbg-peg-p2
79https://leanpub.com/c/mbg-peg-p3
80https://leanpub.com/c/mbg-puzzle-p2
81https://leanpub.com/c/mbg-rpg-p2
82https://www.tbcube.com/
83https://leanpub.com/c/jsoloo
84https://leanpub.com/c/bloodpit-wtts

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/mbg-strategy
https://leanpub.com/c/mbg-p2p3-towerdefenses
https://leanpub.com/c/mbg-dating
https://leanpub.com/c/mbg-dressup-p2
https://leanpub.com/c/mbg-peg-p2
https://leanpub.com/c/mbg-peg-p3
https://leanpub.com/c/mbg-puzzle-p2
https://leanpub.com/c/mbg-rpg-p2
https://www.tbcube.com/
https://leanpub.com/c/jsoloo
https://leanpub.com/c/bloodpit-wtts
https://makingbrowsergames.com/p3gskc/
https://leanpub.com/mbg-strategy
https://leanpub.com/c/mbg-p2p3-towerdefenses
https://leanpub.com/c/mbg-dating
https://leanpub.com/c/mbg-dressup-p2
https://leanpub.com/c/mbg-peg-p2
https://leanpub.com/c/mbg-peg-p3
https://leanpub.com/c/mbg-puzzle-p2
https://leanpub.com/c/mbg-rpg-p2
https://www.tbcube.com/
https://leanpub.com/c/jsoloo
https://leanpub.com/c/bloodpit-wtts

Game Design System™ xiv

• “Walk-Thru Tutorial Series” - Blood Pit II™85

• “Walk-Thru Tutorial Series” - Mozart’s Music Match™86

• “Walk-Thru Tutorial Series” - Rogue Prince QuestsTM (IGM)87

85https://leanpub.com/c/wtts-bloodpit2-mmog
86https://leanpub.com/c/wtts-mmm
87https://leanpub.com/c/arrp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/c/wtts-bloodpit2-mmog
https://leanpub.com/c/wtts-mmm
https://leanpub.com/c/arrp
https://leanpub.com/c/wtts-bloodpit2-mmog
https://leanpub.com/c/wtts-mmm
https://leanpub.com/c/arrp

Part I: Product Management

Part I Introduction to Game Design System™
I’m skipping to my 3rd “Product Management Phase” and we’ll create a single-player
prototype in both Phaser v2.x.x & v3.24+. More detailed information about the
“Product/Project Management” phases — Concept, Design and Distribution — are
available now only in these “Game Studio” series companions:

• Phaser.js Game Design Workbook (6th edition)88.
• Headless Game Design89 a “Product Management” workbook for “Content-as-a-

Service”.

88https://leanpub.com/phaserjsgamedesignworkbook
89https://leanpub.com/hgd

https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/hgd
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/hgd

2

Part I is a brief excerpt from Phaser.js Game DesignWorkbook (6th edition)90 explain-
ing theGameDesign System™ and itsGame Recipe™ construction. Our goal is to build
several fully-functional “Phaser Game Prototypes”. There are several step-by-step
instructions and file downloads. We’ll catalog and create various “Game Framework
Mechanism” (GFM)91 components — those “visual elements” that are separate from
our core “Game Mechanics” (GM) genres and Artwork theme components. From this
simple foundation, we’ll learn to combine these “building blocks” into various game
products as easily as a child would use “Lego”™ blocks to construct a toy castle.
Furthermore, you can review this construction process throughout “Phaser Game
Starter Kit Collections”92 — a workbook of 16+ popular game genre mechanics and
19 sub-genres. By the end of “Part I”, we’ll have created everything a game prototype
uses:

• Creating visual avatars and their associated metadata structures;
• Collecting a player’s input;
• Detecting collisions and interactions among various elements;
• Migrating to dynamic game phases;
• Monitoring the gaming loop;
• Creating and Updating heads-up displays (aka “HUD”).
• Reviewing the massive overhaul of the “Tween” System in the v3.19+;
• Events and Call-backs &mdash where and when to use;
• Sound effects (sfx); and
• Sprite Animation(s).

90https://leanpub.com/phaserjsgamedesignworkbook
91http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_

A2E2B3B1.html
92https://leanpub.com/p3gskc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaserjsgamedesignworkbook
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
https://leanpub.com/p3gskc
https://leanpub.com/p3gskc
https://leanpub.com/phaserjsgamedesignworkbook
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/concepts/component_A2E2B3B1.html
https://leanpub.com/p3gskc

Game Studio & Project Preparations 1

1. Game Studio & Project Preparations

This chapter is focused on organizing the project’s file structure and setting up your
workstation environment. It will allow us to:

• have the software tools available for game production
• maintain an organized file structure;
• facilitate project creation, and
• test various aspects of our game

The first impressions you’ll develop while reading this chapter is: THERE’S NO FRONT-
END BUILD TOOLS “Why is that?”, you’re thinking? My goal is to provide a direct “no
non-sense” approach in game construction. In many competing tutorials and books,
you’ll read chapterS(!) on working with “node.js”, “grunt”, “bower”, “yeoman”, “webpack”,
“brunch”, “gulp”, etc. (ad nauseam)1. The shame, of all this, is that folks are beginning
to write such articles as “I finally made sense of front end build tools. You can, too.”2

Another popular game developer, Andrezej Mazur of Enclave Game, stated my same
sentiments in this way …

“Everything changed so much over the years. I feel like grandpa right now —
back in my days, we typed pure CSS and used jQuery in a Notepad. Right now,
to start a new project, you need a few days to chose the right tools, configure
the build process, have proper configs and settings, preprocessors in place,
etc. I would really need at least a few solid months to go through the most
popular tool-chain. … That’s why I think I’ll end up using the “quick and dirty”
approach — I’ll do a research about using a common template or a starter
(kit)3 and will expand from it.” (quoted from https://dev.end3r.com/2018/
11/gamedev-versus-front-end/)

ACTUALLY START THE DAMN GAME …

“Writing your idea down is not starting the damn game. Writing a design document
is not starting the damn game. Assembling a team is not starting the damn game.
Even doing graphics or music is not starting the damn game. It’s easy to confuse

1https://en.wikipedia.org/wiki/Ad_nauseam
2https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
3https://makingbrowsergames.com/book/standalone.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Ad_nauseam
https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://dev.end3r.com/2018/11/gamedev-versus-front-end/
https://dev.end3r.com/2018/11/gamedev-versus-front-end/
http://makegames.tumblr.com/post/1136623767/finishing-a-game
https://en.wikipedia.org/wiki/Ad_nauseam
https://medium.freecodecamp.org/making-sense-of-front-end-build-tools-3a1b3a87043b
https://makingbrowsergames.com/book/standalone.zip

Game Studio & Project Preparations 2

“preparing to start the damn game” (ed.: and all those “FRONT-END BUILD TOOLS”!)
with “starting the damn game”. Just remember: a damn game can be played, and if
you have not created something that can be played, it’s not a damn game!

So dammit, even creating a game engine is not necessarily starting the damn game.
Which brings me to the next tip…” Read more such advice here …a

ahttp://makegames.tumblr.com/post/1136623767/finishing-a-game

Well, … Ok then, let’s get our game “prototype” started and finished; then, we’ll
address those “Front-end Building Tools”4 in later chapters. BUT first, we need a
workstation to build stuff …

Hint: Google and Mozilla both provide excellent resources for Game5 and Web
Developers.6

1.1 Workstation Setup

Let’s take an inventory of what you currently have on-hand. Do you have:

• A browser that is HTML5 compliant7; now-a-days, most browsers are compli-
ant. But you can double-check using this site: https://caniuse.com/#search=ES6
(NOTE: bookmark this site for use latter.)

• A separate directory (i.e., Microsoft “folder”) to save and review each game
projects’ development files. Check you disk space8 now. This becomes your
“software workspace”9. (See Project Setup below)

• A “text editor” or “Integrated Develop Environment” (IDE) of your choice. (See
Development Tools below)

• An operational web server? (Coming next …)
4https://developers.google.com/web/tools/setup/setup-buildtools
5https://developer.mozilla.org/en-US/docs/Games
6https://developers.google.com/web/tools/
7https://caniuse.com/#search=html5
8https://www.wikihow.com/Check-Your-Hard-Disk-Space
9https://en.wikipedia.org/wiki/Workspace

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://makegames.tumblr.com/post/1136623767/finishing-a-game
http://makegames.tumblr.com/post/1136623767/finishing-a-game
https://developers.google.com/web/tools/setup/setup-buildtools
https://developer.mozilla.org/en-US/docs/Games
https://developers.google.com/web/tools/
https://developers.google.com/web/tools/
https://caniuse.com/#search=html5
https://caniuse.com/#search=ES6
https://www.wikihow.com/Check-Your-Hard-Disk-Space
https://en.wikipedia.org/wiki/Workspace
https://developers.google.com/web/tools/setup/setup-buildtools
https://developer.mozilla.org/en-US/docs/Games
https://developers.google.com/web/tools/
https://caniuse.com/#search=html5
https://www.wikihow.com/Check-Your-Hard-Disk-Space
https://en.wikipedia.org/wiki/Workspace

Game Studio & Project Preparations 3

Batteries not included … Web Server Required

“Why do I need a web server? Can’t I just open the html files with my browser?”

Answer: All JavaScript games, that load assets and files, require launching itself from a
web server — either locally inside your workstation or remotely from the Internet.10

It’s all about browser security and the same-origin policies11 — prohibiting files load-
ing from different “domains”12 and the protocols used to access your locally stored
files. When you request anything from the Internet you’re typically using the “hyper-
text transfer protocol” (“http://” or “https://”). From a web server, security policies
ensure you only access files that you are authorized to use. When you open any
HTML file from your local operating system, your browser uses the “file://“ protocol.
(technically a different protocol13 than “http://”), massive restrictions are triggered
inside your browser, for the following obvious reasons. Under the “file://“ protocol,
no concept of domains nor “server-level security policies” exists, just your computer’s
“raw file system” and its operating system — identified as the localhost14 — using
a local IP address(es) (0.0.0.0 or IPv6 ::1 or IPv4 127.0.0.0/8 to 127.255.255.255/8)15

per RFC 990, November 1986.16 This means that your HTML pages are not running
on any domain nor public Internet IP address at all, and thus JavaScript is unable
to load any game assets dynamically. Do you really want JavaScript to have that
much control — to load anything from anywhere — off your computer? Well, I’m
guessing your answer should be “… not ever!”. If JavaScript had unrestricted access
using the “file://“ protocol, nothing could stop it from tapping into your information
and sending it anywhere to anyone.

Exercise: Read more about browser security from the Chromium Blog17

Hint: “127.0.0.1” or “localhost” are IP addresses that default to your local
workstation. The packet path never reaches the Network Interface Card (NIC).
This is an important concept when creating web sockets and Multi-Player
games.

10http://gose-internet-services.net/data-centers/uk-data-center/
11https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
12https://en.wikipedia.org/wiki/Domain_Master_Browser
13https://www.w3.org/Addressing/
14https://en.wikipedia.org/wiki/Localhost
15https://www.lifewire.com/network-computer-special-ip-address-818385
16http://tools.ietf.org/html/rfc990#page-6
17https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gose-internet-services.net/data-centers/uk-data-center/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Domain_Master_Browser
https://www.w3.org/Addressing/
https://en.wikipedia.org/wiki/Localhost
https://www.lifewire.com/network-computer-special-ip-address-818385
http://tools.ietf.org/html/rfc990#page-6
https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://gose-internet-services.net/data-centers/uk-data-center/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Domain_Master_Browser
https://www.w3.org/Addressing/
https://en.wikipedia.org/wiki/Localhost
https://www.lifewire.com/network-computer-special-ip-address-818385
http://tools.ietf.org/html/rfc990#page-6
https://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html

Game Studio & Project Preparations 4

Deeper Dive: Testing “MMoGs” Locally??!

There’s a trend to give your “localhost“ a “top-level domain” (TLD) name of ”.dev”. Stop!
Don’t! WHY?!? Because in 2017, Google has the TLD registration of several thousand
of these commonly used domains that developers once used. (See this article18.)

Exercise: Learn which TLD names are still available here19.

Locally TestingMMoGs

Wikipedia statesa, “The processing of any packets sent to a loop-back address is
implemented in the link layer of the TCP/IP stack. Such packets are never delivered
to any network interface controller (NIC) or device driver, which permits testing of
software in the absence of any hardware network interfaces.

Like any other packets traversing the TCP/IP stack, looped-back packets convey
the IP address and port number they were addressed to. Thus, the services that
ultimately receive them can respond according to the specified loop-back destination.
For example, an HTTP service could route packets addressed to 127.0.0.99:80 and
127.0.0.100:80 to different Web servers, or to a single server that would return
different web pages. (ed.: one browser window to another browser window which
is NOT true testing of any MMoG game.) To simplify such testing, the host’s file can
be modified to provide appropriate aliases for each such address.”

ahttps://en.wikipedia.org/wiki/Localhost

“So then! What’s a girl to do?!” The solution really is simple. Run your game develop-
ment files from a local web server or remotely from the Internet20. Depending on
your workstation operating system (and what you have installed already), there are
several ways to launch web pages from a “web service”21.

• Some text editors and Integrated Development Environments (IDE) already
include a local web server. Brackets22 is one such example.

18http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to-https
19https://iyware.com/dont-use-dev-for-development/
20http://gose-internet-services.net/data-centers/uk-data-center/
21http://www.webopedia.com/TERM/W/Web_Services.html
22http://brackets.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to-https
https://iyware.com/dont-use-dev-for-development/
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Localhost
https://en.wikipedia.org/wiki/Localhost
http://gose-internet-services.net/data-centers/uk-data-center/
http://www.webopedia.com/TERM/W/Web_Services.html
http://brackets.io/
http://fossilgeek.jasonbaier.com/posts/google-chrome-63-forcing-dev-domains-to-https
https://iyware.com/dont-use-dev-for-development/
http://gose-internet-services.net/data-centers/uk-data-center/
http://www.webopedia.com/TERM/W/Web_Services.html
http://brackets.io/

Game Studio & Project Preparations 5

• Another simple solution I discovered is the Google’s Chrome Web Server.23 Once
you install this application, you can launch any web page(s) directly from Chrome.
Simply point it at your URI path and project folder.24

• The official Phaser instructions (and sanctioned method) are …

Quote: “We would recommend either WAMP Server25 or XAMPP26 and both
have easy set-up guides available. WAMP specifically installs an icon into
your system-tray from which you can stop and restart the services, as well
as modify Apache settings such as creating a new folder alias for a project.”
Read more details here27. (overlooked was MAMP or MAMP Pro28 available
for those with MAC OS X.)

Exercise: Use this Google Chrome Web Server Install Instructions (movie: 1:51
minutes)29 to setup a webserver.

Development Tools

Although Phaser web site has a well-documented section on “how to get started”30.
I recommend you test and develop your game using an Integrated Development
Environment (IDE) editor of your choice. I use several: Mighty Editor (now open
source)31, Phaser Editor 2D32, the (FREE) NotePad++33; although, Brackets34 editor
runs a close second in my daily web-site construction. Do not use any word processing
applications such as Microsoft Word; this is not a “hate statement” against Microsoft.
Word processing applications add invisible formatting to your source code that will
lead to problems. If you do not have a favorite text editor, I have some recommenda-
tions based on your status:

23https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
24http://uri.thephpleague.com/4.0/components/overview/
25http://www.wampserver.com/en/
26http://www.apachefriends.org/en/xampp.html
27https://phaser.io/tutorials/getting-started-phaser3/part2
28https://www.mamp.info/en/
29https://www.youtube.com/watch?v=AK6swHiPtew
30https://phaser.io/tutorials/getting-started-phaser3
31https://github.com/TheMightyFingers/mightyeditor
32https://phasereditor2d.com/
33https://notepad-plus-plus.org/
34http://brackets.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
http://uri.thephpleague.com/4.0/components/overview/
http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html
https://phaser.io/tutorials/getting-started-phaser3/part2
https://www.mamp.info/en/
https://www.youtube.com/watch?v=AK6swHiPtew
https://www.youtube.com/watch?v=AK6swHiPtew
https://phaser.io/tutorials/getting-started-phaser3
https://github.com/TheMightyFingers/mightyeditor
https://github.com/TheMightyFingers/mightyeditor
https://phasereditor2d.com/
https://notepad-plus-plus.org/
http://brackets.io/
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
http://uri.thephpleague.com/4.0/components/overview/
http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html
https://phaser.io/tutorials/getting-started-phaser3/part2
https://www.mamp.info/en/
https://www.youtube.com/watch?v=AK6swHiPtew
https://phaser.io/tutorials/getting-started-phaser3
https://github.com/TheMightyFingers/mightyeditor
https://phasereditor2d.com/
https://notepad-plus-plus.org/
http://brackets.io/

Game Studio & Project Preparations 6

• StarUML v235 and its v2 JavaScript extension36 is a “Forward Engineering37” tool
that directly converts “UML Model diagrams” directly into JavaScript code. You
can also create supporting documentation website by thoroughly defining your
object models. If you can create UML models you can create gaming code in
JavaScript.

• FREE Access to the online Game Designer Tool Kit38 — from which you can:
- Randomly generate game ideas.
- Collect game prototypes.
- Automatically generate game design documentation and source code.

• Phaser Game mechanics Explorer39 is a limited set of 9 free examples.
• Remote Web Server40 pre-installed with Node.js, PHP, and Python 3.5.
• Are you a student or instructor? Then obtain a FREE copy of PHPStorm41 or
WebStorm42 — a savings of $199 per year; other enticements and discounts
available for indie start-ups. OVER one third of all professional “full-stack”
developers use this IDE. See the proof here43

• Are you an indie game development start-up or hobbyist with little cash assets?
Then obtain a FREE copy of NotePad++44; it’s the editor I use. Or, use Microsoft
Visual Source / Code45 if you are inclined to develop in Typescript46 which
transpiles to ECMAScript 3 by default!!!47 Only One fourth of all professional web
developers use Typescript! See the proof here48. If you’re having problems with
Microsoft Visual Studio / Code, you’re not alone. Read what others have done to
solve MS Visual Studio / Code problems here49.

• Do you have money to spend? Then pick any of the thousands of software source
code editors available online, and then send me the remaining money for my own
development (wink, wink, my poor attempt at humor?!) On a more serious note,
save your cash for gameartwork50, visual assets, and “Graphical User Interfaces”
(GUI)51 gaming kits

35http://staruml.io/
36http://staruml.io/extensions
37https://www.techopedia.com/definition/19445/forward-engineering
38https://makingbrowsergames.com/gameDesigner/
39https://gamemechanicexplorer.com/
40http://gose-internet-services.net/wordpress-web-hosting/
41https://www.jetbrains.com/phpstorm/buy/#edition=discounts
42https://www.jetbrains.com/webstorm/buy/#edition=discounts
43https://www.jetbrains.com/research/devecosystem-2018/javascript/
44https://notepad-plus-plus.org/
45https://code.visualstudio.com/
46https://en.wikipedia.org/wiki/TypeScript
47https://www.typescriptlang.org/docs/handbook/compiler-options.html
48https://www.jetbrains.com/research/devecosystem-2018/javascript/
49https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/
50https://www.gamedevmarket.net/?ally=GVgAVsoJ
51https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://staruml.io/
http://staruml.io/extensions
https://www.techopedia.com/definition/19445/forward-engineering
https://makingbrowsergames.com/gameDesigner/
https://gamemechanicexplorer.com/
http://gose-internet-services.net/wordpress-web-hosting/
https://www.jetbrains.com/phpstorm/buy/#edition=discounts
https://www.jetbrains.com/webstorm/buy/#edition=discounts
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/TypeScript
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://staruml.io/
http://staruml.io/extensions
https://www.techopedia.com/definition/19445/forward-engineering
https://makingbrowsergames.com/gameDesigner/
https://gamemechanicexplorer.com/
http://gose-internet-services.net/wordpress-web-hosting/
https://www.jetbrains.com/phpstorm/buy/#edition=discounts
https://www.jetbrains.com/webstorm/buy/#edition=discounts
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/TypeScript
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://www.html5gamedevs.com/topic/30978-how-to-use-the-phaser-in-visual-studio-2017/
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Game Studio & Project Preparations 7

1.2 Project Setup

Create the following directories/folders for this first project on your computer. You
can quickly set-up the project by copying the “Project GamePrototype StarterKit”
from inside the Bonus Content directory — the Bonus Content was an additional
download available from your LeanPub.com personal library. For other patrons, you
can download this project template from the book’s website — Phaser template kit52.

https://makingbrowsergames.com/book/_basic-phaser-template.zip

Deeper Dive: Project Data Structure

The arrangement of directories (i.e.53 folders) and files is an important consideration.
If you use some of those “Front-end Build tools”,54 your project file structure is
dictated; this provides less security since your game follows a known directory
structure that everyone knows and uses.

I have read dozens of game development authors who literally dictate a rigid organi-
zation up to 10+ layers deep — they should reads Microsoft’s warning about doing
that in Windows O/S. “Why should I follow this?”, has always been my question; How
does their organizational structures help or hinder the final game product? I
recommend that you avoid this non-sense of 10-levels deep directories. Create an
organization of directories55 that make sense to you and labeled as you please. A
side benefit of doing so, is a security feature, because it becomes harder to guess
your directories and naming schema.56

On the other hand, if you are working on a game development team, then directory
structure takes on a new meaning as: “Name Space”57 for local and public variables.
Consistency and standardization rules as King in software collaborative efforts.58

Many game developer turn to tools such as Vagrant59 for help.

When you are creating a game project (aka Blueprints, templates, or Game Starter Kits,
make-up your own “marketing nickname”) its “File Structure” should be consistent

52https://makingbrowsergames.com/book/_basic-phaser-template.zip
53https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
54https://frontendmasters.com/books/front-end-handbook/2018/tools.html
55https://addyosmani.com/blog/essential-js-namespacing/
56https://namingschemes.com/
57https://en.wikipedia.org/wiki/Namespace
58https://en.wikipedia.org/wiki/Collaborative_software
59https://www.vagrantup.com/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
https://frontendmasters.com/books/front-end-handbook/2018/tools.html
https://addyosmani.com/blog/essential-js-namespacing/
https://addyosmani.com/blog/essential-js-namespacing/
https://namingschemes.com/
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Collaborative_software
https://www.vagrantup.com/
https://makingbrowsergames.com/book/_basic-phaser-template.zip
https://www.grammarly.com/blog/know-your-latin-i-e-vs-e-g/
https://frontendmasters.com/books/front-end-handbook/2018/tools.html
https://addyosmani.com/blog/essential-js-namespacing/
https://namingschemes.com/
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Collaborative_software
https://www.vagrantup.com/

Game Studio & Project Preparations 8

across all your projects. “Why’s that?” Well, I’ll tell you60; because when you create
another new project and “re-factor” everything (i.e., rename stuff) to coincide with
the new project, it is easier to “find & replace” consistent formatting and file names.
I’ll show you how to do this in Part II and walk through that process in Part III.

Coming next is the structure I use, which makes the most sense for me, when creating
my games.Having consistency across all your projects,makes it easier for other staff
members to know where everything is located as they work on — and switching
between — projects .

Deeper Dive: And its name shall be called …

What is a “Namespace”?

Namespace is a container for a collection of identifiers, functions, methods, and
variables deployed away from the global setting (browser window object). They are
used to organize blocks of functionality into logical groups having a unique identity.
Unfortunately, JavaScript doesn’t provide namespacing by default. So anything (func-
tion, method, object, variable) created in JavaScript appears in the window object
(aka global object from which all primitive members reside), and additional software
structures continue polluting that global namespace by adding more to it. To solve
this problem you can create a single object in the global scope for our game, and
make all the game’s functions, variables, and properties inside that secluded object.
Read more here61 and here62.

Hint: Refer to https://addyosmani.com/blog/essential-js-namespacing/ for
an excellent review.

Why is it poor practice to have variables and functions on a global level?
Because, if you are supplementing your code with 3rd party libraries and scripts,
— which I shy away from for several reasons: 1) it distracts from development
time to learn someone else’s code; 2) your game is only as good as its “weakest
imported library” — those additions all share the same global object. Furthermore,
there is a chance those additional libraries might use similar naming conventions for
their variables and functions; this could cause “name collisions” and override your
code’s logic. If that all sounds “totally paranoid”63 and “psychotic”64 — what, what?!

60https://www.youtube.com/watch?v=x2Y7_1dILlQ
61http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
62http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
63https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
64https://medlineplus.gov/psychoticdisorders.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.youtube.com/watch?v=x2Y7_1dILlQ
http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
https://addyosmani.com/blog/essential-js-namespacing/
https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
https://medlineplus.gov/psychoticdisorders.html
https://www.youtube.com/watch?v=x2Y7_1dILlQ
http://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
http://stackoverflow.com/questions/9773964/understanding-the-javascript-global-namespace-and-closures
https://www.mind.org.uk/information-support/types-of-mental-health-problems/paranoia/effects-of-paranoia/
https://medlineplus.gov/psychoticdisorders.html

Game Studio & Project Preparations 9

Software engineers psychotic? Go figure! — you’re right! The chances are even higher
when libraries that use “$” as an alias (e.g.: JQuery, Prototype, PHP, and others).

Concerns using Browserify with Phaser

Quotes from “Phaser 2.7.5 Browserify”a, “Phaser was never written to be modular.
Everything exists under one single global namespace, and you cannot require
selected parts of it into your builds. It expects 3 global vars to exist in order to work
properly: Phaser, PIXI, and p2. The following is one way of doing this:

window.PIXI = require('phaser/build/custom/pixi')

window.p2 = require('phaser/build/custom/p2')

window.Phaser = require('phaser/build/custom/phaser-split')

If you build a custom version of Phaser it will split the 3 core libs out into their own
files, allowing you to require them as above. (ed.: I strongly DO NOT recommend doing
this.)

We appreciate this is just a band-aid, and not a proper use of modules, but please
understand it was never built to be used this way. You’re trying to fit a square peg in a
round browserify-shaped hole,b so compromises have to be made. Please don’t open
GitHub issues about it as we’ve no intention of changing Phaser at this stage of its life.
Full module based development is available in Phaser v3 http://labs.phaser.io/

ahttps://photonstorm.github.io/phaser-ce/index.html
bhttps://github.com/browserify/browserify-handbook

If you use 3rd party libraries, you might consider using namespace to isolate your
code. A perfect example comes from “Mighty Editor”65. Refer to the line numbers
available here66:

Example: Creating Namespace for game

118 // MightEditor namespacing: http://mightyfingers.com/

119 // free on GitHub: https://github.com/TheMightyFingers/

120 "use strict";

121 window.GAMEAPP = {

122 // reference to the Phaser.Game instance

123 game: null,

124

125 //Canvas dimensions: world and viewports' Height and Width

126 //**TODO** adjust for your game deployment

65http://mightyfingers.com/
66https://makingbrowsergames.com/book/demos/_index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser-ce/index.html
https://github.com/browserify/browserify-handbook
http://labs.phaser.io/
https://photonstorm.github.io/phaser-ce/index.html
https://github.com/browserify/browserify-handbook
http://mightyfingers.com/
https://makingbrowsergames.com/book/demos/_index.html
http://mightyfingers.com/
https://makingbrowsergames.com/book/demos/_index.html

Game Studio & Project Preparations 10

127 viewportWidth: 800, //game view using Golden Ration

128 viewportHeight: 500,

129 worldWidth: 800, //world view using Golden Ration

130 worldHeight: 500,

131 ...

132 // main function

133 main: function(){

134 this.game = new Phaser.Game(

135 this.viewportWidth, this.viewportHeight,

136 Phaser.AUTO, document.body,

137 window.GAMEAPP.state.boot);

138 },

139 // we'll store all game phases

140 // as the js files load.

141 state: {}

142 };

143

144 /** DEPRECATED METHOD - NEVER EVER USE THIS AGAIN!

145 * See Phaser.js Game Design Workbook for complete explanation

146 * http://leanpub.com/phaserjsgamedesignworkbook

147 * window.onload = function () {

148 * let game = new Phaser.Game(0, 0, Phaser.AUTO, document.body);

149 * };

150 */

151 // preferred lauch method for BOM.

152 window.addEventListener('DOMContentLoaded', function(){

153 window.GAMEAPP.main();

154 }, false);

Project Directories & Files

1 .URI/<PROJECT NAME>/ //game root directory (single player)

2 ├── favicon.ico //game logo

3 ├── index.html //game front-door entrance

4 ├── license.txt //game EULA @ http://renown-games/License.txt

5 ├── manifest.json //game mobile app

6 ├── package.json //for Progressive Web Applications

7 ├── purchaseOrd.pdf //how to buy your game

8 ├── ReadMe.md //game info, contact and metadata

9 │

10 ├── assets/ //game unique © resources

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 11

11 │ ├── audio/

12 │ ├── images/

13 │ └── spriteSheets/

14 │

15 ├── css/ //game content styling

16 │ └── main.css

17 ├── fonts/ //game font styling

18 │ └── fonts.css

19 │

20 └── js/ //game behaviors

21 ├── lib/ //game external source code libraries

22 ├── plugins/ //game enhancements

23 ├── prefabs/ //game prefabrication objects

24 ├── states/ //game phase

25 └── utilities/ //game helpers

• index.html — Main game container file, your example game should be viewed
from within this page.

• .htaccess— The default web server configs are for Apache. For more information,
please refer to the Apache Server Configs documentation67. Host your site on a
server other than Apache? You’re likely to find the corresponding server configs
project listed here68

• apple-touch-icon-precomposed.png — If you want to use different Apple Touch
Icons for different resolutions refer to this documentation69.

• crossdomain.xml — A template for working with cross-domain requests. (more
about crossdomain.xml here70). WARNING: WebSockets can AND do cross-
domain communication, it follows the same cross-origin sharing CORSmethod-
ologies71 and theyarenot limitedby the “Same Origin Policy (SOP)”, as JavaScript
is traditionally inside the browser. Because of this, WebSockets have the same ex-
posure to the types of cross-domain attacks. I won’t go into detailed descriptions
on WebSocket security, simply said, it’s up to the server authentication to validate
their client’s origin and for WebSocket frame tampering. If you’d like to restrict
browsers’ communication to same-domain servers, you will modify the header
policies in the browser Content-Security-Policy header. This will lock down the
WebSocket to your originating domain. Naturally, you should always use “wss://”
(Secure WebSockets), to ensure a stronger level of encryption.

• favicon.ico — refer to Hans’ handy HTML5 Boilerplate Favicon and Apple Touch
67https://github.com/h5bp/server-configs-apache/tree/master/doc
68https://github.com/h5bp/server-configs/blob/master/README.md
69https://github.com/h5bp/html5-boilerplate/blob/v4.3.0/doc/extend.md#apple-touch-icons
70https://web.dev/samesite-cookies-explained/
71http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/h5bp/server-configs-apache/tree/master/doc
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/html5-boilerplate/blob/v4.3.0/doc/extend.md#apple-touch-icons
https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://github.com/h5bp/server-configs/blob/master/README.md
https://github.com/h5bp/html5-boilerplate/blob/v4.3.0/doc/extend.md#apple-touch-icons
https://web.dev/samesite-cookies-explained/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Game Studio & Project Preparations 12

Icon PSD-Template72.
• human.txt — Edit this file to include the team that worked on your site/app, and

the technology powering it.
• license.txt — describe how you permit the use of your game.
• purchaseOrder.pdf — never know how a consumer obtained your game release;

provide them with a means to remain honest.
• readme.txt73 (FILE_ID.DIZ74, or readme.md75) should have a customer-friendly

welcome, project introduction, installation instructions, license, and contact in-
formation.

• robots.txt — Edit this file to include any pages you need to be hidden from search
engines.

• assets/ — Any copyrighted assets (purchased or created) specifically for this
game, or referenced in the index.html file. Everything should be in this folder.
- audio/ — Home for any audio files. You could simply name this directory
“sounds” or “sound effects” (sfx). You might consider building two sub-directories
for game theme “music” and another for “sound effects (sfx)”. Remember that
not all browsers support every audio format (.wav, .ogg, mp3/4). Try creating
your own music here76 Research more demos77 from ToneJS — A Web Audio
framework for making interactive music in the browser at https://tonejs.github.io.
Learn about the differences between HTML5 audio and Web Audio here78.
* data/ — Any data files (e.g. JSON, atlas) that pertain directly utilized by these
assets.
* fonts/ — Any unique font-sets you have licensed
* images/ — Home for any visual files. You could simply name this directory
“images”, “sprites” or “ graphics effects” (gfx). I stuff all the visuals here — including
spriteSheets.
* maps/ — the information about tile-maps used in this game.
* misc./ — any additional files such as dialogs, run-time scripts, language XML/j-
son, etc.

• data/ — configurations, static data templates, tile maps, game board dimensions,
etc.

• docs/ — This directory contains all the HTML5 Boilerplate documentation and
might contain any extra documentation about the Blueprint. You can use it as
the location and basis for your own project’s documentation.

• js/ — Source JavaScript files for your game. You could simply name this directory
“scripts” or “source (src). You could include Libraries, plugins, and custom code;
or all can be included in a separate sub-directory or directory. It includes some

72https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-
template/

73https://en.wikipedia.org/wiki/README
74https://en.wikipedia.org/wiki/FILE_ID.DIZ
75https://en.wikipedia.org/wiki/GitHub_Flavored_Markdown
76https://learningmusic.ableton.com/index.html
77https://tonejs.github.io/demos
78https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/FILE_ID.DIZ
https://en.wikipedia.org/wiki/GitHub_Flavored_Markdown
https://learningmusic.ableton.com/index.html
https://tonejs.github.io/demos
https://tonejs.github.io
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://drublic.de/archive/html5-boilerplate-favicons-psd-template/?file=blog/html5-boilerplate-favicons-psd-template/
https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/FILE_ID.DIZ
https://en.wikipedia.org/wiki/GitHub_Flavored_Markdown
https://learningmusic.ableton.com/index.html
https://tonejs.github.io/demos
https://developer.mozilla.org/en-US/docs/Web/Guide/Audio_and_video_delivery/Cross-browser_audio_basics

Game Studio & Project Preparations 13

initial JS to help get you started
* gameObjects/ — Any core Game Objects (such as player.js, avatar.js, treasure.js,
etc.) should be contained here.
* states/ — All Game Phases/States menus used by your game.
* utils/ — Folder containing any Utility Methods/Objects.
* game.js — The main JavaScript game mechanics logic file.

• lib/ — External Libraries that are required/used should be contained here. This
includes any JavaScript Framework and addons / extensions (a.k.a., Plugins).
* phaser.min.js or simply use from one of the content delivery networks.
* plugins/ — Any Plugins that are used.

• themes/ — Folder containing any formatting for the overall hosting website.
* CSS/ — cascading styles sheets for the overall website theme. It should follow
a “structured approach”79 creating separate cascading style sheets during devel-
opment. Upon deployment, all of these collapse into a single file. This directory
should contain all your project’s CSS files. It includes some initial CSS to help get
you started from a solid foundation.
* gfx/ — graphics effects for the hosting website.

NOTE: Separate your style sheets for better management.80: typography, color,
layouts, navigation, general formats styles

Hint: “Development code is what you read and write, and “check-in” to your
source control system. It should be highly modular (split over many files),
extensively commented, and should make liberal use of whitespace to indicate
structure. On the other hand, Machine code is what gets served up to a
browser. It should consist of a small number of merged files, and should be
stripped of comments and unnecessary whitespace. Your build process is a
method to which you apply these transformations; many developers use the
automated “Grunt”81. Finally, your web server should deliver the machine code
with gzip compression for extra speediness.” Read more tips here82

Exercise: Download this Phase Game Prototype starter kit here (35 MB
zipped)83 https://makingbrowsergames.com/book/standalone.zip

Exercise: Read what others say about “How Do I Organize Files in A Phaser.js
Project?”84

79https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
80https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
81https://24ways.org/2013/grunt-is-not-weird-and-hard/
82https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
83https://makingbrowsergames.com/book/standalone.zip
84https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://makingbrowsergames.com/book/standalone.zip
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/book/standalone.zip
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Game Studio & Project Preparations 14

1.3 Game Project “Concept & Design”

“The time something will take depends on how much time you allot to it.” —
Parkinson’s law85

By the end of this section, you will have walked through the Game Design System™
method of building a Game Recipe™. Later in this book, we’ll automate this process
and develop those tools to do so. But for now, let’s step through the “design process”
of creating a Game Recipe™.

Hint: The Game Design Appendix offers many suggestions from experts in the
gaming industry. Hopefully your product/project manager has already thought
about the follow guidelines. The following is an excerpt from the Phaser
Game Design Workbook (6th edition).

Introduction to Game Design System™

“Why study a “systems-based” design?”, you say?

The earliest decisions about what kind of games a studio will build impacts the
following development and production activities for that game project. It affects

• how the programmers encode features,
• how the designers construct levels and optimize game mechanics, and
• how the time-consuming animations and “cut-scenes” are handled … just to

mention a few!

There’s also a “heavy-cost” associated with how much creative freedom is permitted.
Historically, games with “open-ended” possibilities tend to be much more difficult to
accurately schedule. Game Design System™ addresses those short-comings in this
new game prototyping approach.

Creating your own game is an exciting adventure in creativity using the Phaser III
JavaScript Game Framework — any version beyond v3.16+ — (or with any Gaming

85https://en.wikipedia.org/wiki/Parkinson%27s_law

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Parkinson's_law
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines

Game Studio & Project Preparations 15

Framework86 for that matter); and, at the same time, it’s fun! However, dealing with
all those “full-stack” technical details87 — such as web pages, artwork production88,
collisions, sprites, “game phases” (and there’s more!) — can be intimidating; espe-
cially, if this is your first experience with such components.89

Phaser Game Design Workbook
JavaScript is NOT the end-all for online gaming! To “future-proof”90 your time spent
developing a game, you should begin reading about the “Internet-of-Things” (IoT)91,
cloud-based “DevOps”92 and “web assembly”93. You should begin using “Separation
of Concerns” (SoC) on your game pipeline to segregate those “Game Mechanic” (GM)
from their “visual elements” governed by the “Game Framework Mechanisms” (GFM)
and further isolate your “Artwork” themes from their “visually displayed mechanisms”
which includes them.

JavaScript Gaming Frameworks94, in general, are resource libraries that run inside a
browser or an Internet device. Any of these “frameworks” simplify and abstract the
gaming patterns and algorithms95 into an easy-to-use “interface” of JavaScript func-
tions. Using them, you can quickly build various two-dimensional (aka “2D” or “2.5D”96

86https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines
87https://www.w3schools.com/whatis/default.asp
88https://www.gamedevmarket.net/?ally=GVgAVsoJ
89http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_

component_architectures_CBC2F6B5.html
90https://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78
91https://www.sas.com/en_us/insights/big-data/internet-of-things.html
92https://azure.microsoft.com/en-us/overview/what-is-devops/
93https://developer.mozilla.org/en-US/docs/WebAssembly
94https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
95https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
96https://en.wikipedia.org/wiki/2.5D

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.com/whatis/default.asp
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
https://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78
https://www.sas.com/en_us/insights/big-data/internet-of-things.html
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
https://en.wikipedia.org/wiki/2.5D
https://ourcodeworld.com/articles/read/308/top-15-best-open-source-javascript-game-engines
https://www.w3schools.com/whatis/default.asp
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
http://www.michael-richardson.com/processes/rup_for_sqa/core.base_rup/guidances/supportingmaterials/use_component_architectures_CBC2F6B5.html
https://medium.com/@george3d6/stop-future-proofing-software-c984cbd65e78
https://www.sas.com/en_us/insights/big-data/internet-of-things.html
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://blog.bitsrc.io/9-top-js-gaming-engines-and-libraries-for-2020-81707d9f095
https://web.archive.org/web/20200516234514/http://gameprogrammingpatterns.com./
https://en.wikipedia.org/wiki/2.5D

Game Studio & Project Preparations 16

) and even “3D”(!!)97 games inside a simple HTML5 “<canvas>” tag98. The Phaser
JavaScript Gaming Frameworks99 does 90% of all that work for us; and beyond that,
all you need is your imagination and some basic JavaScript programming knowledge
that you can learn for FREE fromW3Schools100. So, let’s begin by creating simple game
prototypes and mechanisms while exploring many of the basic concepts found in the
Game Design System™ from the former Phaser III Game Design Workbook101 and
newest Headless Game Design Workbook102.

What makes a Good Game?

MMMM, something smells good … What’s cookin’?

A “good game” (18-page Bonus Content!)103 is a matter of personal preference. If
you intend to market your game and earn your “just rewards”, then you need to
research those game genres people enjoy consuming. The hard reality becomes what
others enjoy may not be what inspires you. Starting a small simple game release isn’t
the real problem. The problem truly is finding an idea that …

1. nobody’s tried before (i.e., technology break-through), or
2. improves upon an existing game genre with “better enhancements” (i.e., innova-

tive and again, “better” is a matter of taste), or
3. is distinct from anything currently on the market (i.e., novelty).
4. focused on business drivers for a target market.

“Don’t copy blindly, but try to do things differently instead of doingwhat everyone
else is doing. Think about how you can stand out from the hundreds of thousands
of other games. Surprise and delight. It doesn’t cost anything to surprise people.
That said, learn as much as you possibly can from others. Then do your own thing.”
(Peter Vesterbacka, pg 401 “Building javaScript Games”a)

ahttps://amzn.to/2D8c7qM

97https://en.wikipedia.org/wiki/Three.js
98https://www.w3schools.com/graphics/game_canvas.asp
99http://phaser.io

100http://www.w3schools.com
101https://leanpub.com/phaser3gamedesignworkbook
102https://leanpub.com/hgd
103https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Three.js
https://www.w3schools.com/graphics/game_canvas.asp
http://phaser.io/
http://phaser.io/
http://www.w3schools.com/
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/hgd
https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf
https://amzn.to/2D8c7qM
https://amzn.to/2D8c7qM
https://en.wikipedia.org/wiki/Three.js
https://www.w3schools.com/graphics/game_canvas.asp
http://phaser.io/
http://www.w3schools.com/
https://leanpub.com/phaser3gamedesignworkbook
https://leanpub.com/hgd
https://makingbrowsergames.com/book/WhatMakesaGoodGame.pdf

Game Studio & Project Preparations 17

HINT: Generally speaking, if a game has over 50% of a market’s share,104 it’ll
be difficult to take on and defeat that “Boss”105.

The best place, to begin our Game Recipe™, is to jot down106 your ideas on paper —
that’s right, draw what you’re visualizing — what is your mind “cooking up107”? This
will help clarify your ideas into a tangible form (i.e., securing your Copyrights! That
topic’s coming up!) and figure out what needs to be done “in what order” and “with
what priority”. You’re building a game prototype; you can think of a prototype as a
“recipe” for an gaming thing! That’s what this whole Game Design System™ is all
about. Your doodles become a true skeletal framework/engine with “new muscles
(game prototypes), organs (gamemechanics) and flesh (the artwork!108). When
everything comes together, you’ll start shouting — in your best Dr. Frankenstein
accent — “IT’S ALIVE!” However, you might also find, as details are “fleshed out”, there
are some inconsistencies or discover perhaps things that need more clarification.

Exercise: Read Making Games Fun by Burak Kanber109 for some excellent
suggestions.

Exercise: Download the Terry Paton mind-map on “What makes
a Great Game”110 or find it in your Bonus Content (file name:
WhatMakesAGreatGame.pdf).

https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

1.4 Preparing a “Gaming Product”

otherwise known as “Planning your Game Project”

If you want to develop game recipes, you should know how to program in JavaScript;
but more importantly, you must know how to create common solutions for various
programming problems. In addition to the problem solving skills, some of those

104https://economictimes.indiatimes.com/definition/market-share
105https://en.wikipedia.org/wiki/Boss_(video_gaming)
106https://idioms.thefreedictionary.com/jot+down
107https://www.merriam-webster.com/dictionary/cook%20up
108https://www.gamedevmarket.net/?ally=GVgAVsoJ
109http://buildnewgames.com/making-games-fun/
110https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://economictimes.indiatimes.com/definition/market-share
https://en.wikipedia.org/wiki/Boss_(video_gaming)
https://idioms.thefreedictionary.com/jot+down
https://www.merriam-webster.com/dictionary/cook%20up
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://buildnewgames.com/making-games-fun/
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf
https://economictimes.indiatimes.com/definition/market-share
https://en.wikipedia.org/wiki/Boss_(video_gaming)
https://idioms.thefreedictionary.com/jot+down
https://www.merriam-webster.com/dictionary/cook%20up
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://buildnewgames.com/making-games-fun/
https://makingbrowsergames.com/design/WhatMakesAGreatGame.pdf

Game Studio & Project Preparations 18

solutions may be more generic than others, and some of the solutions may become
more efficient than others. In this regard, game programming is sometimes a trade-
off between solving a specific game issues quickly or taking more time to resolve a
whole category of problems at once. In game development, there’s often less time to
solve game construction issues because of tightly-mandated deadlines. So, we need
to think about our development approach very carefully. Our ultimate goal in game
prototyping is to write “nice”111, reusable code which won’t always take more time
than writing “quick-and-dirty” code.112 As you gain more experience in this Game
Design System™, you’ll find that you’ll start developing a mindset that lets you quickly
gauge the kind of solutions that are required for a certain gaming problems.

Why are you doing this?

Before we go any further, let’s determine “Why” you want to create your game. Our
next workbook exercise question is:

Exercise: Do you plan to create this game:

• As a hobbyist? In other words, generating income is NOT your primarymotiva-
tion. You simply want to “add onto” your skills or seek the challenge of creating
a similar popular game currently in the “apps stores”.

• As an academic pursuit? In other words, your primary motivation is to study
and experiment with the most cutting-edge technology.

• As a way of generating revenues? In other words, your primarymotivation is
to supplement or replace your current income source.

Answering this exercise question will guide many of the following production deci-
sions. So, go fetch some paper or open a file and record your answers from the
question above. Write your answer down. Become an active participant, and learn the
most important concept — “Journaling and logging”. By doing so, you are developing
a time-line of your activities (i.e., what is easy for you to do, what poses difficulties
for you, and who to hire for additional staff support). This helps determine the
amount of time it takes to put a profitable game into your distribution channels. When
your customers ask you, “When can I have the finished product?”; you have proven
empirical evidence based your project’s development schedule — not some “pie in
the sky”, UN-realistic time-frame to which so many business fall victim!

111https://en.wikipedia.org/wiki/Nice_(Unix)
112https://www.urbandictionary.com/define.php?term=quick-and-dirty

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Nice_(Unix)
https://www.urbandictionary.com/define.php?term=quick-and-dirty
https://en.wikipedia.org/wiki/Nice_(Unix)
https://www.urbandictionary.com/define.php?term=quick-and-dirty

Game Studio & Project Preparations 19

Exercise: Read why so many business fall victim to poor time management in
this article: Scrum makes you dumb113 …

(an excerpt) If your software developers are able to accurately estimate
how long something will take, you should fire them. If they’ve done some-
thing so many times before that they know exactly how long it’ll take them
to do it again, then they should have made a reusable solution by now. (ed.:
a game prototype!)

What are you making?

When I first started game production in the mid-70s, I found myself constantly
thinking of new game ideas and jotting them down.114 I became addicted to the
“creation process” and the power of bringing my thoughts into something physically
tangible. There was so much I wanted to make. If you identify with that sensation,
then you probably have some game ideas already on what you’d like to make. Do you
have your own list?

What technology will you use?

You must be thinking … “DUH?!? Phaser of course! Why even consider this?”

We must wisely choose a gaming framework to use, since we simply don’t have the
time to study and master every new “bleeding-edge” library, framework, or “brain-
fart”115 appearing on the technology horizon — such as game-based learning116? To
help us maintain focus and guide us in our selection, here a list of probing questions:

• Is the framework or library well-used?117 If it has a forum community following
its development, then it becomes more likely that it also has contributors,
frequent improvements on its key features, and rapid software bug resolutions.
Furthermore, it is more likely to have “staying power”118 and stamina.

113https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/
114https://www.collinsdictionary.com/us/dictionary/english/jotting
115https://www.urbandictionary.com/define.php?term=Brain%20Fart
116https://www.researchgate.net/publication/216566471_What’s_on_the_Technology_Horizon
117https://www.thesaurus.com/browse/well-used
118https://www.merriam-webster.com/dictionary/staying%20power

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/
https://www.collinsdictionary.com/us/dictionary/english/jotting
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.researchgate.net/publication/216566471_What's_on_the_Technology_Horizon
https://www.thesaurus.com/browse/well-used
https://www.merriam-webster.com/dictionary/staying%20power
https://www.linkedin.com/pulse/scrum-makes-you-dumb-daniel-jones/
https://www.collinsdictionary.com/us/dictionary/english/jotting
https://www.urbandictionary.com/define.php?term=Brain%20Fart
https://www.researchgate.net/publication/216566471_What's_on_the_Technology_Horizon
https://www.thesaurus.com/browse/well-used
https://www.merriam-webster.com/dictionary/staying%20power

Game Studio & Project Preparations 20

• Who comprises its supporting community? Are they corporations, universities,
or passionate hobbyists? How does the community respond to each other …
with civility or impassioned fanatical opinions or one-upmanship?119 What is their
“welcome wagon”120 for new users.

• How often is community content initiated and updated? It would be a sad day to
discover a software bug and wait for a response to come years later.

• Are there frequently released versions with dramatic changes in API or archi-
tecture? You don’t want to revisit your entire product line and refactor, repub-
lish, and redistribute your entire collection portfolio for frequently “breaking
changes”! Furthermore, backward compatibility may pose significant problems
within your marketing channels and worldwide distributions.

• What currently active features make this framework (or library) better than its
competitors? What technological innovation is it based upon? Is that technology
widely available to your client-base?

• Does the framework match your development team’s capabilities? For example,
if you have junior/student developers, does the framework provide tutorials,
completed documentation and architecture explanations.

• Speaking of supporting materials, is the documentation consist of quality pro-
fessional content compared to naive descriptions easily deduced from merely
reading the source code?

• Is the framework “open-source” or commercial? Do you have access to the raw
annotated source code or to a compiled release only? Are you able to extend,
modify or supplement the framework legally?

• Is the framework truly performant121 or merely just an abstraction layer?

Exercise: Read this article about “Shiny New Objects”122

Exercise: Read Game Making Tools Features and Comparisons123 to learn the
180 degree shift in game industry development.

Well, as difficult as this may sound, Phaser v2.x.x may not currently support your
game’s “ultimate dream features”. It might in the future, and there are some pretty
impressive features already in Phaser v2.x.x and v3.24+! But, unless you ask for
those features or better still discuss them in the forums, you may have to look
elsewhere to avoid barriers to your development — keep that thought in mind!

Before we leave the topic about “What technology …“, I’d like to bring your attention
to something I’ve discovered recently. Phaser Gaming Framework needs your voice

119https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
120https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
121https://www.techopedia.com/definition/28231/performant
122https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
123https://instabug.com/blog/game-making-tools/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
https://www.techopedia.com/definition/28231/performant
https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
https://instabug.com/blog/game-making-tools/
https://dictionary.cambridge.org/us/dictionary/english/one-upmanship
https://dictionary.cambridge.org/us/dictionary/english/welcome-wagon
https://www.techopedia.com/definition/28231/performant
https://dev.to/aspittel/navigating-the-spooky-world-of-javascript-3h45
https://instabug.com/blog/game-making-tools/

Game Studio & Project Preparations 21

in the gaming industry. It’s an alarming fact, that can’t go “UN-noticed”, with the
coming technology trends. The following chart from Instabug on Mobile Game
Development124 shows a significant growth in mobile gaming. Phaser v2.x.x Gaming
Framework alone may not fulfill everything required to enter the mobile/WebXR mar-
ket. Furthermore, Phaser III might not be fully ready for a migration into WebXR125.

Video game market revenue worldwide by Instabug Blog

Exercise: Read this report from Instabug on Mobile Game Development126.

Let me guide your attention to the “News Press Releases” so far this year (as of
20180901 and 20200924! - Google’s 1st page listing for the search term “The
Best Game Development Tools 2018127” and “The Best Game Development Tools
2020128”).

• 16 Best JavaScript Game Engine129 May 14, 2018 (5 years after formal Phaser v1
released; 18 months from the last official v2.6.2. and 3 months after Phaser III.)

• Best Dame Development Tools By James Konik130 — Last Updated: 18 Jun’18 (18
months after formal Phaser v2.6.2 released and 4 months after Phaser III.)

• The Best 15 Mobile Game Development Platforms & Tools in 2018 By Cristina
Stefanova131 — April 25, 2018 (16 months after formal Phaser v2.6.2 release.)

124https://instabug.com/blog/mobile-game-development-tools/
125https://www.w3.org/TR/webxr/
126https://instabug.com/blog/mobile-game-development-tools/
127https://thetool.io/2018/mobile-game-development-platforms
128https://thetool.io/2018/mobile-game-development-platforms
129https://www.dunebook.com/16-best-javascript-game-engine/
130https://www.cloudwards.net/best-game-development-tools/
131https://thetool.io/2018/mobile-game-development-platforms

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://instabug.com/blog/mobile-game-development-tools/
https://instabug.com/blog/mobile-game-development-tools/
https://www.w3.org/TR/webxr/
https://instabug.com/blog/mobile-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://www.dunebook.com/16-best-javascript-game-engine/
https://www.cloudwards.net/best-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://instabug.com/blog/mobile-game-development-tools/
https://www.w3.org/TR/webxr/
https://instabug.com/blog/mobile-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms
https://thetool.io/2018/mobile-game-development-platforms
https://www.dunebook.com/16-best-javascript-game-engine/
https://www.cloudwards.net/best-game-development-tools/
https://thetool.io/2018/mobile-game-development-platforms

Game Studio & Project Preparations 22

• Game Development Software by Capterra132 The Smart Way to Find Business
Software

• Top 5 Mobile Game Development Tools 2018133 17th July, 2018 (19 months after
formal Phaser v2.6.2 release.)

• 7 Best Game Development Tools Of 2018 That Will Revolutionize The IT Industry
by Henry Kundariya134 March 18, 2018 (16 month after formal Phaser v2.6.2
release.)

• Best Game Development Software by G2 Crowd135 (publication data unavailable)
• Mobile game development in 2018: best tools and advice136 (publication data

unavailable)
• The Most Recommended Game Development Tools and Engine of 2018 For Game

Dev137 (publication data unavailable)
• In-Depth Comparison of the Top Game Making Tools of 2018138 (publication data

unavailable)

NOTE: Google first page is an indication of current trends in SEO. The listing
are dynamic and will dramatically change over time.

Exercise: History Lesson — Read the development history of Phaser from
KiwiJS By Rich Davey139 Rich Davey quoted, “… On April 5th 2013 I started
work on the very first version of Phaser. A couple of weeks later, on April 12th,
version 0.5 was pushed up to GitHub and the rest, as they say, is history.”140

Exercise: Do your own “Google Search” — with the latest up-to-date infor-
mation! — for this search term “The Best Game Development Tools (insert
current year)”; or use my researched list above (dated: 20180901). Inside
each article, try and find the word “Phaser” or “Phaser JavaScript Gaming
Framework”. Count how many time it appears. Then answer this question:
What technology will you use (or supplement) your mobile/WebXR game
development?

132https://www.capterra.com/game-development-software/
133
134https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
135https://www.g2crowd.com/categories/game-development
136https://thinkmobiles.com/blog/mobile-game-development-tools/
137https://blog.sagipl.com/game-development-tools/
138https://instabug.com/blog/game-making-tools/
139http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
140http://phaser.io/news/2016/04/phaser-is-3-years-old

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.capterra.com/game-development-software/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.g2crowd.com/categories/game-development
https://thinkmobiles.com/blog/mobile-game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://instabug.com/blog/game-making-tools/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://phaser.io/news/2016/04/phaser-is-3-years-old
https://www.capterra.com/game-development-software/
https://www.linkedin.com/pulse/7-best-game-development-tools-2018-revolutionize-henry-kundariya/
https://www.g2crowd.com/categories/game-development
https://thinkmobiles.com/blog/mobile-game-development-tools/
https://blog.sagipl.com/game-development-tools/
https://instabug.com/blog/game-making-tools/
http://www.html5gamedevs.com/topic/4281-kiwijs-vs-phaser/
http://phaser.io/news/2016/04/phaser-is-3-years-old

Game Studio & Project Preparations 23

“Loose lips sink ships” … and revenues!

So let us help Phaser Gaming Framework by discussing what we’re planning for our
future games and those features we hope to use. Discussing your innovative ideas
in a public forum?!? Mmm, let’s stop and think this through to its logical conclusion
and consequences; and then, don’t complain when your “idea” was “stolen” by
someone. Simply stated: IDEAS141 are not Copyright-able! You should read what the
US Copyrights Office says.

Exercise: Read Works Unprotected by Copyright Law142

Quoted from: http://www.copyright.gov/fls/fl108.pdf

Copyright does not protect the idea for a game, its name or title, or the method or
methods for playing it. Nor does copyright protect any idea, system, method, device,
or trademark material involved in developing, merchandising, or playing a game.
Once a game has been made public, nothing in the copyright law prevents others
from developing another game based on similar principles.

Copyright protects only the particular manner of an author’s expression in literary,
artistic, or musical form

Exercise: Study what items are “unprotected” in the Copyright Act. Read
about Ideas, Web Blogs concerning Useful articles, and other such “WORKS
UNPROTECTED BY COPYRIGHT LAW”143

Exercise: Research if “copy-left” is a valid form of EULA or implied license
according to US Government Copyrights Office.

QUOTE: US Government Copyrights Office.a
An implied copyright license is a license created by law in the absence of an actual
agreement between the parties. Implied licenses arise when the conduct of the
parties indicates that some license is to be extended between the copyright owner
and the licensee, but the parties themselves did not bother to create a license. This

141https://www.bitlaw.com/copyright/unprotected.html#ideas
142https://www.bitlaw.com/copyright/unprotected.html#ideas
143https://www.bitlaw.com/copyright/unprotected.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.phrases.org.uk/meanings/loose-lips-sink-ships.html
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html#ideas
http://www.copyright.gov/fls/fl108.pdf
https://www.bitlaw.com/copyright/unprotected.html
https://www.bitlaw.com/copyright/unprotected.html
https://www.bitlaw.com/copyright/license.html
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html#ideas
https://www.bitlaw.com/copyright/unprotected.html

Game Studio & Project Preparations 24

differs from an express license in that the parties never actually agree on the
specific terms of the license. The purpose of an implied license is to allow the
licensee (the party who licenses the work from the copyright owner) some right to use
the copyrighted work, but only to the extent that the copyright owner would have
allowed had the parties negotiated an agreement. (ed.: OMG, copy-left is wrong and
can’t enforce their claims?!!!) Generally, the custom and practice of the community
are used to determine the scope of the implied license… .

A commonly discussed scenario where implied licenses are destined to play a major
role is on the World Wide Web. When a Web page is viewed in a Web browser,
the page is downloaded through the Internet and placed on the user’s screen. It is
clear that a copy of the Web page is being made by the user. It is also clear that
the Web page is protected against unauthorized copying by copyright law. (ed.:
our modern laws need to be updated to society’s current behavior.) But it would not
make sense to allow the author of a Web page to sue a user who viewed her page,
since the author intended that the page be viewed by others when she placed it on
the World Wide Web. (ed.: author’s original intent is marketing their content.) Rather,
attorneys argue, courts should find that the Web page author has given end users
an implied license to download and view the Web page. The extent of this implied
license is unclear, and may someday be defined by the courts.

ahttps://www.bitlaw.com/copyright/license.html

And hence, the reasons to write down our ideas in a “tangible form”144; and further-
more, affix a properly labeled notice — using a legal ©145 prior to forum discussions
(i.e., none of this stuff: ”(c)”, “pen names”, “pseudonym” defecation or missing publication
dates). That “tangible” form should be a game description. Let’s take for example,
a simple “Breakout” game. You might write your game description similar to this
“elevator speech”146. Naturally, you’ll create a description about your own game; but
for now, this should give us enough of an idea to continue our planning process with
my game’s description:

Breakout: a game in which a player uses a sliding paddle along the bottom of the
screen. They control the paddle’s movements to collide with an animated ball causing
it to bounce upwards or at various angles toward a grid of blocks. The game’s objective
is to hit all those blocks, while at the same time not letting the ball pass-by the paddle
and fall off the bottom of the screen too many times.

Use proper copyright notices:

144https://www.bitlaw.com/copyright/formalities.html
145https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
146https://en.wikipedia.org/wiki/Elevator_pitch

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.bitlaw.com/copyright/license.html
https://www.bitlaw.com/copyright/formalities.html
https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
https://en.wikipedia.org/wiki/Elevator_pitch
https://www.bitlaw.com/copyright/formalities.html
https://en.wikipedia.org/wiki/Copyright_notice#Form_of_notice
https://en.wikipedia.org/wiki/Elevator_pitch

Game Studio & Project Preparations 25

© Copyright 2014-2018, Stephen Gose. All rights reserved.

Exercise: Take a moment and jot down your game’s description.

Hint: I strongly encourage you to purchase “How to Copyright Software” by M.
J. Salone147 (a lawyer!) who shows information “over-looked”148 by the copy-
left movement and open-source software licenses.

What features are included?

This is the planning stage where dreams are turned into real tangible items,149 and
where it gets fun, in my opinion. In this step, our goal is to figure out what we’re
actually making — in other words, what will the game look like, what features it
includes, and what features it won’t include or that won’t appear initially.

The first thing we can do is make a paper “mock-up” — sketches that look like the
thing you’re making, but without any details like coloring or exact sizing. You can make
mock-ups on paper, or an online program if you prefer.

To give you an idea of what a mock-up might look like, I’ve included my mock-ups
below for the “Breakout” game example. This becomes our “road map”. Next, I’ll
sketch each “game phase” separately and have lines connecting those “visual displays”
to show how one “menu” leads a player into another “visual section”. Those lines help
me understand what code I need in my game program to move between the various
“game stages”.

147http://amzn.to/2bmlAcH
148https://en.wikipedia.org/wiki/First-sale_doctrine
149https://www.youtube.com/watch?v=ZXsQAXx_ao0

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2bmlAcH
http://amzn.to/2bmlAcH
https://en.wikipedia.org/wiki/First-sale_doctrine
https://www.youtube.com/watch?v=ZXsQAXx_ao0
http://amzn.to/2bmlAcH
https://en.wikipedia.org/wiki/First-sale_doctrine
https://www.youtube.com/watch?v=ZXsQAXx_ao0

Game Studio & Project Preparations 26

Simple Game Phase Flow for an RPG game
Here’s a more thorough illustration on my various “game phases” with a brake-down
of JavaScript recommendations.

Typical Game Phases from Phaser Game Design Workbook
Below is an example from the Apple’s Game Kit150 using a Finite State Machine
(FSM)151 to manage a game’s navigation and “user interfaces” (UI). I’m recommending

150https://developer.apple.com/documentation/gamekit
151https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-

11867&ref=PBMCube

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/documentation/gamekit
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://developer.apple.com/documentation/gamekit
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867&ref=PBMCube

Game Studio & Project Preparations 27

“Apple” since they are following more what I’m suggesting in the Game Design
SystemsTM. (more on FSM in later chapters)

A ‘Finite State Machine’ for Game UI navigation
Now we can use these drafts to help create a our game’s features list. This is the step
where we think of every possible feature we can imagine in our game. And take those
ideas and put them into a list. Don’t limit yourself just write everything down — BRAIN
STORM!! — we sort these ideas later.

Deconstruction

Quote Phaser Game Design Workbook, page 69, “From a game programming perspec-
tive, basic Game-Play can be deconstructed — revealing tactical components inside
a game’s overall mechanics and rules. For example, a fighting game deconstructs
into various tactics such as attacks (or punches, throws, and kicks), defensive moves,
and dodges. These tactics are assigned to game prototypes and mechanismsa —
those input keys, mouse clicks, and mobile screen interactions. These maneuvers are
further enhanced into strong or weak punch/kick from the various input controls.
Therefore, game control mechanisms (e.g., buttons, mouse, touch-screen) are
more of an engineering programming concept while Game-Play is more of a design
heuristic concept that we’ll study later.

ahttp://gameprogrammingpatterns.com/command.html#configuring-input

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gameprogrammingpatterns.com/command.html#configuring-input
http://gameprogrammingpatterns.com/command.html#configuring-input

Game Studio & Project Preparations 28

Game Design System™ creating new Games from 3 Components!

Exercise: Component-based architecture and development is different from
MVC152. Discover those differences here …153 “An individual software compo-
nent is a software package, a web service, a web resource, or a module that
encapsulates a set of related functions (or data).” (Wikipedia154)

By combining all of our game mechanisms, game mechanics and rules systems — as
non-invasive aspects in our gaming product155 — along with an artwork theme156,
we’re able to create multiple game products quickly. It simply becomes a matter of
exchanging any of those “3 cross-cut” components157 into a new innovative-mixture
for a “tasty” new game product. This is the secret in concocting a new game158 every
month or even every week! For example, swopping a “Guitar Hero” artwork theme
with a garden-variety “Plants & Zombies” artwork. The new game would use the same
“Game Mechanics” and “Game Display Mechanisms” but with a “fresh organic-garden”
look and feel!

Quote: “If we’re pasting the same code changing a few variables or arguments each
time to fit the current context. That code is a prime candidate for AOP.” Read entire

152https://www.tutorialspoint.com/mvc_framework/mvc_framework_quick_guide.htm
153https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
154https://en.wikipedia.org/wiki/Component-based_software_engineering
155http://know.cujojs.com/blog/oop-is-not-my-hammer
156https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
157http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
158https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.tutorialspoint.com/mvc_framework/mvc_framework_quick_guide.htm
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct
https://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0
https://medium.com/@dan.shapiro1210/understanding-component-based-architecture-3ff48ec0c238
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct

Game Studio & Project Preparations 29

articlea

ahttps://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0

Exercise: Make a list of features you’d like in your game. Go wild and write
down any and every idea!

Returning to my Breakout example, this could be a our potential game feature list,

Broken down by Game Scenes:

1 Game Play scene has following Game Mechanisms

2 - User-controlled paddle

3 - Multiple colored bricks

4 - Angled ball movement

5 - Collision detection

6 - Life display

7 - Score display

8 - Sound effects

9 Main Scene

10 - "Play" (button)

11 - "Help" (button)

12 - "Credits" (button)

13 Help Scene

14 - Headline: "Game Instructions"

15 - Text: "(explain how to play)"

16 - "Return" to Main Menu (button)

17 Credits Scene

18 - Headline: "Credits"

19 - Text: "(about me & partners)"

20 - "Return" to Main Menu (button)

21 Win Scene

22 - Headline "You're Awesome!"

23 - Text "(List of Scores)"

24 - [background Fireworks] (animation)

25 - "Return" to Main Menu (button)

26 Lose Scene

27 - Headline: "So Sorry!"

28 - Text: "Boo Hoo! Play Again?"

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://hackernoon.com/aspect-oriented-programming-in-javascript-es5-typescript-d751dda576d0

Game Studio & Project Preparations 30

29 - "Restart" (button)

30 - "Return" to Main Menu (button)

What features are mandatory?

If we had unlimited time to make all the game programs we could ever dream up,
then they’d include every feature from our lists. But, unfortunately, none of us have
that much dedicated free time! (If you do, please let me know! I could use some extra
hands on deck!159) So in this next step, we must decide which features are the most
important, and which features we’ll postpone until we have more time to include
in later game-release updates. This step further helps us figure out our features’
priorities — that is, where to begin by writing our “most important features” down
to our “least important”.

Let’s ask ourselves these questions to help sort the importance of each feature:

• If I shared this with a business sponsor, which features should be working? In
other words, what is my vertical slice?160

• Which features am I the most excited about building? Passion is an important
ingredient in our Game Recipes™!

• Which features are the most unique in my game? These will differentiate our
final product from our competitors as unique entertainment and novel — new
or unusual in an interesting way.

• Which features will I learn the most from implementing? Knowledge generation
is a valuable asset that many game experts seek depending upon game product
deadlines.

• Are there any features that seem too far beyond my current skills or capability
level? You can always include them in a following release or game update. This
is what Richard Davey161 is doing — hiring additional staff,162 paying bounty
on bug fixes and raffling off prizes for completing his Phaser v3.x.x technical
documentation. Or consider hiring game development contractors who have the
abilities.163

Now, let’s go through our feature list, and begin sorting. I like to use an excel
spreadsheet and add a ranking column along side to each feature name. Doing so,
helps me sort faster.

159https://www.youtube.com/watch?v=kxUdFQ6N_OI
160https://en.wikipedia.org/wiki/Vertical_slice
161https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
162https://www.patreon.com/photonstorm
163https://www.indeed.com/jobs?q=Game+Design+Contractor&l=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.youtube.com/watch?v=kxUdFQ6N_OI
https://en.wikipedia.org/wiki/Vertical_slice
https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
https://www.patreon.com/photonstorm
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=
https://www.youtube.com/watch?v=kxUdFQ6N_OI
https://en.wikipedia.org/wiki/Vertical_slice
https://blog.github.com/2016-04-12-meet-richard-davey-creator-of-phaser/
https://www.patreon.com/photonstorm
https://www.indeed.com/jobs?q=Game+Design+Contractor&l=

Game Studio & Project Preparations 31

For the Breakout example, I’ve used a priority column (next to the features column)
with “[1]” to show my top priority, “[2]” for my middle priority, and “[3]” for lowest
priority. I’ve decided to set those unique game mechanisms’ priorities higher than
those simple general game features such as scenes, because I’ve learned that those
general game features are typically game prototypes I’ve already created in other games:

Visual elements are the Game Mechanisms

1 [1] Game Play scene has following "visuals" (Game Mechanisms)

2 [1] User-controlled paddle (game object)

3 [1] animated ball (game object)

4 [1] Multiple colored bricks (game object)

5 [1] Angled ball movement (coded)

6 [1] Collision detection (coded)

7 [2] Life display (text)

8 [2] Score display (text)

9 [2] Sound effects (coded)

10 [2] Main Menu Scene (game phase/menu)

11 [2] "Play" (button)

12 [3] "Help" (button)

13 [3] "Credits" (button)

14 [3] Help Scene (game phase/menu)

15 [3] Headline: "Game Instructions" (text)

16 [3] Text: "(explain how to play)" (text)

17 [3] "Return" to Main Menu (button)

18 [3] Credits Scene (game phase/menu)

19 [3] Headline: "Credits" (text)

20 [3] Text: "(about me & partners)" (text)

21 [3] "Return" to Main Menu (button)

22 [2] Win Scene (game phase/menu)

23 [2] Headline: "You're Awesome!" (text)

24 [3] Text: "(List of Scores)" (text)

25 [3] [background Fireworks] (animation)

26 [3] "Return" to Main Menu (button)

27 [2] Lose Scene (game phase/menu)

28 [2] Headline: "So Sorry!" (text)

29 [3] Text: "Boo Hoo! Play Again?" (text)

30 [3] "Return" to Main Menu (button)

Notice that I’ve added a brief description in parenthesis after each item. It is a naming
“Category classification” I use in my game prototypes.

You can see my Excel spread-sheet can easily sort the priorities into game project

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 32

tasks, so you can easily see what you need to implement in each SCRUM Sprint164,
and you can always stop after a particular iteration and just be happy with what you’ve
made.

Sample Sprint Backlog by priority:

1 Game has the following Game Mechanisms

2 [1] User-controlled paddle (game object)

3 [1] animated ball (game object)

4 [1] Multiple colored bricks (game object)

5 [1] Angled ball movement

6 [1] Collision detection

7 [2] Life display (text)

8 [2] Score display (text)

9 [2] Sound effects

10 [2] Main Menu Scene (game phase/menu)

11 [2] Play (button)

12 [2] Win Scene (game phase/menu)

13 [2] Headline: "You're Awesome!" (text)

14 [2] Lose Scene (game phase/menu)

15 [2] Headline: "So Sorry!" (text)

16 [3] Help (button)

17 [3] Credits (button)

18 [3] Help Scene (game phase/menu)

19 [3] Headline: "Game Instructions" (text)

20 [3] Text: "(explain how to play)" (text)

21 [3] Return to Main Menu (button)

22 [3] Credits Scene (game phase/menu)

23 [3] Headline: "Credits" (text)

24 [3] Text: "(about me & partners)" (text)

25 [3] Text: "(List of Scores)" (text)

26 [3] [background Fireworks] (animation)

27 [3] Text: "Boo Hoo! Play Again?" (text)

28 [3] Restart (button)

Refer: Sprint Backlog by priority here165

This next chart is my preferred method. It helps me identify how many items I
need to create. This Second attempt is the chart sorted alphabetically by Game
Mechanisms:

164https://www.scrum.org/resources/what-is-a-sprint-in-scrum
165https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog
https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/sprint-backlog

Game Studio & Project Preparations 33

1 // Second Chart: (Categories then original content)

2 (animation) [background Fireworks]

3 (button) Play

4 (button) Help

5 (button) Credits

6 (button) Return to Main Menu

7 (button) Restart

8 (coded) Angled ball movement

9 (coded) Collision detection

10 (coded) Sound effects

11 (game object) User-controlled paddle

12 (game object) animated ball

13 (game object) Multiple colored bricks

14 (game phase/menu) Main Menu Scene

15 (game phase/menu) Win Scene

16 (game phase/menu) Lose Scene

17 (game phase/menu) Help Scene

18 (game phase/menu) Credits Scene

19 (text) Life display

20 (text) Score display

21 (text) Headline: "You're Awesome!"

22 (text) Headline: "So Sorry!"

23 (text) Headline: "Game Instructions"

24 (text) Headline: "Credits"

25 (text) Text: "(explain how to play)"

26 (text) Text: "(about me & partners)"

27 (text) Text: "(List of Scores)"

28 (text) Text: "Boo Hoo! Play Again?"

Hint: The “400 Project Rule List” contains more than 100 game design rules.
It is an ongoing formal study of gaming rules, together with attribution, scope,
and trumping information that all may help create “game prototype categories.
Download the list from here.166

If you scan through the first listing, you’ll discover many items begin to cluster
together. For example (game object) are at the top of the list while (button) are mostly
a lower priority. Alternately, I could have created a separate spreadsheet column
for just those Game Mechanisms items and sort just those categories. (Refer to the
Second Chart above) Doing so would tell me “common” items in my game, and let me
write that code once and reuse it for similar items in other games as a component

166https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html
https://web.archive.org/web/20190417062220/http://www.finitearts.com/pages/400page.html

Game Studio & Project Preparations 34

prototype — this is the secret sauce in our Game Recipes™! Keep your “featured
ingredients” D.R.Y and use it everywhere in your game development! After a few
game development cycles, I can refer back to all those game prototypes that were
previously created. As you can quickly see — illustrated in the second listing above
— there’s only four (4) visual Game Mechanisms items to create (buttons, objects,
menus and text), an animation effect (visual manipulation), and three (3) undefined
items which appear to be some sort of “functions or process”.

How will you encode it?

Now that you have an idea on what features you’ll encode first, What variable or
functions names should you use in your program? How will we design our game
software? What is our game architecture?

Exercise: Sneak ahead to Chapter 2: “4-Step Method”

1.5 Game Design Architecture

“Oh! Oh!”

The answer comes from a phrase senior software engineers call “high level architec-
ture” design.167 Using Object-Oriented Analysis Design (OOAD)168 in your game de-
velopment process involves breaking your game’s idea into parts (i.e., data structures);
and, then describing how those individual parts interact with each other. For example,
dissecting your game description into categories like “things” (aka “objects”), rules and
metrics (aka, “logic”), “human computer interaction”169 (HCI), “user data” information,
and “camera viewports” (i.e., what the player see during the game progress) — then
think about how you might write those items as JavaScript code, such as object types,
functions, or variables. Here’s another example:

• Game Menus and Scenes (plural noun)
• Music Tiles (plural noun)
• Music sound files (plural noun)

167https://en.wikipedia.org/wiki/Architectural_pattern
168https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
169https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Game Studio & Project Preparations 35

• Tool-tips text (a noun)
• User Interface button(s) for navigation (plural noun)
• Splash Screen (a noun)
• Background theme music (a noun)
• Heads Up Display (a noun)

- Scores display (a noun)
- timer display (a noun)

In a very primitive way, we have just created a game using the Object-Oriented
Analysis Design (OOAD)170 method. From a different “Elevator Speech” and game
description I wrote, I collected all the nouns from the game’s description. This is
not yet executable JavaScript; it’s called “pseudo-code” and we have a lot more to do.
“OOAD” should include some adjectives (properties of those noun-thingies171 in our
game), adverbs and action verbs (how, when, and what those things do respectively).
For example,

When (an “adverb”) I click (a “verb”) a game tile (a “noun”), it should play (a “verb”) a
music file (a “noun”).

It becomes a trivial process to create games using just simple grammar.

Another side-benefit of using “OOAD” is an opportunity to test the game’s “Enjoyable
Factor” (aka, is the game fun?). Collect all of the player’s action verbs (such as shoot,
command, run, purchase, build, and look) and envision how a player might perform
each one. Then, for each of those “verbs”, ask yourself if that game action is fun. Again
ask yourself, if the target market — identifying our target audience is coming later
— would find it fun. Be objective! If those player “actions” are not enjoyable or fun,
substitute another action for the player to do that would be fun; otherwise, drop the
action-verb entirely.

Exercise: Download my interpretation of “Comparison Chart of Fun to Human
Emotions”172 and a white-paper entitled, “MDA: A Formal Approach to Game
Design and Game Research”173. This next reference was developed from a
small (60 total) population sample while attending a game convention (a
skewed population sampling). Regardless, it is still an interesting thesis about
the “4 Keys to Fun”174

170https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
171https://www.urbandictionary.com/define.php?term=thingie
172https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
173https://makingbrowsergames.com/design/MDA.pdf
174http://www.xeodesign.com/the-4-keys-to-fun/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://www.urbandictionary.com/define.php?term=thingie
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/MDA.pdf
https://makingbrowsergames.com/design/MDA.pdf
http://www.xeodesign.com/the-4-keys-to-fun/
https://nunoalexandre.com/2017/02/12/this-is-not-object-oriented
https://www.urbandictionary.com/define.php?term=thingie
https://makingbrowsergames.com/design/_p3-16HumanMotivations.pdf
https://makingbrowsergames.com/design/MDA.pdf
http://www.xeodesign.com/the-4-keys-to-fun/

Game Studio & Project Preparations 36

Sample Code derived from the “OOAD” Breakout Game Description Example:

• Objects:
- var Brick
- var Paddle
- var Balls as new Array()

• Scenes:
- Splash/Start
- Play Game
- Ending (Win and/or Lose)
- Credits

• Logic:
- Brick (.isHit())
- Paddle (.move())
- Ball (.move(); .droppedOut())
- Ball-brick collision (function, use bounding box)
- Build Brick Grid (function container)
- Paddle-ball collision (function, use bounding box)
- Paddle-ball angling (function, invert angle)
- Reset Game (function)

• User Interaction & Heads-Up Display:
- Keyboard-paddle movement (keyPressed)
- Buttons for scene changes (mouseClicked)
- Text boxes (Score, Remaining Attempts)

• Game data
- Ball Dropped Out (Remaining Attempts -1)
- Ball Hits Bricks (Score + 1)

Note: I could have used this Chart “sorted by Items” instead of this listing above.

“Top-down”

Top-down design (aka Step-wise refinement) is another technique175 — among
many; (click here to see the 10 most commonly used)176 — that professional
programmers use when they have to go beyond simply identifying items — as we

175https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
176https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013

Game Studio & Project Preparations 37

did in the examples above. Top-down design helps define tasks inside of tasks. Small-
scale problems are usually composed of tasks all at the same level. This means that
there are few opportunities for a task to contain several other tasks (i.e., inheritance)
of which turn into JavaScript objects with method functions.

In a Top-down design, the solution to the problem is found by breaking down the
problem into solvable sub-problems. However, these sub-problems are not smaller
versions of the large problem. These sub-problems have these following characteris-
tics:

• Each sub-problem must be solvable by a process or set of rules to be followed in
calculations or other problem-solving operations.

• Each sub-problem should be independent of any other sub-problems.
• Solving a sub-problem should be significantly less complex than the main parent

problem.
• Solving the sub-problems should lead to solving the overall main problem by

jointly composing the solutions for all the associated sub-problems.
• Performing step-wise refinement will lead to software functions and “classes”

nested in related “modules” when we begin writing our game’s source code.
(NOTE: more on JavaScript Modules in the Coding Appendix.)

“Bottom-up”

Bottom-up design occurs when you determine what programming routines are avail-
able to you already from the Phaser JavaScript Framework, and you’ll selectively
use them to “build up” your program instead of creating that code yourself. Since we
are focusing on the Phaser JavaScript Framework, you’ll discover 90% of the work
has already been done for you in your game’s construction. All we need to do is simply
find those various pieces of code that our game requires from the Phaser API.

“Oh! Oh!” vs. Top-Down vs. Bottom-Up vs. OLOO

You might be wondering which design philosophy is the best one for you to adopt and
use: “OOAD”, top-down, bottom-up or “Objects Linking to Other Objects”. In reality,
neither are better than the others. These processes are complementary. When you
have to design software from scratch or add to existing software, you are likely to use
any of those processes to help you achieve your best design.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 38

1.6 Game Project Summarized:

By now, you hopefully understand the Game Design System™ process for creating a
game project recipe. The most important thing is to “ACTUALLY START MAKING THE
DAMN GAME”, because that is where you’ll learn the most, and also where you’ll get
the most joy out of your creation, since you’re turning your dreams into a reality.

Game Recipe™ Process

Concept Development:

1. Copy your a fresh/new ‘file structure’ into a new/separate project directory/folder.
A basic index.html file should be there already; just update the ”<head>“ metadata for
search engine optimization (SEO).
2. Describe what you’re making in an elevator speech (aka, “Game Description” text
file).

Design:

3. Draft a “mock-up” sketch of the game phases and content for each game phase.
4. List the items, their priorities, and “Catalog their classification”. (with an Excel
spread sheet?)
5. Sort the items by either: 1) priorities, or 2) “Catalog classifications” — this is my
favorite method and easiest for me to encode content.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 39

Production Encoding:

Note: following the Principles of Software Engineering177

6. Use (aka “implement!”) “software architecture design”178 to break down (i.e.,
Deconstruct!) the various mechanisms and components into their logical elements.
Use a combination of “OOAD”, top-down, OLOO, and/or “bottom-up” design methods.
7. Find those previously tested prototype items you’ve already created in other game
products — such as your “index.html” page — stored in the Game Recipes™ tool179.
Use those game prototypes. If they don’t exist then go to step #8.
8. Create and integrate those missing game prototypes — using the 4-step method
(found in Chapter 2) Classify them with other similar components and include them
into your automation tools. It’s worth mentioning again — this is the secret sauce in
our Game Recipes™! Keep your “featured ingredients” D.R.Y and use it everywhere
in your game development!

The core “Game Mechanics” (GM) are written in “pure” JavaScript functions (or ES6
“classes”180) which support the game’s logic, data, and rules. These components
will “chat” among themselves with whatever “JS Gaming Framework” you’ve se-
lected. This provides flexibility to exchange entirely different “Gaming Frameworks
Mechanisms” (GFM) — the “front-end visual elements” — without changing the
artwork theme nor game’s mechanics. The “mechanisms component” come from
your selected “JS Gaming Framework” and will handle the gamers’ displays and User
Interfaces (UI). Much of the code written in the “front-end” Phaser Gaming Framework
is event-based. You’ll define some behaviors for the gamer’s input, and then attach
those to “a triggering event” such as a button click or a press key from a keyboard.
The “artwork component” will supply the graphics and multimedia for and into the
“mechanism prototypes”. The “game mechanics and rules” I include in the “main.js”
(aka “game.js”) to merge and minimize the number of files downloaded.

Download this FREE 400+ page ebook: “Game Development for Human Beings”
from GameDev Academy.181

177https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
178https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
179https://makingbrowsergames.com/gameDesigner/
180http://know.cujojs.com/blog/oop-is-not-my-hammer
181https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/gameDesigner/
http://know.cujojs.com/blog/oop-is-not-my-hammer
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/gameDesigner/
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://gamedevacademy.org/free-ebook-game-development-for-human-beings/?a=47

Game Studio & Project Preparations 40

1.7 Summary

Let’s review and take inventory of what we’ve covered so far. In Part IV, we will revisit
these steps again as we walk through the creation of several different games.

• We have read pages of supplement content from 52 external sources.
• Downloaded half-a-dozen additional Bonus Content files from reference links.
• We have set-up a workstation environment.
• We discovered helpful debug sites and data sources.
• Chose and set-up an operational web-server.
• Created a file structure to become a consistent foundation for all on-going

projects.
• We learned what is and is NOT game development.
• Installed several development and supporting tools.
• Learned where to find $1,000+ of free software for game development.
• Reviewed tools to migrate the HTML5 game onto various mobile platforms.
• Constructed a game “front-door” with SEO.
• Understand the use of JavaScript Modules.
• Learn the Game Design System™ and how to make a game “recipe”.
• Clarified what Copyright means from the US Copyright Office.
• Read several software architecture design concepts.
• Migrated all current game prototype mechanisms into a separate namespace.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Studio & Project Preparations 41

1.8 Chapter References:

• Programming like a Pro182 Chapter 8, by Charles R. Hardnett
• Google Analytics183

• Getting Started Making Video Games184 by John Horton.
• Tools for Web Developers — Setting Up Your Dev Environment185

• How to use browserify186 to build modular applications. Free handbook.
• Google Search for Text Editor for Source Code Development187

• “Using ECMAScript 6 today”188 gives an overview of ECMAScript 6 and explains
how to compile it to ECMAScript 5. If you are interested in the latter, start reading
in Sect. 2. One intriguing minimal solution is the ES6 Module Transpiler which only
adds ES6 module syntax to ES5 and compiles it to either AMD or CommonJS.

• Embedding ES6 modules in HTML: The code inside <script> elements does not
support module syntax, because the element’s synchronous nature is incom-
patible with the asynchronicity of modules. Instead, you need to use the new
<module> element. The blog post “ECMAScript 6 modules in future browsers”189

explains how <module> works. It has several significant advantages over <script>

and can be poly-filled in its alternative version <script type="module">.
• CommonJS vs. ES6: “JavaScript Modules” by Yehuda Katz190 is a quick intro to

ECMAScript 6 modules available on Github191. Especially interesting is another
page192 where CommonJS modules are shown side by side with their ECMAScript
6 versions.

• Understanding ES6 Modules193

• How the Web works194 Mozilla Developer’s Network (MDN) provides this Learning
Area designed to answer common questions that come up.

182http://amzn.to/2b8gvUr
183https://developers.google.com/analytics/devguides/collection/
184https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
185https://developers.google.com/web/tools/setup/
186https://github.com/substack/browserify-handbook
187https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%

20source%20code
188http://2ality.com/2014/08/es6-today.html
189http://2ality.com/2013/11/es6-modules-browsers.html
190http://jsmodules.io/
191https://github.com/wycats/jsmodules
192http://jsmodules.io/cjs.html
193https://www.sitepoint.com/understanding-es6-modules/
194https://developer.mozilla.org/en-US/docs/Learn/Common_questions#How_the_Web_works

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2b8gvUr
https://developers.google.com/analytics/devguides/collection/
https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
https://developers.google.com/web/tools/setup/
https://github.com/substack/browserify-handbook
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
http://2ality.com/2014/08/es6-today.html
http://2ality.com/2013/11/es6-modules-browsers.html
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html
http://jsmodules.io/cjs.html
https://www.sitepoint.com/understanding-es6-modules/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions#How_the_Web_works
http://amzn.to/2b8gvUr
https://developers.google.com/analytics/devguides/collection/
https://makingbrowsergames.com/design/_p3-GettingStartedMakingVideoGames.pdf
https://developers.google.com/web/tools/setup/
https://github.com/substack/browserify-handbook
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=text%20editor%20for%20source%20code
http://2ality.com/2014/08/es6-today.html
http://2ality.com/2013/11/es6-modules-browsers.html
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html
https://www.sitepoint.com/understanding-es6-modules/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions#How_the_Web_works

Building a Game Prototype 42

2. Building a Game Prototype

“What’s a game prototype”, you say?

Game classification is diverse. So, I’d like to agree on some standard definitions as we
“cook up” our game using the Game Design system™ and its Game Recipes™ tools.

• game prototypes— Quoted from “Phaser III Game Design Workbook”, (page 69),
“By combining all of our game mechanisms, with a set of game mechanics and its
rules systems — as non-invasive aspects in our gaming product1 — along with
an artwork theme2, we’re able to create multiple game products quickly. It simply
becomes a matter of exchanging any of those “3 cross-cut” components3 into a
new innovative mixture for a new game product. This is the secret in concocting
a new game4 every month or even every week! For example, swopping a “Guitar
Hero” artwork theme with a “Plants & Zombies”. The new game uses the same
“Game Mechanics” and “Game Display Mechanisms” but with a “fresh organic-
garden” look and feel! From Page 117, “… let me write that code once and reuse
it for similar items in other games as a component prototype — this is the secret
sauce in our Game Recipes™! Keep your “featured ingredients” D.R.Y and use it
everywhere in your game development!”

• mechanics—Quoted from “Phaser III Game DesignWorkbook”, (page 68), “From
a game programming perspective, basic Game-Play can be deconstructed —
revealing tactical components inside a game’s overall mechanics and rules. For
example, a fighting game deconstructs into various tactics such as attacks (or
punches, throws, and kicks), defensive moves, and dodges. These tactics are
assigned to game prototypes and mechanisms — input keys, mouse clicks, and
mobile screen interactions ….” and

• mechanisms — Quoted from “Phaser III Game Design Workbook”, (page 85),
“The gameboard grid defines the Game Mechanics (GM) movement rules; how
the grid is drawn is the Game Framework Mechanism (GFM). Players will send
their decisions from their device’s inputs — keyboard, mouse, game-pad, etc. —
using their browser and the widget mechanisms we designate as drop-down
menus, buttons, and “sliders”. Mechanisms are the “displays elements” of the
Game Framework Mechanism (GFM).”

1http://know.cujojs.com/blog/oop-is-not-my-hammer
2https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
3http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
4https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct
https://www.vocabulary.com/dictionary/concoct
http://know.cujojs.com/blog/oop-is-not-my-hammer
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://know.cujojs.com/tutorials/aop/intro-to-aspect-oriented-programming
https://www.vocabulary.com/dictionary/concoct

Building a Game Prototype 43

So then, “What’s a game prototype”, you asked?
Answer: It is an operational gaming foundation that can:

1. accept inputs (Gaming Framework Mechanism (GFM));
2. move game elements and components (Gaming Framework Mechanism (GFM));
3. the transition between game phases, and (Game Mechanics and display ele-

ments as visual components from the Gaming Framework Mechanism (GFM).)
4. reacts to internal game object collisions with visual feedback (both Gaming

Framework Mechanism (GFM)).

What are the benefits of creating a game prototype first?

Answer: See the latest comments from various gaming experts here5 and here6; and
other software engineers’ opinions about prototyping in general — here7. In short,
you’re trying to find if your game is “fun”!

My game design concept is clearly echoed in both Apple’s Game-Play Kit and Play
Canvas8 as “Entities and Components”.9 They plainly state, “The Entity-Component
design pattern is an architecture that favors composition over inheritance. To il-
lustrate the difference between inheritance-based and composition-based architec-
tures, consider how you might design an example “tower defense” style game, with
the following features …”. It’s a wonderful feeling to discover after 20 years that other
prominent game developers are thinking along the same patterns of game prototype
development.

5https://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first#
6https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game
7https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm
8https://playcanvas.com/
9https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/

EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first
https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game
https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm
https://playcanvas.com/
https://playcanvas.com/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://www.quora.com/What-is-the-benefit-from-creating-the-prototype-of-a-game-first
https://www.quora.com/Do-game-developers-create-prototypes-first-before-programming-the-actual-game
https://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_06.htm
https://playcanvas.com/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Building a Game Prototype 44

Components and “Objects Linking to Other Objects” (OLOO)

Exercise: Read “Apple’s Game-Play Kit: Designing with Entities and Compo-
nents”.10 and learn why Apple claims that “Inheritance-Based Architecture
Hinders Game Design Evolution” and their illustrations on how “Composition-
Based Architecture Makes Evolving Game Design Easy”.

Perhaps the most popular opinion — coming from one of my game development
heroes is:

How to Succeed at Making One Game a Month

Reach the Finish Line More Often

… “90% of game projects never see the light of day. My own personal experience
confirms this. I’ve been making games for over twenty years, and of all the games
I started - filled with enthusiasm, a detailed plan, and infinite brainstorms worth of
ideas - only a small percentage were ever released. This caused me years of heartache.
I was a good coder, I could produce acceptable artwork,a I had enough good ideas to
feel confident about my plans, and yet that wonderful state where the game is ready
for the public was an elusive target. …
…

10https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1

Building a Game Prototype 45

#5. Make a No-Art Early Playable
The next major handy tip for this challenge is to make a playable game in the first
day. No title screen, only one level, and just the primary gameplay mechanic.

It won’t be great, it won’t be finished, and it certainly won’t look that great or be all that
fun. That said, this step is your best weapon. Challenge yourself to create a codebase
that compiles and runs in the first few hours. Make it so that you can accept inputs,
move around, animate something, and trigger some sounds. This prototype, lousy a
game as it may be, is going to be your best friend.

The sooner you can have a working early playable prototype, the more likely you
are to succeed. It will be your first “save point” - a resting plateau on the way to the
top of the mountain that you can fall back on. It represents a vision of the working
game. From here on you will be able to polish your game for as long as you like with
the knowledge that you have something in hand that “works”.

No-art prototypes also have one other major advantage: in previous games, I would
make beautiful mockups in Photoshop and gather hundreds of lovely looking sprites
in preparation for the game. After development was complete, the vast majority of
the art had to be replaced, resized, or thrown out. I’ve wasted thousands of hours
making game-ready artworkb before coding; these days I know that the tech specs
and evolving game-play mechanicsc will mean that much of what you make at the
start won’t make it into the finished game.”
Read more here.d

ahttps://www.gamedevmarket.net/?ally=GVgAVsoJ
bhttps://www.gamedevmarket.net/?ally=GVgAVsoJ
chttp://www.lostgarden.com/2006/10/what-are-game-mechanics.html
dhttps://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-

month--gamedev-3695

Hint: If you’re tired of starting over, stop giving up11

2.1 Creating Prototype Mechanisms — 4-Step method

The last step (i.e., #8) in our Game Recipes™ was to create missing game components
and prototypes. We’ll follow these next 4-steps, from here on, whenever we need
to generate new game prototypes and component mechanisms. It’ll become our
regimen12:

11https://www.youtube.com/watch?v=yzeJ77RNcjs
12https://www.merriam-webster.com/dictionary/regimen

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://gamedevelopment.tutsplus.com/articles/1gam-how-to-succeed-at-making-one-game-a-month--gamedev-3695
https://www.youtube.com/watch?v=yzeJ77RNcjs
https://www.merriam-webster.com/dictionary/regimen
https://www.youtube.com/watch?v=yzeJ77RNcjs
https://www.merriam-webster.com/dictionary/regimen

Building a Game Prototype 46

Game Design System™ - Single Player
1st RULE: Always be consistent in placement, programming paradigm13, JS coding
style14, and naming schemes15. It might be worth reviewing what others are doing16

with their JS Styling17 and how they program JavaScript.18

Exercise: Learn how to out-perform senior programming developers19 in 3
months time?! … use game programming patterns20.

Step 0) Preparation and Research

This is the fun part when developing a new game — so, enjoy! (Boy Scouts: Earn your
Merit Badge!21)

• Research and play a similar gaming genre, currently on the market, that match
your ideas and appeal to similar target audiences. Record which sites host those
games and investigate their submission policies.

13https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20%26%20object%20prototypes/ch6.md
14https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
15https://en.wikipedia.org/wiki/Computer_network_naming_scheme
16https://standardjs.com/
17https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f
18https://github.com/getify/You-Dont-Know-JS
19https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-

developer-and-how-you-can-too-19bc6206fa68
20https://gameprogrammingpatterns.com/
21https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://en.wikipedia.org/wiki/Computer_network_naming_scheme
https://standardjs.com/
https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f
https://github.com/getify/You-Dont-Know-JS
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://gameprogrammingpatterns.com/
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf
https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://en.wikipedia.org/wiki/Computer_network_naming_scheme
https://standardjs.com/
https://hackernoon.com/what-javascript-code-style-is-the-most-popular-5a3f5bec1f6f
https://github.com/getify/You-Dont-Know-JS
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://medium.com/better-programming/how-i-outperformed-more-experienced-developers-as-a-junior-developer-and-how-you-can-too-19bc6206fa68
https://gameprogrammingpatterns.com/
https://makingbrowsergames.com/book/Game_DesignMeritBadge.pdf

Building a Game Prototype 47

• Record their “Search Engine Optimizations” (SEO) — metadata descriptions,
keywords, where & who the game is hosted, etc.

• Create your game project “front-end index.html” file(s).
• Follow the Game Project Steps #1 through #8. or use the Game Recipe™ Tool22.

Step 1) Generate Game Phases (as needed).

Typical Game Phases from “Phaser III Game Design Workbook”
Once these are created, they should be “relatively” D.R.Y. (Don’t Repeat Yourself)

Step 2) Generate code for triggering events.

Much of the code written in the “front-end” Phaser Gaming Framework is event-
based. You’ll define some behaviors for the gamer’s input, and then attach those to
“a triggering event” such as a button click or a press key from a keyboard. These —
listeners, observers, sensors, sentinels, web workers, etc. — will be placed in the “Play”
Game Phase since most of these relate to the visual “Game Framework Mechanisms”
(GFM) and display Components. See a flow chart23 when and what scenes update,
and review the various scene event states24.

22https://makingbrowsergames.com/gameDesigner/
23https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
24https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/gameDesigner/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events
https://makingbrowsergames.com/gameDesigner/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#events

Building a Game Prototype 48

Relationship between UI, HUD, Game Mechanisms, & Mechanics (Single Player)

Example of Phaser 3 triggering events

1 // an event listener as the 'handler' function.

2 // The 'this' argument is the context.

3 this.events.on('ohICU', handler, this);

4

5 // Native Scene's own 'EventEmitter' dispatchs our events

6 this.events.emit('ohICU');

Step 3) Generate transition

This code is also placed inside the “Play” Game Phase. Its primary purpose helps
transition “into and out from” the new game phase and their internal Phaser III Scenes.
Once these are created, they should be “relatively” D.R.Y. (Don’t Repeat Yourself)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 49

Transitions using separate pages instead of a single Phaser canvas
Example of a “Non-traditional Phaser III transitions”25 using individual web pages.
WHY? It’s due to the “Phaser.cache” and artwork created for this game.

Step 4) Create your Game’s Core & auxiliary functions

Cloud-based Game Design - “Just In Time” Management
Building your core display mechanisms into components; this means that you request
“what” your game needs from “Infrastructure-as-a-Service”, “Platforms-as-a-Service”,
“Content-as-a-Service”, and “Data-as-a-Service”. It’s the same concept as using “npm
and inserting dependencies” on steroids!

25https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html
https://makingbrowsergames.com/starterkits/dressup/v3.x.x/index-cms.html

Building a Game Prototype 50

Exercise: Download this “template”26 as a new project reference. Open and
watch the Developer’s Console while running this template or simply click and
watch for these 4-Step numbers annotated inside the source code.:

https://makingbrowsergames.com/p3gp-book/standalone/

Warning: Avoid “Anti-patterns”27 when developing your game source code
when integrating others’ supporting functions, document any encroaching28

“Anti-patterns” you find, and share your findings in the Phaser forums. Book-
mark the following FREE online book: Essential JS Design Patterns by Addy
Osmani29. It shows what to look for and how to resolve “Anti-patterns”
sneaking into the Phaser Libraries.

Once we have completed these steps for our new game phase, we must bring them
alive.30 To do this, we load the JavaScript module either through an inline ”<script>“
tag in our “index.html“ file; or by importing it into our ES6 “index.js“ file (if you are
using an ES6 structure, we’ll learn how to automate this process later).

As we build our Game Prototypes it is helpful to use the browser’s console and
developer tools. The browser console in the “Developer Tools”, tells us a lot about our
game’s performance. If you’ve never used the “Dev Tools” in the console, you might
take a side trip to “Mastering The Developer Tools Console”31 But first, we need a web
page to hold our game …

Deeper Dive: Writing D.R.Y. JS code

Wait! How do I write D.R.Y. JavaScript source code? Ok, let’s take a side-trip to Clean
Code concepts adapted for JavaScripta — (quote) “Software engineering principles,
from Robert C. Martin’s bookClean Code (Amazon),b adapted for JavaScript. This is not
a style guide. It’s a guide to producing readable, reusable, and refactor-ablec software
in JavaScript.”

ahttps://github.com/ryanmcdermott/clean-code-javascript
bhttps://amzn.to/2WK2pAT
chttps://github.com/ryanmcdermott/3rs-of-software-architecture

26https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
27https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
28https://www.dictionary.com/browse/encroaching
29https://addyosmani.com/resources/essentialjsdesignpatterns/book/
30https://idioms.thefreedictionary.com/bring+it+alive
31https://blog.teamtreehouse.com/mastering-developer-tools-console

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://makingbrowsergames.com/p3gp-book/standalone/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
https://www.dictionary.com/browse/encroaching
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://idioms.thefreedictionary.com/bring+it+alive
https://idioms.thefreedictionary.com/bring+it+alive
https://blog.teamtreehouse.com/mastering-developer-tools-console
https://github.com/ryanmcdermott/clean-code-javascript
https://github.com/ryanmcdermott/clean-code-javascript
https://amzn.to/2WK2pAT
https://github.com/ryanmcdermott/3rs-of-software-architecture
https://github.com/ryanmcdermott/clean-code-javascript
https://amzn.to/2WK2pAT
https://github.com/ryanmcdermott/3rs-of-software-architecture
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#antipatterns
https://www.dictionary.com/browse/encroaching
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://idioms.thefreedictionary.com/bring+it+alive
https://blog.teamtreehouse.com/mastering-developer-tools-console

Building a Game Prototype 51

2.2 Using “Box” Graphics

Since we are making a working “game prototype”, let’s keep our artwork as generic as
possible, and save the efforts of art selection and consistent styling until a later step.
We will save ourselves those “thousands of hours”; and, for now, just simply set up
“block-style graphics” and assign basic colors to represent our gaming components.
Phaser v3.13.x offered a feature that simplifies building these “block-style graphics”.
The reason we are doing such simple “placeholders” is to learn if our game idea is
viable — if it’s fun?!

We will begin with a simple top-down (aka “Bird’s Eye” view) game with an avatar
character, several walls, text narrative, “heads-up display” (aka HUD), and several
opponents. Doing so, we have a functional game prototype to use for other game
ideas. By swopping out these simple blocks for a variety of artwork themes, this
allows us to create 100s of games from similar game mechanics32 using different
theme settings.

We’ll explore different game perspectives, mechanics, themes, and modes later
in this book and adjust these prototype mechanisms accordingly. For now,
review how to use “Isometric View in Phaser 3”33

Exercise: Study the v3.13.0 “shapes features” by reading this DevLog 12834

32http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
33https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
34https://phaser.io/phaser3/devlog/128

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
https://phaser.io/phaser3/devlog/128
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
https://medium.com/@Tnodes/creating-an-isometric-view-in-phaser-3-fada95927835
https://phaser.io/phaser3/devlog/128

Building a Game Prototype 52

Sample 2.1: Prototyping Graphics

// available since Phaser v3.13+.

// 2D: this.add.rectangle(x, y, width, height, color)

// AND even ...

// 2.5 & 3D as the new Phaser III "ISOBOX"

// new IsoBox(scene, x, y, size, height, fillTop, fillLeft, fillRight])

// direct method using available internal Phaser geometry.

var shape = this.add.rectangle(400, 250, 32, 32, 0x00FF00);

//

// =====================================

//OR use our prototype method ...

var player1 = this.add.sprite(

100, 400, // display x and y coordinates.

box(

{who: this,

whereX: 100,

whereY: 350,

length:100,

width:100,

color: 0xFF0000,

border: 0xFFFFFF}

) // call out to factory function

); //End sprite

); //new shiny graphics-box avatar!

//

// =====================================

//create a "box" on the HTML5 canvas.

function box(opt) {

//syntax: new Rectangle([x], [y], [width], [height])

//var bxImg = new Phaser.Geom.Rectangle(

// opt.whereX,

// opt.whereY,

// opt.width,

// opt.length);

// OR use rectangle:

var bxImg = opt.who.add.rectangle(

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 53

opt.whereX,

opt.whereY,

opt.width,

opt.length);

// decorate our shiny new "box"

var bxColor = opt.who.add.graphics(

{fillStyle: {color: opt.color},

lineStyle: {color: opt.border} });

bxColor.fillRectShape(bxImg); //fill box with color

bxColor.strokeRectShape(bxImg); //draws a border around it.

return bxImg;

};

Exercise: Download the example above:

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

This new “shape“35 feature from v3.13.0 takes on the characteristics of a normal
“game Object” without having to “bake” a texture as you would have to do with a
graphics object.

What time did all that take? a couple of seconds? This way — using generic boxes
or the new Phaser v3.14+ “rectangle shape”36 — we can deploy them to represent
any game elements as well as player character(s), boundaries, walls, doors, treasures,
and opponent(s) entities.

By swopping out these simple blocks for a variety of artwork themes37 settings, it
gives us the opportunity to create 100s of games along similar game mechanics38.

Hint: We’ll explore different game perspectives, mechanics, themes, and
modes in later chapters and adjust these prototype mechanisms accordingly.
Here’s an example of a side-view gaming prototype by another famous Phaser
v2.x.x author — Thomas Palef.39

35https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
36http://labs.phaser.io/edit.html?src=src/game%20objects/shapes/rectangle%20with%20arcade%20physics.js
37https://www.gamedevmarket.net/?ally=GVgAVsoJ
38http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
39http://www.lessmilk.com/tutorial/2d-platformer-phaser

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
http://labs.phaser.io/edit.html?src=src/game%20objects/shapes/rectangle%20with%20arcade%20physics.js
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.lessmilk.com/tutorial/2d-platformer-phaser
http://www.lessmilk.com/tutorial/2d-platformer-phaser
https://github.com/photonstorm/phaser/blob/v3.14.0/src/gameobjects/shape/Shape.js
http://labs.phaser.io/edit.html?src=src/game%20objects/shapes/rectangle%20with%20arcade%20physics.js
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.lessmilk.com/tutorial/2d-platformer-phaser

Building a Game Prototype 54

2.3 Game Practicum: Box Prototyping

Let’s apply the knowledge we’re learning is a simple 2D maze.

Phaser III Code Review

Play Phaser III demonstration here40.

Exercise: Download and use the following files with all the notes in this Code
Review. Open the console and watch the internal operations.

• p3_2DRooms-mainJS.pdf41 — 4 pages.
• p3_2DRoomsDemoJS.pdf42 — 8 pages.

MainJS - p3_2DRooms-mainJS.pdf

• Lines 1 to 39 are general administration and acknowledgments.
• Lines 40 to 49 create the 2D array data structure with hexadecimal flags, a

graphics object, and game namespace.
• Lines 57 to 154 is the Game Mechanics (GM) Component. I placed the function

that handles character movement in the GM component. It could just as easily
appeared in the “Game Framework Mechanisms” (GFM) Component for better
“Separation of Concerns”. See the illustration below.

• Lines 170 to 201 is the Phaser3 configuration object.
• Lines 203 to 207 launches the game using browser document instead of “win-
dow.onload”.

DemoJS - p3_2DRoomsDemoJS.pdf

• Lines 1 to 53 are general administration, data structures, and acknowledgments.
• Lines 54 to 59 create “Game Framework Mechanism” variables, and a graphics

objects.
40https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/
41https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-mainJS.pdf
42https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemoJS.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-mainJS.pdf
https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemoJS.pdf
https://makingbrowsergames.com/starterkits/adventure/_p3-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/p3_2DRooms-mainJS.pdf
https://makingbrowsergames.com/starterkits/adventure/p3_2DRoomsDemoJS.pdf

Building a Game Prototype 55

Lines 61 to 292

Lines 61 to 292 is the Game Mechanisms (GM) and Phaser JS Component. I don’t use
any artwork nor images. I create the room’s wall using a “pseudo” graphics method
in my game prototype.

Canvas Graphics - Box function

279 //

280 //==

281 //create a box Image (pseudo graphics) for the HTML5 canvas.

282 box: function (options) {

283 //var bxImg = this.add.bitmapData(options.length,options.width);

284 var bxImg = game.add.rectangle(options.length, options.width);

285 bxImg.ctx.beginPath();

286 bxImg.ctx.rect(0, 0, options.length, options.width);

287 bxImg.ctx.fillStyle = options.color;

288 bxImg.ctx.fill();

289 return bxImg;

290 }

Lines 293 to 298

• Lines 293 to 298 handles the avatar collision with walls.

Avatar bumps into Walls

293 //

294 // ==

295 function bumpWall() {

296 player.body.velocity.x = 0;

297 player.body.velocity.y = 0;

298 };

299 //

300 // ==

Lines 301 to 315

• Lines 301 to 315 handles the avatar collision with doorways.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 56

Avatar bumps into Doors

299 //

300 // ==

301 function bumpDoor(player,door) {

302 // if a player moves into a doorway.

303 player.body.velocity.x = 0;

304 player.body.velocity.y = 0;

305 console.log("LN 305: Bumped into Door "+door.name);

306 // which doorway? Is it visible???

307 // BUG: going through invisible doors? Why?

308 // FIX: if visible, then allow passage; otherwise, stop

309 if(door.visible){

310 newRoom(door);

311 resetRoom();

312 }

313 player.body.velocity.x = 0;

314 player.body.velocity.y = 0;

315 };

316 //

317 // ==

Lines 318 to 376

• Lines 318 to 376 handles moving the avatar into the new room via a specific
doorway.

Determine new Room Entered

316 // http://www.html5gamedevs.com/topic/5304-how-to-restartreload-a-state/

317 // ==

318 //Main Door click handler

319 function newRoom(door) {

320 // 2 Options:

321 // - reset this phase with new room characteristics OR

322 // - have a "repaint" function to adjust the entered room.

323 // Option 1: this.scene.restart();

324 // Option 2: separation of concerns - new function

325 Rooms2D.LastRoom = Rooms2D.CrntRoom;

326 player.setPosition(64, 64);

327 var LastDoor = door.name;

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 57

328 console.log('Last Door Used: ' + door.name);

329

330 switch (LastDoor) {

331 case "North":

332 //Rooms2D.CrntRoom -= 4; // or GRID_ROWS or MT.length

333 Rooms2D.CrntRoom = Rooms2D.LastRoom - 4;

334 Rooms2D.CrntRoomY -= 1;

335 //Leave via North; enter new room from South-side

336 Rooms2D.pPosX = config.width / 3;

337 Rooms2D.pPosY = 320;

338 break;

339 case "East":

340 Rooms2D.CrntRoom += 1;

341 Rooms2D.CrntRoomX += 1;

342 //Leave via East; Enters new room from the west-side

343 Rooms2D.pPosX = 50;

344 Rooms2D.pPosY = config.height / 2;

345

346 break;

347 case "South":

348 Rooms2D.CrntRoom += 4; // or GRID_ROWS or MT.length

349 Rooms2D.CrntRoomY += 1;

350 //Leave via South; enter new room from North-side

351 Rooms2D.pPosX = config.width / 3;

352 Rooms2D.pPosY = 50;

353

354 break;

355 case "West":

356 Rooms2D.CrntRoom -= 1;

357 Rooms2D.CrntRoomX -= 1;

358 //Leave via West; enters new room from east-side

359 Rooms2D.pPosX = 340;

360 Rooms2D.pPosY = config.height / 2;

361

362 break;

363 }

364

365 player.setPosition(Rooms2D.pPosX, Rooms2D.pPosY);

366 console.log("New Room #: " + Rooms2D.CrntRoom + "; Door Clicked: " + door.na\

367 me);

368 /**

369 //sfx camera fadein/out

370 this.cameras.main.once('camerafadeincomplete', function (camera) {

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 58

371 camera.fadeOut(1000);

372 });

373 this.cameras.main.fadeIn(1000);

374 */

375 resetRoom();

376 };

377 //

378 // ==

Lines 379 to 431

• Lines 379 to 431 handles the new room “set-up”.

Reset Room properties

377 //

378 // ==

379 function resetRoom() {

380 //Room Exceptions

381 //Hard-coded Error corrections for 2DRooms array:

382 if (Rooms2D.CrntRoomX < 0) {

383 Rooms2D.CrntRoomX = 0;

384 }

385 if (Rooms2D.CrntRoomX > 3) {

386 Rooms2D.CrntRoomX = 3;

387 }

388 if (Rooms2D.CrntRoomY < 0) {

389 Rooms2D.CrntRoomY = 0;

390 }

391 if (Rooms2D.CrntRoomY > 3) {

392 Rooms2D.CrntRoomY = 3;

393 }

394

395 //redraw the new room; hard-code room door exceptions

396 if ((Rooms2D.CrntRoomY == 0) || (Rooms2D.CrntRoomX == 2)) {

397 doorN.visible = false;

398 doorN.setInteractive(false);

399 } else {

400 doorN.visible = true;

401 doorN.setInteractive(true);

402 }

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 59

403 if ((Rooms2D.CrntRoomX == 3)

404 || (Rooms2D.CrntRoomX == 1 && Rooms2D.CrntRoomY == 1)) {

405 doorE.visible = false;

406 doorE.setInteractive(false);

407 } else {

408 doorE.visible = true;

409 doorE.setInteractive(true);

410 }

411 if ((Rooms2D.CrntRoomY == 3) || (Rooms2D.CrntRoomX == 2)) {

412 doorS.visible = false;

413 doorS.setInteractive(false);

414 } else {

415 doorS.visible = true;

416 doorS.setInteractive(true);

417 }

418 if ((Rooms2D.CrntRoomX == 0)

419 || ((Rooms2D.CrntRoomX == 2) && (Rooms2D.CrntRoomY == 1))) {

420 //Left Column doesn't have Western doors

421 doorW.visible = false;

422 doorW.setInteractive(false);

423 } else {

424 doorW.visible = true;

425 doorW.setInteractive(true);

426 }

427 //update Room HUD information

428 newHUD = "Room #" + Rooms2D.CrntRoom +

429 "\nUse arrow key to move or\nClick on doorway.\nGrid: [" +

430 Rooms2D.CrntRoomX + "][" + Rooms2D.CrntRoomY + "] \n

431 Visible doorway: ";

432 //debug console.log("=====");

433 //debug console.log(newHUD);

434 //debug console.log("=====");

435 }

Phaser v2.x.x Code Review

Play Phaser v2.x.x demonstration here43.

Phaser v2.x.x is not compatible with Phaser v3.24+. The more “pure JavaScript”
we use in our game projects the more “compatible” Phaser v2 becomes to Phaser

43https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/
https://makingbrowsergames.com/starterkits/adventure/_p2-2DRooms/

Building a Game Prototype 60

v3. Therefore, we should always create our Game Mechanics (i.e., the rules and
logic) in “pure” JavaScript and any “Canvas Visual Elements” are placed in the “Game
Mechanisms” file unique to the Phaser API implemented.

The Phaser v2.x.x code uses the same logic as found in Phaser v3.16+ above. The only
difference is “how to say” those instructions with Phaser v2.x.x syntax.

Exercise: Download and use the following files with all the notes in this Code
Review.

• v2_phaser2DRoomsJS.pdf44

• v2_phaser2DRoomsDemoJS.pdf45

MainJS - v2_phaser2DRoomsJS.pdf

• Lines 1 - 28 are general administration and acknowledgments.
• Lines 29 to 37 create the 2D array data structure with hexadecimal flags, a

graphics object, and game name-space.
• Lines 38 to 127 is the Game Mechanics (GM) Component. I placed the function

that handles character movement in the GM component. It could just as easily
appear in the Game Framework Mechanisms (GFM) Component for better “Sep-
aration of Concerns”.

• Lines 129 to 138 is graphic box function. Once again, this could move to the Game
Mechanisms Component for better “Separation of Concerns”.

• Lines 203 to 207 launches the game using browser document instead of “win-
dow.onload“.

DemoJS - v2_phaser2DRoomsDemoJS.pdf

• Lines 1 to 25 are general administration and acknowledgments.
• Lines 27 to 211 create game mechanism variables, and standard Phaser Essential

Functions — “create” and “update”.
• Lines 212 to 294 makes the Room Doors “clickable”. This is an alternate method

for the avatar to travel around the environment. Let’s be HONEST! Did you really
like all that “traveling” in Diablo46??

44https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsJS.pdf
45https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemoJS.pdf
46https://en.wikipedia.org/wiki/Diablo_IV

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsJS.pdf
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemoJS.pdf
https://en.wikipedia.org/wiki/Diablo_IV
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsJS.pdf
https://makingbrowsergames.com/starterkits/adventure/v2_phaser2DRoomsDemoJS.pdf
https://en.wikipedia.org/wiki/Diablo_IV

Building a Game Prototype 61

Lines 212 to 294

The difference in Phaser v2.x.x from the Phaser III code above is the use of “cam-
era.fade”, delayed time events, unique syntax of “game.world.centerX“ and “centerY“
and restarting a “Phaser State”. Otherwise, the avatar placement is written in “pure”
JavaScript which draws both Phase APIs closer and cuts development time.

Lines 294 to 306

Creates the walls and doors, in a pure JavaScript canvas-drawing, which is similar to
the Phaser III code.

Lines 305 to 350

These lines were consolidated into the “newRoom“ function, but were retained for your
study.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 62

2.4 3D Prototypes

You can substitute “rectangle shapes” for images and sprites, and apply movement
and physics reactions. It’s even possible to build 2.5D and 3D games with just
“isoboxes”.

v3.16.1 3D isobox

Quote about the IsoBox Shapea “… is a Game Object that can be
added to a Scene, Group or Container —WARNING: “somemas-
sive changes coming in v3.17+ about “containers. It provides
a quick and easy way for you to render this shape in your game
without using a texture, while still taking advantage of being fully
batched in WebGL. You can treat it like any other Game Object
in your game, such as tween it, scale it, rotate it, alpha it, blend

mode it, change its origin, give it a Camera scroll factor, put it inside a Container
or Group, give it input abilities or even give it a physics body. It is … a normal Game
Object. The only difference is that when rendering it uses its own special bit of display
code. …”

This shape supports only fill colors and cannot be stroked.

An “IsoBox” is an ‘isometric’ rectangle. Each face of it has a different fill color. You can
set the color of the top, left and right faces of the rectangle respectively. You can also
choose which of the faces are rendered via the “showTop”, “showLeft", and “showRight“
properties. You cannot view an “IsoBox” from under-neath, however you can change
the ‘angle’ by setting the projection property.

ahttps://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html

Exercise: Research the Phaser III.12 — Camera 3D Plugin47

47https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.IsoBox.html
https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d
https://github.com/photonstorm/phaser/tree/v3.22.0/plugins/camera3d

Building a Game Prototype 63

Ensure the 3D Camera is loaded into a scene

1 this.load.scenePlugin({

2 key: 'Camera3DPlugin',

3 url: 'plugins/camera3d.min.js',

4 sceneKey: 'cameras3d'

5 });

// Deploy your 3D camera
var camera = this.cameras3d.add(85).setZ(500).setPixelScale(128);

Phaser III ISO demonstration using 1st Person view in “Rescue of NCC Pandora”TM

See “Making ‘Collapsing Blocks’ Browser Games48 and its supporting website
demonstrations49.

Quoted from newsletter #144,a

“Phaser3D is a plugin that uses a new Extern Game Object and injects Three.js into
it. It configures it properly for you, so that three.js can happily write to the current

48https://leanpub.com/mbg-collapse
49https://makingbrowsergames.com/starterkits/collapsingblocks/index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/mbg-collapse
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html
https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://leanpub.com/mbg-collapse
https://makingbrowsergames.com/starterkits/collapsingblocks/index.html

Building a Game Prototype 64

context and then restores itself cleanly when it’s finished. Because Externs sit on the
display list like any other Game Object, you can layer your game content around a
three.js scene. This means you could add 3D backdrops behind your 2D games, or
3D objects over the top of a 2D game, or any combination of. Of course, you can fully
control three.js from Phaser too. This isn’t some cut-down hobbled version of it, it’s
literally the entire library. Every single thing three.js can do, you can do via Phaser3D.
There are loads and loads of helper methods to ease your workflow. These cover
features like creating all supported forms of geometry, add spot, point or hemisphere
lights, enabling shadows and fog, creating cameras, groups and all lots more. I’ve also
included support for GLTF Models. You can, of course, load any other format, but as
GLTF is the new standard, I included methods directly for it. Included in the bundle
are no less than 34 examples, covering all kinds of different features, from geometry
to cube maps to an example showing how to layer a normal 2D Phaser game over a
3D backdrop. There’s even a little demo showing how to use Matter.js bodies for 3D
objects. It’s a powerful combination and I hope Phaser backers have fun playing with
the demos and creating stuff.

I will release Phaser 3D publically in a few months time, but for now backers get to
play with this first, as they’re the ones that enable me to work on Phaser full-time, so
it’s my way of giving back to them. It was also a really nice creative break for me. I
had real fun putting the demos together and yet I only really scratched the surface of
what could be done with it!”

ahttps://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-
f868549ae6f6d740beed7ce5868222c6f74a6aaf

2.5 “ToTo, … we’re not in Kansas anymore” — Dorothy

Welcome to OZ … er! uHMM! “PHAZ3R”, Dorothy!50

Phaser pre-v3.16.xwas not for the “faint-heated”. In those “early release months” (i.e.,
20170201 to 20181025), due to the lack of hands-on tutorials and user documentation,
it was difficult to architect any games using the “Bottom-Up” design method. Once
documentation and a few great tutorials from William Clarkson (v3.9+)51 and Zenva
OnlineGameAcademy (v3.12+)52 began to appear,OOAD53 and “Bottom-upDesign”54

50https://www.youtube.com/watch?v=vQLNS3HWfCM
51https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&

ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=
udemyads

52https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=
Phaser3GamePrototyping

53https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
54https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom%2Dup%20approach%20is,

environment%20to%20form%20a%20perception.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://madmimi.com/p/c1500e?pact=1015946-150303480-9209877774-f868549ae6f6d740beed7ce5868222c6f74a6aaf
https://www.youtube.com/watch?v=vQLNS3HWfCM
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.
https://www.youtube.com/watch?v=vQLNS3HWfCM
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://www.udemy.com/course/making-html5-games-with-phaser-3/?ranMID=39197&ranEAID=pmlyJRiRsYE&ranSiteID=pmlyJRiRsYE-.Om65WbGQTSnaIiFty15zw&LSNPUBID=pmlyJRiRsYE&utm_source=aff-campaign&utm_medium=udemyads
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://academy.zenva.com/?a=47&s=phaser&submit=Search&post_type=product&campaign=Phaser3GamePrototyping
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design#:~:text=A%20bottom-up%20approach%20is,environment%20to%20form%20a%20perception.

Building a Game Prototype 65

was then possible.

Phaser III is a sophisticated re-write that reminds me of its “grand-sire”55 KiwiJS56

— the grand-father of Phaser v2.x.x. Phaser III replaced “PIXI“ with native code, and
now supplies many new features that transcends any of its linage predecessors. In
fact, Phaser III “scenes” remind me more of working with Flash MovieClips!

Quoting from the “DevLogs”, “Fundamentally, v3.x.x is completely different inter-
nally. There’s almost no code left over from v2.x.x. being used” (ed.: … as Imentioned
before, NOT EVEN PIXI! Yes, this is an incredibly bold business move, but they did it
anyway. This created additionalwork on the newAPI and increased the restructuring
required. In fact, Phaser v3 has undergone several massive rewrites since the formal
conversion from “Lazer” into “Phaz3r”a in February 2017 until now (September 2018).
The quote continues,) “However, we were very careful to keep the API as clean and
friendly as possible.” — quoted from FAQ #2 http://phaser.io/phaser3/faq

“Phaser 3 is the next generation of the Phaser Game Framework. Every last element
has been rebuilt from scratch using a fully modular structure,b (ed.: Please read
“JavaScript Module Systems Showdown: CommonJS vs AMD vs ES2015”c.) combined
with a data-orientated approach. It includes a brand-new custom WebGL renderer
(ed.: PIXI is not used as stated earlier) designed specifically for the needs of modern
2D games.” — quoted from R. Davey http://phaser.io/phaser3

“Phaser 3 is now built entirely with webpack2.d (ed.: research what webpack2 doese
to raw JavaScript code and how it works.f) All of the code is being updated (or has
been updated) to use CommonJS format modules. And webpack2 is managing the tree-
shaking and package building of the whole thing. There are no grunt or gulp scripts
to be seen anywhere, as we simply don’t need them. On a side note I’ve also been
using yarn for package management, and it’s truly great! The speed is shockingly
impressive.” — quoted from R Davey https://phaser.io/phaser3/devlog/57

ahttp://phaser.io/phaser3/history
bhttps://webpack.js.org/concepts/modules/
chttps://auth0.com/blog/javascript-module-systems-showdown/
dhttps://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaum5tw
ehttps://webpack.js.org/concepts/
fhttp://kangax.github.io/compat-table/es5/

“Webpack2” outputs ES5 source code57! Do we need to know this? Not just yet.
Bookmark these sites for later use:

• Beginners guide to webpack — How to start a basic application with webpack
55https://www.merriam-webster.com/dictionary/grandsire
56http://www.kiwijs.org/
57https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.merriam-webster.com/dictionary/grandsire
http://www.kiwijs.org/
http://phaser.io/phaser3/history
http://phaser.io/phaser3/faq
https://webpack.js.org/concepts/modules/
https://auth0.com/blog/javascript-module-systems-showdown/
http://phaser.io/phaser3
https://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaum5tw
https://webpack.js.org/concepts/
http://kangax.github.io/compat-table/es5/
https://phaser.io/phaser3/devlog/57
http://phaser.io/phaser3/history
https://webpack.js.org/concepts/modules/
https://auth0.com/blog/javascript-module-systems-showdown/
https://blog.madewithenvy.com/getting-started-with-webpack-2-ed2b86c68783#.fnuaum5tw
https://webpack.js.org/concepts/
http://kangax.github.io/compat-table/es5/
https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
http://www.kiwijs.org/
https://medium.com/@rajaraodv/webpack-the-confusing-parts-58712f8fcad9

Building a Game Prototype 66

258

• A Beginner’s Guide to Webpack 4 and Module Bundling59

2.6 Starting Your “Game Recipe”™

There are so many cookbooks showing folks how to create delicious meals. It’s time
to have a “recipe” to build some “scrumptious” games!

Step #0) the Front-Door

We need to load Phaser JavaScript Game Framework into a web page for it to work
properly. Let’s create two distinctive “front-door delivery systems” for our games.
Once we have this setup, we can leave it alone; because, we will use D.R.Y (you
remember! “Don’t Repeat Yourself”) in our file names. The only thing we’ll need to
adjust is the page’s title and “metadata” inside each new project’s “index.html”. Both
delivery methods are in the _v3.x.x-p3gp-book.zip60

The first version is a standard “index.html“ web page, and the second version is tai-
lored for mobile devices as a “single web page application” (SWPA)61 or “Progressive
Web App” (PWA)62. I recommend using a “mobile-first, responsive design”63 for all
“HTML” pages. There are two ways we can proceed:

1. the “traditional method” — see “Task #1-1” (below) or see the Appendix: Building
HTML5 Web Page64 (3-pages)

2. the “unorthodox method” for mobile devices — see Task #1-2

For now, let’s just follow the “traditional method” for a “Standalone” game. This tra-
ditional method needs two files; one file must be labeled “index.html”; unfortunately,
this is NOT a choice in our game development. As for the other file, name it whatever
you like. I’ll entitle mine as “main.js“ and place it inside the subordinate directory/-
folder labeled “js” — for JavaScript. The “main.js” holds my “Game Mechanics”.

58https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-
ebed3172fa8c

59https://www.sitepoint.com/beginners-guide-webpack-module-bundling/
60https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
61https://en.wikipedia.org/wiki/Single-page_application
62https://developers.google.com/web/progressive-web-apps/
63http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-

responsive-design/
64https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.sitepoint.com/beginners-guide-webpack-module-bundling/
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://en.wikipedia.org/wiki/Single-page_application
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://medium.com/@ahsan.ayaz/beginners-guide-to-webpack-how-to-start-a-basic-application-with-webpack-2-ebed3172fa8c
https://www.sitepoint.com/beginners-guide-webpack-module-bundling/
https://makingbrowsergames.com/p3gp-book/_v3.x.x-p3gp-book.zip
https://en.wikipedia.org/wiki/Single-page_application
https://developers.google.com/web/progressive-web-apps/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
http://fredericgonzalo.com/en/2017/03/01/understanding-the-difference-between-mobile-first-adaptive-and-responsive-design/
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf

Building a Game Prototype 67

Note: If you’re curious as to why we must have an “index.html”? Answer: There
are three (3) “default” pages used by most web server configurations. Those
are “index.html”, “index.htm”, and on most Microsoft servers it is “default.htm”.
Here’s how a webserver responds to a request. Whenever, a gamer makes
a connection to a website, without specifying any URL file, most webservers
will return the configured “default” page (aka “landing page”). For example,
a gamer goes to “https://www.renown-games.com/”65, my server would find
and return the URL “https://www.renown-games.com/index.html”. Webmas-
ters could configure their servers to use a different “landing file name”, but only
if they’re bored or have time which is not the case in reality. Many will keep the
defaults and spend their time on more pressing network matters.

Task #1-1 Instructions:

1. Make a new copy of your Chapter 1 project directory for this new game project.
(Refer Game Recipe™ Step #1 above.)

2. Update the “index.html“ header “metadata“ and content with details about this
project to improve Search Engine Optimization (SEO). (Game Recipe™ Step #1)

3. Either download this example 6-page worksheet #1-166 from here, refer to the
Appendix: How to create an HTML5 web page67, or review the project starter
index.html68 with “web socket” launched. Use the developer console to watch
the internal operations.

Exercise: Observe a live “Bare-bones” “Index” Page69 here. This is an example
of an “index.html“ that is used for game prototyping only.

Note: You might like to try the “15 seconds” HTML page creation tool.70 This
responsive template comes with the “Golden Ratio” already pre-configured.
You can read more about the “Golden Ratio” here71. The Golden Ration is a
weird mathematical proportion that our visual perception prefers. Learn even
more about cutting-edge web design using the Golden Ratio here72 and in
Phaser Game Design Workbook. Otherwise, if you’ve previously worked with
“Bootstrap”, you might like using their new Drop-n-drag Layout Builder73.

65https://renown-games.com./
66https://makingbrowsergames.com/book/ProjectIndex.pdf
67https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
68https://makingbrowsergames.com/p3gp-book/standalone/index.html
69https://makingbrowsergames.com/book/demos/bareBonesIndex.html
70http://www.initializr.com/
71https://www.goldennumber.net/
72https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
73http://www.layoutit.com/build

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://renown-games.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/book/demos/bareBonesIndex.html
http://www.initializr.com/
https://www.goldennumber.net/
https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
http://www.layoutit.com/build
https://renown-games.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/p3gp-book/standalone/index.html
https://makingbrowsergames.com/book/demos/bareBonesIndex.html
http://www.initializr.com/
https://www.goldennumber.net/
https://code.tutsplus.com/tutorials/the-golden-ratio-in-web-design--net-2272
http://www.layoutit.com/build

Building a Game Prototype 68

You shouldn’t have to change too much in this “index.html“ file; you only need to
modify the ”<head>“ metadata for each project. But look over my examples to ease
your mind. This is, debatably (See Warning below)74, the absolute barest essentials
for a properly formatted “index.html“ page. In our Phaser III DesignGuideworkbook,75

we go into greater details concerning web pages and search engine optimization (SEO).
You should find the complete “index.html“ in the Source Code Appendix76.

Warning: Google AMP77 “index.html“ page requires the head and body tags
in browser documents. Read more about it here78.

Inside your “index.html“ you need to choose which Phaser version to use in your game.
Notice that the Phaser scripts are minified and already come from the appropriate
Content Delivery Networks (CDN). ALWAYS use the CDN versions for the fastest load
times since Phaser v3.24.1 (minimized and zipped) is over 7MB and 43+MB unzipped!
“Why?”, you ask? Because the minified CDN version of Phaser Framework are moved
closer to your gamers and reduce their download time. It further increases the chance
that a gamer may have Phaser III already in their browser cache which results in
0 download time! If you develop your own unique version of Phaser, then you’re
gambling that someone from somewhere has played your game and migrated your
“special pet files” to their local Internet Tier-3 Access Point. Read Yahoo’s analysis on
“empty cache” vs. “full cache” the “Surprising Results”79 (excerpt from Yahoo blog)

Exercise: Study which CDNs are the fastest (click here)80. This is a critical
element in Massive Multi-Player online Games (MMoG).

There’s more than what you see here! Download the following “Production” grade
“index.html“ pages and read their source code annotations:

• Production Optimized “index.html” Analysis81

• AMP Mobile “index.html” Analysis82

• Neither of these use “window.onload”! Refer to this article for more details on
WHY!83

74https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
75http://leanpub.com/phaser3gamedesignworkbook
76https://makingbrowsergames.com/p3gp-book/
77https://www.ampproject.org/learn/overview/
78https://www.ampproject.org/docs/getting_started/create/basic_markup
79https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
80https://www.cdnperf.com/
81https://makingbrowsergames.com/book/ProjectIndex.pdf
82https://makingbrowsergames.com/book/ProjectIndex-Mobile.pdf
83https://javascript.info/onload-ondomcontentloaded

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
http://leanpub.com/phaser3gamedesignworkbook
https://makingbrowsergames.com/p3gp-book/
https://www.ampproject.org/learn/overview/
https://www.ampproject.org/docs/getting_started/create/basic_markup
https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
https://www.cdnperf.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/ProjectIndex-Mobile.pdf
https://javascript.info/onload-ondomcontentloaded
https://javascript.info/onload-ondomcontentloaded
https://stackoverflow.com/questions/9797046/whats-a-valid-html5-document
http://leanpub.com/phaser3gamedesignworkbook
https://makingbrowsergames.com/p3gp-book/
https://www.ampproject.org/learn/overview/
https://www.ampproject.org/docs/getting_started/create/basic_markup
https://yuiblog.com/blog/2007/01/04/performance-research-part-2/
https://www.cdnperf.com/
https://makingbrowsergames.com/book/ProjectIndex.pdf
https://makingbrowsergames.com/book/ProjectIndex-Mobile.pdf
https://javascript.info/onload-ondomcontentloaded

Building a Game Prototype 69

Compare your code

Here’s the Chapter 1 “Break Out” (Phaser III full source code) as a bonus download:

• Phaser III full source code84

• Phaser v2.x.x full source code85

Here’s what mine looks like, with all the ‘bells & whistles’:86

• My traditional “index.html (v2.x.x)87” for a Dating game — use the Developer’s
Console to watch some interesting dissection of the Phaser v3.16+88 version.

• My unorthodox method: “index.html (v2.x.x)89” for the same Dating game. — use
the Developer’s Console to watch some interesting dissection of Phaser v2.x.x.

• In my “game.js,90” I kept the game object inside this file for consistency.

Mobile “Single Web Page Applications” (SWPA)

Video game market revenue worldwide by Instabug Blog

Exercise: Read this report from Instabug on Mobile Game Development91.

84https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
85https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
86https://www.phrases.org.uk/meanings/bells-and-whistles.html
87https://makingbrowsergames.com/starterkits/quiz/game3/index.html
88https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
89https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
90https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
91https://instabug.com/blog/mobile-game-development-tools/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://www.phrases.org.uk/meanings/bells-and-whistles.html
https://makingbrowsergames.com/starterkits/quiz/game3/index.html
https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://instabug.com/blog/mobile-game-development-tools/
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://www.phrases.org.uk/meanings/bells-and-whistles.html
https://makingbrowsergames.com/starterkits/quiz/game3/index.html
https://makingbrowsergames.com/starterkits/quiz/p3game3/index.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://instabug.com/blog/mobile-game-development-tools/

Building a Game Prototype 70

Let’s look at the tailored “unorthodox” mobile device “index” page — Task #1-2. This
construction is different than before; my goal is to load as much as possible into a
single page without exceeding the “20 seconds” rule imposed by app stores. I have
two different styles of mobile device pages. The example below creates a normal
JavaScript link to the “main.js“ (or “game.js”). I take a “less formal” approach in the
mobile versions and try to “in-line” scripts inside the “index.html” <div> tags. The single
webpage application is divided into ”<div>“ sections. Each ”<div>“ section represents
a single game phase menu and the “game.js“ is placed into the “play game” ”<div>”. If
the game is small enough, I will simply insert the entire raw “game.js“ contents directly
into a “script“ tag and thus avoid an additional file to download. Doing so ensures all
the game’s content is an embedded part of the “index.html“ page.

Single Web Page Application (SWPA mobile)

<!doctype html>

<html lang="en">

<head> ... </head>

<body> ...

<!-- Mobile Dating game -->

<div class="ui-content" data-theme="b" data-role="page" id="game">

<div data-role="header">

<h1>(Your Game Title here)</h1>

Home

</div>

<div id="game-area" data-role="main" class="ui-content">

</div>

<!-- import external file or simply include its full contents -->

<script src="game.js"> </script>

<div class="ui-content center footer" data-role="footer">

<hr class="center" style="width: 60%" />

<nav class="menu"><a href=

'http://www.copyright.gov/fls/fl108.pdf' target='_blank'> Copyright

© 1978-2016, <a class="w3-btn btn-footer w3-hover-deep-orange

w3-theme-d3 w3-round-xlarge w3-border w3-text-shadow "

href='http://www.stephen-gose.com/en/' target='_blank'> Stephen Gose LLC

.
 All Rights Reserved.

Questions or comments?

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 71

<a class="w3-btn btn-footer w3-hover-deep-orange w3-theme-d3

w3-round-xlarge w3-border w3-text-shadow "

href="http://www.stephen-gose.com/about/contact/"> Please Contact

<hr class="center" style="width: 60%" />

</nav>

</div>

</div>

<!-- End Game Page -->

All that remains is a method to bind all these into a single web page application
(SWPA)92. Using a single monolithic file has advantages per Google’s Accelerated
Mobile Pages Project (AMP)93. We’ll do this through our game’s “index.html“ page.
Many authors create yet another script file, but I prefer to use inline scripting for
mobile devices.

Exercise: Worksheet #1-2 Mobile “index.html”. You can see this “live example”
at:

https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-
SWPA.html

Cocoon.js - Cloud Alternatives

20190228: Cocoon Termination of the Service. Unable to access Cocoon. Customer
service closed. They will not retain copies of any of your data from that date forward.
Accordingly, you are encouraged to download and keep copies of your data if you
wish to have access to it in the future.

In case you prefer not to use the Apache Cordova CLIa for building your apps, there
are a few Cordova base cloud services that might serve the purpose as long as you
update the config.xml to not use Canvas+ or Webview+.

ahttps://cordova.apache.org/

92https://www.seguetech.com/what-is-a-single-page-application/
93https://www.ampproject.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.seguetech.com/what-is-a-single-page-application/
https://www.seguetech.com/what-is-a-single-page-application/
https://www.ampproject.org/
https://www.ampproject.org/
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://makingbrowsergames.com/starterkits/quiz/game3/index-mobile-SWPA.html
https://cordova.apache.org/
https://cordova.apache.org/
https://www.seguetech.com/what-is-a-single-page-application/
https://www.ampproject.org/

Building a Game Prototype 72

• Phonegap Build94 — From the team behind Apache Cordova, the Adobe®
PhoneGap™ framework is an open-source distribution of Cordova — providing
the advantage of technology created by a diverse team of pros along with a
robust developer community — plus access to the PhoneGap toolset, so you can
get to mobile faster. Write a PhoneGap app once with HTML and JavaScript
and deploy it to any mobile device without losing features of a native app.
Adobe® PhoneGap™ is a standards-based, open-source development frame-
work for building cross-platform mobile apps with HTML, CSS, and JavaScript for
iOS, Android™, and Windows® Phone 8. Simply upload your HTML5, CSS, and
JavaScript assets to the Adobe® PhoneGap™ Build cloud service and they do
the compiling for you.

• Ionic Framework95 — Learn the difference between hybrid and native. They
break down all the myths and misconceptions in their FREE ebook96.

• Monaca97 — makes HTML5 hybrid mobile app development withAdobe®Phone-
Gap™/Cordova simple and easy. Monaca is the most open hybrid app develop-
ment platform available and ready to be immediately plugged into your existing
work-flow and development environment. From Cloud IDE, CLI to debugger, and
remote online build, everything you need for your hybrid app development is
there.

Exercise: Read about the differences between Cordova and PhoneGap98.
Exercise: Read how to migrate from Cocoon.js to Cordova99.

Task #2: Launching a Game

Phaser III, v2.6.2, and CE versions are all launched from within a web page as either
an inline JavaScript script or from an external file using JS modules. What happens
next differentiates each Phaser API family versions from its siblings. The official
examples100 put the game launching code and all the “Phaser Essential Functions”
into a single “index.html“ file. I prefer using separate files while developing my game.
Because it helps me focus on the task at hand and localizes software bugs to the file
currently under development.

94http://docs.phonegap.com/phonegap-build/
95https://ionicframework.com/docs
96https://ionicframework.com/books/hybrid-vs-native
97https://monaca.io/
98https://ionicframework.com/resources/articles/what-is-apache-cordova
99https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/

100http://labs.phaser.io

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://docs.phonegap.com/phonegap-build/
https://ionicframework.com/docs
https://ionicframework.com/books/hybrid-vs-native
https://monaca.io/
https://ionicframework.com/resources/articles/what-is-apache-cordova
https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/
http://labs.phaser.io/
http://labs.phaser.io/
http://docs.phonegap.com/phonegap-build/
https://ionicframework.com/docs
https://ionicframework.com/books/hybrid-vs-native
https://monaca.io/
https://ionicframework.com/resources/articles/what-is-apache-cordova
https://docs.cocoon.io/article/from-cocoon-io-to-apache-cordova/
http://labs.phaser.io/

Building a Game Prototype 73

Sample: Phaser v3.x.x ‘Essential Functions’ as an Anti-Pattern in Official methods

/**

* Anti-Pattern Warning:

*

* Polluting the global namespace with global context variables

*

* init: function init() {}, //initial game phase data

* preload: function preload() {}, //queue & download game assets

* create: function create() {}, //make cached assets available

* update: function update() {}, //begin the game loop

* render: function render() {}, //render current display

* shutdown: function shutdown() {} //close and garbage collection?

*

*/

Phaser.io examples are “just that” — examples! If you attempt to follow these
examples “verbatim” as “holywrit”, you will soon discover that you’re “painted
into a corner”101 when using your Phaser III Scenes as if they were Phaser v2.x.x
“States”.

It’s time to return to our “game.js“ (or Create it now with whatever name you’d like).
In this file, let’s fill it with the following downloaded content available in the online
Source code Appendix.102

Example: 2.2 Launching a Game - two methods.

58 //

59 // =====================================

60

61 // ============

62 // Example: 2.2a Launching as a name-space.

63 // ============

64

65 // window.GAMEAPP.main(); //name space activation

66 // console.log("Game obj: === Ext? "+Object.isExtensible(GAMEAPP));

67 // console.log(Object.values(GAMEAPP));

68 // console.log(Object.getPrototypeOf(GAMEAPP));

69 // console.log(Object.getOwnPropertyDescriptors(GAMEAPP));

101https://idioms.thefreedictionary.com/paint+into+a+corner
102https://makingbrowsergames.com/p3gp-book/index12.html#12.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://idioms.thefreedictionary.com/paint+into+a+corner
https://idioms.thefreedictionary.com/paint+into+a+corner
https://makingbrowsergames.com/p3gp-book/index12.html#12.3
https://makingbrowsergames.com/p3gp-book/index12.html#12.3
https://idioms.thefreedictionary.com/paint+into+a+corner
https://makingbrowsergames.com/p3gp-book/index12.html#12.3

Building a Game Prototype 74

70 // OR: global variable launched; similar to Phaser v2.6.2

71

72

73 // ============

74 // Example: 2.2b Launching as a Global variable.

75 // ============

76 // var gWidth = 800; //Using Golden Ration is important.

77 // var gHeight = 500; //Using Golden Ration is important.

78 // Lessons learned from colleagues

79 // initial size determined

80 // creates a global variable called game

81 // =====================================

82 var game = {};

83 var gWidth, gHeight;

84 var isMobile=navigator.userAgent.indexOf("Mobile");

85

86 if (isMobile != -1) {

87 //-1 is desktop/anything other than mobile device

88 console.log("isMobile="+isMobile);

89 gWidth = window.innerWidth * window.devicePixelRatio;

90 gHeight = window.innerHeight * window.devicePixelRatio;

91 //resize();

92 }

I’m building a unique “name-space”103 for my game prototype in this second example.
In Bob Nystrom’s book, “Game Design Patterns”,104 he warns about using object
expressions as “singletons”. This is “mandatory” reading for everyone with less than
15 years in software engineering — I have 37 years in networking; so, this includes
me too! He states, “Despite noble intentions, the Singleton pattern described by the
Gang of Four usually does more harm than good. “… Like any pattern, using Singleton
where it doesn’t belong is about as helpful as treating a bullet wound with a splint.
Since it’s so overused, most of this chapter will be about avoiding singletons, but first,
let’s go over the pattern itself. …” (Nystrom)

This creates a new blank “<canvas>“ as our game’s stage; it has a black background
that is 800 pixels width by 500 pixels tall — the “Golden Ratio”. All of our game
elements will be inside of this game “world” box. Time to double-check our work so
far; save everything. Then double-click on your “index.html“ file; your browser should
open to show a large black rectangle. Right?

103https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
104http://www.gameprogrammingpatterns.com/singleton.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://www.gameprogrammingpatterns.com/singleton.html
https://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://www.gameprogrammingpatterns.com/singleton.html

Building a Game Prototype 75

Advanced Exercise: Compare your work to another example.105 Open the
Developer’s Console and study what I’ve done with the “Game Object” name-
space and “Phaser.Game” object in the console’s drop-down menus. This exam-
ple also provides a timing test between the window.onload vs. document.onload.
Exercise: Read about using the “Singleton pattern” in game design and devel-
opment from Bob Nystrom’s book, “Game Design Patterns”106.
Exercise: Download this 3-page “main.js” example file107 I use as my standard
prototype foundation and Refer to lines 112 to 150 in the file (you just
downloaded? Right?).

Example: 2.2 continued.

94 ; //Closes any previous scripts

95 //

96 // =====================================

97 // creates our Phaser Game configurations.

98 // dozens of configurations parameters;

99 var config = {

100 width: gWidth || 800, //Using Golden Ration is important.

101 height: gHeight || 500, //Using Golden Ration is important.

102 type: Phaser.AUTO,

103

104 //Game Title

105 title: 'Phaser3 Game Prototyping Starter Kit',

106

107 //Game URL

108 url: 'https://makingbrowsergames.com/p3gp-book/',

109

110 //https://semver.org/ + DATE

111 version: '0.0.1.2016 semver ',

112

113 //Custom RGB color or "#369"

114 backgroundColor: 0x336699,

115 input: {

116 keyboard: true,

117 mouse: true,

118 touch: true,

119 gamepad: false

120 },

121 physics: {

105https://makingbrowsergames.com/p3gp-book/standalone/
106http://www.gameprogrammingpatterns.com/singleton.html
107https://makingbrowsergames.com/p3gp-book/_mainp3.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/standalone/
http://www.gameprogrammingpatterns.com/singleton.html
https://makingbrowsergames.com/p3gp-book/_mainp3.pdf
https://makingbrowsergames.com/p3gp-book/standalone/
http://www.gameprogrammingpatterns.com/singleton.html
https://makingbrowsergames.com/p3gp-book/_mainp3.pdf

Building a Game Prototype 76

122 default: 'arcade',

123 arcade: {

124 // Debug turned on for arcade physics

125 debug: true

126 }

127 },

128 scene: {

129 main: main,

130 combat: combat,

131 gameOver: gameOver

132 },

133 pixelArt: false, //set TRUE for retro styling

134 antialias: true

135 //parent: document.body

136 };

137 console.log("Configure Obj: Ext? "+Object.isExtensible(config));

138 //console.log(Object.values(config));

139 //console.log(Object.getPrototypeOf(config));

140 console.log(Object.getOwnPropertyDescriptors(config));

141

142 //

143 // =====================================

• Line 94: I used a ” ; “. Why? Well, there are a lot of folks telling everyone you
don’t need to use the “semi-colons” because JavaScript automatically inserts the
semi-colons for you; so, let’s just forego typing them. Well, hold onto you hats108

cowboy! Read what Javascript Gardens has to say about using semi-colons109.
JavaScript gets a lot of “back-wash” about how terrible the language is, when in
reality, it’s the lazy programmers who incite JavaScript to “read their minds”. Oh!
and while I’m on the topic of poor programming, you must always use the curly
braces (”{ }“) too. Here’s JavaScript Garden’s take on those topics.

Quote: “It is highly recommended to never omit semicolons. It is also recommended
that braces be kept on the same line as their corresponding statements and never
omit them for single-line if / else statements. These measures will not only improve
the consistency of the code, but they will also prevent the JavaScript parser from
changing code behavior.”

108https://youtu.be/EpgP2Gtx8QY
109https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://youtu.be/EpgP2Gtx8QY
https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon
https://youtu.be/EpgP2Gtx8QY
https://bonsaiden.github.io/JavaScript-Garden/#core.semicolon

Building a Game Prototype 77

Exercise: Download this example from: _p3-demos/game.js110

Advanced Exercise: Review advanced game setup using “_index.html”111

Advanced Exercise: Review advanced game setup using “_index-
mobilep3.html”112 in the browser’s console

Deeper Dive: Launching a Phaser III Game.

When Phaser v3.x.x boots, it creates an instance of a “Phaser.Game”. It could load an
optional Game Configuration object (ed.: which is now mandated in Phaser v3.x.x),
which is passed into the Config handler (see source code)a, and all the various things
it needs are extracted from the “config object”.

ahttps://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/
core/Game.js#L388

http://phaser.io/tutorials/getting-started-phaser3 OR
Run in the Cloud: http://phaser.io/tutorials/getting-started-phaser3/part3

Game “Config”

Game “config“ has been around since before v2.4.2.113 It’s a JavaScript “object“ that
holds all the initial game configurations.

Open “main.pdf“ (3-pages you downloaded from above) and read lines 160 to 163. This
waits for the browser to finish the Document Object Module (DOM) and then calls the
“window.GAMEAPP.main()“ which begins on lines 118 to 140. Line 120 creates an internal
variable “this.game“ that holds the “new Phaser.Game“ object.

110https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
111https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
112https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
113https://labs.phaser.io/index.html?dir=game%20config/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L388
http://phaser.io/tutorials/getting-started-phaser3
http://phaser.io/tutorials/getting-started-phaser3/part3
https://labs.phaser.io/index.html?dir=game%20config/&q=
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_indexp3.pdf
https://makingbrowsergames.com/p3gp-book/_index-mobilep3.pdf
https://labs.phaser.io/index.html?dir=game%20config/&q=

Building a Game Prototype 78

Sample: Bare-bones v3.x.x Config object & Phaser.Game

<script>

var config = {

width: window.GAMEAPP.viewportWidth, //x width using main.js

height: window.GAMEAPP.viewportHeight, //y height using main.js

type: Phaser.AUTO, //.WEBGL or .Canvas

parent: gameCanvas //canvas container

scaleMode: Phaser.ScaleManager.EXACT_FIT //NOT available in v3.x.x

};

//Deeper Dive with Analysis

console.log("Configure Obj: Ext? "+Object.isExtensible(config));

console.log(Object.values(config));

console.log(Object.getPrototypeOf(config));

console.log(Object.getOwnPropertyDescriptors(config));

/** Phaser III config as a function?

// config experiment as a function.

// best placed in the index.html file since functions are hoisted.

function config() {

var width = window.GAMEAPP.viewportWidth, //x width using main.js

height = window.GAMEAPP.viewportHeight, //y height using main.js

type = Phaser.AUTO, //.WEBGL or .Canvas

parent = gameCanvas; //canvas container

};

*/

/** Phaser III config as a lambda? (as of 20181223)

See: http://labs.phaser.io/edit.html?

src=src/scenes/change%20scene%20from%20objects.js

//

class SceneC extends Phaser.Scene {

constructor() {

super('SceneC');

}

create() {

console.info('SceneC started.');

this.add.image(160, 120, 'aqua_ball')

}

}

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 79

//NOTICE: the config object is simply embedded!

// experiment with this.

var game = new Phaser.Game({

type: Phaser.AUTO,

parent: 'phaser-example',

scene: [SceneA, SceneB, SceneC]

});

*/

/**

* DEPRECATED METHOD - NEVER EVER USE THIS AGAIN!

* See "Phaser Game Design Workbook" for complete explanation

* http://leanpub.com/phaser3gamedesignworkbook

*

* window.onload = function () {

* // local scope used????

* let game =

* };

*/

//Global name-space used

var game = {};

//preferred game launch method.

document.addEventListener('DOMContentLoaded', function(){

//standard Phaser III launch method

game = new Phaser.Game(config);

/**

//Strangely, old v2.6.2 also works in Phaser III!!!

// try it out and learn what happens!

game = new Phaser.Game(

gWidth, gHeight, //width and height of canvas

Phaser.AUTO, // how to render canvas

"gContent"); // place canvas inside div

*/

console.log("Game obj: Ext? "+

Object.isExtensible(game));

//console.log(Object.values(game));

//console.log(Object.getPrototypeOf(game));

console.log(Object.getOwnPropertyDescriptors(game));

console.log("Phaser.Game prototype: Ext? "+

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building a Game Prototype 80

Object.isExtensible(Phaser));

//console.log(Object.values(Phaser));

//console.log(Object.getPrototypeOf(Phaser));

console.log(Object.getOwnPropertyDescriptors(Phaser));

}, false);

// Example: 2.2 ends

// ============

</script>

Do you need to do something as extensive as I’ve provided in my examples “in-
dex.html“ and “main.js“ files? No, not really.

Exercise: Compare what we’re doing with my examples114 to the “Official
Phaser v3.x.x. tutorial”115

2.7 Deeper Dive: To Infinity and Beyond!

Notice how Phaser v3.x.x uses its configuration object.116 Let’s take the next step!
This “config” object could easily become a “JSON” data object passed into a Phaser
v3.x.x game. This permits dynamic game set-ups based on who plays, what permis-
sions they are granted, and how they access various game phases. Furthermore, we
can create a separate “config” for each game scene. We could go so far as to define
“a different config” for every level inside our game; or better yet, display separate
game editions for those who have “FREE” access from those who have membership
“PAID” access. Let your imagination run wild! Truly, Phaser v3.x.x opens up more game
management and access possibilities than the former v2.x.x.

Exercise: Review the default parameters for the Phaser v3.x.x. config117

Warning: There is a limit of 255 arguments passed into a JavaScript function
per MDN.118

114https://makingbrowsergames.com/p3gp-book/_p3-demos/
115http://labs.phaser.io/
116https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#

L25
117https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#

L25
118https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/
http://labs.phaser.io/
http://labs.phaser.io/
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://makingbrowsergames.com/p3gp-book/_p3-demos/
http://labs.phaser.io/
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://github.com/photonstorm/phaser/blob/dd39f9ab08d57fa1bacd1287ccadb03fb3151267/src/core/Game.js#L25
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Building a Game Prototype 81

2.8 Summary

Whew! Chapter 2 down! Here’s what we’ve covered.

Examples: https://makingbrowsergames.com/p3gp-book/_p3-demos/

• Understand what a game prototype contains.
• Learned the benefits of building a game prototype.
• Discovered OOP is NOT the best approach for game design as stated by Apple

Game Developers.
• Read insightful tips from various developers about how to rapidly build games.
• Saved 1,000s of hours in development time.
• Practiced the 4-steps of creating new game mechanisms and prototypes.
• Built our game’s “front door” in various delivery styles.
• Downloaded helpful resources in game development.
• Differentiated between various Phaser v3.x.x. formats for production & develop-

ment.
• Studied how a Content Delivery Network impacts a client’s enjoyment.
• Discovered which CDN has the best performance.
• Researched Google’s AMP.
• Learned about encroaching “Anti-patterns” slipping into Phaser.
• Understand how to filter clients using config.
• Read about alternate methods for re-size our game.

2.9 Chapter References:

• Apple Game Developers GameKit119

• Intel: Resources for Game Developers120

• MDN - Implementing game control mechanisms121

• Aspect-oriented programming122

• MV* frameworks123

• Rewriting A WebApp With ECMAScript 6124

• How to create Phaser v3.16.x Graphics125

119https://developer.apple.com/documentation/gamekit
120https://software.intel.com/content/www/us/en/develop/topics/gamedev.html
121https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
122https://en.wikipedia.org/wiki/Aspect-oriented_programming
123http://todomvc.com/
124https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
125https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/
https://developer.apple.com/documentation/gamekit
https://software.intel.com/content/www/us/en/develop/topics/gamedev.html
https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://todomvc.com/
https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html
https://developer.apple.com/documentation/gamekit
https://software.intel.com/content/www/us/en/develop/topics/gamedev.html
https://developer.mozilla.org/en-US/docs/Games/Techniques/Control_mechanisms
https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://todomvc.com/
https://medium.com/tastejs-blog/rewriting-a-webapp-with-ecmascript-6-39417b642cb2
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html

Building a Game Prototype 82

• Turning static graphics into Sprites126

• Sample Stacker Game using “shapes”127

126https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
127http://labs.phaser.io/view.html?src=src%5Cgame%20objects%5Cshapes%5Cstacker%20es6.js&v=128

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
http://labs.phaser.io/view.html?src=src%5Cgame%20objects%5Cshapes%5Cstacker%20es6.js&v=128
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Graphics.html#generateTexture
http://labs.phaser.io/view.html?src=src%5Cgame%20objects%5Cshapes%5Cstacker%20es6.js&v=128

Game Phases, Scenes & Roses. 83

3. Game Phases, Scenes & Roses.

“A rose is a rose … by any other name”, paraphrased from …
“Rose is a rose is a rose is a rose.” — Gertrude Stein1; and

“What’s in a name? That which we call a rose, By any other name, would smell as sweet.”
— William Shakespeare2.

The “Game’s logical flow” is the path our gamers follow despite which Phaser version
we’ve deployed — or any JavaScript Gaming Framework for that matter. When a
gamer launches our game from its “index.html” page, we lead them through a series
of stages that I call “gamephases”. Some developers call these “game states” from a
reference to Finite State Machine (FMS)3. Eventually, our gamer will arrive at a “play”
button somewhere on the “main menu” to start the “Gaming Play Loop “ (aka “the
event loop”).

3.1 Bare-Bones Prototypes

The illustration below is common to any game found on the Internet; it is NOT unique
to Phaser JS Gaming Frameworks. It is a design concept and progression a player takes
through a game. Notice that there are two aspects.

1https://en.wikipedia.org/wiki/Gertrude_Stein
2https://en.wikipedia.org/wiki/William_Shakespeare
3https://en.wikipedia.org/wiki/Finite-state_machine

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Gertrude_Stein
https://en.wikipedia.org/wiki/William_Shakespeare
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Gertrude_Stein
https://en.wikipedia.org/wiki/William_Shakespeare
https://en.wikipedia.org/wiki/Finite-state_machine

Game Phases, Scenes & Roses. 84

Game Phases as JS Modules in a Massive Multi-Player online Game (MMoG)

• Delivering the game across the “Cloud” (Internet, WAN, telcos, the name keeps
changing based on marketing services.)

• Content is placed on the local gamer’s device.

What I’m calling a “game phase” is a place during our game’s flow. For example,
many games provide a “splash screen” — showing sponsorship, advertisements,
logos, a “downloading progress bar” and such — while booting-up the initial game
settings and downloading most of the game’s assets. Another example is the game’s
“Main Menu” from which a player can choose various options as pictured above.
Many game developers simply refer to these “game phases” as “states“ — from a
programming technique known as a “finite state machine” (FMS). The “FMS” helps
us “bookmark” where a player is inside our game (i.e., their progression) and helps
us determine what to show them. Obviously, the gamer can switch between game
phases and return to former game phases, but there is ever only one active game
phase presented at any time. For example, moving into the “Game Finished phase”
from a Win or Lose event and then returning to the game’s “Main Menu” phase. For this
very reason, many Phaser games are just simple “single staged” game-plays — they
DO NOT USE a game shell.

All of our games follow this similar game-flow pattern—despite which Phaser version
used or whether we’re using another Gaming Framework altogether! As the gamers
migrate through our game(s), they have options; it doesn’t matter what we call these
sections — “roses”4, phases, states, menus, scenes, screens, thingies, dumaflache,5

4https://www.thefreedictionary.com/rose-like
5https://www.urbandictionary.com/define.php?term=dumaflache

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.thefreedictionary.com/rose-like
https://www.urbandictionary.com/define.php?term=dumaflache
https://www.thefreedictionary.com/rose-like
https://www.urbandictionary.com/define.php?term=dumaflache

Game Phases, Scenes & Roses. 85

or “Aardvarks!”6 It’s just a matter of focusing on what the gamer is allowed to do
inside each “part” of our game. In the Phaser community, there is a lot of confusion
over these “roses” — resulting from vague descriptions and inarticulate definitions
about what they are. In the new Phaser III, I’m seeing the same confusion beginning
all over again. As a review, think of a “game phase section” as if they were “menus“ — in
other words, simply individual “JavaScript modules” — those various JavaScript files
you create to concoct7 your game-flow migration. Basically, if you took your game
and separated it into various “phase sections”, such as a splash screen, main menu
screen, the game-play itself, and so on (ed.: sounds like the drill we did in Chapter
1? Right?), each of these “chunks” would match a phase in the gamer’s progress
through a game — each phase has its own separate and internal collection of “Phaser
Essential Functions”. In short, the new “Phaser.Scene“ in v3.24+ reminds me more of
an Adobe Flash MovieClips on its main timeline.

3.2 Using a Phaser Scene as a “Game Phase”

Inside a “scene”, Phaser uses 9 internal “Essential Functions”. Many Phaser game
developers, at this point, will create a new separate JavaScript file (i.e., a module)
for each “game phase” to act as a stand-alone “Phaser III Scene” with its “9 essential
functions”. But for now, we will keep this simple; later in this chapter, we’ll begin to
separate our game phase prototypes into separate JavaScript modular files. This will
provide the maximum flexibility in our software development when we begin to mix-
and-match and re-use our “D.R.Y. code”.

Each of these “game phases” (aka movieClips, screens, scenes, states, or “Roses”), as
we discussed above, has “its own internal essential functions”. These functions
give us a way to organize our code inside each separate “game phase” module and
ensure that only the minimal game assets (for the current phase) are supplied at
just the proper time. These “essential functions” help us isolate distinct “game flow
events” from each other. For example, booting the game, loading assets, main menu,
playing levels, winning, losing, all have their unique individual “initiate”, “preload”,
“create”, and then “update” and “render” essential functions.

The goal we achieve, by using this “Finite State Machine (FSM)” (aka “game phases”)
structure, makes our game development simpler and less painful to support.

Now that we understand this, let’s talk about Phaser III “Scenes”. You can have
multiple Phaser III Scenes inside a single Game Phase. In the following game
phase, I have 5 “Phaser III Scenes” all running at the same time in the “Play” phase. I

6https://en.wikipedia.org/wiki/Aardvark
7https://www.vocabulary.com/dictionary/concoct

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Aardvark
https://www.vocabulary.com/dictionary/concoct
https://en.wikipedia.org/wiki/Aardvark
https://www.vocabulary.com/dictionary/concoct

Game Phases, Scenes & Roses. 86

use Phaser III Scenes as I did with “movieClips” in Adobe Flash. I have the main timeline
(aka “Play phase”) with multiple movieClips (i.e., “Phaser III Scenes”) for various display
sections.

5 “Phaser III Scenes” inside the “Play Game” Phase

Play the demonstration here8 from “Making RPG Browser Games”9.

Exercise: Read DevLog #119 https://phaser.io/phaser3/devlog/119

3.3 9 Essential Functions of a Phaser “Scene”

Note: “… Essential Functions …” is not a term I invented! It comes directly from
Official Phaser tutorials!10 So folks, let’s call a spade a spade, and not a
gardening tool11 shall we?!?!

8https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
9https://leanpub.com/mbg-rpg

10https://phaser.io/tutorials/making-your-first-phaser-2-game
11https://en.wikipedia.org/wiki/Call_a_spade_a_spade

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://leanpub.com/mbg-rpg
https://phaser.io/phaser3/devlog/119
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://en.wikipedia.org/wiki/Call_a_spade_a_spade
https://en.wikipedia.org/wiki/Call_a_spade_a_spade
https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://leanpub.com/mbg-rpg
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://en.wikipedia.org/wiki/Call_a_spade_a_spade

Game Phases, Scenes & Roses. 87

“Phaser Essential Function” found inside every Scene
Phaser JavaScript Game Framework — any version! — uses several encoded “func-
tions” to process itself. Quoted from “Making Your First Phaser Game”12 — “Phaser
supports a full “State” system allowing you to break your code into much cleaner
JavaScript single-objects. But for a simple Getting Started guide such as this we’ll use
this approach as it allows for faster prototyping … “; and, in this book, so will we!
The two most important “Essential Functions” are the “create()“ and the “update()“
functions within a single game scene “life-cycle”. The “create()“ function places all
the game’s visual elements inside an HTML5 canvas; the “update()“ function attempts
to refresh the display 60-times per second.

Phaser III Scene Constants:13 Each Game Phase also has these additional functions
(sorted alphabetically with its sequence of execution):

Name Order
CREATING: 4
DESTROYED: 9
INIT: 1
LOADING: 3
PAUSED: 6
PENDING: 0
RUNNING: 5
SHUTDOWN: 8
SLEEPING: 7
START: 2

12http://phaser.io/tutorials/making-your-first-phaser-3-game
13https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/tutorials/making-your-first-phaser-3-game
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js
http://phaser.io/tutorials/making-your-first-phaser-3-game
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/const.js

Game Phases, Scenes & Roses. 88

Phaser III Game Updates and Render Displayed

Flow chart of the Phaser III Game Loop.14 here.

During these updates, Phaser checks for:

• any player’s inputs from the keyboard, touch and/or mouse clicks;
• calculates any collisions between game objects;
• and further processes anything else we want our game to do.

Then Phaser “paints” these changes to the HTML5 “canvas“ in the output “render”
phase. After “rendering”, Phaser returns, once again, into the “update“ function checks
for new “inputs to process” to begin the next “Circle of Life” for the game loop event.15

We can associate all these essential functions inside each “Scene”. When a Phaser
III “this.scene.add“ is created, it automatically has the following systems set inside it.
Examples of the Scene Systems are:

• The Game Object Factory
• The Loader
• The Main Loop
• The Update Manager
• A Camera

14https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
15https://www.youtube.com/watch?v=GibiNy4d4gc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
https://www.youtube.com/watch?v=GibiNy4d4gc
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/mainloop/#flow-chart
https://www.youtube.com/watch?v=GibiNy4d4gc

Game Phases, Scenes & Roses. 89

• Event Dispatcher

https://phaser.io/phaser3/devlog/121describes the new capabilities that a “Phaser.Scene“
offers. In my mind and coming from an Adobe Flash background (as Davey has too!),
the new Phaser III Scenes behavior reminds me of multiple Flash MovieClips along its
timeline. Other commonly used “Essential Functions” inside of a “Phaser.Scene“ are
charted here16:

• initialize17 — A method called when any Scene starts. It is passed as an argument
variable to facilitate data-sharing among the different Scenes. It must be called
initialize or you risk adopting the default Phaser III object.

• preload18 — A method called whenever any Scene begins. It is used for loading
your game’s resources and assets before their use. Normally, in Phaser III, you’d
load your game assets just for the current Scene. Each scene in Phaser III now
has its own Load manager. If you call any “this.load“ method from outside of
the “Scene.preload“ function, you need to start the Loader yourself by calling
“Loader.start()“ — it’s only automatically started during the “Scene preload”.Game
assets, loaded by a “scene“ Loader, are placed into global game-level caches. You
shouldn’t create or make any objects during the preloading. Since the load scene
may take up to 20 seconds, this a good time to use a “Splash Game Phase”. A
Splash phase shows a game’s title, sponsors, and legal copyright notices. You
should build a gamer’s anticipation for the upcoming gameplay. A progress bar
aids in that anticipation; it is your “launch count down” to “fun”. Another dynamic
element, in addition to the progress bar, is a “spinner” — it tells the gamer that
your game code is still running and nothing’s crashed.

• create19 — A method called automatically after preload finished; it is used for
generating game objects. If you didn’t actually load any game assets at all or
didn’t use the preload function, then create is the first function executed by the
Phaser III engine. Use create to set-up the bulk of your visual elements from the
downloaded game assets.

• update20 — The “work-horse” of the Phaser JavaScript Framework. The update
method is left empty for your own use. It is called during the core game
loop AFTER debug, physics, plugins and the Stage have had their “pre-Update”
methods called. It is used for user input polling and game object collisions and
detection. This method is often used to capture game events (such as key presses,
button clicks, mouse movement, etc.), and then update those variables as a result.
It is called on every frame. The engine attempts to execute, at best efforts, 60

16https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
17https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
18https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
19https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L639
20https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L628

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/121
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L639
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L628
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scene/#flow-chart
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/Systems.js#L35
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L478
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L639
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L628

Game Phases, Scenes & Roses. 90

times per second, but that is not guaranteed. It is called BEFORE Stage, Tweens
(see Deeper Dive 3.19+ Tweens), Sounds, Input, Physics, Particles, and Plugins
have had their “post-Update” methods called.

• render21 typically follows “update”; it flushes the information to the display.
Nearly all display objects in Phaser render automatically, you don’t need to tell
them to render. Richard Davey warns that “The render function is called AFTER
the WebGL/canvas and plugins render has taken place, so consider it the place
to apply post-render effects or extra debug overlays.” You’re able to do any final
post-processing style effects here. Note that this happens before plugins “post-
Render” takes place.

• shutdown22 — A method called when a scene shuts down (i.e. you switch
to another scene from the current one). You could consider this a “garbage
collection” routine that cleans up orphaned game objects.

Warning: Remember JavaScript is a prototype-based language. If you try to
store these functions as objects or as arrays, mutating any member of the
object or array will mutate the member for every instance that shares the
prototype. In order to preserve instance safety, you need to make a copy of
the scene.23

21https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
22https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L1203
23https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#

.iy7efb917

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L1203
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L571
https://github.com/photonstorm/phaser/blob/v3.24.1/src/scene/SceneManager.js#L1203
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9#.iy7efb917

Game Phases, Scenes & Roses. 91

3.4 Game Phases as Modules

Game Flow Phases with Defined JS Modules
We’ll follow this chart in the order of appearance. The only phases we need to revisit,
tweak24 and re-validate might be the “main menu” with new business drivers or the
“language menu” when new languages are added. Here’s a game programming flow
chart25 located in your bonus download content it demonstrates the same concepts
as pictured above. Notice it has nothing to do with any Phaser version we’re using!!
This applies to ANY JS Gaming Framework.

https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf;

NOTE: Some Game Distribution Channels will reject your game if you use any
text. They require only universally understood symbols.

“Phaser.Game” — One File to Rule them all …

QUOTE:26 “Ash nazg durbatulûk, ash nazg gimbatul, ash nazg thrakatulûk, agh
burzum-ishi krimpatul”

(Note: Do NOT utter these words aloud … you’ve been warned!)

24https://www.urbandictionary.com/define.php?term=tweak
25https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
26https://www.youtube.com/watch?v=lMSLM33PQDM

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.urbandictionary.com/define.php?term=tweak
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://www.youtube.com/watch?v=lMSLM33PQDM
https://www.urbandictionary.com/define.php?term=tweak
https://makingbrowsergames.com/starterkits/_GameFlowChart.pdf
https://www.youtube.com/watch?v=lMSLM33PQDM

Game Phases, Scenes & Roses. 92

Yes, Gandalf got it wrong!

The actual literal translation from the Grimoire — “Lore of Phaser v3.x.x”a is:
One File to rule them all — (Phaser.Game the God-class!b),
One File to find them — (Phaser.Boot)c,
One File to bring them all — (Phaser.Load)d,
and in the darkness bind them! — (Phaser.Scenes)e

ahttps://en.wikipedia.org/wiki/Grimoire
bhttps://photonstorm.github.io/phaser3-docs/Phaser.Game.html
chttps://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
dhttps://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
ehttps://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html

Main.js (aka “launch” or index.js)

Let’s review each JavaScript file in the skeleton header. The main.js (aka “launch.js”
or index.js):27 file “IS” the game’s genre’s foundation. It contains all the particular data,
rules, and logical configurations for our game(s). If we build a similar genre, this file
should be relatively D.R.Y It is the first external JS game file loaded, immediately after
the Phaser III framework, in the “index.html”. I take a “less formal” approach than
before inside the mobile version. As explained earlier for mobile single web page
applications (SWPA), I insert the entire raw main.js script as an inlined script tag.

Exercise: Review the source code; it is thoroughly annotated and documented
to reduce the price of this book.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/mainp3.pdf

Hint: Review the two demonstration games at https://makingbrowsergames.
com/p3gp-book/_p3-bloodPitv1/ and open the browser console to watch the
Phaser Game Framework in the Developer Console. If you’ve never used the
Developer’s Console, please read How to Run JavaScript Code28.

27https://makingbrowsergames.com/p3gp-book/index3.html#9.1
28https://fireship.io/courses/javascript/beginner-js-survival-guide/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Grimoire
https://photonstorm.github.io/phaser3-docs/Phaser.Game.html
https://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html
https://en.wikipedia.org/wiki/Grimoire
https://photonstorm.github.io/phaser3-docs/Phaser.Game.html
https://photonstorm.github.io/phaser3-docs/Phaser.Core.Events.html#event:BOOT
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://fireship.io/courses/javascript/beginner-js-survival-guide/
https://makingbrowsergames.com/p3gp-book/index3.html#9.1
https://fireship.io/courses/javascript/beginner-js-survival-guide/

Game Phases, Scenes & Roses. 93

Boot.js

Our boot.js: (aka “initialize”)29 phase was launched from the game’s “index.html”
page. This game phase has the responsibility of configuring and setting-up the HTML5
<canvas>, and game physics. As its name suggests, its purpose prepares the web
browser and sets the game dimensions — loading various game assets and storing
them in the Phaser “cache”, having them readily available when needed throughout
the game. Once the <canvas> is prepared, it will typically hand-off control toward the
next phase called the “load” phase. You can “control” its behavior from within the
“config“ object — which we placed inside either the “index.html“ or “main.js“ file.

Modification to this file should be minimal as long as you follow a standard naming
convention across all your games. Loading the standard game phase menus, images,
and buttons are already listed. There should not be anything in this file you need
to modify nor change. “Why’s that?”, you ask! Because if you maintained the same
consistent naming conventions for your new artwork and graphics as presented in the
boot.js file, everything just overwrites the former artwork. Do you remember reading
earlier:

“If we create new graphics files, but call them by the same names we have in our
game shell. We are simply replacing (i.e., over-writing!) the game art with new art
(with the same file names) and VOILA! NEW GAME … same mechanics, same source
code, yet with different “look & feel” — this is the secret sauce for cranking out a
game per week.”

Typical Boot internal functions:

• initialize function — prepares critical variables for game usage
• preload function — manages downloaded game assets.
• create function — manages the game re-size (min and max), alignment, and input.
• enterIncorrectOrientation function — notify gamer
• leaveIncorrectOrientation function — adjust game

Note: You can download this “11-page example file” from
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/boot.js

29https://makingbrowsergames.com/p3gp-book/index3.html#9.2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index3.html#9.2
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/boot.js
https://makingbrowsergames.com/p3gp-book/index3.html#9.2

Game Phases, Scenes & Roses. 94

Exercise: Review the source code above

Hint: To further preserve this file’s integrity and keep it D.R.Y, you might
consider having the “boot.js” simply upload a JSON data file (aka “Asset Pack
File”30 and is a built-in feature of the Phaser Editor 2D31) with all the game
resource unique to this project. This is the way Phaser Editor 2D performs.

Preload.js

This Game Phase manages our listed game assets into a queue for parallel download-
ing. It will place the game assets into the Phaser “cache“ for immediate use across all
game phases. You should optimize this process with the fewest possible downloads
that are immediately required by your game. In a normal CMS game (discussed later),
I “inline” the normal “boot.js“ into the “index.html“ and consolidated everything else
into a “play.js”; by doing so, I have deferred several potential downloaded files with
this single combined file.

Many developers use Browserify32 to the same effect. The formal and separate
“preload.js“ now becomes a simple JavaScript object in a “single web page application”
(SWPA)

Note: You can download an example “1-page file” from
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/load.js

Deeper Dive: Artwork & Resources Security

The most exciting thing is the game assets protection now available by using the “set
Base URL” feature in Phaser III. You should see inside the “preload” essential function
a statement such as

30https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
31https://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
32http://browserify.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
http://browserify.org/
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/load.js
https://photonstorm.github.io/phaser3-docs/Phaser.Loader.LoaderPlugin.html#pack__anchor
https://help.phasereditor2d.com/v3/asset-pack-editor/asset-pack-file.html
http://browserify.org/

Game Phases, Scenes & Roses. 95

this.load.setBaseURL(‘your domain’)

When you run this statement all the assets are loaded directly from your domain’s
designated directories. This is asset security at its BEST! You maintain control over all
your gaming artwork while your games are in the “wild”. Simply modifying or updating
your game assets dynamically on your website, updates all your clients world-wide.
Furthermore, it permits updates to your artwork and the client gamers will get those
updates directly from your centralized source, or through your CDN. Naturally, you
must have Cross-Origin Resource Sharing (CORS)33 enabled.

Deeper Dive: Phaser Cache

As soon as the game boots, a global game-wide “cache“ is created. This cache is
the gatekeeper to the various subordinate caches created for each game asset and
resource. For example, you could access any text by simply using “cache.text”. Here’s
an example of the resource caches created after booting.

Phaser Cache for various resources.

1 this.binary = new BaseCache();

2 this.bitmapFont = new BaseCache();

3 this.json = new BaseCache();

4 this.physics = new BaseCache();

5 this.shader = new BaseCache();

6 this.sound = new BaseCache();

7 this.text = new BaseCache();

8 this.tilemap = new BaseCache();

9 this.video = new BaseCache();

10 this.xml = new BaseCache();

You can manage your cached content using common access methods such as ”.add”,
“.has”, “.get”, or even “.remove”; you will use string-based keys with these methods to
designate which resource.

33https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Game Phases, Scenes & Roses. 96

Working with the Phaser Cache:

Paraphrased from
http://www.html5gamedevs.com/topic/5683-add-bitmapdata-to-cache-as-image/

Phaser has one single cache in which it stores all assets.

The cache is split up into storage compartment (aka sections; such as images, sounds,
video, JSON, etc). All assets are stored using a unique string-based name (e.g.: its index
key) as their unique identifier and path locations. Assets, stored in different areas of
the cache, could use the same key indexing names. For example, playerWalking could
be used as a key for both a sprite sheet and an audio file, since they are unique and
different data files, stored in separate sections areas.

The cache is automatically populated by the Phaser.Loader state. When you use this
loader to pull external assets — such as images, they are automatically placed into
their respective cache sections.

You can access the Phaser cache from inside any State using this.cache. You can pull
any public method from the cache.

Normally, the cache will return a reference handle to items stored. This means, that
when you retrieve an item and then modify it, the original item in the cache is modified
too. The stored item is passed by its handle reference.

By default, when you change States, the cache is not cleared. However, there is an
option to clear the cache if you require it. In a typical game, during the boot and pre-load

states use the cache as storage.

Note: Tiled34 is a free software package designed specifically for creating “tiled
maps”. Another licensed application is Texture Packer35 that will also help you
create sprite sheets and their atlas. Texture Packer can also create “tile maps”.
Shoebox36 is similar to Texture Packer except that it is FREE.

34http://www.mapeditor.org
35https://www.codeandweb.com/texturepacker
36http://renderhjs.net/shoebox/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.html5gamedevs.com/topic/5683-add-bitmapdata-to-cache-as-image/
http://www.mapeditor.org/
https://www.codeandweb.com/texturepacker
http://renderhjs.net/shoebox/
http://www.mapeditor.org/
https://www.codeandweb.com/texturepacker
http://renderhjs.net/shoebox/

Game Phases, Scenes & Roses. 97

Deeper Dive: Loader Examples

Each “Phaser III Scene” is responsible for loading its own resources and gaming assets
when it starts. Scene loading runs in parallel; meaning that a scene will load its
resources even if another scene is currently loading.

The “BaseLoader“ class governs this loading process. It is responsible for the “queue
management”, “dispatching events”, and “load management”. The “BaseLoader“ class
handles the following file types using its “addfile“ method:

• Animation JSON File
• Atlas JSON File
• Binary File
• Bitmap Font File
• GLSL File
• HTML File
• Image File
• JSON File
• SpriteSheets
• SVG File
• Text File
• XML File

Hint: Each Scene can further use “this.load.image”, “this.load.json”, and
“this.load.atlas”. You can also pass configuration objects to these methods.

Warning: “load.path” and “load.baseURL“ are acknowledged when “relative”
paths are used. Absolute URL — those starting with “http” or “\\“ (ed.: not
recommended) — are ignored.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 98

Samples from phaser.io/phaser/api/loader

// Original image loader signature:

this.load.image('bunny', 'assets/sprites/bunny.png');

// Object based

this.load.image({ key: 'bunny', texture: 'assets/sprites/bunny.png' });

// Allows for arrays of objects

this.load.image([

{ key: 'bunny', texture: 'assets/sprites/bunny.png' },

{ key: 'atari', texture: 'assets/sprites/atari400.png' },

{ key: 'logo', texture: 'assets/sprites/phaser2.png' }

]);

// Object based including XHR Settings

this.load.image({

key: 'bunny',

texture: 'assets/sprites/bunny.png',

//ext: 'jpg', // png is the default

xhr: {

user: 'root',

password: 'th3G1bs0n',

timeout: 30,

header: 'Content-Type',

headerValue: 'text/xml'

}

});

// Auto-filename based on key:

// Will load bunny.png from the defined path,

// because '.png' is the default extension.

this.load.image({ key: 'bunny' });

// Will load bunny.jpg from the defined path,

// because of the 'ext' property.

this.load.image({ key: 'bunny', ext: 'jpg' });

// ----------------------

// Texture Atlas Examples

// ----------------------

// Original atlas loader signature:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 99

// this.load.atlas(

key,

textureURL,

atlasURL,

textureXhrSettings,

atlasXhrSettings)

this.load.atlas('level1', 'assets/level1/items.png',

'assets/level1/items.json');

// Object based

this.load.atlas({

key: 'level1',

texture: 'assets/level1/items.png',

data: 'assets/level1/items.json' });

Preload JSON Samples

function preload() {

this.load.json('jsonData', 'assets/atlas/megaset-0.json');

}

function create() {

console.log(this.cache.json.get('jsonData'));

}

Splash.js or Language.js?

We arrive at our splash.js or language.js37 phase; it will adapt text information vari-
ables to the gamer’s chosen language. It is one of the first “stopping points” after the
“network cloud access” (hopefully within 20 seconds?). If our game takes longer than
20 seconds to activate, it stands rejection from most “app stores”. Here is an excellent
place to inform our gamers about our sponsorship, provide advertisements(?? See
Phaser Game Design chapter 1!), offer language selections, and present your own logo
or “White Label” branding. I prefer to offer my gamers a “language screen” instead of
an initial “splash screen”. While the gamer pauses to select their language, it allows
our game more time to download more appropriately targeted game resources or
(better yet!) launch a web socket connection. This phase further allows me to set
the mood/theme music, provide a background narrative in their native language. The

37https://makingbrowsergames.com/p3gp-book/index3.html#9.4

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://makingbrowsergames.com/p3gp-book/index3.html#9.4

Game Phases, Scenes & Roses. 100

more standardized these screens are … the better! — resulting in a savings of our
development time.

What I do, when presenting a “language menu” to my gamers, is to let them select
— dynamically on-demand!! — their native language for continued game-play and
interaction. I set a global variable38 to their “language index” and attach their
language JSON file to all the game’s “text variable”. I’ll not download every language
lexicon known to mankind at this point — just their language lexicon; and, of course,
we should steer clear of “Enochian”39 … we’ll have none of that here; they can go
“somewhere else and play”.

The natural choice for “language selection” is a visual button mechanism designed
around the gamer’s national flag — “iconic symbols” ARE the universal (international)
language. When our gamer glides over any nation’s flag, the “tool-tip text” changes
into that nation’s predominant language. Mesmerized by the sudden display of
various languages and spellings, our gamers—doingwhat they do best (i.e.: “play”)
— might spend, perhaps, a whole 3-seconds goofing around, thus providing us more
time for downloading game resources through perhaps a newly activatedweb socket
(click here for a demonstration from your “Bonus Content”)40. Naturally, there must
be a different method to handle mobile touch input. Clever as our gamers are, they
will “select-click” the flag button representing their native language as their visual clue.
On that “click-event”, the internal game functions will send a request to download
that specific “JSON“ language file and dynamically populate (e.g.: substitute) all text
variables inside our game to their language content. Read some interesting facts
about the Internet and who your “real” target audience is becoming!41

Note: More about international targeting in the Phaser Game Design Work-
book.

38https://www.w3docs.com/learn-javascript/variable-scope.html
39https://en.wikipedia.org/wiki/Enochian
40https://makingbrowsergames.com/p3gp-book/standalone/index.html
41http://www.internetworldstats.com/stats.htm

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3docs.com/learn-javascript/variable-scope.html
https://en.wikipedia.org/wiki/Enochian
https://makingbrowsergames.com/p3gp-book/standalone/index.html
http://www.internetworldstats.com/stats.htm
https://www.w3docs.com/learn-javascript/variable-scope.html
https://en.wikipedia.org/wiki/Enochian
https://makingbrowsergames.com/p3gp-book/standalone/index.html
http://www.internetworldstats.com/stats.htm

Game Phases, Scenes & Roses. 101

Adventurers of Renown: The Ruins of Able-Wyvern™
Live language demonstrations: Ruins of Able-Wyvern™ (as pictured above)42

For our Mobile “SWPA” or “PWA”, we’ll use another ”<div>“ tag inside the “index.html”
file. Review the mobile “index.html” source code, and you find that the “splash scene”
and “language menu” are mere ”<div>“ tags using Bootstrap CSS!

Modifications for the splash.js or language.js43 should be minimal as long as you
use a consistent information and menuing system44 across all your games. Loading
standard game phase menus, images, buttons are already inside your Bonus Con-
tent/standalone45. There should not be anything in these files you would need to
modify nor change … unless we have a new sponsorship or perhaps adding a new
targeted language.

Exercise: Review the source code from language.js.46

42https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
43https://makingbrowsergames.com/p3gp-book/index3.html#9.4
44https://en.wikipedia.org/wiki/Menu_(computing)
45https://makingbrowsergames.com/p3gp-book/standalone.zip
46https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://en.wikipedia.org/wiki/Menu_(computing)
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/index.html
https://makingbrowsergames.com/p3gp-book/index3.html#9.4
https://en.wikipedia.org/wiki/Menu_(computing)
https://makingbrowsergames.com/p3gp-book/standalone.zip
https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/language.js

Game Phases, Scenes & Roses. 102

Main Menu.js

Our next phase is the game’s “main menu” — the central hub of all the game’s activity.
The more standardized this screen is … the better. (NOTE: Again, this is another
“stopping point”) It is during this game phase our loaded “language text” kicks-in for all
tool-tips, feedback, and menus.

Reference
1 preload function — not used; everything was downloaded in

the boot.js
2 create function — links downloaded assets for use during

the game.
3 beginGame function — manages theme music
4 gameCredits function — manages theme music and game

author information
5 MoreGame function - manages theme music, and provides

access to more games from the author

NOTE: You can download an example file from

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/menu.js

Warning: Some Game Distribution Channels restrict the number of “out-going
links”.

On the main menu, you should offer your gamers several options before starting
their game’s play in earnest. The following scripts are not included and would be
handled better as separate HTML web pages from a Content Management System
(CMS) rather than trying to stuff everything inside a single game “canvas” tag. That
would merely bloat our final gaming file. Remember the HTML5 “canvas” tag is merely
a graphical display; in essence, it replaces the former Adobe Flash plugin. (NOTE: End
of life for Flash plugins is 20201231) Visit other games on this book’s website for
examples of a Content Management System (CMS).

• Rulers of Renown™: The Emancipation47

• Adventurers of Renown™: The Ruins of Able-Wyvern48

• Adventurers of Renown™: The Blood Pit49

47https://www.adventurers-of-renown.com/quests/rrte.php
48https://www.adventurers-of-renown.com/quests/arra.php
49https://www.adventurers-of-renown.com/quests/arbp.php

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/menu.js
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/arbp.php
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/arbp.php

Game Phases, Scenes & Roses. 103

• Adventurers of Renown™: The Rogue Prince50

• Adventurers of Renown™: The Rescue of NCC Pandora51

Simple CMS or PWA “game-shell”
Typical pages within a Content Management System (CMS) are not directly related to
the actual game mechanics nor gameplay. These pages enhance or support several
business aspects surrounding our game and develop customer loyalty and a sense
of community. So, why should we bloat — and clutter — our Phaser game with
superfluous information.52 Example of such candidate pages placed outside the
Phase Game “canvas“ are:

• “About.js” — a page biography to enhance your portfolio and resume. In our
mobile demonstration, the “about page” is used to enhance SEO and page
content since it is simply another ”<div>“ tag.

• “Credits.js” — a page giving attributions.
• “Donations.js” — a crowd-funding page requesting financial support.
• “Instructions.js” or “help.js” — a page offering helpful hints, walk-throughs,

achievement, awards, entitlements, or game rules. If the game instructions are
50https://www.adventurers-of-renown.com/quests/arrp.php
51https://www.adventurers-of-renown.com/quests/arnp.php
52https://www.merriam-webster.com/dictionary/superfluous

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arnp.php
https://www.merriam-webster.com/dictionary/superfluous
https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arnp.php
https://www.merriam-webster.com/dictionary/superfluous

Game Phases, Scenes & Roses. 104

minimal in content, it could be combined with another page as typically seen in
various “splash pages”.

• “Language.js” — a page offering gameplay in their native language. It downloads
a specific language “dictionary” and populates all text displays and HUD with their
native language content.

• “More-Games.js” — a redirection page to your whole collection of games; used
to build a loyal fan base. This is the #1 Marketing Tip from various successful
game indies.

• “Options.js” — a configuration page used to set keyboard, input, and the like.
A live example at https://www.adventurers-of-renown.com/quests/arra.php/
welcome/lobby.html

• “Scores.js” — pulls from a master database (back-end) of recorded scores. It’s
also possible to simply use the browser “localStorage”.

• “Share.js” — a page to enhance the viral distribution of your game or announce-
ments within the game. See the twitter enhancement here53.

• “Submit-Scores.js” — collects and transmits the current game session for perma-
nent storage either locally and/or remotely.
- “wins.js” — records information into the gamer’s registered account.
- “loose.js” — records information into the gamer’s registered account.

• “Webmasters.js” — a page offering license and distribution information.

Adventurers of Renown™: “The Blood Pit” (Main Menu)

53https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancementJS.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.adventurers-of-renown.com/quests/arra.php/welcome/lobby.html
https://www.adventurers-of-renown.com/quests/arra.php/welcome/lobby.html
https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancementJS.pdf
https://makingbrowsergames.com/p3gp-book/_p3twitterEnhancementJS.pdf

Game Phases, Scenes & Roses. 105

Play.js

Finally, we arrive at what this book is all about — the “Play” game phase (aka “game
event loop” or “life cycle”)! This phase dives straight into creating our gameboard
entities and components as a browser display. It is here that our “Gaming Frame-
work Mechanisms” appear — the User Interface controls, head-up-display (HUD),
and supporting function about “how” the game is displayed. We should be able to
exchange this file with a different “Gaming Framework Mechanisms” file, of the same
genre, and have a visually new game.

NOTE: You can refer to the “Skeleton Game Phase”. Download from

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/play.js

Deeper Dive: JS Modules

As you have seen, separating our code into these various files is a very good practice
during the first developmental stages of our game. It also gives us more focus on
those immediate game actions and logic driving our game while we prototype. Most
importantly, we can re-use our source code —mix, match, and arrange our “ROSES”!

Nearly every programming language has the concept of modules — a way to include
code written in one file and insert it inside another file. Senior programmers have
used external coded libraries for inclusion into their projects for over half a century!
JavaScript did not originally include modules until ECMAScript 6 at the end of July 2014.
Until that time, the JavaScript developers’ community invented clever work-rounds.
Perhaps, you may have heard of:

• CommonJS Modules: — The dominant use of this standard is found in Node.js
(NOTE: Node.js modules54 have a few features that go beyond CommonJS).
CommonJS has several characteristics such as:
- Compact syntax
- Designed for synchronous loading
- Primarily used on the server-side

• Asynchronous Module Definition (AMD): — The most popular use of this stan-
dard is RequireJS. AMD has these characteristics:
- Slightly more complicated syntax, enabling AMD to work without eval() (or a
compilation step).
- Designed for asynchronous loading
- Primarily used on the client-side browser

54https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/js/state/play.js
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/

Game Phases, Scenes & Roses. 106

Note: These generalized features are simply an overview. You can dive deeper
into these formatted modules from “Writing Modular JavaScript With AMD,
CommonJS & ES Harmony”55 by Addy Osmani.

There are many reasons to use “JavaScript modular files” while coding your game
project. Since ES6 now includes modules, you can go beyond the CommonJS and AMD
capabilities. If designed properly, these “JavaScript modular files” help in the game’s
portability, and its “reusable chunks of code” (i.e., game prototypes and components).

Browser JavaScript modules versus inline scripts:

Elements Modules Scripts
Default mode strict non-strict
Execute sync/asyn imports yes no
File extension .js .js
HTML5 tag <script type=”module”> <script>
Programmatic (Promise API) yes yes
Top-Level Value of “this” undefined window
Top-Level Variables are local to module56 global

Note: If you’re not familiar with “JavaScript modular files”, read this chapter
about “Modules”57 from the FREE online book “Eloquent JavaScript” by Marijn
Haverbeke58 or you might review this superior article by Preethi Kasireddy’s.59

QUOTE from Phaser III Game Design Workbooka “Development source code is what
you read and write, and “check-in” to your source control system such as GitHub.b
It should be highly modular (i.e., split across many files), extensively commented,
and should make liberal use of white-space to indicate formatting structure. On the
other hand, Machine code is what gets served up to a browser. It should consist of a
small number of merged files and should be stripped of any developer’s comments
and unnecessary white-space. Your “build” process — refer to Google Developer:
Setup Your Build Toolsc — is a step in which you apply these transformations; many
developers use the automated “Grunt”.d
Finally, your web server should deliver the machine code with gzip compression for
extra speediness.” Read more tips here.e

ahttps://leanpub.com/phaser3gamedesignworkbook

55http://addyosmani.com/writing-modular-js/
56https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
57https://eloquentjavascript.net/10_modules.html
58https://eloquentjavascript.net/index.html
59https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://addyosmani.com/writing-modular-js/
http://addyosmani.com/writing-modular-js/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://eloquentjavascript.net/index.html
https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc
https://leanpub.com/phaser3gamedesignworkbook
https://github.com/PBMCube
https://developers.google.com/web/tools/setup/setup-buildtools
https://developers.google.com/web/tools/setup/setup-buildtools
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://leanpub.com/phaser3gamedesignworkbook
http://addyosmani.com/writing-modular-js/
https://www.openmymind.net/2012/2/3/Node-Require-and-Exports/
https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/index.html
https://medium.freecodecamp.org/javascript-modules-a-beginner-s-guide-783f7d7a5fcc

Game Phases, Scenes & Roses. 107

bhttps://github.com/PBMCube
chttps://developers.google.com/web/tools/setup/setup-buildtools
dhttps://24ways.org/2013/grunt-is-not-weird-and-hard/
ehttps://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/

3.5 Step #1 of 4: Generate Game Phases

Now that our game’s “index” page is in place and loads our Phaser Gaming Framework
— or any JavaScript Gaming Framework for that matter — we’ll turn our efforts
toward our core gaming code and then the “Gaming Loop’s event logic”.

We also have a couple of choices in this construction. We can build either a single
web-page game or a full-blown “Content Management System (CMS)” game shell.
Examples of single-page games drop the gamer directly into the “play phase” with
little warnings. This is typical of most games you find. Examples are:

• Our Breakout sample game60 we started in Chapter 1 — and will continue
referring to it throughout this book.

• All the Official Phaser III Games examples61

Example 3.1: Creating Game Phase (traditional object literal method)

123 // ============

124 // Examples 3.1 to 3.19: Creating Game Phase (traditional method)

125 // This is an Anti-pattern: polluting the global namespace.

126 // ============

127 // Step #3) new game state additions:

128 // -------------

129 // Notice: This could be placed into a separate module file.

130

131 var main = {

132 // Essential Functions found inside this state.

133 // Phaser v2.x.x called this "init"

134 initialize: function(){

135 //stuff to generate this function

136 // debug header information

60https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
61https://labs.phaser.io/index.html?dir=games/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/PBMCube
https://developers.google.com/web/tools/setup/setup-buildtools
https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://sunpig.com/martin/2008/10/07/maintainable-css-modular-to-the-max/
https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
https://labs.phaser.io/index.html?dir=games/&q=
https://makingbrowsergames.com/p3devcourse/standard/lesson15.html
https://labs.phaser.io/index.html?dir=games/&q=

Game Phases, Scenes & Roses. 108

137 },

138

139 create: function() {

140 // ============

141 // Example 2.6: Additional Phaser Properties begins

142 // ============

143 console.log("mainState Ready!");

144 //stuff to generate for this scene.

145 }, //the comma is very important.

146

147 update: function() {

148 //frame refresh and display updates

149 }

150 }; //the semi-colon is very important.

Exercise: The example above refers to: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Dynamically Including Game Phases

Example 3.1a: Creating Game Phases from Dynamically loaded files

198 // =====================================

199 // Step #1) Let's tell Phaser about our new phase

200 // ============

201 //Phaser uses our code and gives it a name of 'main'.

202 main: function main(){

203

204 this.game = new Phaser.Game(config);

205

206 // This is the SECRET SAUCE!!

207 // add all game phases into Phaser III scenes.

208 for(var stateName in window.GAMEAPP.state){

209 console.log("Creating Crnt State: "+stateName);

210 this.game.scene.add(

211 stateName,

212 window.GAMEAPP.state[stateName]);

213

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Game Phases, Scenes & Roses. 109

214 } //End For Loop

215

216 //using v3? use this manual start method below.

217 console.log("Leaving GAMEAPP.main -> boot"); //debug

218 //tells Phase to start using it.

219 this.game.scene.start('boot');

220 // Example 3.7: ends

221 // ============

222 } //End Main,

223 // =====================================

Note: Review complete example in the Source code Appendix.62

Example 3.1b: Creating Skeleton Game Phase - per Phaser Labs

// dozens of ways to launch Phaser III Scenes?

// pick one and be consistent.

// Refer to: http://labs.phaser.io/index.html?dir=scenes/&q=

var <GamePhaseName> = new Phaser.Class({

Extends: Phaser.Scene,

initialize: function <GamePhaseName> (config) {

Phaser.Scene.call(this, { key: '<GamePhaseName>', config });

},

init: function (data) {},

preload: function () {

this.load.image('<GamePhaseNameBackGround>',

'assets/images/<GamePhaseName>.png');

},

create: function (data) {

this.add.image(0, 0, '<GamePhaseNameBackGround>').setOrigin(0);

this.input.once('pointerdown', function () {

console.log('From <GamePhaseName> to <NextPhaseName>');

this.scene.start('<NextPhaseName>');

}, this);

62https://makingbrowsergames.com/book/index12.html#12.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/index12.html#12.3
https://makingbrowsergames.com/book/index12.html#12.3

Game Phases, Scenes & Roses. 110

},

update: function (time, delta) {}

});

Deeper Dive: D.R.Y. Stand-alone

Sample: Game Launch in game.js with Name Space - D.R.Y. method

203 // =====================================

204 // ---

205 // Main game Handler methods

206 // ---

207 //**TODO**

208 // re-factor and adjust for your game deployment

209 // remove console debug information BEFORE public deployment

210 // =====================================

211 // Step #1) Let's tell Phaser about our new phase

212 // ============

213 //Phaser uses our code and gives it a name of 'main'.

214 main: function main(){

215

216 this.game = new Phaser.Game(config);

217

218 // add all game phases into Phaser v3.x.x scenes.

219 for(var stateName in window.GAMEAPP.state){

220 console.log("Creating Crnt State: "+stateName);

221 this.game.scene.add(

222 stateName,

223 window.GAMEAPP.state[stateName]

224);

225 }

226

227 //v3 manual start method below.

228 console.log("Leaving GAMEAPP.main -> boot"); //debug

229 //tells Phase to start using it.

230 game.scene.start('boot');

231 // Example 3.7: ends

232 // ============

233

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 111

234 },

235 // =====================================

236

237 /**

238 // main function - using Object.create experiment!

239 main: function(){

240 this.game = Object.create(Phaser).Game(

241 this.viewportWidth,

242 this.viewportHeight,

243 Phaser.AUTO,

244 document.body,

245 window.GAMEAPP.state.boot);

246 },

247 */

248

249 // here we will store all game phase/states

250 // state object filled as js files load.

251 state: {},

252 // =====================================

You’ll recall that I said earlier, “I do not place my game scenes inside the “config“ object.
You can see how I inform Phaser about my game’s phases in “main.pdf” lines 119 to
12663. I add the game scenes directly into my game instance. Then on Line 125, I tell
Phaser to move to my initial boot scene. “

I follow this method so that, whatever game phases I’m using, they will be automat-
ically identified and loaded. I can now pick and choose which game phase files to
load from one place — its “index.html” — and those phases will appear in my game
without touching any code.

Exercise: The example above refers to Lines 203 to 242: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Step #3 of 4: Game Phase Transitions

Exercises: Review DevLog #120 https://phaser.io/phaser3/devlog/120

63https://makingbrowsergames.com/p3gp-book/mainp3.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/mainp3.pdf
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://phaser.io/phaser3/devlog/120
https://makingbrowsergames.com/p3gp-book/mainp3.pdf

Game Phases, Scenes & Roses. 112

Sample from v3.5.0

1 this.scene.transition({

2 //allowInput: false, // set true to enable input system

3 // of current scene and target scene

4 data: {x: x, y: y}, // an object containing any data you wish

5 //passed into target scene init. methods.

6 duration: 1000, // in milliseconds

7 //moveAbove: true, // move the target Scene above this current

8 // scene before the transition starts

9 //moveBelow: true, // move the target Scene below this current

10 // scene before the transition starts

11 //onUpdate: null,

12 //onUpdateScope: scene,

13 //sleep: false, // set true to sleep this scene,

14 // set false to stop this scene

15 target: 'nextScene' //, the scene key name to transition into

16 });

Deeper Dive: The CMS “Game Shell”

A Content Management System (CMS) is “game shell” that surrounds the “Play
Phase” and is merely a simple method toward building a ProgressiveWebApp (PWA)64.
It reliably and instantly loads the gameplay content, and is similar to what you would
see in native mobile applications.

The “game shell” has the minimal required technologies of HTML, CSS, and JS to
display the game’s browser interface. When it is cached offline, it ensures instant,
reliably good performance to gamers in their returning gaming sessions. The network
provides the newest or updated gaming content and assets.

For games — “a single web-page application with heavy JavaScript architectures” —
using a “game shell” is “THE go-to approach”.65 The “game shell” approach relies on
aggressively caching the “shell” content using a web-service worker66 to get the game
up and running. Next, the dynamic game content and artwork loads for each game
phase. The secret sauce that a “game shell” provides is: Getting the initial HTML into
a user’s device and display it without any help from the network connection!

In other words, the “game shell” is similar to the code you’d publish to any “app store”
when building a native mobile app. The “game shell” is a skeleton (aka Bare Bones

64https://developers.google.com/web/progressive-web-apps/
65https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
66https://developers.google.com/web/fundamentals/primers/service-worker/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developers.google.com/web/progressive-web-apps/
https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
https://developers.google.com/web/fundamentals/primers/service-worker/
https://developers.google.com/web/progressive-web-apps/
https://hbr.org/2016/06/the-go-to-market-approach-startups-need-to-adopt
https://developers.google.com/web/fundamentals/primers/service-worker/

Game Phases, Scenes & Roses. 113

Prototypes) of your game’s user interface (“UI”) and all those prototype components
necessary to launch your game from the ground up … but doesn’t include the game’s
“data logic.”

Note: Try the First Progressive Web App (PWA)67 to learn how to architect and
implement your first generic mobile application shell. The “Instant Loading
with the App Shell model”68 video also walks you through this design pattern.

Deeper Dive: When to use a game shell

Building a PWA does not mean starting from scratch. If you are building a modern
single-page app, then you are probably using something similar to a “game shell”
already whether you call it that or not. The details might vary a bit depending
upon which gaming libraries or frameworks you are using, but the concept itself is
framework agnostic!

The “game shell” architecture makes the most sense for any game project with
relatively unchanging navigation but changing internal content — the canvas?! Many
JavaScript Gaming Frameworks and libraries already encourage splitting your game
logic from its content (aka “Separation of Concerns”), making this “game shell” design
appealing. For certain types of games — that only have static content — you can
still follow the same idea but the game’s “canvas“ tag becomes 100% of the “game
shell” — this is what you find in the majority of published Phaser v2.x.x & v3.15+
games — single-page games described earlier that use a single static “canvas” tag
with all various game “roses” one is accustom to expect (aka menus, movieClips,
parts, phases, sections, stages, states, scenes, screens, thingies, dumaflache,69 or
“Aardvarks!”70).

Exercise: Let’s see how Google builds its typical mobile-app shells. Take a look
at Building the Google I/O 2016 Progressive Web App.71 This real-world mobile
app started with a SPA to create a PWA that pre-caches content using a web-
service worker, dynamically loads new pages, gracefully transitions between
views, and reuses content after the first load.

The benefits of using this “game shell” architecture and a web-service worker72 are:
67https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
68https://www.youtube.com/watch?v=QhUzmR8eZAo
69https://www.urbandictionary.com/define.php?term=dumaflache
70https://en.wikipedia.org/wiki/Aardvark
71https://developers.google.com/web/showcase/2016/iowa2016
72https://developers.google.com/web/fundamentals/primers/service-worker/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.urbandictionary.com/define.php?term=dumaflache
https://en.wikipedia.org/wiki/Aardvark
https://developers.google.com/web/showcase/2016/iowa2016
https://developers.google.com/web/fundamentals/primers/service-worker/
https://codelabs.developers.google.com/codelabs/your-first-pwapp/#0
https://www.youtube.com/watch?v=QhUzmR8eZAo
https://www.urbandictionary.com/define.php?term=dumaflache
https://en.wikipedia.org/wiki/Aardvark
https://developers.google.com/web/showcase/2016/iowa2016
https://developers.google.com/web/fundamentals/primers/service-worker/

Game Phases, Scenes & Roses. 114

• Reliable performance that is consistently fast across all your game projects.
Repeat visits are extremely quick. Static assets and the UI (e.g. HTML, JavaScript,
images, and CSS) are cached on the first visit so that they load instantly on repeat
visits. Content may be cached on the first visit, but is typically loaded as needed
— “just in time!”

• Native-like interactions. By adopting the game shell model, you can create experi-
ences with instant, native-application-like navigation and interactions, complete
with offline support.

• Economical use of game assets. Design for minimal resource usage. Be judicious
in what you immediately cache because loading non-essential files (i.e., large
images that aren’t shown on every page) will result in browsers downloading
more game assets than is used immediately. Even though WAN bandwidth is
available in western countries, this may not be the case in emerging game
markets where connectivity is expensive and data is costly.

3.6 Encoding Phaser Scenes as a “Game Phase”

Game Phases Reviewed
Let’s review those game phases which compose a “game shell”. Since each phase
performs a similar task, it is easy to keep them D.R.Y. So, once we’ve written a game
phase for our “game shell”, we’re done! We never have to touch it again — unless
you want to muck around with some tweaks73 — such as small unique modifications
or features we might want to include inside the core “Play” phase. Each game phase
could become siloed74 as a separate JS module file and prototype! We canmix,match,
and arrange our “rose” bouquet75 any way we want! When we eventually create our
final artwork — and assign them the same file names we have inside our “game shell”
— we are simply replacing the original “block-style graphics” with new art (by using
the same file names; we are intentionally overwriting the “block-style graphics),
and thus, VOILA! NEW GAME … same game mechanics, same source code, yet with
different “look & feel” coming from the newly imported artwork76 — this is the
secret sauce for cranking out a game per week! (Refer back to chapter 1)

Vanilla, Chocolate, or Strawberry Creme-filled?

73https://www.collinsdictionary.com/us/dictionary/english/muck-around
74https://en.oxforddictionaries.com/definition/siloed
75https://www.merriam-webster.com/dictionary/bouquet
76https://www.gamedevmarket.net/?ally=GVgAVsoJ

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.collinsdictionary.com/us/dictionary/english/muck-around
https://en.oxforddictionaries.com/definition/siloed
https://www.merriam-webster.com/dictionary/bouquet
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.collinsdictionary.com/us/dictionary/english/muck-around
https://en.oxforddictionaries.com/definition/siloed
https://www.merriam-webster.com/dictionary/bouquet
https://www.gamedevmarket.net/?ally=GVgAVsoJ

Game Phases, Scenes & Roses. 115

Sample: Step 3) Vanilla Phaser Scene as a function object

//Step 3) new game state additions as a function

// Notice: This could be inside a separate module file.

//This is a namespace. Replace <Phase_Name>:

window.GAMEAPP.state.<Phase_Name> = function(game){

// Phaser v2.x.x called this "init"

initialize: function(parameters) {

// any required initialization for this phase?

//This is the first function called when any Phase State begins

// and launched prior to preload, create (or anything else).

}, //comma is very important

preload: function() {

// load required resources for this phase

// for example:

this.load.image("preloaderBar", "assets/images/preloader-bar.png");

this.load.spritesheet("button",

"images/buttons/mmm-sprites.png",129,30);

}, //comma is very important

/** Creates the sets-up game environment.

This is called once immediately after the preload function completes.

If you do not have a preload method then

create is the first method called after init.

*/

create: function() {

//OR create items to display on this game scene.

}, //comma is very important

update: function () {

//used for verification that game assets are available.

} //no comma here

};

//

var params = ['L1', 'L2'];

var autoStart = true;

var sceneConfig = { ... }

this.scene.start('Phase_Name', sceneConfig, autoStart, params);

//See notes from:

//https://rexrainbow.github.io/phaser3-rex-notes/docs/site/scenemanager/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 116

Overriding Essential Functions inside Phaser.Scene

1 // NOTE: this style could be applied to ANYTHING inside Phaser!

2 var demo = new Phaser.Scene('Demo');

3

4 // Phaser v2.x.x called this "init"

5 demo.initialize = function initialize (data){ ... };

6 demo.preload = function preload (){ ... };

7 demo.create = function create (data){ ... };

8 demo.update = function update (time, delta){ ... };

Creating Scenes using ES5 Prototypes

1 var MyGame = { ... };

2

3 MyGame.Boot = function () {

4 //stuff boot game phase performs.

5 };

6

7 MyGame.Boot.prototype.constructor = MyGame.Boot;

8

9 MyGame.Boot.prototype = {

10 // Phaser v2.x.x called this "init"

11 initialize: function initialize (data) { ... },

12 preload: function preload () { ... },

13 create: function create (data) { ... },

14 update: function update (time, delta) { ... }

15 };

Exercise: Using the sample code above, create each of the following game
phases for future use. These new files, you are creating, will become our
“game container” or “game shell”. Refer to the following in the Source Code
appendix.77

Exercise: Study the various combinations of creating JavaScriptObject creation
patterns78 and styles from Code reuse patterns79

77https://makingbrowsergames.com/p3gp-book/index9.html
78https://www.jspatterns.com/category/patterns/object-creation/
79https://www.jspatterns.com/category/patterns/code-reuse/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index9.html
https://makingbrowsergames.com/p3gp-book/index9.html
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/code-reuse/
https://makingbrowsergames.com/p3gp-book/index9.html
https://www.jspatterns.com/category/patterns/object-creation/
https://www.jspatterns.com/category/patterns/code-reuse/

Game Phases, Scenes & Roses. 117

Sample: Step 3) Chocolate: ES6 Phaser Scene.

//Generated by Phaser v3 Typescript example

/**

* NOTE: the alternate acceptable form for ES6 and TypeScript

* Classes are NOT hoisted.

*

* Alternate syntax per

* "Professional JavaScript for Web Developers 3rd Edition" pg: 873

* class <Phaser_State_Name> prototype Phaser.Scene {

*/

class <Phaser_State_Name> extends Phaser.Scene {

constructor() {

//super(); if needed.

//only properties are allowed here per MDN

}

initialize() {

}

preload () {

}

create() {

}

// state-methods-begin

// user code here

// state-methods-end

}

// end generated code

// user code here

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 118

Quote fromWikipedia:80 “TypeScript is an open-source programming language
developed and maintained by Microsoft. It is a strict syntactical superset
of JavaScript and adds optional static typing to the language. TypeScript
is designed for the development of large applications and transcompiles to
JavaScript (ed.: ES6!).”81 Per this website82 and after 6 years from the initial
release, only 24% of web developers use Typescript.

Creating Scenes using Phaser.Class

Using the Phaser.Class is an interesting option. If you study the Phaser source code83 —
starting from line 171, it is simply using the ES5 “.apply” method. The “apply“ method
is similar to the “call“ method; the only difference is that “apply“ takes arguments
in an array. “Phaser.Class” creates a new class with the given descriptor; the normal
OOP constructor is labeled by the name “initialize“ and is an optional function. If
unspecified (i.e., using “init” instead of “initialize” an anonymous function will be used
which will call the parent class.

Creating Scenes by extending Phaser.Class

1 var MyScene = new Phaser.Class({

2

3 Extends: Phaser.Scene,

4

5 initialize: function MyScene (config) {

6 Phaser.Scene.call(this, config)

7 // add more internal variables as needed.

8 },

9

10 // typical "Phaser Essential Functions" for this scene.

11 initialize: function initialize (data) { ... },

12 preload: function preload () { ... },

13 create: function create (data) { ... },

14 update: function update (time, delta) { ... }

15 });

80https://en.wikipedia.org/wiki/TypeScript
81https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-

solution-looking-for-a-problem/
82https://www.jetbrains.com/research/devecosystem-2018/javascript/
83https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/TypeScript
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171
https://en.wikipedia.org/wiki/TypeScript
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://github.com/photonstorm/phaser/blob/v3.24.1/src/utils/Class.js#L171

Game Phases, Scenes & Roses. 119

ES6 Considerations: “Strawberry”

Sample: Step 3) ES6 Game

import Boot from 'js/states/boot';

import Preload from 'js/states/preload';

import Main from 'js/states/main';

import GameOver from 'js/states/gameOver';

* Alternate syntax per

* "Professional JavaScript for Web Developers 3rd Edition" pg: 873

* class <Phaser_State_Name> prototype Phaser.Game {

*/

class GAMEAPP extends Phaser.Game {

constructor() {

super('100%', '100%', Phaser.AUTO, 'gContent');

//scene.add (key, sceneConfig, autoStart, data)

this.scene.add('boot', boot, false);

this.scene.add('preload', preload, false);

this.scene.add('main', main, false);

this.scene.add('gameOver', gameOver, false);

this.scene.start('boot');

}

}

new Game();

Hint to REMEMBER: ES6 classes in JavaScript are not blueprints as found in
other Object-Oriented (OO) languages. They are simply “defined objects” that
are modified “at-will” during run-time. Refer to A prototype-based language84

Compare the “2016 ES6 format” to the TypeScript format. They are similar because
they are transpilers. They translate down into acceptable ES5 JavaScript code for
older browsers used today. I anticipate current browsers to uphold the ES6 to ES9
standards.85 This means that all your game prototypes should be compatible with the
current ES5 JavaScript standards; you must “future proof” your efforts — make your
code simple and correct; then make it fast and small, but only if necessary. Here’s an
example from this article.86

84https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
85https://kangax.github.io/compat-table/es6/
86http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://kangax.github.io/compat-table/es6/
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html

Game Phases, Scenes & Roses. 120

Hint: The current JavaScript standard is ES1087 (as of FEB 2019).

Creating Scene Configuration files

Each scene in Phaser III can load its unique configurations — even from remote JSON
files. Here’s a standard sets of configuration options:

1 var config = {

2 key: '',

3 // active: false,

4 // visible: true,

5 // pack: false, //see JSON file pack below

6 // cameras: null,

7 // map: {},

8 // physics: {},

9 // loader: {},

10 // plugins: false,

11 // input: {}

12 };

13

14 // JSON file pack example

15 // use: scene.load.pack(key, url, dataKey);

16

17 {

18 'dataKey': {

19 // "prefix": "...", // optional, extend key by prefix

20 // "path": "...", // optional, extend url by path

21 // "defaultType": "image", // optional, default file type

22 'files': [

23 {

24 'type': 'image',

25 'key': '...',

26 'url': '...'

27 },

28 {

29 'type': 'image',

30 'key': '...',

31 'url': '...'

87https://www.w3schools.io/javascript/es10-features/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.io/javascript/es10-features/
https://www.w3schools.io/javascript/es10-features/

Game Phases, Scenes & Roses. 121

32 }

33 // ...

34]

35 },

36

37 'node0': {

38 'node1': {

39 'node2': {

40 'files': [

41 //

42]

43 }

44 }

45 }

46 // dataKey: 'node0.node1.node2'

47 }

Deeper Dive: Defining Other Scene Properties

We can provide other basic properties in our Phaser III game by describing more
settings. For example, we might set a background color or we could set up a “physics
reaction system” that will define how game objects interact with each other. In the
former Phaser v2.x.x, Game Objects (such as Sprites) could only belong to 1 physics
system at a time, but you can have multiple physics systems active within a single
v2.x.x game canvas. “In v3.16+, all this has changed! A Scene can only have 1 physics
system running at once, never more than this. The difference is that in v3.x.x you can
havemultiple Scenes and they each could have their ownphysics system (if required).
(ed.: Scenes, in v3.x.x, are sub-sections of a single game phase all running in parallel.
Their new behavior reminds me of Adobe Flash MovieClips on the timeline. Refer to
the Phaser III Game Design Workbook88 a sister companion to this book.), “ (Quoted
from Phaser newsletter no. 94 Examples http://labs.phaser.io/ » physics » impact »
multiple 20 scenes.)

Here is some examples that you might add inside the “create()“ function:

88https://leanpub.com/phaser3gamedesignworkbook

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaser3gamedesignworkbook
http://labs.phaser.io/
https://leanpub.com/phaser3gamedesignworkbook

Game Phases, Scenes & Roses. 122

Example 3.4: Additional Phaser III Properties

211 // ============

212 // Example 3.4: Additional Phaser Properties begins

213 // ============

214 // remote URL to game assets

215 // Cross-origin resource sharing (CORS)

216 this.load.setCORS = 'anonymous';

217 this.load.setBaseURL('<URL to>/images/');

218 console.log("Additional Phaser Properties set in preload!");

219 //Example 3.4: ends

220 // ============

221

222 //Set a neutral background color

223 //notice we used the shorthand version; instead of #FF0000

224 //photonstorm/phaser/blob/v3.14.0/src/boot/Config.js#L532

225 //This sets up Phaser's Arcade physics engine,

226 // which are simple but effective for arcade-style games.

227 //this.physics.startSystem(Phaser.Physics.ARCADE);

228 //this.renderer.renderSession.roundPixels = true;

229

230 //this applies physics to every item.

231 //.enable(object, [bodyType array or group])

232 //.enableBody(object, DYNAMIC_BODY) or

233 //.enableBody(object, STATIC_BODY)

234 //this.physics.world.enableBody(key,CONST.DYNAMIC_BODY);

235

236 //OR ...

237 this.scene.physics.world.enable(this);

238

239 console.log("Additional Phaser Properties set in preload!");

240 //Example 3.4: ends

241 // ============

242 },

243

244 //Recommended scaling for Phaser III

245 // managed by CSS.

246 function resize() {

247 var canvas = document.querySelector("gameCanvas");

248 var gWidth = window.innerWidth;

249 var gHeight = window.innerHeight;

250 var gRatio = gWidth / gHeight;

251 var gameRatio = config.width / config.height;

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Phases, Scenes & Roses. 123

252

253 if (gRatio < gameRatio) {

254 canvas.style.width = gWidth + "px";

255 canvas.style.height = (gWidth / gameRatio) + "px";

256 } else {

257 canvas.style.width = (gHeight * gameRatio) + "px";

258 canvas.style.height = gHeight + "px";

259 }

260 };

Note: The example above comes from:
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

The this.scene.physics.world.enableBody above applies physics to every item we create
in our game. The Physics Manager is responsible for looking after all of the running
physics systems in Phaser III. Phaser III currently (as of 20181212) supports three
different physics systems:

• Arcade Physics (available in both V2.x.x and v3.x.x)89 — “The Arcade Physics Plu-
gin belongs to a Scene and sets up and manages the Scene’s physics simulation. It
also holds some useful methods for moving and rotating Arcade Physics Bodies.”
You can access it from within a Scene using this.physics.,

• Impact JS90 — “… a compatible physics world, body and, solver, for those who
are used to the Impact way of defining and controlling physics bodies. Also works
with the new Loader support for Weltmeister map data.”,

• Matter91 — “The Matter.Body module contains methods for creating and ma-
nipulating body models. A Matter.Body is a rigid body that can be simulated
by a Matter.Engine. Factories for commonly used body configurations (such as
rectangles, circles, and other polygons) can be found in the module Matter.Bodies.”

89https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
90https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
91https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Impact.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.Matter.html

Game Phases, Scenes & Roses. 124

Exercise:Review completed examples in the Phaser III GamePrototype Library
on the book’s website92.

Exercise: Review the Phaser’s Official examples93.

Exercise: Learn more about the various Phaser physics engines in the docu-
mentation94.

Exercise: Research these references about using multiple physics engines at
the same time. Which Physics System To Chose?95

Deeper Dive: ES9 Modules

Why mentions this??

Because in release v3.16.2 (newsletter #139 20190211), we have “scenefiles”. “Scene
Files”96 are down-loadable configurations to manage and active scenes ON THE FLY!
This is THE feature I’ve been waiting for; it means that I can dynamically influence the
gamer’s sessions by loading membership entitlement, enticements, or rewards.

this.load.sceneFile(‘keyName’, ‘path’)
// allow time to download and processing by the Scene Manager, then
this.scene.start(‘keyName’);

The key given must be the class name of the newly downloaded Scene. Once the
scene is downloaded by the Loader, it’s added into the DOM with a script tag and
then processed by the Scene Manager.

92https://makingbrowsergames.com/p3gp-book/
93http://labs.phaser.io/index.html?dir=physics/&q=
94https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
95http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
96https://labs.phaser.io/index.html?dir=scenes/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/p3gp-book/
http://labs.phaser.io/index.html?dir=physics/&q=
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
https://labs.phaser.io/index.html?dir=scenes/&q=
https://labs.phaser.io/index.html?dir=scenes/&q=
https://makingbrowsergames.com/p3gp-book/
http://labs.phaser.io/index.html?dir=physics/&q=
https://photonstorm.github.io/phaser3-docs/Phaser.Physics.html
http://www.html5gamedevs.com/topic/4503-which-physics-system-to-chose/
https://labs.phaser.io/index.html?dir=scenes/&q=

Game Phases, Scenes & Roses. 125

Enabling dynamically loaded parts of a JavaScript application at runtime

import(`./section-modules/${link.dataset.entryModule}.js`)

.then(module => {

module.loadPageInto(main);

})

.catch(err => {

main.textContent = err.message;

});

3.7 Summary

Examples:

• https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
• https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html

Chapter 3 done! Here’s what we’ve covered.

• Distinguished between game flow control and internal “Phaser Essential Func-
tions”.

• Identified the various game phases and those names used to describe them.
• Learned the two aspects of game delivery.
• Understand the impact of writing D.R.Y code.
• Discovered the secret to cranking out a game per week.
• Studied a standard game “flow chart.”
• Compared “Lord of the Rings” to a grimoire — “Lore of Phaser v3.x.x” — how Phaser

III’s framework architecture works.
• Reviewed JavaScript modules formats.
• Matched various game phases to the JS modules used.
• Learned how to “arrange rose bouquets”.
• Identified the internal “Phaser Essential Functions”.
• Dissected the “Game Loop event logic”.
• Understand the new twist on multiple scenes in Phaser v3.16.x.
• Studied how multiple scenes are used.
• Reviewed the new “Game Loop cycle”.
• Discovered the hottest target markets for games.
• Reasoned the correct presentation order of game phases.
• Learned the importance of coding consistency in styling and paradigm.
• Discover several FREE online resources.
• Studied deeper implications on security and asset caching.
• Differentiated core game mechanics from supporting auxiliary support.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html

Game Phases, Scenes & Roses. 126

3.8 Chapter References:

(See more references in front)

• Plain English Guide to JavaScript Prototypes97

• JavaScript Classes98

97http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
98https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Part II: Mechanisms vs. Mechanics

Game Design System™ creating new Games from 3 Components!
Part II coversGame Recipes™ from theGameDesign System™. This is the “production
phase” of my project management. We’ve created various common “visual compo-
nents” in both Phaser III and v2.x.x, and prepared our Part I prototypes for use in this
Part II’s Game Mechanics (GM), rules, data, and logic.

Building Game Prototypes, Mechanisms & Tools 128

4. Building Game Prototypes, Mechanisms &
Tools

Our goal in this chapter is to have a fully functional Game Prototype. From that
foundation, we can branch, combine various mechanisms and components into
various Game Mechanics found in Part II or from the Phaser III Game Starter Kit
Collection.1

There are simple worksheets for each task we plan to do. By the end of this chapter we
will have created everything a game uses and a tool that will automatically generate
Game Recipes™.:

• Interactions between game elements,
• Collecting players’ input from the keyboard, mouse pointer, or mobile touch,
• Detecting collisions among various game units,
• Representing visual avatars and their associated data structures,
• Monitoring the gaming loop,
• Migrating to various menus, Scenes, and heads-up displays/changes.

Chapter 4: Game Prototype Project

1http://leanpub.com/p3gskc/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://leanpub.com/p3gskc/
http://leanpub.com/p3gskc/
http://leanpub.com/p3gskc/

Building Game Prototypes, Mechanisms & Tools 129

Exercise: Download the resources from
https://makingbrowsergames.com/p3gp-book/_p3-demos.zip
or start a new project following Task #1 & #2 from previous chapters.

4.1 Task #3: Mini-Me

To represent a player’s avatar in our game(s), we need to define two things:

1. a visual image that represents our gamer and their location in relation to things
on the gaming stage; and

2. a separate data object describing that avatar’s characteristics and skills.

Note: We’ve already discussed the “Principles of Software Engineering”2 and
the “Separation of Concerns”3 as effective software engineering principles
from Chapter 1.

Creating an Avatar - “visual display”

.setOrigin(x, y);

Let’s deal with the “visual display” first. Of course, to do
that, we must have some artwork to create our visual
avatar. Fortunately, there are dozens of artwork refer-
ences in the Appendix that are free and open source.We
could use these image files; but, if we want to tailor them
that means we either have to purchase, create our own
with an image editing program, or perhaps we could
hire a graphics artist. We could spend hours possibly
thousands of hours?! — Remember? — in this search.

When placing any Phaser III Game Object (GO), you
must remember that visual elements are “centered” by

default — except for text(!??!) which for some reason, not revealed yet, are “center”
by the “top-left”. Personally, I feel this should be reversed. In Phaser v2.x.x, we used
“setting anchor(0.5,0.5)“ to have its “anchor” (i.e., its origin point) in the center. If you
do not want all visual objects “centered”, then use …

2https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
3https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos.zip
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://makingbrowsergames.com/design/_PrinciplesofSoftwareEngineering.pdf
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

Building Game Prototypes, Mechanisms & Tools 130

Review Example 4.1: Prototyping a Visual Avatars

56 // ============

57 // Example 4.1: Prototyping Graphics begins

58 // ============

59 // create a character avatar sprite

60 // player1 = this.add.sprite(-100, -100,

61 // box({who: this, whereX: 150, whereY: 100,

62 // length:32, width:32, color: 0x0000FF,

63 // border: 0xFFFFFF}));

64 // ------------

65 // OR just assign the box prototype method

66 player = box(

67 {who: this,

68 whereX: 150,

69 whereY: 100,

70 length: 32,

71 width: 32,

72 color: 0x0000FF,

73 border: 0xFFFFFF}

74);

75 // add physics characteristics

76 this.physics.add.existing(player);

77 console.log("Blue avatar created as a 'player' variable.");

78 // ------------

79 // OR the direct method using either rectangle or graphics

80 // and set movement velocities.

81 var avatar = this.add.rectangle(100, 100, 32, 32)

82 .setStrokeStyle(5, 0x3399CC);

83 var graphics = this.add.graphics({ fillStyle: { color: 0xFF0000 } });

84 graphics.lineStyle(10,0x6699CC,0);

85 graphics.strokeRect(100, 100, 32, 32);

86 graphics.fillRectShape(avatar);

87 this.physics.add.existing(avatar);

88 //non-controlled movement (usage AI bot; see Chapter 6)

89 avatar.body.velocity.x = 50;

90 avatar.body.velocity.y = 10;

91 //non-controlled movement (usage AI bot; see Chapter 6)

92 this.physics.add.existing(graphics);

93 graphics.body.velocity.x = 50;

94 graphics.body.velocity.y = 50;

95 console.log("Moving Red avatar variable.");

96 // ------------

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 131

97 // create an opponent - direct rectangle method

98 var monster = this.add.rectangle(180, 60, 32, 32, 0x00FF00);

99 console.log("Green monster avatar created as 'monster' variable.");

100 // Example 4.1: ends

101 // ============

Exercise: Refer to these resource files: Phaser III Game Prototyping: Chapter
44

Lesson 4: https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-
examples/lesson04.html

The main >> create >> this.player = this.add.sprite experiment — commented out —
placed a box shape “off-screen” from the top-left. We drew this image using the “box“
function using the parameters delivered to it:

• the starting coordinates (150,100, ...) and
• its dimensions ”(... options.length, options.width)”.

The “Blue Avatar” used just the box function; the moving “Red avatar” was another
method. The Phaser III game uses a coordinate system just like the ones used in CSS
positioning; the upper-left corner of a game world is: (x=0, y=0). Finally, we filled the
box image with our selected colors. Refresh your browser and you should see both
the player avatar box and another box.

Review completed examples in this chapter’s resource file:

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/

There are other clever v3.x.x methods at Phaser.io5 that we could have used; those
are found in the Phaser.io v3 examples6. We could reuse our new “box” function to
define any colored rectangle as a game object prototype.

4https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
5http://labs.phaser.io/index.html?dir=game%20objects/&q=
6http://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
http://labs.phaser.io/index.html?dir=game%20objects/&q=
http://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
http://labs.phaser.io/index.html?dir=game%20objects/&q=
http://labs.phaser.io/index.html?dir=game%20objects/shapes/&q=

Building Game Prototypes, Mechanisms & Tools 132

Sample image from text-image.com. See! Base64 Retro is TOO SEXY!
I use these two favorite resources to build sprites and “spriteSheets“ for my game
collection.

• Charas7 — the online resource generators and review their sample games at
https://charas-project.itch.io. The “Charas Project” is a community founded back
in 2003. It’s a community for indie-game development with a focus on the “RPG
maker” tools. But all forms of development are welcome. If you’re not into game
development but just want to hang out, you are of course, welcome too. On this
itch.io page8, they share their community games and projects.

• Universal LPC Sprite Sheet9 — Create a character sprite sheet for your games
using 100% open art. I’ve used “LPC sprites” for my own games with their
enhanced “universal spriteSheet”. Our GitHub repository10 is modified for our
game prototypes in this book.

Deeper Dive: Display selected frames from a sprite-sheet.

Displaying a particular sprite from sprite-sheet

Paraphrased from:a Phaser III has support for two types of sprite sheet: the “classic”
ones, where every frame is the same size, and the “texture atlases” that are created
with the help of a third-party app like Texture Packer, Shoebox or Flash CC and require

7http://www.charas-project.net/charas2/index.php
8https://charas-project.itch.io
9http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/

10https://github.com/MakingBrowserGames/Universal-LPC-spritesheet

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.charas-project.net/charas2/index.php
https://charas-project.itch.io
https://charas-project.itch.io/
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
https://github.com/MakingBrowserGames/Universal-LPC-spritesheet
http://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
http://www.charas-project.net/charas2/index.php
https://charas-project.itch.io/
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
https://github.com/MakingBrowserGames/Universal-LPC-spritesheet

Building Game Prototypes, Mechanisms & Tools 133

an associated JSON file.

You could load the “classic” version with “game.load.spritesheet”. You must specify its
width and height of the frames, and optionally the number of frames. For example …

game.load.spritesheet(‘uniqueKey’, ‘cubee.png’, 37, 45, 18);

To use a texture atlas you must use the “game.load.atlas”. You’ll find several examples
in the Phaser Examplesb.

Once loaded, create your sprite:

var sprite = game.add.sprite(x, y, ‘<spriteSheetKey>’);

This tells Phaser to use the image with the key “spriteSheetKey“ as its texture. By
default, it always jumps to the sprite sheet “frame 0”, but you could change it to jump
to any frame with the command “sprite.frame“ within the spriteSheet.

If the sprite uses an “atlas”, it’s easier to change its frames based on the given “frame
name”. For example, “sprite.frameName = 'card4'“ wherein the name is exactly specified
in the texture atlas JSON file (open and reference its label!).

ahttp://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
bhttps://labs.phaser.io/index.html?dir=game%20objects/sprites/&q=

Deeper Dive: Using Base64 Images

Another consideration is using base64 images in Phaser. Many image formats can be
converted into “base64”11. If you’re unfamiliar with what “base64” is or why it exists
take a look here12 and here.13

11https://www.base64decode.org/
12https://en.wikipedia.org/wiki/Base64
13https://tools.ietf.org/html/rfc4648

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://labs.phaser.io/index.html?dir=game%20objects/sprites/&q=
http://labs.phaser.io/edit.html?src=src/loader/sprite%20sheet/load%20sprite%20sheet.js
https://labs.phaser.io/index.html?dir=game%20objects/sprites/&q=
https://www.base64decode.org/
https://en.wikipedia.org/wiki/Base64
https://tools.ietf.org/html/rfc4648
https://www.base64decode.org/
https://en.wikipedia.org/wiki/Base64
https://tools.ietf.org/html/rfc4648

Building Game Prototypes, Mechanisms & Tools 134

How to use Base64 as an image

1 function create () {

2 this.textures.once('addtexture', function () {

3 this.add.image(400, 300, 'brain');

4 }, this);

5 this.textures.addBase64('brain', imageData);

6 }

See the entire Base64 example at labs.phaser.io14.

Creating an Avatar’s metadata

Keeping the visual display separate from its data allows us to “re-use” the graphics in
a multi-player environment. By changing the colors, the graphics, and customization,
it becomes an added benefit when stored inside each unique avatar’s data structure.

Note: Review completed examples in the Ruins of Able-Wyvern Source code
Appendix.15

This data information becomes the descriptive variables about the native abilities and
skills of the visualized gamer’s avatar. We will use these characteristics to process
many outcomes in the Artificial Intelligence state machine.

Sample: Avatar metadata

function PersonClass(

p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,

p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,

p21,p22,p23,p24,p25,p26,p27,p28)

{

this.PID = p1; //default - 0

this.CID = p2; //default - 1

this.Name = p3; //default: Common Adventurer

this.Score = p4; //0

this.TempScore = 0;

this.Category = p5; //Warrior

14http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
15https://makingbrowsergames.com/p3gp-book/index12.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
https://makingbrowsergames.com/p3gp-book/index12.html
https://makingbrowsergames.com/p3gp-book/index12.html
http://labs.phaser.io/edit.html?src=src/textures/texture%20from%20base64.js
https://makingbrowsergames.com/p3gp-book/index12.html

Building Game Prototypes, Mechanisms & Tools 135

this.Health = p6; //Healthy

this.Race = p7; //Folks

this.Stmn = Number(p8); //12

this.ModStmn = Number(p9);

this.Fatigue = Number(p10);

//p11? - future use

this.Coor = Number(p12); //12

this.Psych = Number(p13); //8

this.ModIQ = Number(p14); //8

this.Renown = Number(p15); //1

this.HGold = Number(p16); //0

this.HGem = Number(p17); //0

this.Movemnt = p18; //10

this.MegaSQ = 1;

this.Room = 6;

this.Food = Number(p19); //1

this.WSRaw = Number(p20); //2

this.WSCmbt = p21; //NO

this.BSRaw = Number(p22); //2

this.BSCmbt = p23; //NO

this.AtkFlag = 0;

this.MisFlag = 0;

this.PryFlag = 0;

this.HitFlag = 0;

this.EngFlag = 0;

this.MovFlag = 0;

this.Target = 6;

this.TLoc = 2;

this.TotalAP = Number(p24); //2

this.Shield = p25; //Shield Name?

this.Arrows = Number(p26); //0

this.AName = p27; //Body Armor Name

this.WName = p28; //Primary Weapon Name

// PersonClass Inherited Methods:

this.ModMove = function () {

return this.Movemnt-(this.A[0].MoveMod+this.A[2].MoveMod);

};

this.ModCoor = function () {

return this.Coor-(this.A[0].CoorMod+this.A[2].CoorMod);

};

this.Level = function () {

return (((this.Stmn+this.Coor+this.Psych)-26)/6);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 136

};

this.WS = function () {

return ((this.Stmn*2)+(this.WSRaw*5));

};

this.BS = function () {

return ((PersonClass.prototype.ModCoor*2)+(this.BSRaw*5));

};

this.PS = function () {

return ((PersonClass.prototype.ModCoor*2)+(this.WSRaw*5));

};

}

// End PersonClass

//===

Live Phaser III Demonstration: Ruins of Able-Wyvern™16 Watch the developer’s
console.

Deeper Dive 3.19+ Tweens

The updated Tween system introduced in release v3.19 is a huge overhaul and has
extended the framework capabilities significantly; I would advise a review of any
released games using the old Phaser III tween system (pre-v3.19+) before migrating
to this newest Phaser III. Tweens are fully documented.17

Some new Tween Events are ‘COMPLETE‘ or ‘REPEAT’; these allow triggered actions without
creating callbacks. Another example from v3.19+ is that tweens can implement both
‘to‘ and ‘from‘ values. This is a handy addition whenever you’d like to start from a
specific frame in any tweened asset property. Tween.hasStarted alerts you concerning
a running tween. There’s even a new Tween seeking function that provides a search
to any point in time across a tween.

Other useful tools newly added in Phaser III.19 are:

• 'StaggerBuilder' — This provides “staggered offsets” to a collection of tweening
targets. You might use this while staggering targets across grid layouts and in
preferred directions by merely setting a starting value.

16https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
17https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

Building Game Prototypes, Mechanisms & Tools 137

• Shader.setRenderToTexture — provides a redirection of a shader to its own frame-
buffer or WebGL texture instead of using display lists. You might even consider
piping one “output” shader as the input to a following shader!

• RenderTexture.snapshot — is the answer to a popularly requested feature. This new
feature allows a “snap-shot” on any rendered texture in a point in time and then
convert that snap-shot to an image asset for the Texture Manager or as a newly
saved image in the file system. I’ve been waiting for this feature for years!

4.2 Task #4: Moving Game Elements

Wouldn’t it be nice to click any arrow key — or virtual “arrow key for mobile devices
— and have our avatar character respond? Phaser has some nice built-in support just
for that purpose. Inside the main.create() function, let’s add the following line of code
to define a keyboard input. We will use it to detect which arrow key was pressed and
then have our character avatar reacted to it:

// Line 69 - NEW Input Manager v3.24+
// See https://labs.phaser.io/index.html?dir=input
cursors = this.input.keyboard.createCursorKeys();

Note: Add a mouse with this.input.mousePointer (always refers to the mouse if
present). This is the safest method if you only need to monitor the mouse.

Phaser’s main.update() function checks for input events; remember, update() attempts
to run at 60 times per second. The main.update() function is our game loop, which
continues to run until we exit this game phase. So any animation, state, display
changes, or game events will be in here.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 138

Phaser III Game Loop per Scene (as of 20170815; subject to change)

1 Game.step();

2 └ MainLoop.step

3 ├─ All Active Scenes:

4 ├─ Scene.sys.begin (called once per active state)

5 │ └─ Iterates Scene.children,

6 │ if child exists, call child.preUpdate

7 ├─ While (frameDelta within step range)

8 │ ├─ Scene.sys.update

9 │ └─ Scene.update

10 ├─ Renderer.preRender

11 ├─ Scene.sys.render

12 ├─ Update Manager Start (Scene.sys.updates)

13 ├─ Game.renderer.render (if Scene is visible)

14 │ ├─ Renderer set─up (blend mode, clear canvas, etc)

15 │ ├─ Batch Manager Start

16 │ └─ SceneManager.renderChildren

17 │ └─ Iterates all children, calling child.render on each

18 ├─ Update Manager Stop (Scene.sys.updates)

19 └─ Scene.sys.end (resets frame delta and panic flags)

Let’s turn our attention to the speed and velocity of our avatar. We should set a fixed
movement speed; you might want to “tinker”18 with this number until it “feels” correct
and proper. We should also set our “velocity” parameter to zero; because doing so,
will prevent the avatar’s movement until an arrow key is pressed. Place the following
snippet in the mainMenu update() function.

Example 4.2: Prototyping Movement Properties in v3

64 // ============

65 // Example 4.2: Prototyping Movement Properties

66 // frame refresh and display updates

67 // ============

68 cursors = this.input.keyboard.createCursorKeys();

69 speed = 250;

70 player.setBounce(0.2); // our player will bounce from items

71 player.setCollideWorldBounds(true); // don't go out of the map

72 player.body.velocity.x = 0;

73 player.body.velocity.y = 0;

74 console.log("Movable Black character avatar");

18http://dictionary.cambridge.org/us/dictionary/english/tinker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://dictionary.cambridge.org/us/dictionary/english/tinker
http://dictionary.cambridge.org/us/dictionary/english/tinker

Building Game Prototypes, Mechanisms & Tools 139

75 // Example 4.2: ends

76 // ============

With these parameters set, let’s use an if statement to determine which arrow key was
pressed, and then assign a velocity to our character avatar. Our validation should look
something as follows in the mainMenu update() function:

Example 4.3: Movement - Arrow Keys Integration

106 // ============

107 // Example 4.3: Movement Arrows Integration begins

108 // NOTE: combination arrow directions are now

109 // possible with this format

110 // ============

111 player.body.velocity.x = 0; //nothing pressed.

112 player.body.velocity.y = 0; //nothing pressed.

113

114 if (cursors.left.isDown){

115 // if the left arrow key is down

116 player.body.setVelocityX(-speed); // move left

117 }

118 if (cursors.right.isDown){

119 // if the right arrow key is down

120 player.body.setVelocityX(speed); // move right

121 }

122 if ((cursors.down.isDown)){

123 player.body.setVelocityY(speed); // move down

124 }

125 if ((cursors.up.isDown)){

126 player.body.setVelocityY(-speed); // move up

127 }

128 // Example 4.3: ends

129 // ============

Note: Refer to this resource file: https://makingbrowsergames.com/p3gp-
book/_p3-demos/ch4-examples/lesson05.html

Let’s test our new code; refresh the index.html page from your web-server; then, in
the browser, press an arrow key to move the “black” avatar box (because there’s no
texture assigned) around the stage. Press two or three arrow key combinations

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html

Building Game Prototypes, Mechanisms & Tools 140

simultaneously and learn what happens. Adjust the speed variable and observe
how it affects your character’s movement. Later in this book, we will consider creating
various power-up attributes that will increase the speed, or magic spells that might
even slow down our avatar. Phaser handles game collisions automatically for us. Add
this new line of code to keep the player’s avatar inside the visible game stage. You’ll
discover the “black” avatar box cannot penetrate the room’s walls — yet all the others
can, and the “black” avatar box glides through all the other objects easily.

// See line 71
player.collideWorldBounds(true);

Deeper Dive: Phaser III Input Manager

Phaser III handles inputs differently than v2.x.x. In v3.14+, “move events” are a new
feature— that is completely rewritten as 20181021. Phaser.Input is the Input Manager
for all types of user input; it includes the mouse, the keyboard, mobile touch, and
“Game-Pad”. The Input manager is updated automatically from the core game loop.

Quoted from Dev Log 90 & Dev Log 133!

updated in Dev Log 20181203 for v3.16+a

The Input Manager consists of two parts: The Global Input Manager, which is owned
by the Game itself, and the Input Manager, which is a Scene level system.

The Global Input manager is responsible for monitoring and processing user input,
regardless of the input method. It starts and handles the DOM event listeners for the
keyboard, mouse, and mobile-touch inputs. It then queues these events which are
processed every game step.

At the moment we have completed the development of the Keyboard Handler
(as of 20180804; rewritten and updated again 20181203), Mouse Handler, and
Touch Handler (v3.16+). Gamepad and Pointer Lock will be added shortly. (ed.: as
of 20171207, Input Manager is 70% completed and new rewrite completed 20181203
v3.16.1.)

These events are dispatched whenever a pointer is in the processing of moving across
an interactive object. It doesn’t have to be pressed down or dragging, it just has to be
moving. As part of the event, you are sent the local coordinates of the pointer within
the sprite. So you could use it for a ‘sliding’ UI element that you control by just sliding
a finger up and down it, such as a volume meter.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/133

Building Game Prototypes, Mechanisms & Tools 141

Callbacks and Events
In v2.x.x nearly all input was handled via Signals. You’d listen to a signal bound to a
specific sprite to know if the pointer was pressed down on it.

In v3.16+, you can use both callbacks and events. The events belong to the Input
Manager itself, not the game objects. So, you could listen for a Pointer Down event
from the Input Manager. As part of the event properties, you are given a list of all
the Game Objects that the pointer went down on, as well as the top-most one in the
display list.

The callbacks, however, belong to the Game Objects. You can set a callback for every
type of input event: “over”, “down”, “up”, “out”, “move”, and the drag events: “start”,
“drag”, and “end”. Callbacks are invoked on a per-Game Object basis and are sent a
bunch of useful arguments as well. Depending on the type of game you’re building you
may favour one approach over the other, or maybe just out of personal preference
too. By having both options available though it gives you the flexibility to decide, rather
than enforcing it upon you.

//Phaser v3 method is extremely easy to activate
var mySprite = this.add.sprite(400, 300, ‘texture’).setInteractive();
mySprite.setOrigin(0,0); //set sprite anchor to upper left corner

NEW in v3.16.x (JAN 2019!)
The Key class now extends EventEmitter and emits two new events directly: down
and up. This means you can listen for an event from a Key you’ve created, i.e.:
yourKey.on(‘up’, handler).

The order has also now changed. If it exists, the Key object will dispatch its “down
event” first. Then the Keyboard Plugin will dispatch keydown_CODE and finally the least
specific of them all, keydown will be dispatched.

ahttps://phaser.io/phaser3/devlog/133

Deeper Dive: Future Proofing your source code.

Not every gamer uses a “qwerty” keyboard; in fact, there are differences between USA
and UK keyboards. Many game developers assume the use of “WASD” as substitute
arrow keys. Wikipedia summarizes keyboard layouts as, “A keyboard layout is any
specific mechanical, visual, or functional arrangement of the keys, legends, or key-
meaning associations (respectively) of a computer, typewriter, or another typographic

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/devlog/133

Building Game Prototypes, Mechanisms & Tools 142

keyboard.

• Mechanical layout: The placements and keys of a keyboard.
• Visual layout: The arrangement of legends (labels, markings, engravings) that

appear on the keyboard keys.
• Functional layout: The arrangement of the key, their associations, as determined

by the software, on all the keyboard keys.”

KeyboardEvent.keyCode - Updated Sept 23, 2016, 12:45:21 PMa

Deprecation Warning: This feature has been removed from the Web standards.
Though some browsers may still support it, it is in the process of being dropped.
Avoid using it and update existing code if possible; see the compatibility tableb at
the bottom of this page to guide your decision. Be aware that this featuremay cease
to work at any time.

The KeyboardEvent.keyCode read-only property represents a system and implemen-
tation dependent numerical code identifying the unmodified value of the pressed key.
This is usually the decimal ASCII (RFC 20c) or Windows 1252 code corresponding to the
key. If the key can’t be identified, this value is 0.

The value of a “keypress” event is different between browsers. IE and Google Chrome
set the KeyboardEvent.charCode valued. Gecko sets 0 if the pressed key is a printable key,
otherwise, it sets the same keyCode as a keydown or keyup event.

You should avoid using this if possible; it’s been deprecated for some time. Instead,
you should use KeyboardEvent.codee, if it’s implemented. Unfortunately, some browsers
still don’t have it, so you’ll have to be careful to make sure you use one which
is supported by all target browsers. Google Chrome and Safari have implemented
KeyboardEvent.keyIdentifierf, which was defined in a draft specification but not the final
spec.

Web developers shouldn’t use the keyCode attribute for printable characters when
handling keydown and keyup events. As described above, the keyCode attribute is not
useful for printable characters, especially those input with the Shift or Alt key pressed.
When implementing a shortcut key handler, the keypress event is usually better (at
least when Gecko is the runtime in use). See Gecko Keypress Event for detailsg.

ahttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
bhttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
chttp://tools.ietf.org/html/20
dhttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
ehttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
fhttps://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyIdentifier
ghttps://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
http://tools.ietf.org/html/20
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyIdentifier
https://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyCode#Browser_compatibility
http://tools.ietf.org/html/20
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/charCode
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/keyIdentifier
https://developer.mozilla.org/en-US/docs/Gecko_Keypress_Event

Building Game Prototypes, Mechanisms & Tools 143

Exercise: More examples about how to “Future Proof” your game source code
in this article.19

Exercise: Read more about the differences between US and UK keyboards
here20

Exercise: Investigate various International keyboard layouts used by your
gamers.21

Deeper Dive: Configuring the Keyboard (Phaser v3.16+ updated)

The keyboard is typically another input source. New in Phaser v3.16.1 added the
KeyboardPlugin.resetKeys as a method that resets the property state of any Key object

created within a Scene through its Keyboard Plugin. This is automatically called during
the scene’s “shutdown“ method as a part of the Keyboard Plugin. What this means is, as
the plugin begins its shut down process or when stopping a Scene, the KeyboardPlugin

will reset the property state of any key held inside the plugin. It furthermore clears
the queue of any pending events.

“New in v3.16 (JAN 2019) is the ability to receive a global “keydown“ or “keyup“ event
from any key on the keyboard. Previously, it would only emit the event if it came from
one of the keys listed in the KeyCodes file. Now, those global events will fire for any
key, regardless of location.” Read More about all the changes in v3.16+ herea

ahttps://phaser.io/phaser3/devlog/134

4.3 Task #5: Things that go bump …

You noticed, by now, that our avatar runs through other objects and stops at the edge
of the room (the camera.view). Let’s fix that.

Walls and Camera boundaries

Let’s now place some walls and immovable objects in our game prototype. For now,
we’ll put walls on all four sides of the game stage, and then place a few inner walls

19http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
20https://en.wikipedia.org/wiki/British_and_American_keyboards
21https://en.wikipedia.org/wiki/Keyboard_layout

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/Keyboard_layout
https://en.wikipedia.org/wiki/Keyboard_layout
https://phaser.io/phaser3/devlog/134
https://phaser.io/phaser3/devlog/134
http://brianchang.info/2016/01/23/how-to-future-proof-your-code.html
https://en.wikipedia.org/wiki/British_and_American_keyboards
https://en.wikipedia.org/wiki/Keyboard_layout

Building Game Prototypes, Mechanisms & Tools 144

as decorations. We can use our “box” function to create these walls. You’ll observe
that our avatar already stops at the edge of the “camera.view”; the walls will provide a
rational reason for it to stop at the edge of the screen.

Return to the main create(), and add the following code which will construct a wall
along the top of the game stage.

Example 4.4: World Boundaries Integration

94 // ============

95 // Example 4.4: World Boundaries Integration begins

96 // ============

97 //Create Room Walls using rectangles

98 //this.Room = this.physics.add.staticGroup();

99 Room = this.physics.add.group();

100

101 // Creating rectangles; review console in this experiment

102 this.NorthWall = this.add.rectangle(400, 7, 800, 16,0x999999);

103 this.EastWall = this.add.rectangle(793, 234,16,800,0x999999);

104 this.WestWall = this.add.rectangle(7, 234,16,800,0x999999);

105 this.SouthWall = this.add.rectangle(400, 493,800,16,0x999999);

106 console.log("Room external walls created.");

107 console.log("NorthWall: Ext? "+Object.isExtensible(NorthWall));

108 console.info(NorthWall);

109 console.log("Room external walls created.");

110 console.info(Room);

111);

112 // Example 4.4: ends

113 // ============

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html

What did we just do? Firstly, we created a “Room” as a group for our “wall box”
rectangular sprites. We could have created a “Static Group” also. This lets us assign
properties to a collection (to the group) of wall boxes. For example, we just enable
a physics reaction system on the entire group instead of on each individual wall box.
Isn’t Phaser too cool?! A “group” permits you to (Quote from “Making your first Phaser
III game”)22“… group together similar objects and control them all as one single unit.

22http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

Building Game Prototypes, Mechanisms & Tools 145

You can also check for collision between Groups and other game objects. Groups are
capable of creating their own Game Objects via handy helper functions like “create”.
A “Physics Group” will automatically create physics “enabled” children, saving you
some leg-work in the process. … When a Physics Sprite is created it is given a “body”
property, which is a reference to its “Arcade Physics Body”. This represents the sprite
as a physical body in Phaser’s Arcade Physics engine. The body object has a lot of
properties and methods that we can play with.”

Quote:a “… In Arcade Physics there are two types of physics bodies: Dynamic and
Static. A dynamic body is one that can move around via forces such as velocity
or acceleration. It can bounce and collide with other objects and that collision is
influenced by the mass of the body and other elements.

In stark contrast, a Static Body simply has a position and a size. It isn’t touched by
gravity, you cannot set velocity on it and when something collides with it, it never
moves. Static by name, static by nature. And perfect for the ground and platforms
(ed.: walls, doors, treasure chest) that we’re going to let the player run around on.

ahttp://phaser.io/tutorials/making-your-first-phaser-3-game/part4

We created a “North wall” and assigned a rectangle box along the entire game stage
width starting at position (0,0). This wall’s thickness is 16 pixels. Lastly, “NorthWall.body“
is immovable because it is a member of a “staticGroup”; this way when another moving
piece hits this wall, they will ricochet off. If we didn’t have this parameter, then anyone
colliding with this wall would move the wall too.

Hint: There’s a trick to setting-up the South, West, and East wall groups. They
cannot overlap; otherwise, the walls will send needless update messages and
results in a sluggish game. For the “South wall”, copy the North wall but change
the (0,0 … to (0, config.height - 16 …. The West and East wall groups can not
overlap either of the North or South walls. This means that the West and East
wall need to be 32 pixels shorter than the North nor South walls since both of
those are only 16 pixels wide.

Interior Decoration

Lastly, let’s add some interior walls to our dungeon-studio room. I’ll let you decide
how wide and where you’d like to place them. Remember that you can use the
“config.height" and “config.width“ as reference points inside the game stage; it’s also

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/tutorials/making-your-first-phaser-3-game/part4
http://phaser.io/tutorials/making-your-first-phaser-3-game/part4

Building Game Prototypes, Mechanisms & Tools 146

smarter to use relative positions instead of hard-coded and fixed pixel locations. To
find the absolute middle of your game stage, take the world’s width then divide by
two to get the central X-coordinate, and then take the world’s height divided by two
to get the central Y-coordinate. Here’s a sample:

Example 4.5: Interior Boundaries Integration

113 // ============

114 // Example 4.5: Interior Boundaries Integration begins

115 // ============

116 Internal1 = this.add.rectangle(120,105,16,180,0xCCCCCC);

117 Internal2 = this.add.rectangle(214,250,400,16,0xCCCCCC);

118 console.log("Created 2 internal walls.");

119 // add all wall to the Room Group

120 Room.addMultiple(

121 NorthWall,

122 EastWall,

123 SouthWall,

124 WestWall,

125 Internal1,

126 Internal2);

127 // debug feedback

128 console.info(Room);

129 console.log("Room Grp obj: Ext? "+Object.isExtensible(Room));

130 console.info(Room);

131

132 // separate group for monsters and treasure

133 Tribe = this.physics.add.staticGroup();

134 Tribe.add(monster);

135

136 // what to do when

137 this.physics.add.collider(player, Room, bumpWall, null, this);

138

139 //On collision with the monster

140 this.physics.add.collider(player,monster,bumpMonster,null,this);

141 // Example 4.5: ends

142 // ============

143 };

144 function bumpWall(){

145 player.body.velocity.x = 0;

146 player.body.velocity.y = 0;

147 }

148

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 147

149 function bumpMonster(){

150 player.body.velocity.x = 0;

151 player.body.velocity.y = 0;

152 }

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html

You’ve noticed that our avatar was running through and into the room’s walls. Well,
we fixed that by adding the highlighted code above. Anytime our avatar bumps into
an exterior or interior wall, we set its “velocity” to zero in the “bumpWall“ function. You’ll
notice our avatar still plows through the monster; we’ll create another “this.physics“
collider to handle that situation. Yes, we could use the same “bumpWall“ function, but,
to provide more flexibility in our gameplay, we should create a separate function.

There’s still one small bug in our code. Can you find it? I knew you could! When our
avatar slides into the monster, our hero pushes him out of the room through the walls.
A couple of ways we could correct this: 1) we could add the monster into the Room’s
“staticGroup”, and it would adopt all the characteristics of the walls. Well, I don’t think
our monster is a “wall-flower” … oh no! So let’s create a separate group for monsters
and treasures.

Deeper Dive on Game Objects hit areas.

All Game Objects (GO) in Phaser III now have a “hitArea“ and a “hitAreaCallback“
properties. By default, these are set to NULL. You can either call setHitArea directly
on a Game Object, which would return a reference into the GO itself (allowing you to
further chain methods through delegation), or you could call the setHitArea from the
Input Manager — this provides a bit more flexibility. For example, you could pass an
array (or Group) of GOs to enable or enableBody.

Currently, the “setHitArea“ method takes two arguments: 1) an assigned shape object
and 2) a callback function to invoke when a pointer slides over its shape. This
“shape hitArea” could be any of the geometry objects available. In this example,23

there’re 5 sprites each of which has their own differently described shape as unique
geometry hit area — a circle, rectangle, ellipse, triangle, and finally a polygon. There
are interesting side-effects about using “Shapes“ as their “hit areas”. Firstly, more than

23http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js
http://labs.phaser.io/edit.html?src=src/input/mouse/shape%20hit%20tests.js

Building Game Prototypes, Mechanisms & Tools 148

one Game Object can share the same “shape hit areas”. This example24 demonstrates
400 sprites aligned within a grid, however, all of them share the same “Rectangle“
shape hit area. Each sprite does not create its own unique “rectangle“ hit area. This
preserves memory usage in your game — in other words, the less unique objects
created, the better!

Sample: One Shared Hit Area

1 function create () {

2 // Create a little 32x32 texture to use to show where the mouse is

3 var graphics = this.make.graphics(

4 { x: 0, y: 0, add: false,

5 fillStyle: { color: 0xff00ff, alpha: 1 }

6 });

7

8 graphics.fillRect(0, 0, 32, 32);

9 graphics.generateTexture('block', 32, 32);

10 var highlighted = this.add.image(16, 16, 'block');

11 var hitArea = new Phaser.Geom.Rectangle(0, 0, 32, 32);

12 var hitAreaCallback = Phaser.Geom.Rectangle.Contains;

13

14 // Create 400 sprites aligned in a grid

15 group = this.make.group({

16 classType: Phaser.GameObjects.Image,

17 key: 'bobs',

18 frame: Phaser.Utils.Array.NumberArray(0, 399),

19 randomFrame: true,

20 hitArea: hitArea,

21 hitAreaCallback: hitAreaCallback,

22 gridAlign: {

23 width: 25,

24 height: 25,

25 cellWidth: 32,

26 cellHeight: 32

27 }

28 });

29 this.input.on('gameobjectover', function (pointer, gameObject) {

30 highlighted.setPosition(gameObject.x, gameObject.y);

31 });

32 }

24http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js
http://labs.phaser.io/edit.html?src=src/input/mouse/mass%20sprite%20test.js

Building Game Prototypes, Mechanisms & Tools 149

Doors, Knobs, and Buttons

There are two ways to create doorways: 1) Doors are immovable “static” objects, and
when an avatar collides with it, the avatar appears to have moved into a new room or
a new game phase level; OR 2) Doors are “clickable buttons” that provide the same
transition actions of entering into a new room. In our game prototyping, I like doors to
have both actions. Providing both options gives our players a choice of keeping their
hands on their keyboard or mouse while playing.

Example 4.6: Phaser III Doors as Buttons

133 // Phaser III - clicking on a doorway

134 // ============

135 // Example 4.6: Doors as Buttons

136 // ============

137 // Creating door rectangles; review console in this experiment

138 // placed on a wall with 2px extended into the room

139 doorN = this.add.rectangle(35,0,60,18,0x000000)

140 .setInteractive({ useHandCursor: true })

141 .setOrigin(0);

142 this.physics.add.existing(doorN);

143 doorN.enableBody = true;

144 this.physics.add.collider(player, doorN, changeRooms, null, this);

145

146 /**

147 OR (following is NOT Optimized code!)

148 this.doorN = this.add.image(400,252,'woodenDoor')

149 .setInteractive({ useHandCursor: true })

150

151 this.doorN.setFrame(1);

152 this.doorN.setOrigin(0.5,0);

153 this.doorN.setScale(0.7,0.7);

154 this.doorN.name = "north";

155

156 this.doorN.on('pointerover', function (pointer){

157 console.info(this.doorN.name + " over. ");

158 this._toolTip.setText(GAMEAPP._toolTip);

159 this.doorN.setFrame(2);

160 }, this);

161 this.doorN.on('pointerout', function (pointer){

162 console.info(this.doorN.name + " out. ");

163 this._toolTip.setText("");

164 this.doorN.setFrame(1);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 150

165 }, this);

166 this.doorN.on('pointerdown', function (pointer){

167 console.info(this.doorN.name + " clicked down. ");

168 this.doorN.setFrame(0);

169 }, this);

170 this.doorN.on('pointerup', function (pointer){

171 console.log(this.doorN.name + " click released.");

172 changeRooms(this);

173 console.log("north door entered");

174 this.doorN.setFrame(1);

175 }, this);

176 }

177 */

178 // check for collision

179 this.physics.add.collider(player,doorN,changeRooms,null,this);

180

181 console.log("Northern Door created.");

182 // Example 4.6: ends

183 }

184 //

185

186 function changeRooms(){

187 console.log("Leaving Room via Northern Door.");

188 // change scene to a new room

189 // Refer to Part IV - Project Walk-Thu: Rogue Prince Quests™

190 };

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html

The special “Button sprite”25 does not exist in Phaser III as it does in Phaser v2.x.x;
we must take a sprite, image, or graphic and simply chain (aka “append”) the ”.set-
Interactive()“ or if you’d like the “hand cursor” to appear then use ”.setInteractive({
useHandCursor: true })”. Now our visual component can accept “Pointer events”
automatically. What did we just do? This created a Northern exit button-sprite with
physics and clickable input. In other words, a gamer could slide into the door and
transition into the next room as a “scene” change OR — and since traveling is not
much fun! Admit it! All that traveling in Diablo … did you really enjoy all that??!! —

25https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e

Building Game Prototypes, Mechanisms & Tools 151

the gamer could simply “click” on the door, as any regular button, and enter the next
room as a “scene” change.

• We should assign a “name” for the door for further processing such as anima-
tions.

• We’ll eventually assign a spriteSheet frame to display; but for now, we’ll just use
rectangle prototypes.

• We assign physics to stop the avatar on collision and make the door immovable.
• Finally, we assign “the clickable” (when mouse up or down event trigger) for the

door; when clicked we move to the next room. During the game update, we watch
when the avatar touches the door and launch the room transition function.

Buttons have four internal states that could have different and uniquely separate
visual elements, frames, or activated sound effects. This also reminds me of Adobe’s
Flash button movieClips. Frames can be specified as either an integer (i.e., the frame
ID#) or a string (i.e., the “frame name”; again very similar to Flash Labeled time-line);
these same values can be used in a Sprite’s construction. Buttons respond when the
mouse is:

• “pointerover“ — whenever a Pointer moves over (aka “‘hover’”) a Button game
object. Mobile devices use only the “down-state” below.

• “pointerout“— whenever a Pointer was previously over a Button and then “moves
out” away from it. Mobile devices use only the “up state” below.

• “pointerdown“ — when the Pointer is pressed down while over a Button game
object (or “touched” on a touch-enabled device).

• “pointerup“ — whenever a “pressed down” Button was released again.

Note: I highly recommend this button plugin26 from “rexRainBow” or William
Clarkson’s style for buttons.27

26https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
27https://phasergames.com/how-to-make-buttons-in-phaser-3/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
https://phasergames.com/how-to-make-buttons-in-phaser-3/
https://phasergames.com/how-to-make-buttons-in-phaser-3/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/button/
https://phasergames.com/how-to-make-buttons-in-phaser-3/

Building Game Prototypes, Mechanisms & Tools 152

Sample from Part III: 2D Array and Door Placement

Exercise: Try the live v2.x.x demonstration here28 or v3.16+ demonstration
here29

Sample: Move into New Rooms

// =====================================

//Main Door click handler

function newRoom(door) {

// 2 Options:

// - reset this phase with new room characteristics OR

// - have a "repaint" function to adjust the entered room.

// Option 1: this.scene.restart();

// Option 2: separation of concerns - new function

Rooms2D.LastRoom = Rooms2D.CrntRoom;

player.setPosition(64, 64);

var LastDoor = door.name;

console.log('Last Door Used: '

+ door.name +" | Toggle: "

+bumpToggle);

switch (door.name) {

case "North":

//Rooms2D.CrntRoom -= 4; // or GRID_ROWS or MT.length

28https://makingbrowsergames.com/book/ch6/index.html
29https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/

Building Game Prototypes, Mechanisms & Tools 153

Rooms2D.CrntRoom = Rooms2D.LastRoom - 4;

Rooms2D.CrntRoomY -= 1;

//Leave via North; enter a new room from its South-side

Rooms2D.pPosX = config.width / 3;

Rooms2D.pPosY = 320;

break;

case "East":

Rooms2D.CrntRoom += 1;

Rooms2D.CrntRoomX += 1;

//Leave via East; Enters a new room from its West-side

Rooms2D.pPosX = 50;

Rooms2D.pPosY = config.height / 2;

break;

case "South":

Rooms2D.CrntRoom += 4; // or GRID_ROWS or MT.length

Rooms2D.CrntRoomY += 1;

//Leave via South; enter a new room from its North-side

Rooms2D.pPosX = config.width / 3;

Rooms2D.pPosY = 50;

break;

case "West":

Rooms2D.CrntRoom -= 1;

Rooms2D.CrntRoomX -= 1;

//Leave via West; enters a new room from its East-side

Rooms2D.pPosX = 340;

Rooms2D.pPosY = config.height / 2;

break;

}

player.setPosition(Rooms2D.pPosX, Rooms2D.pPosY);

console.log("New Room #: " + Rooms2D.CrntRoom + ";

Door Clicked: " + door.name);

/**

// sfx camera fadein/out

this.cameras.main.once('camerafadeincomplete', function (camera) {

camera.fadeOut(1000);

});

this.cameras.main.fadeIn(1000);

*/

resetRoom();

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 154

bumpToggle = false;

};

Try the live v2.x.x demonstration here30 or v3.16+ demonstration here31

Download the Phaser III source code from:
https://makingbrowsergames.com/p3gp-book/p3_2DRoomsDemo.pdf

Let’s review the room state transitions. We delivered to this function the door our
avatar used. We then record the current room and the room the avatar is leaving
(GAMEAPP.LastRoom) so that we can manage a “return path” or “the back-azimuth”.32 The
“if” statement could be a “switch” statement; either way, we determine which door
was used to change rooms. We send some “debug” info to the console to watch our
code and then perform some “magic special effects” — similar to slide transition in a
business meeting PowerPoint presentation — to transition into the new game state
(aka room). All this is explained later in detail.

Deeper Dive: Writing Optimized Code

Another item, that should help you in developing a game at a rapid pace, is learning
to write simple, modularized code. Here are some guidelines for doing so:

• Make your code easily readable: The closer your code looks like your native
language, the easier it becomes to read, debug, and maintain. This means using
a descriptive method, function, and variable names so if someone else were to
read your source code, they would easily be able to tell what your intent was.

• Minimize code repetition: Whenever you notice similar code in more than one
place such as doors and walls above, immediately consolidated it into a separate
method; this lets you call it from wherever it is needed. Having your common
code, in a single place, makes it easier to modify and maintain, and debug.
By putting it inside a method with a clearly understandable name, your code
becomes easier to read.

• Convert code into reusable modules: If your code could be used in most of your
game products, abstract it out33 into separate functions or file modules for easy
reuse.

Exercise: Read “Clean Code”34 by Robert Martin converted in JavaScript.

30https://makingbrowsergames.com/book/ch6/index.html
31https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
32https://en.wikipedia.org/wiki/Azimuth
33https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
34https://github.com/ryanmcdermott/clean-code-javascript

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://makingbrowsergames.com/p3gp-book/p3_2DRoomsDemo.pdf
https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
https://github.com/ryanmcdermott/clean-code-javascript
https://makingbrowsergames.com/book/ch6/index.html
https://makingbrowsergames.com/p3gp-book/_p3-2DRooms/
https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)
https://github.com/ryanmcdermott/clean-code-javascript

Building Game Prototypes, Mechanisms & Tools 155

Deeper Dive: Buttons as a “Class” or “Scenes”?!!?

The definition of “Ninja”, per Doug Crockford’s meaning, is “… someone who finds a
mistake in the language’s design, decides it’s cool, and then abuses it.” Now, let me
show you a “ninja trick” on buttons.

Obviously, a game phase will have a lot of UI controls elements in its heads up display
(HUD) and menus. It only becomes natural to make a “Button Class” cookie-cutter35

and “stamp” out36 all our pretty buttons for our user’s interface(s). Well, you could
make an “OOP Class”, but … Phaser.Scenes are also an “OO Class” that can run in
parallel with their own physics, camera, and managers for loading and input. SO,
why not make every button (or HUD Menu chock-full37 of buttons) their very own
Phaser.Scene?!? Think of the possibilities … ninja!

Deeper Dive: Button size considerations

Quote:a Apple’s iPhone Human Interface Guidelinesb recommends a minimum target
size of 44 pixels wide x 44 pixels tall. Microsoft’s Windows Phone UI Design and
Interaction Guide suggests a touch target size of 34px with a minimum touch target
size of 26px. …
A touch target that’s 45 — 57 pixels wide allows the user’s finger to fit snugly inside
the target. The edges of the target are visible when the user taps it. This provides
them with clear visual feedback that they’re hitting the target accurately. They’re also
able to hit and move to their targets faster due to its larger size. This is consistent
with Fitt’s Law,c which says that the time to reach a target is longer if the target is
smaller. A small target slows users down because they have to pay extra attention
to hit the target accurately. A finger-sized target gives users enough room to hit it
without having to worry about accuracy. …
For users who use their thumbs, 72 pixels does marvels. They’re easier and faster
to hit because they allow the user’s thumb to fit comfortably inside the target. This
makes the edges visible and easy to see from all angles. This means that users don’t
have to reorient their thumb to the very tip to see it hit the target. Nor do they have
to tilt their thumb to the side to hit it. One tap with their thumb pad is enough to do
the trick.
Another study on Touch Key Design for Target Selection on a Mobile Phoned also
found that the number of errors decreased as the touch key size increased. In
addition, it was provided that the larger the touch key size, the higher the success
rate and pressing convenience.

ahttps://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-
sizes/

35https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
36https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
37https://en.wiktionary.org/wiki/chock_full

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://en.wiktionary.org/wiki/chock_full
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://en.wikipedia.org/wiki/Fitts's_law
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://medium.com/@braelynnn/extending-a-phaser-class-to-make-reusable-game-objects-93c11326787e
https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://en.wiktionary.org/wiki/chock_full

Building Game Prototypes, Mechanisms & Tools 156

bhttps://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
chttps://en.wikipedia.org/wiki/Fitts%27s_law
dhttps://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_

.pdf

Deeper Dive: Adding Buttons & Mobile Touch

By default, Phaser III starts with only 2 pointers (just enough for 2 fingers to smudge
your cell-phone display at the same time). To add more pointers use addPointer; this
tells Phaser to add more pointers to the Input. The most recently activated pointer
is a reference from “game.input.activePointer”. Phaser defines “active” as the pointer
generating the most recent event on the mobile device. On a non-surface desktop,
this would be the mouse. On an iPhone, for example, it would be the most recent
finger actively touching the screen.

Pointers are issued as each new finger is pressed on the screen sequentially. So, if
you pressed 3 fingers down, then “pointer“ 1, 2, and 3 would become active. If you
then removed your 2nd finger, then “pointer2“ would become inactive; but, “pointers“
1 and 3 are still active. If you put another finger down, then that touch fills-in the 2nd
gap and becomes “pointer2“ again.

In Phaser v3.16.138 the TouchManagerwas “… rewritten to use declared functions for
all touch event handlers, rather than bound functions. This means they will now clear
properly when the TouchManager is shut down. There is a new Input constant TOUCH_-

CANCEL which represents canceled touch events.”

// Phaser III
game.input.addPointer();
game.input.x || .y = the most recently active pointer coordinates.

Warning: Note:39 For iOS, you’ll active the minimize app gesture as soon as you
use the 6th finger — and there’s nothing Phaser can do to stop it.

38https://madmimi.com/p/6f870d
39http://labs.phaser.io/index.html?dir=input/multitouch/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://en.wikipedia.org/wiki/Fitts's_law
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://makingbrowsergames.com/p3gp-book/_Touch_key_design_for_target_selection_on_a_mobile_.pdf
https://madmimi.com/p/6f870d
http://labs.phaser.io/index.html?dir=input/multitouch/&q=
https://madmimi.com/p/6f870d
http://labs.phaser.io/index.html?dir=input/multitouch/&q=

Building Game Prototypes, Mechanisms & Tools 157

4.4 Task #6: When Worlds Collide …

There’s one small glitch; our avatar character can walk through the walls. Save this
idea for feature enhancements and doors later, but let’s fix this for normal gameplay.

A “collision” occurs when two different things touch. You’ll discover this concept
in many arcade games. Take PacMan for example; during the gameplay whenever
PacMan bumps into a dot, the dot disappears. When PacMan touches a ghost, a life
is subtracted.

About now, you might be thinking that we’ll write a series of if statements; but, Phaser
v3.x.x anticipated all this and does everything for us inside the mainMenu update()

function. I just love Phaser! Here’s the code we should add:

//Line 138
this.physics.add.collider(player, Room, bumpMonster, null, this);

Yeap! that’s it! Our character avatar will bounce off the walls, and Phaser III handled
all that detection automatically. But, how do we handle the situation when our
avatar bumps into an opponent or a door? When the player’s avatar bumps into an
opponent, let’s follow the PacMan example and subtract a life from our character.
For now, the player’s avatars only have one life to live — so as to illustrate this next
feature. Inside the mainMenu update() function, add this code at the end:

Example 4.7: Collision Detection Integration

130 // ============

131 // Example 4.7: Collision Detection Integration

132 // Step 2) Generate sensors | listeners | observers that trigger it.

133 // When overlapping, unlike collide, the objects are NOT automatically

134 // separated nor have any physics applied,

135 // they are merely tested for an overlap condition results.

136 // ============

137 this.physics.add.collider(player, Room, bumpWall, null, this);

138 this.physics.add.collider(player, monster, bumpMonster, null, this);

139

140 // using overlapping without a collider

141 // var isOverlapping = Phaser.Geom.Rectangle.Overlaps(rectA, rectB);

142 If (Phaser.Geom.Rectangle.Overlaps(player, monster)){

143 // transition into combat scene.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 158

144 handlePlayerDeath();

145 // we use this for rectangles and

146 // must change when the final artwork is available.

147 }

148

149 // ============

150 // Using SceneConfig for physics detection

151 // ============

152 var config = {

153 // ...

154 physics: {

155 default: 'arcade',

156 arcade: {

157 // x: 0,

158 // y: 0,

159 // width: scene.sys.game.config.width,

160 // height: scene.sys.game.config.height,

161 // gravity: {

162 // x: 0,

163 // y: 0

164 // },

165 // checkCollision: {

166 // up: true,

167 // down: true,

168 // left: true,

169 // right: true

170 // },

171 // fps: 60,

172 // timeScale: 1, // 2.0 = half speed, 0.5 = double speed

173 // overlapBias: 4,

174 // tileBias: 16,

175 // forceX: false,

176 // isPaused: false,

177 // debug: false,

178 // debugShowBody: true,

179 // debugShowStaticBody: true,

180 // debugShowVelocity: true,

181 // debugBodyColor: 0xff00ff,

182 // debugStaticBodyColor: 0x0000ff,

183 // debugVelocityColor: 0x00ff00,

184 // maxEntries: 16,

185 // set false if amount of dynamic bodies > 5000

186 // useTree: true

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 159

187 }

188 }

189 // ...

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html

This code snippet tells Phaser that when the avatar overlaps an antagonist, consult the
handlePlayerDeath function. The handlePlayerDeath function is a new additional block of
code written outside the mainMenu update() and mainMenu create() functions. Notice also
in Phaser III, we could set overlapBias inside the game’s configurations.

Instead of treating the monster as an object, we could have treated it as a “zone”.
See how to use Phaser III Zones here40.

So, we have “thingies” checking whenever an avatar is in contact with a monster. When
the avatar moves into a monster or whether the avatar is “overlapping” a monster.
Which is better? Do we need both? Well, if you’ll remember, we wanted to include a
treasure chest inside the monsters group. We could designate them separately. The
only thing to take away from this is that one method is using a “collider” to determine
when two “physics enabled” objects are in contact or separate from each other while
the other validation (i.e., overlapping) is only used when “separation” is not a concern.
In our case, consider using “overlapping” when the player is touching a treasure chest.
There might arise a situation when the player is touching both a treasure trove and
the monster using AI (See chapter on Artificial Intelligence) Return and add this new
snippet of code:

Example 4.8: Collision Results Determination

181 // ============

182 // Example 4.8: Collision Results Determination

183 // Step 2) Insert NEW function for character's death

184 // function to calculate the outcome.

185 // ============

186 function handlePlayerDeath(player,enemy){

187 //kill off the avatar

188 //player.destroy();

40https://codepen.io/samme/pen/yqJoym?editors=0010

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://codepen.io/samme/pen/yqJoym?editors=0010
https://codepen.io/samme/pen/yqJoym?editors=0010

Building Game Prototypes, Mechanisms & Tools 160

189 //change to Game Over scene

190 // This method used in AR Series

191 //game.scene.stop();

192 //game.scene.start("gameOver").bringToTop();

193 window.open("lesson11a.html", "_self");

194 }

195 // Example 4.8: ends

196 // ============

197 // preserve everything else below

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html

Our new function — handlePlayerDeath — accepts both our avatar and the opponent it
is touching as input parameters. The Phaser III JavaScript Game Framework already
has a pre-programmed kill() function that removes any graphics sprite from our
game stage. Ab-bra Cabrera, POOF! Our avatar disappears — all by simply defining a
separate function to take care of all that “touching” — we’ll have none of that here ;)

Exercise: Reflect on what we just learned, and apply it to:

• bullets hitting a target object;
• an avatar “picking up” an item;
• PacMan touching a pill or ghost;
• intersecting with doors; and
• touching treasure troves.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html

Building Game Prototypes, Mechanisms & Tools 161

4.5 Task #7: It’s curtains for you …

New Game Over Scene
It’s curtains41, our avatar died; the game is over. I’m starting to “tear-up”42 …. Our
game locks-up, because there is no character-graphics symbol to process. So, let’s
move our game into a new phase called “Game Over”. We simply define another new
“game phase” with its own gameOver create() and gameOver update() functions. Many
Phaser gamedevelopers, at this point, will create a new JavaScript file for this “Game
Over” phase; however, we want to keep this simple for now, and just add this into our
current game.js file instead.

Example 4.9: New Game Over State

23 // ============

24 // Example 4.9: New Game Over State begins

25 // Step 3) Transition to the new game menu function for resolution.

26 // ============

27 var gameOverState = {

28 create: function(){

29 }, //comma very important here

30 update: function(){

31 }

32 };

For Phaser to recognized this new game-transition, we must add it to the list of game
scenes either in the game’s configuration — or as I recommended earlier — as a new
script inside the index page. We have a couple of development path options:

41https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
42http://www.macmillandictionary.com/us/dictionary/american/tear-up_2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
http://www.macmillandictionary.com/us/dictionary/american/tear-up_2
https://forum.wordreference.com/threads/its-curtains-for-you.1509930/
http://www.macmillandictionary.com/us/dictionary/american/tear-up_2

Building Game Prototypes, Mechanisms & Tools 162

1. type the new scene into the config.scene array; or
2. add it using the game.scene.add('gameOver', gameOver); or;
3. launch a new html page from the CMS or
4. create a separate script file for this new “game phase” and tell the index.html to

load this additional external script.

Which is better? You’ve learned that we’ve automated our “rose bouquet” process;
anytime an external “game phase” (i.e., module file) is discovered, it is automatically
added into our “game.scenes”. This is the “D.R.Y.”-est approach and is already in place.
The first two options “muck around”43 with our development regimen. But to prove
the point of adding “cruft”44 into our game, add the following code and conduct some
experiments:

// See Line 50
game.scene.add(“gameOver”, gameOverState); //mucking around!

OR
add “gameOver: gameOver“ into config.scene array. //mucking around!

Launching a New Game Phase as a separate HTML5 page.
Inside this gameOver create() function,45 we will learn how to define a text label that
displays “Game Over” — a simple “Heads Up Display” (HUD). We’ll place this text in
the middle of the game stage. Here’s our code snippet to do this:

43https://idioms.thefreedictionary.com/muck+around
44https://en.oxforddictionaries.com/definition/cruft
45https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://idioms.thefreedictionary.com/muck+around
https://en.oxforddictionaries.com/definition/cruft
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://idioms.thefreedictionary.com/muck+around
https://en.oxforddictionaries.com/definition/cruft
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Building Game Prototypes, Mechanisms & Tools 163

Example 4.10: Elementary HUD Creation

23 // ============

24 // Example 4.9: New Game Over State begins

25 // Step 3) Transition to the new game menu function for resolution.

26 // ============

27 var gameOver = {

28 create: function(){

29 // ------------

30 //Example 4.10: Elementary HUD Creation begins

31 // ------------

32 var label = this.add.text(

33 config.width/2, //centering HUD horizontally

34 config.height/2, //centering HUD vertically

35 "Game Over \n Press the SPACE bar to start again",

36 {font: "22px Arial", fill: "#FFF", align:"center"});

37 label.setOrigin(0.5,0.5);

38 //Example 4.10: ends

39 // ------------

40 //......

41 }, //comma very important here

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

If you ran this, you’ll find the error message “gameOver is not defined”. Why? Because
our new game phase is an object literal. So! What does that mean? Object Literals are
not hoisted to the top of the compiled code as functions are. This is a critical concept
to understand because JS needs to know about “thingies” before it can use a “thingy”.
It’s worth mentioning also that JavaScript, at runtime, internally changes our code and
moves all variable declarations to the top of its function. This is known as variable
hoisting. Variables declared using let in ES6+ will have block scope and will not get
hoisted. So, if we try to access those variables outside of their block scope, we’ll get a
reference error saying the variable is not defined. ES6+ “const“ variables are similar to
the “let“ keyword with this additional feature — once they are declared and defined,
their state value cannot change. But I digress. Returning to our original problem, the
fix is not to sort our code blocks alphabetically as we have been doing, but to move
our new “gameOver” to the top of the JS file ourselves. Many web developers use
tools to “blindly” automate this hoisting process for them; and have forgotten to pay
attention to this as a result.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

Building Game Prototypes, Mechanisms & Tools 164

Similarly to our graphic’s placements, we can place text wherever we choose. Further-
more, we can update that text information using the “gameOver update()“ function. This
hint is the foundation for building future “heads-up displays” (HUD).

We told the gamer to press the “SPACE” bar to restart the game; so, we had better
create a function to accept that input. In the “gameOver create()“ function, let’s insert
this code:

Example 4.11: Collecting User Input

57 // ============

58 // Example 4.9: New Game Over CMS page begins

59 // Step 3) Transition to the new game menu function for resolution.

60 // ============

61 function create() {

62 // ------------

63 //Example 4.10: Elementary HUD Creation begins

64 // ------------

65 var label = this.add.text(

66 config.width/2, //centering HUD horizontally

67 config.height/2, //centering HUD vertically

68 "Game Over \n Press the SPACE bar to start again",

69 {font: "22px Arial", fill: "#FFF", align:"center"});

70 label.setOrigin(0.5,0.5);

71 //Example 4.10: ends

72 // ------------

73 //Step 2) Generate sensors/listeners/observers that trigger it.

74 // ------------

75 // Example 4.11: Collecting User Input

76 // ------------

77 var spaceBar = this.input.keyboard.addKey

78 (Phaser.Input.Keyboard.KeyCodes.SPACE);

79 this.input.keyboard.on('keydown', playAgain, this);

80 };

81

82

83 function update() {

84 //not used

85 };

86 // ------------

87 // Example 4.12:Responding to User Input

88 // ------------

89 function playAgain() {

90 // return to previous game phase

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Building Game Prototypes, Mechanisms & Tools 165

91 window.open("lesson11.html", "_self");

92 };

Note: Refer to this resource file: https:

//makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

Let’s not forget to insert some code in the “gameOver update()“ function to deal with that
“SPACEBAR” input signal. That’s how easy it is with Phaser. When Phaser processes the
“playAgain()“ function whenever the space-bar is down, Phaser returns to the game-
play phase.

Exercise: Test what we’ve just added. Bump into the opponent. Does the game
go to the “Game Over” scene? If you press the “SPACEBAR”, does the game move
to the initial game launch?

4.6 Other Game Mechanics Categories

Review Game Design System™ (Single Player) from Chapter 2
Other “Game Framework Mechanisms” (GFM) (i.e., displayed elements, widgets, and
input controls) support several more (or less) well-defined categories, along with basic
Game-Play, Game Rules (aka heuristics), mode (i.e., single-player or multi-player),

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html

Building Game Prototypes, Mechanisms & Tools 166

and genre (i.e., groupings of similar “Game Mechanics”). GameMechanics (chapter 5)
helps define a game’s rules and Game-Play strategies. Many of the following may or
may not have visual representation; they may be simply abstract data structures,46

or sentinel variables47. Yes, by mixing and matching various Game Framework
Mechanisms (GFM) or Game Mechanics (GM) in a game, it changes a game into a
new product release.

Need Proof? Return to this file48 and change Line 209 “handlePlayerDeath();” to
“combatEncounter()" and watch how you have simply entered a “new game rule” to
modify the gameplay! Yes! These rules could be in external JavaScript Modules that
are loaded dynamically on-demand during play. More about that process in the
coming chapters in Part II.

Hint: You must use my file (not yours!) because you don’t have the function
“combatEncounter()“ nor the new game phase “combat“ created yet.

Here are a few suggestions from Chapter 5GameMechanics & Rules (akaHeuristic49).
Many of these could be re-usable components and generalized prototypes for any
game. We could “mix and match”, “pick and choose” various combinations to generate
new “Game Mechanics” (GM) from the following components.We could even go so far
as to randomly select and combine thesemechanics. (See Game Recipe™ Automation
Tool at the end of this chapter.)

• Action points: is a budget of activity allocated to restrict what a player may do
within their game turn.

currentActions -= 1;

• Agents, Goals, and behaviors: (See AI chapter and Apple’s Game-Play Kit50) Use
this simulation to let game characters move themselves based on high-level goals
and react to their surroundings.

46https://computersciencewiki.org/index.php/Abstract_data_structures
47https://en.wikipedia.org/wiki/Sentinel_value
48https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
49https://en.wikipedia.org/wiki/Heuristic
50https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#

//apple_ref/doc/uid/TP40015172-CH8-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://computersciencewiki.org/index.php/Abstract_data_structures
https://en.wikipedia.org/wiki/Sentinel_value
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://en.wikipedia.org/wiki/Heuristic
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1
https://computersciencewiki.org/index.php/Abstract_data_structures
https://en.wikipedia.org/wiki/Sentinel_value
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://en.wikipedia.org/wiki/Heuristic
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Agent.html#//apple_ref/doc/uid/TP40015172-CH8-SW1

Building Game Prototypes, Mechanisms & Tools 167

• Artificial Intelligence Strategist: (See AI chapter and Apple’s Game-Play Kit51)
Use “MinMax” to provide computer opponents the power of decisions. “MinMax”
is a classic AI algorithm that is well suited for turn-based games. Additionally, it
could be built into richer systems if you stop thinking about game-turns and start
thinking about state transitions

• Auction or bidding:Players make competitive bids to determine which player gets
the privilege to perform particular actions during a game turn. Bids are wagered
with some type of collected resource within the game (e.g., game money, points,
etc.)

• Capture/eliminate: the number of tokens a player has on the game board
is related to his current strength in the game. How tokens are captured is
the mechanics using movement into the same area (immediate elimination or
deterministic combat), jumping over and across an opponent as in checkers,
producing a “checkmate” event from which the opponent has no movement
options. Many online games define the capture mechanics as a “kill count or
wounds” that reflects the sum of opponent tokens eliminated during the game.

• Catch-up: This mechanics is designed to provide increased barriers as the player
progress closer to final victory goals. The idea is to allow trailing gamers an
opportunity to catch-up and win. This appears in racing games that have a fixed
finish line. The opposite approach is to make the leading player more capable of
achieving victory (e.g., Monopoly-style games). In such cases, this is desirable in
zero-sum games.

• Dice as Randomizers: (See Apple’s Game-Play Kit52) The most common use is
to randomly determine an outcome of a game interaction. This is a deeper
problem than most folks will admit. You are often looking for a specific statistical
distribution (NOTE: if you haven’t played AD&D53, then think about the bell curve

derived from rolling two six-sided dice, the most frequently appearing results
(68% of the time)54 lays in the center). Apple’s Game-Play Kit provides all you
need, with a variety of cost models (how expensive it is to generate the next
random number, versus how actually random it is). Use these robust, flexible
implementations of standard algorithms as the building blocks for many kinds
of game mechanics.

results = currentSkill - randomDiceRoll;

if (results <= to CharacterSkill){ ... Do something ... }

51https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.
html#//apple_ref/doc/uid/TP40015172-CH2-SW1

52https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/
RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1

53https://en.wikipedia.org/wiki/Editions_of_Dungeons_%26_Dragons
54http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://en.wikipedia.org/wiki/Editions_of_Dungeons_&_Dragons
http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/Minmax.html#//apple_ref/doc/uid/TP40015172-CH2-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RandomSources.html#//apple_ref/doc/uid/TP40015172-CH9-SW1
https://en.wikipedia.org/wiki/Editions_of_Dungeons_&_Dragons
http://www.compensationcafe.com/2014/04/ding-dong-the-wicked-bell-curve-is-dead.html

Building Game Prototypes, Mechanisms & Tools 168

• Gamemodes: One of the most common examples of a “game mode” is the single-
player versus multi-player choice in online games. Multi-Player game can further
be subdivided into cooperative or competitive play. Changing modes during a
game increases the difficulty and provide additional challenge, or as a reward for
player successful action. For example, power-ups are temporary gaming modes
or that change only one or more game rules such as pellets in Pac-Man.

• Heuristics & Rule Systems: (See AI chapter and Apple’s Game-Play Kit55) Sep-
arating game mechanics from its “display code” will optimize your gameplay
rendering cycles. Implementing “fuzzy logic reasoning” (such as “A*” or “A-Star”56

and code samples here57) adds realistic behaviors to your computer-controlled
game components.

• Movement: How game tokens are permitted to move (physics), and when (action
points), is controlled by movement mechanics. The current game area may affect
movement (e.g., forest areas are more difficult to cross than open prairies.

• Playing Cards: Decks of cards act as a “randomizer” and/or to act as tokens to
keep track of states in the game. Players draw cards and retain them for later
use in the game, sometimes without revealing them to other players. When used
in this fashion, cards form a game resource. See Dice and Random Number
Generators (RNG) below

• Resource management: an accounting system that monitors the collection (i.e.,
income) and expenditure (i.e., expenses) of assets. The game will have heuristics
that define how players can collect, accumulate, spend, or exchange their re-
sources. Skillful resource management under such game mechanic rules allows
players to influence the outcome of the game.

• State Machines: (See AI chapter and Apple’s Game-Play Kit58) — Use this archi-
tecture to untangle complex procedural code in your gameplay designs. States
can capture intent (for example ‘am I hunting, hiding, fleeing’ using “Path-finding”
algorithms such as A-star) or overall state (running, jumping, waiting), and of
course, you may have more than one state machine in operation. Apple’s Game-
Play Kit provides support for both grid-based and one open-world Path-finding
models.

• Tile-laying: Many games use a grid on a world surface to form a tessellation.
Usually, such grids have patterns or symbols on their surfaces, which combine
when the playing surface is displayed. The grid defines the movement rules; how
the grid is drawn is a “Game Framework Mechanism”.

• Turns: A game turn is an important fundamental concept; it could be an abstract
representation to regulate gameplay or denote a passage of time or distance in
a game set aside for certain player actions to happen before moving to another

55https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.
html#//apple_ref/doc/uid/TP40015172-CH10-SW1

56https://www.redblobgames.com/pathfinding/a-star/introduction.html
57https://www.geeksforgeeks.org/a-search-algorithm/
58https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/

StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/RuleSystems.html#//apple_ref/doc/uid/TP40015172-CH10-SW1
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.geeksforgeeks.org/a-search-algorithm/
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/StateMachine.html#//apple_ref/doc/uid/TP40015172-CH7-SW1

Building Game Prototypes, Mechanisms & Tools 169

turn. In simulation games, turns represent time and distance in an abstract
fashion. War-games usually specify an amount of time each action simulates and
are executed sequentially or simultaneously. Even in real-time computer games,
there are often certain periodic effects that could be considered the surviving
hint of the turn concept.

gameTurn += 1;

• Resource Deployment (aka technology tree): is a game mechanics where players
allocate a limited number of token resources (lumber, gold, iron, “workers”) to
multiple stations that provide various defined actions. This is commonly used in
Tower Defense games.

Note: Apple’s Game-Play Kit59 provides seven core areas of functionality, which
you can combine or use independently to create your game. Because Apple’s
Game-Play Kit is independent of high-level game engine technologies, you can
combine it with any of those technologies to build a complete game such
as: “SpriteKit” for 2D games,60 “SceneKit" for 3D games,61 or a custom or
third-party game engine using “Metal“62 or “OpenGL ES”.63 For games with less
demanding graphics needs, you can even use Apple’s Game-Play Kit64 with
“UIKit“ (in iOS or tvOS) or “AppKit“ (in OS X).

4.7 The Finish Line: You’re AWESOME … Gloat, Gloat …

If the game is fully operational at this point, it’s “Miller Time”65, but remember to be
humble and kind!66 Celebrate! You have a fully function Phaser v3.x.x game prototype
that:

59https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//
apple_ref/doc/uid/TP40015172-CH1-SW1

60https://developer.apple.com/documentation/spritekit
61https://developer.apple.com/documentation/scenekit
62https://developer.apple.com/documentation/metalkit
63https://developer.apple.com/documentation/opengles
64https://developer.apple.com/documentation/gameplaykit
65http://www.urbandictionary.com/define.php?term=miller%20time
66https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/scenekit
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/opengles
https://developer.apple.com/documentation/gameplaykit
http://www.urbandictionary.com/define.php?term=miller%20time
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/index.html#//apple_ref/doc/uid/TP40015172-CH1-SW1
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/scenekit
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/opengles
https://developer.apple.com/documentation/gameplaykit
http://www.urbandictionary.com/define.php?term=miller%20time
https://www.youtube.com/watch?v=awzNHuGqoMc&list=PLuvCpe8H09C8ViEKyO4Qzo25JUaziIEpK

Building Game Prototypes, Mechanisms & Tools 170

• accepts inputs.
• moves various game components, and,
• reacts to internal objects.

Using the Phaser.io documentation and the following remaining chapters in this book,
we’ll have an “AWESOME SAUCE”67 game collection. Making one game amonth is now
a reasonable and achievable goal using our Game Recipe™ Automation tool.

4.8 Chapter Source Code & Demo

book website: https://makingbrowsergames.com/p3gp-book/

Complete Chapter Source Code in the online appendix.68

Play III Game Prototype Demo thus far69

• Example 2.4 Bare-bones Index Page - Traditional Method70

• Example 2.5: Starting the Game.js71

• Example 3.1a: Creating State Objects in Game.js - traditional method72

• Example 4.1: Prototyping a Visual Avatars73

• Example 4.2: Prototyping Movement Properties in v374

• Example 4.3: Movement Arrows v3 Integration75

• Example 4.4: World Boundaries Grouping76

• Example 4.5: World Boundaries Integration77

• Example 4.6: Interior Boundaries Integration78

• Example 4.7: Collision Detection Integration79

• Example 4.8: Collision Results Determination80

• Example 4.9: New Game Over State81

67http://www.urbandictionary.com/define.php?term=Awesomesauce
68https://makingbrowsergames.com/p3gp-book/tools.html
69https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
70https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
71https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
72https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
73https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
74https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
75https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
76https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
77https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
78https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
79https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
80https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
81https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.urbandictionary.com/define.php?term=Awesomesauce
https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html
http://www.urbandictionary.com/define.php?term=Awesomesauce
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html

Building Game Prototypes, Mechanisms & Tools 171

• Example 4.10: Elementary HUD Creation82

• Example 4.11: Collecting User Input83

• Example 4.12: Responding to User Input84

4.9 Summary

Examples:

• https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
• https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
• https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html

Here’s an inventory of what we’ve learned thus far.

• Game Prototyping uses simple graphics and focuses on game mechanics.85

• Created Game Prototype that accepts inputs.
• Created Game Prototype that moves various game components.
• Created Game Prototype that reacts with internal objects.
• Created a web page to launch our Phaser Prototype.
• Learned about Content Delivery Networks.
• Discovered various game phases and states to modularize86 our game.
• Learned the 9 Phaser essential functions of which the “create”, “update” and

“render” are the most active.
• Studied a typical Skeleton state file.
• Reviewed the traditional game menu states.
• Discovered a Phaser game can use multiple physics engines, but only one physic

engine is assigned to one graphics sprite.
• Created a gamer’s representation in the game world.
• Learned how to generate sprite graphics from code.
• Attached speed and velocity to moving game objects.
• Attached various input signals to manipulate game objects.
• Attached reactions to immovable and movable objects.
• Learned how to trigger various behaviors.
• Created game stage boundaries.
• Discovered how to transition game between states.

82https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
83https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
84https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
85http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
86http://www.dictionary.com/browse/modularize

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize

Building Game Prototypes, Mechanisms & Tools 172

4.10 Chapter References

• How to Prototype a Game in Under 7 Days87

• MDN Game development88

• Game Design Concepts 5.1: Prototyping89

• Plain English Guide to JavaScript Prototypes90

• JavaScript Classes91

• https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.
html

• https://www.bitlaw.com/copyright/database.html
• https://data.research.cornell.edu/content/intellectual-property
• https://en.wikipedia.org/wiki/Sui_generis_database_right
• https://www.michalsons.com/blog/the-rights-to-a-database/2937

87https://www.gamasutra.com/view/feature/130848/
88https://developer.mozilla.org/en-US/docs/Games
89https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
90http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
91https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.gamasutra.com/view/feature/130848/
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.bitlaw.com/copyright/database.html
https://data.research.cornell.edu/content/intellectual-property
https://en.wikipedia.org/wiki/Sui_generis_database_right
https://www.michalsons.com/blog/the-rights-to-a-database/2937
https://www.gamasutra.com/view/feature/130848/
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Dem’s fightin’ words 173

5. Dem’s fightin’ words

In this chapter, we will develop several methods for “conflict resolution” (aka “combat”)
between the player’s avatar and their antagonist(s). We will also add several new game
prototype enhancements:

• Launching Web Sockets,
• Dynamic menus,
• Melee, hand-to-hand, and ranged combat,
• Tactical movement styles,
• “Tile Maps” for tactical movement,
• Conflict resolutions: who, what, when, how
• Story narratives,
• Post Combat.

Note: Refer to these resource files:
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

5.1 Launching Web Sockets

We talk more in depth about WebSockets and how to use them properly in Massive
Multi-player Games1; but for now, here’s how to include WebSockets in your game
products. You can also experiment with our MMoG server.2

1https://leanpub.com/rrgamingsystem/
2http://mmog.pbmcube.net/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://leanpub.com/rrgamingsystem/
https://leanpub.com/rrgamingsystem/
http://mmog.pbmcube.net/
https://leanpub.com/rrgamingsystem/
http://mmog.pbmcube.net/

Dem’s fightin’ words 174

Example 7.1: Launching Web Sockets.

29 <!-- Creating Client WebSocket -->

30 <script >

31 function WebSocketTest() {

32 if ("WebSocket" in window) {

33 alert("WebSocket is supported by your Browser!");

34 // Let us open a web socket on local development site;

35

36 //TODO: Change the URL to point to your live production server.

37 //Classic OOP style creates object/function:

38 var ws = new WebSocket("ws://localhost:9998/echo");

39

40 //============================

41 // 4 WebSocket Protocol Msg

42 //============================

43 ws.onopen = function onopen(event) {

44 // Web Socket is connected, send data using send()

45 ws.send("Test Message sent");

46 alert("Test Message away, away ... Captain!");

47 };

48 ws.onmessage = function onmessage(event) {

49 var received_msg = event.data;

50 alert("Incoming Messages ... brace for impact, Captain!");

51 };

52 ws.onclose = function onclose() {

53 // websocket is closed.

54 alert("Connection is closed...");

55 };

56 //============================

57 // End of WebSocket Protocol

58 //============================

59 } else {

60 // The browser doesn't support WebSocket

61 alert("WebSocket NOT supported by your Browser!");

62 }

63 }

64 </script>

Note: Refer to these resource files:
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
lesson01.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html

Dem’s fightin’ words 175

5.2 Dynamic Combat Menus

What would be extremely nice, is to tell the player when they can “attack”. So let’s put
some dynamic menu buttons that appear only when an avatar is engaged in “hand-
to-hand orMelee conflicts. BUT ONLY, if they have a readied melee weapon. When an
avatar is not “touching” (i.e., engaged) in melee combat, AND has a missile weapon
readied then let’s show a “FIRE” button to launch a missile attack.

Example 7.2: Dynamic Combat Menus

609 //===

610 function combatEncounter(){

611 // ============

612 // Example 7.2: Changing Game Scenes

613 // Step 2) Exchange character's death to Combat

614 // function to calculate the outcome.

615 // Step 3) Transition to the new game menu function for resolution.

616 // New Combat Scene begins with a scene transition

617 // ============

618

619 // previously, Chapter 4 method moved to a new page

620 // window.open("lesson11a.html", "_self");

621

622 /**

623 // Chapter 7.2 methods move to a new scene and conducts "Combat"

624 // using Phaser III new scene.transition feature

625 // NEW Phaser III scene.transition feature

626 scene.scene.transition({

627 target: nextScene, // the next Scene key to transition into

628 data: null, // a data object containing anything you wish

629 // passed into the target's init or create methods.

630 moveAbove: false, // move the target Scene above this current

631 // scene before the transition starts

632 moveBelow: false, // move the target Scene below this current

633 // scene before the transition starts

634 duration: 1000, // delay processing duration in ms

635 sleep: false, // true = to sleep current scene;

636 // false = to stop current scene

637 allowInput: false, // true = to enable input system of current

638 // scene and target scene

639 onUpdate: null, // function to call; example "this.transitionOut"

640 onUpdateScope: scene

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 176

641 })

642 */

643

644 console.log("%c Entering combat game phase. \n

645 The main Scene goes to sleep! ",

646 "color:white; background:blue");

647

648 game.scene.sleep('main').sendToBack();

649 game.scene.start('combat');

650

651 };

Hint: This complete source is available from the website Lesson 2.3

In the example above, we created our “attack” and “fire” buttons and placed them
in separate “containers” — an “engaged” and “disengaged” containers, then we
positioned “engaged container out of sight”. In the “update“ essential function, we will
swap the container’s locations as soon as the antagonists collide — become “engaged”
in melee. This is a “carry-over” from my former Flash game development days when
I simply created everything and moved the inactive “movieClips” off stage.

I could have just toggled the “visibility” of each button. Phaser Gaming Frameworks
give us more flexibility than Flash when creating Dynamic Menus. There are several
design options we could use for games discussed later; some of these options are:

1. OR, we could create “menu option sets” inside of “containers” (Readmore details
both pros and cons here.);4 then, move those buckets of content onto and off of
the stage.

// Menu HUD containers

engageC=this.add.container(1000,0,[attackButton,attacktxt,disEngtxt]);

disengageC = this.add.container(0,0, [fireButton,firetxt]);

3https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
4https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html

Dem’s fightin’ words 177

2. OR simply toggle this Menu HUD container’s visibility. These design options are
discussed later.

3. Create Phaser III HUD Scenes and shuffle those “HUD Scene stacks” to the
front/back OR create/sleep then this following command is required:

this.input.setGlobalTopOnly(true);

Example 7.3: Dynamic Combat Menus supporting function

695 // NEW melee combat: Dynamic Menu; engaged in melee

696 //===

697 function meleeEncounter(){

698 //===

699 // Example 7.3: Dynamic Combat Menu Buttons

700 // Design Options:

701 //===

702 // 1) Follow Flash games placing menu buttons in & out of the stage

703 //

704 // 2) Create containers to mimic former Flash Movie Clips

705 // placing menu inside then shuffle HUD container(s) on & off stage

706 // a. Phaser III using "Groups"? Problems are:

707 // 1) "Group membership is non-exclusive."

708 // 2) "Groups aren't displayable, can't be positioned,

709 // rotated, scaled, nor hidden."

710 //

711 // b. Phaser III using Container(s)? Problems are:

712 // Read pros and cons from Phaser III docs

713 // https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.\

714 html

715 //

716 // 3) Create Phaser III HUD Scenes

717 // shuffle HUD Scene stacks to the front/back OR create/sleep

718 // then this following command is required:

719 // "this.input.setGlobalTopOnly(true);"

720 //

721 // 4) Create simple click-able text menus -

722 // i.e., retro dumb terminal or BBS style.

723 //===

724 // Design Options #2

725 engageC.setX(0);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 178

726 disengageC.setX(1000);

727 gameStatus = 1;

Review this source code at either:

• https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
• https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Attack button only appears when engaged in melee Combat

5.3 So, Give Me Some Space …

“The Four Virtues of a good tactical turn-based combat system”

So let’s get specific. There is a veritable cornucopia of techniques that game de-
velopers have used in the past to make their turn-based combat systems sparkle
with tactical possibilities, and I want to see new RPGs start using them with greater
regularity. Perhaps the most powerful technique is simply to:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/

Dem’s fightin’ words 179

1. Use space. Adding a spatial dimension to combat increases its complexity ex-
ponentially without making it substantially harder for the player to understand.
Most people have played games like Candylanda or Monopolyb, to say nothing
of Checkersc and Chessd. Everyone (even your mom) intuitively understands the
concept of moving pieces between spaces.

By using space in your battles, you add a new dimension to combat both figuratively
and literally: the concept of attack range comes into play, and the player gains direct
control of actions like fleeing and protecting weaker characters behind stronger
ones.

Of course, you aren’t required to have a grid-based (or hex-based) map with movable
characters to create a good tactical combat system, but it’s an awfully effective way
to introduce complexity using simple rules. This alone will put your game far ahead
of most jRPG combat systems.e

ahttp://amzn.to/2l1fIud
bhttp://amzn.to/2mfZ5uZ
chttp://amzn.to/2mg3YUT
dhttp://amzn.to/2l1qgJA
ehttp://amzn.to/2m1WdWm

“Engage or Not to engage that is the questions.” This one question adds all of the
“The Four Virtues of a good tactical turn-based combat system”; by simply adding an
“arena space” for antagonists to resolve their conflicts.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2l1fIud
http://amzn.to/2mfZ5uZ
http://amzn.to/2mg3YUT
http://amzn.to/2l1qgJA
http://amzn.to/2m1WdWm
http://amzn.to/2m1WdWm
http://amzn.to/2l1fIud
http://amzn.to/2mfZ5uZ
http://amzn.to/2mg3YUT
http://amzn.to/2l1qgJA
http://amzn.to/2m1WdWm

Dem’s fightin’ words 180

Upon entering a room, what’s a girl to do?
We will develop two different versions of combat along with these spacial aspects:
(not special; space … the final frontier!)

• Grid-less: similar to our method of movement created in the last chapter; and,
• Grid-ed: regulating tactical movement using squares, hexagons, or squishes.

Why? Because a conflict between opponents can take place as either:

• “hand-to-hand / Melee” conflicts. In the last chapter, we developed source code
to recognize when objects were touching one another. That source code will
become our “hand-to-hand” (aka “engaged” or “melee”) combat. There is a
subset of this combat I use by the same name. It is the situation when two
opponents are “wrestling” and “grappling on the ground”. Shorter weapons and
strength have the advantage here. I treat this differently than normal melee in
my games.

• “Ranged” conflicts. Ranged combat is a different story; it involves sending a
“missile” toward an opponent. Should the missile strike home, our opponent is
“hit”; the missile should disappear, and we reduce a life — or “hit points” — from

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 181

our targeted opponent. Sound familiar? We did all this before. In ranged combat,
the missile is a newly created game entity that speeds toward its intended target.
If it “touches” that target, we calculate the outcome. If it misses, the projectile
continues forward until it smashes into something (e.g.: the world boundaries?
a team member? another opponent?); and at that time, it is removed from play.
That was not revealed previously.

Melee Weapons

If two antagonists are “touching”, they are considered engaged in “melee” com-
bat. They will use one-handed or two-handed weapons. In “hand-to-hand combat,
“shorter” weapons, such as pistols, knives, daggers, brass-knuckles, will have normal
weapon damage; one- and two-handed weapons will have a disadvantage in weapon
damage.

Ranged Weapons

Phaser v2.x.x has 10 different styles for ranged weapons in their online examples;
these styles have their own separate class function; as Phaser III “matures” I am
certain these 10 different styles will appear in Davey’s scheduled book. I told you
that Phaser has thought of everything. There are several ‘combination’ weapons
— which are essentially mixtures from those established 10 styles. This Phaser
III Weapon Plugin by “rexrainbow”5 facilitates creating a “bullet pool” and manager
for projectiles. “Weapons fire” plugin generates sprites — as bullets — with a few
extra properties and “secret sauce”. Each bullet-projectile has its own Arcade Physics

property enabled. This class follows the same template process seen in Phaser III
Labs6. Consult the Rexrainbow’s documentation about his Weapon Plugin here7 and see
all the extraordinary options we could use. Let’s create a generic missile object to toss
around in combat. This template will represent both “thrown” and “fired” missiles.

Launching thousands of bullets is fun in single-player games; but, you might consider
using a limitation in multi-player versions. Multi-player performance will improve by
using “pools” of available bullets8 instead of “creating” and “destroying” bullets in an
endless loop per player.

The important concept to remember is when using “ordinary sprites” from a pool,
you should toggle the sprite’s “active” and “visible” properties on and off. This will

5https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
6http://labs.phaser.io/edit.html?src=src/pools/bullets.js
7https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
8http://labs.phaser.io/index.html?dir=pools/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/index.html?dir=pools/&q=
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/edit.html?src=src/pools/bullets.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
http://labs.phaser.io/index.html?dir=pools/&q=

Dem’s fightin’ words 182

save CPU processing. Since bullet sprites have physics enabled, you should also toggle
its “body.enable” property too. Using the “enableBody()“ and “disableBody()“ methods
sets all of these three (3) properties at the same time. Another benefit from using
“enableBody()“ is that it includes a “reset“ option that will synchronize the sprite’s
location. You could set all the sprites inside a physics group with these parameters.

{ active: false, visible: false, enable: false }

Phaser III Top-down shooter examples from labs.phaser.io:9

• Average Focus10 — click while running the source code and observe how the
avatar spins to follow the target.

• Combatmechanics11 — click while running the source code and observe how the
avatar spins to follow the target. Sight the target over or beyond the antagonist
and then click to fire your weapon.

• Player Focus12 — click while running the source code and observe how the avatar
spins to follow the target. At first, this example seems to mimic the “Average
Focus” but use the “WASD” keys to move the avatar while targeting.

• Target Focus13 — click while running the source code and observe how the avatar
spins to follow the target. At first, this example seems to mimic the “Player Focus”
but use the “WASD” keys to move the avatar while targeting. You’ll notice that the
camera stays focused on the target instead of the avatar.

Phaser III Sample: Projectile Template

1 this.bulletGroup = this.physics.add.group();

2

3 function bullet(){

4 var bulletPoints = this getDirFromAngle(this.player.angle);

5 console.log(bulletPoints);

6

7 var bullet = this physics.add.sprite(

8 this.player.x + bulletPoints.tx * 30,

9 this.player.y + bulletPoints.ty * 30,

10 'bullet');

9http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
10http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
11http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
12http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
13http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js
http://labs.phaser.io/index.html?dir=games/topdownShooter/&q=
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_averageFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_combatMechanics.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_playerFocus.js
http://labs.phaser.io/edit.html?src=src/games/topdownShooter/topdown_targetFocus.js

Dem’s fightin’ words 183

11 bullet.angle = this player.angle;

12 bullet.body.setBelocity(

13 bulletPoints.tx*100,

14 bulletPoints.ty*100)

15

16 this.bulletGroup.add(bullet);

17 }

18

19 function getDirFromAngle(angle){

20 // Description:converts degrees to radians

21 // ????? var rads = angle*Math.PI/180; ?????

22 // Use 3.142 and stop wasting battery power!

23 // var rads = angle * 3.142/180; // OR better still!!

24 var rads = angle * 0.01745; // just pre-calculate it!

25 var tx = Math.cos(rads); // see chapter footnotes

26 var ty = Math.sin(rads); // see chapter footnotes

27 return {tx,ty}

28 }

29

30 this.physics.add.collider(

31 this.bulletGroup,

32 <targetGroup here!>,

33 <what happens?>, null, this);

To preserve CPU processing and battery, pre-calculate math formula. Refer to
sine and cosine here14. One radian equals15 180°/ π = 57.30°. Use this online
calculator16 to help reduce CPU workload at runtime and thereby save battery
power. Refer to this article17 for a gentle introduction (or reminder) on degrees,
radians, and angles.

A common mistake in game development is using “PI”. The standards state that it is an
approximation which is approximately 3.1415926535897932. Do you truly need that
much accuracy? We’re not sending “men to the moon.” Why burn CPU processing and
consume battery power when you could have simply provided the number 3.1415
and not make the game calculate for each bullet. It’s small things, such as this, that
accumulate and slow down your game’s responsiveness.

14http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
15https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
16https://www.rapidtables.com/calc/math/Cos_Calculator.html
17https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/
http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

Dem’s fightin’ words 184

In the example template above, notice that the missiles are created inside of a “Group
object” with “Arcade Physics“ already enabled. You can do anything with a Group
(such as move it around the display list, etc.) that you normally would do with sprites.
“Bullets” can have textures and even animations. You can control the speed, angle, and
rate at which they are fired, and even set additional properties such as gravity. Just
keep in mind that each bullet is a game object that requires CPU processing, memory,
and rendering onto the display. To conserve on these, I chose to simply have a “FIRE”
button to abstract missile combat.

Here is a Phaser III Bullet plugin documentation here18 and source code at GitHub19

And other sample tutorials with (FREE!) source code:

1. Zenva Game Academy: “How to make a Tower Defense Game”20

2. William Clarkson: “Phaser 3 Physics for beginners - Endless Bullets”21

3. Phaser3 Labs — Defenda!22

Hint: We will revisit these missile functions when we create “magic missiles”.

Since our Game Prototype uses the “top-down or Bird’s Eye” perspective, gravity won’t
play a part in our ranged combat. If our Game Prototype used a “side-scroller” view,
gravity would add “juice”23 to our game. We’ll touch on different game perspective
views later (i.e., 3rd person and 1st person).

Is your game ‘juicy’ enough?

Now what exactly does that mean? “Juicy things are things that wobble, squirt,
bounce around, and make little cute noises; it’s sort of a catch-all phrase for things
that make a game more satisfying to interact with,” Jonasson explained during his
presentation at GDC Europe.a “Juice is typically auditory or visual, but it doesn’t really
need to be … it’s about the maximum output for the minimum input.”

Here are some ways to enhance missile combat:
* Turn it side-ways and create a vertically scrolling shooter instead.

18https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
19https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js
20https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=

Phaser3GamePrototyping
21https://phasergames.com/phaser-3-physics-beginners/
22http://labs.phaser.io/edit.html?src=src/games/defenda/test.js
23http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://phasergames.com/phaser-3-physics-beginners/
http://labs.phaser.io/edit.html?src=src/games/defenda/test.js
http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html
http://www.gamasutra.com/view/news/178938/Video_Is_your_game_juicy_enough.php
https://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/bullet/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/bullet/bullet.js
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/how-to-make-tower-defense-game-with-phaser-3/?a=47&campaign=Phaser3GamePrototyping
https://phasergames.com/phaser-3-physics-beginners/
http://labs.phaser.io/edit.html?src=src/games/defenda/test.js
http://www.gameanalytics.com/blog/squeezing-more-juice-out-of-your-game-design.html

Dem’s fightin’ words 185

* Give the missile’s acceleration; instead of Velocity then watch them increase in speed
over time.
* Give the missiles a “waypoint” in order to “home in” on targets.

ahttps://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/

5.4 OO!, OW! AH!, OW! Stayin’ alive! Stayin’ alive!

We have our two combat functions; let’s now review Tactical movement styles. As
mentioned earlier, a combat encounter could have two spacial (as in space the final
frontier) aspects:

• Grid-less: similar to our method of movement created in the last chapter; and,
• Grid-ed: regulating tactical movement using squares, hexagons, or squishes.

Grid-less Combat

In short, ‘Grid-less Combat” is a copy of the Part I examples. when our avatar
bumps into an opponent, we transition our game into a “combat scene”, instead of
“killing the player” and declaring the game finished. Earlier, when our avatar died, we
moved directly into the “gameOver scene”;24 we will exchange that scene for our new
“combat encounters” scene. Now, when bumping into an opponent, we will move
into a new game phase that focuses on combat tactics, using the same techniques
we learned before in Part I. In this new “Combat Encounter Scene” we will conduct
our deadly conflict until a victory is determined. Of course, if our player’s avatar is
defeated, our game will go to the normal “Game Over” scene as we did once before.

The “gameCombat“ scene will have its own “gameCombat create()“ and “gameCombat update()"

functions (as do all game phases; nothing new so far). These will handle our conflict
and collect player’s input and tactics from dynamic menus — this is new! We will
provide feedback on selected tactics through a head-up display (HUD) and the story
combat narrative.

this.physics.add.collider(player, monster, bumpMonster, null, this);

24https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.pocketgamer.biz/news/64630/gdc-europe-is-no-more/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html

Dem’s fightin’ words 186

Example 7.5: Grid-less Combat Movement Lines 81 - 292

81 //Process conflict instead of "Game Over" phase

82 var combat = new Phaser.Class({

83 Extends: Phaser.Scene,

84 initialize: function combat(){

85 Phaser.Scene.call(this,{key:'combat'});

86 this.player;

87 this.monster;

88 this.attackButton;

89 this.fireButton;

90 this.label;

91 this.attacktxt;

92 this.firetxt;

93 },

94

95 preload: function preload(){

96 console.log(" %c\n Loading Combat phase. ",

97 "color:white; background:green");

98 this.load.crossOrigin = 'anonymous';

99

100 //game background;static title and copyright

101 this.load.spritesheet('button',

102 'images/spriteSheets/mmog-sprites-silver.png',

103 {frameWidth:129, frameHeight: 30});

104 },

105

106 create: function(){

107 // ... similar to "mainExplore" class

108 }, //comma very important here

109

110 update: function(){

111

112 // ============

113 // Example 4.3: Movement Arrows Integration begins

114 // NOTE: combination arrow directions are now

115 // possible with this format

116 // ============

117

118 player.body.velocity.x = 0;

119 player.body.velocity.y = 0;

120

121 if (cursors.left.isDown){

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 187

122 // if the left arrow key is down

123 player.body.setVelocityX(-speed); // move left

124 }

125 if (cursors.right.isDown){

126 // if the right arrow key is down

127 player.body.setVelocityX(speed); // move right

128 }

129 if ((cursors.down.isDown)){

130 player.body.setVelocityY(speed); // jump up

131 }

132 if ((cursors.up.isDown)){

133 player.body.setVelocityY(-speed); // jump up

134 }

135 // ============

136 // Example 7.4: Movement Arrows Integration & SPACE quites

137 // ============

138 // New keyboard listener

139 if(cursors.space.isDown){

140 // Option 1) go to

141 leaveCombat();

142 }

143 // Example 4.3: ends

144 // ============

145 });

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 188

First round with Grid-less Combat & Narrative
Play AboveDemonstration: https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1

Hint: Yes, we will optimize this code later. This is provided as only a quick demonstra-
tion review from chapter 4.

Grid-ed Combat

Grid-ed Combat is similar to table-top board games such as checkers or chess. Using
grid-ed gameboards add a new dimension to our conflicts, that is namely: maneuvers.
We will create this gameboard using several methods such as “tiled-maps” OR the
new “grid” features in Phaser III.

5.5 Tactical Tiled-Maps

Tile-Maps, in my opinion, tends to abuse the “separation of concerns”. Too many times
have I seen tutorials, examples, and raw source code on GitHub combine the visual

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1

Dem’s fightin’ words 189

display with its associated “metadata”25 in the game environment.Data is a subset of
the “Game Mechanics” (GM) Component; it is not a subset of the “Game Framework
Display”Mechanisms.By binding data into your sprites, you are locking yourself into a
specific “Front-endGaming Framework”. I take the same approach with “Tactical Tiled-
Maps” as I do with the gamers’ Avatars — there is a “visual element” that is separate
from its metadata elements. The metadata elements for game boards are, what I call,
the “movement tables” (MT). Movement tables are a “super-set” to the Tiled-Maps
spriteSheets (i.e., their visual display elements).

Approaching this topic, we are teetering26 on the edge of leaving this generic Game
Prototype and entering into the realms of a specifically designed artwork theme. If
we use a “generic” naming convention for our artwork files, it becomes a simple task
to import new — and different — “game theme artwork” images with the same file
names. This will overwrite the current game prototype box-artwork. We will do all this
in later chapters. For now, we’ll continue to use “rectangles” or “hexagons”.

Warning: Software such as Texture Packer,27 Adobe Animate (formerly called
Flash CC)28, or Shoebox29 all generate texture atlases, not sprite sheets. You
must use the “Loader.atlas“ instead. You can download a FREE Sprite Sheet
Packer here30.

5.6 Squares and Checkered Grids

Square-based tile-maps are the simplest game boards to create. We create boxes in
the same fashion as we did for walls in chapter 1 — only these squares will be larger
— to contain both our avatar and opponents. How big should these tiles be? We have
several decisions to make:

• a grid-tile (aka cell) just big enough to hold a single avatar sprite. When the sprite’s
graphics are adjacent — “touching” another occupied square as we did in the
previous chapter; they are engaged in “melee/hand-to-hand” combat.

• a grid-tile large enough to hold both our avatar and its opponent; this is similar
to checkers or chess. They are engaged in “hand-to-hand” combat when both
opponents occupy the same square space.

25https://labs.phaser.io/edit.html?src=src/components/data/change%20data%20event.js
26http://www.dictionary.com/browse/teetering
27https://www.codeandweb.com/texturepacker
28https://www.adobe.com/products/animate.html
29http://renderhjs.net/shoebox/
30https://www.codeandweb.com/free-sprite-sheet-packer

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://labs.phaser.io/edit.html?src=src/components/data/change%20data%20event.js
http://www.dictionary.com/browse/teetering
https://www.codeandweb.com/texturepacker
https://www.adobe.com/products/animate.html
https://www.adobe.com/products/animate.html
http://renderhjs.net/shoebox/
https://www.codeandweb.com/free-sprite-sheet-packer
https://www.codeandweb.com/free-sprite-sheet-packer
https://labs.phaser.io/edit.html?src=src/components/data/change%20data%20event.js
http://www.dictionary.com/browse/teetering
https://www.codeandweb.com/texturepacker
https://www.adobe.com/products/animate.html
http://renderhjs.net/shoebox/
https://www.codeandweb.com/free-sprite-sheet-packer

Dem’s fightin’ words 190

• should we create numerous individual 16 x 16 px backgrounds? Remember each
object in a Scene must be processed every frame per second.

• or simply integrate the tiles into the single background image as I’ve done below?

Example 7.6: Grid-ed Combat as individual background images

1 //NEW! Grid Tile-Map configurations

2 var map; //tile map as background

3 var layer; //tile map layer

4 var tileSize = 64; //twice avatar icon size? or same size?

5 var numRows = 4; //adjustable for your game

6 var numCols = 4; //adjustable for your game

7 var tileSpacing = 2; //adjustable for your game

8 //var tilesArray = []; //one way; thousand more to choose

Example 7.7: Grid-ed Combat Squares traditional method

290 //New Combat Grid - generic square tiles

291 this.SQTilesFloor = this.add.group(); // optional staticGroup?

292 for(j=0;j<numRows;j++){

293 for(i=0;i<numCols;i++){

294 gameX = tileSize * i + tileSize/2 + tileSpacing;

295 gameY = tileSize * j + tileSize/2 + tileSpacing;

296 var tileGridSQ = this.add.rectangle(gameX,gameY,60,60,0x000000));

297 this.SQTilesFloor.add(tileGridSQ);

298 }

299 }

We still have one itty-bitty problem31 in our tiled combat encounter — the avatar is
still sliding across those tile images of the checkerboard and ignores any movement
restrictions. If your game requires turn-based limited movement, then we need to
resolve this. We can solve this easily by modifying the combat update() section that
monitors the player’s movement input. Here are several solutions:

1. Each time an arrow key is pressed, we “jump” the avatar to the next grid-ed tile.
We can also fix the bug of “the sliding avatar off the grid-field” by simply counting
and storing the number of rows and columns (i.e.: locations on the grid) where
the avatar currently is (i.e., metadata).

31https://www.merriam-webster.com/dictionary/itty-bitty

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.merriam-webster.com/dictionary/itty-bitty
https://www.merriam-webster.com/dictionary/itty-bitty

Dem’s fightin’ words 191

2. Or, we could place “invisible” walls around the grid to prevent the avatar from
leaking outside the combat area. This ignores movement restrictions of the tiles.

3. Or, we could use a more traditional approach using tiles map layers and external
JSON data files from the following Mozilla Developers’ References below.

4. Or, we could simply place our avatar in every square and make it visible and
invisible as determined by our movement path. An example of this method is
here32.

Pure JS Sample: Grid-ed Movement

1 //for example, snapping a grid coordinate of 43 to the nearest

2 //multiple of the gride size:

3

4 var dx = 43; //distance of x from sprite or point.

5 var gridSize = 32; //assuming every grid square is 32px

6 var columnX = Math.round((dx / gridSize) * gridSize);

7

8 //This provides a snapped sprite column as the first column grid.

Exercise: Download and study this source code33.

References from Mozilla Developers:

• Square Grid Tile Maps samples:a A collection of resources used by Mozilla
developers for developers, technical evangelizing, and similar such content.

• JavaScript for game development:b A compilation of materials to learn JavaScript
and make HTML5 games.

• JS Game development examples for Tilemaps”c Examples of tilemaps implemen-
tation with the Canvas API.

• HTML5 games workshop:d A workshop that teaches how to develop HTML5
games with JavaScript and Phaser. It is meant to last a full day, although it
includes sufficient guidance for people to finish it at home if only a short session
with a coach is possible.

ahttps://github.com/mozdevs/gamedev-js-tiles
bhttps://github.com/mozdevs/js-for-gamedev

32https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-
wctam.html#game

33https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/js-for-gamedev
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://makingbrowsergames.com/starterkits/jump2cap/Peg-Examples/trixAttacksMagix-Phaser/index-mobile-wctam.html#game
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/group/#create-game-objects

Dem’s fightin’ words 192

chttps://github.com/mozdevs/gamedev-js-tiles
dhttps://github.com/mozdevs/html5-games-workshop

Deeper Dive: Phaser III Grids

Phaser III has a new feature that makes grids very easy to build. Here’s a demonstra-
tion from labs.phaser.io and a plugin.

• labs.phaser.io demo34

• rexrainbow UI plugin35

Grid Plugin

var gridSizer = scene.rexUI.add.gridSizer(x, y, width, height, column, row);

* column : Amount of column grids.
* row : Amount of row grids.
* x, y : Position of gridSizer. Only available for top-gridSizer, children-sizers will be
changed by parent.
* width : Minimum width. i.e. Width of this gridSizer will bigger then this value.
* height : Minimum height. i.e. Hieght of this gridSizer will bigger then this value.

Source code available herea

ahttps://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer

The new “Grid Shape” feature in Phaser III is actually a Game Object,36 and being
such, you could add grids to any Scene, either insideGroup(s)37 or Container(s).38 You
simply treat it like any other Game Object in your game. You can even tween, scale,
enable physics and input. See this example at labs.phaser.io.39 The “Grid” gives you

34http://labs.phaser.io/view.html?src=src/game%20objects/shapes/grid.js
35https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
36https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
37https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
38https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
39http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://labs.phaser.io/view.html?src=src/game%20objects/shapes/grid.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer
https://github.com/rexrainbow/phaser3-rex-notes/tree/master/examples/ui-gridsizer
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js
http://labs.phaser.io/view.html?src=src/game%20objects/shapes/grid.js
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ui-gridsizer/
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObject.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Group.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Container.html
http://labs.phaser.io/view.html?src=src/geom/rectangle/set%20empty.js

Dem’s fightin’ words 193

an easy way to render square shapes into your game(s) without using any textures,
and furthermore, taking complete advantage of WebGL.

The Grid only supports color fills and cannot be stroked. But using clever grid spacing
correctly, you could accomplish a similar effect with cell outlines. Grids are available
only if the Grid Game Object was built into your Phaser framework. (Read more
here)40

You can control the size of the overall grid and the width and height of each individual
cell. You can also set a fill color for each cell as well as an alternate color. When the
“alternate color” is set, the grid cells naturally alternate into a checker-board displayed
effect. Optionally, you can set an outline color as your border around each cell. This
setting draws lines between the grid’s cells. If you specify an outline color with an
alpha of zero, then it simply draws the cells as spaced out.

//https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Grid.html
new Grid(scene, x, y, width, height, cellWidth, cellHeight, fillColor, fillAlpha, outlineFill-
Color, outlineFillAlpha)

Exercise: refer to https://rexrainbow.github.io/phaser3-rex-notes/docs/site/
gridtable/ Grid Table plugin and sample code.41

Exercise: Using the Grid as a game construction tool! William Clarkson has
developed a clever use of this feature. He uses the grid to align the placement
of game objects during development. You can more about his strategy here.42

40https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
41https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
42https://phasergames.com/scaling-games-in-phaser-3/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Grid.html
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/gridtable/
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/gridtable/
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
https://phasergames.com/scaling-games-in-phaser-3/
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#grid__anchor
https://github.com/rexrainbow/phaser3-rex-notes/blob/master/examples/gridtable/gridtable.js
https://phasergames.com/scaling-games-in-phaser-3/

Dem’s fightin’ words 194

Hexagonal Grids

Creating a Hexagonal Mega-Squares in a map grid
Many war-game simulations from the 1960s to present-day use hexagonal game-
board grids instead of square-based maps. Square-based grids share an edge with
only four other neighboring squares; but, they also touch another four neighbors
at just one point in the diagonal directions. This frequently compounds movement
distance along grids since diagonal movements are harder to equate properly to
cardinal directions. You are limited either to the four cardinal directions or eight
cardinal directions with squares. However, with hexagons, you have a compromise of
equidistant movement along with six directions. Hexagons don’t touch any neighbor
at only a point; movement to adjacent places are only across borders. Hexagons have
a small perimeter-to-area ratio. Unfortunately, in our square pixel-screened world of
computers, hexagons are harder to use. Amit J Patel43 has collected some articles that
may help you turn common square-grid algorithms into hex-grid algorithms.44 Let me
present the following resource for hexagonal grid maps.

Red Blob Games

Hexagonal grids are used in some games but aren’t quite as straightforward or
common as square grids. I’ve been collecting hex grid resources for nearly 20 years
and wrote this guide to the most elegant approaches that lead to the simplest code,
largely based on the guides by Charles Fua and Clark Verbrugge.b I’ll describe the
various ways to make hex grids, the relationships between them, as well as some
common algorithms. Many parts of this page are interactive; choosing a type of grid

43http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
44http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www.redblobgames.com/grids/hexagons/
http://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

Dem’s fightin’ words 195

will update diagrams, code, and text to match.
ahttp://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
bhttp://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html

Example: Dynamically Created Hexagonal Grid - traditional method

1 //New Combat Grid - simplistic hexagon grid tiles using mega-squares

2 this.HXTilesFloor = game.add.group();

3 var hxOffSetY = 0;

4 var spacingX = tileSize * 0.75;

5 for(j=0;j<numRows;j++){

6 for(i=0;i<numCols;i++){

7 // odd columns are pushed down half a square

8 if ((i % 2) == 1){

9 hxOffSetY = tileSize * 0.5;

10 }else{

11 hxOffSetY = 0;

12 }

13 gameX=tileSize*i+tileSize/2 +tileSpacing ;

14 gameY=tileSize*j+tileSize/2 +tileSpacing+hxOffSetY;

15 var tileGridHx = this.add.sprite(

16 gameX+(config.width/2),gameY,

17 box({length:60,width:60,color:'#333'}));

18 this.HXTilesFloor.add(tileGridHx);

19 }

20 }

The illustration above shows the hexagonal grid in an East-to-West orientation. The
combat demo has the hexagonal grid in a North-to-South orientation. Adjusting for
either is a simple matter of “off-setting” either the rows or columns by “half an area”.
The example above uses a “modulo division” to learn if we are laying down an “odd
row or column” or an “even row or column”.

Deeper Dive: Real hexagonal grids

As you may have already guessed, “rexrainbow” has a wonderful Phaser III plugin that
creates hexagonal grids.45 in either North-South or East-West orientations.

45https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www-cs-students.stanford.edu/~amitp/Articles/Hexagon2.html
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/board-hexagonmap/#hexagon

Dem’s fightin’ words 196

var tileXYArray = scene.rexBoard.hexagonMap.hexagon(board, radius);

var out = scene.rexBoard.hexagonMap.hexagon(board, radius, out);

Squishes

This is just a short introduction. Squishes are mixed polygonal areas; they restrict
movement into adjacent areas only and neighboring areas are not predictably ar-
ranged as grids are. In my opinion, squishes are better used for strategic war-games
instead of tactical encounters. But then, game developers are creative types, and I
may have to “eatmywords”46 at some point to come. If you would like to see a Phaser
Plugin for squishes download from here47. Here’s an illustration of squishes from the
Phaser Squish Generator:

Phaser Squish Plugin Map generator

5.7 Rules of Engagement: Take 5 paces, turn, and …

Been there … done that …

The history and evolution of the “tactical role-playing game” (aka “TRPG”) is a game
genre that incorporates elements of traditional role-playing games and emphasizes

46http://idioms.thefreedictionary.com/eat+words
47http://luckylooke.github.io/phaser-islandjs-plugin/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://idioms.thefreedictionary.com/eat+words
http://luckylooke.github.io/phaser-islandjs-plugin/
http://idioms.thefreedictionary.com/eat+words
http://luckylooke.github.io/phaser-islandjs-plugin/

Dem’s fightin’ words 197

low-level tactical combat rather than high-level strategic gameplay. Tactical RPGs tend
not to feature multi-player play, and a distinct difference between tactical RPGs and
traditional RPGs is the lack of exploration. Later, we will introduce this high-level
strategic RPG play. In Japan, these games are typically known as “Simulation RPGs”
(�������� RPG?, abbreviated as SRPG).

Note: Ruins of Able-Wyvern™ (ARRA) has included both tactical combat and
strategic roleplay since 1993.

Learning the ropes48 about RPGs will provide us the “who’s donewhat andwhy it was
successful.” To gain this foundational knowledge, do the following three exercises to
understand why I selected these forms of combat resolution.

Exercise: 1. Research other combinations on conducting combat here.49

Exercise: 2. Research Controversy and Criticisms of preferred conflict resolu-
tion across cultures here.50

Exercise: 3. Explore what has happened with RPG and what gamers currently
expect.51

5.8 “Where’s the beef?”

How do we conduct combat and resolve a duel between two (or more) antagonists?
All combat systems boil down to just a few basic questions:52

• What are the chances an avatar has to strike an opponent successfully?
• If a successful strike occurs, how much injury was inflicted? and finally,
• What might other events happen to the participants?

It’s time to write some code for various forms of combat resolution and then add
some dynamic menu. Here are six (6) different ways to resolve combat:

48http://idioms.thefreedictionary.com/learn+the+ropes
49https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
50https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
51https://en.wikipedia.org/wiki/Role-playing_video_game
52http://www.roguebasin.com/index.php?title=Thoughts_on_Combat_Models

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://idioms.thefreedictionary.com/learn+the+ropes
https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game
https://en.wikipedia.org/wiki/Role-playing_video_game
http://www.roguebasin.com/index.php?title=Thoughts_on_Combat_Models
http://idioms.thefreedictionary.com/learn+the+ropes
https://en.wikipedia.org/wiki/Role-playing_video_game#Combat
https://en.wikipedia.org/wiki/Role-playing_video_game#Cultural_differences
https://en.wikipedia.org/wiki/Role-playing_video_game
http://www.roguebasin.com/index.php?title=Thoughts_on_Combat_Models

Dem’s fightin’ words 198

• Click fest! Originally deployed in Ruins of Able-Wyvern™ (ARRA) and Blood Pit™
(version 1).53 Each click is a separate combat turn with attack and defense.

• “Guitar Hero” style combat — as modified by my game series Red Fountain
Swordsman™. This is an interesting version of combat that ties directly into a
player’s personal coordination — refer back to GM Skillsmechanics. This combat-
style is your choice if you’re interested in limiting the advancement of an avatar
to its owner’s natural capabilities. You can find this combat style in the Bonus
Content download file in the Bonus Games directory.

• “Drama Theater” as seen in so many online games currently;54 acting out the
attacks as in “Street Fighter”.55 This combat system is heavily dependent on
artwork animation.

• The Society for Creative Anachronism56 virtual trainer, game design by Steve
Echols

• “En Guard!”57 a rival to D&D and still wildly popular today.
• Yeap! Ya betcha’ ‘ur life! — a “never-before-seen” combat system that “gambles”

on avatars. You can find this combat style in the Bonus Content download file in
the Bonus Games directory.

Click-fest

Ruins of Able-Wyvern™ (ARRA) Gaming System originally had a single “Fight” button.
Each click on this button represented one combat game-turn round — an exchange of
offensive and defensive moves per each antagonist. Later, I migrated the game to the
dynamic menu-style you’ve seen earlier in this chapter. If antagonists are “touching”
then an “Attack” button becomes available for melee combat. If antagonists are “not
touching” then only missile weapons are used.

In addition to these “combat buttons”, other tactical menu options become available.
The first of these actions is “Exchange” weapons. Clicking this button allows an avatar
to switch weapons in anticipation of either “hand-to-hand” grappling or disengaging
from their opponent while anticipating missile combat. The other combat options
are defensive in nature and permit the combatants to focus all their attention on
parrying, blocking in melee combat, or “dodging” incoming missiles. These combat
options appear dynamically according to the current combat situation using a “finite
state machine” (FSM).

53http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
54https://www.battleon.com/aq-play.asp
55http://gamequeryjs.com/
56http://www.sca.org/
57https://en.wikipedia.org/wiki/En_Garde!

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://www.battleon.com/aq-play.asp
http://gamequeryjs.com/
http://www.sca.org/
https://en.wikipedia.org/wiki/En_Garde!
http://localhost/_GIS/GISUS-MakingBrowserGames/makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://www.battleon.com/aq-play.asp
http://gamequeryjs.com/
http://www.sca.org/
https://en.wikipedia.org/wiki/En_Garde!

Dem’s fightin’ words 199

Pure JS Combat Finite State Machine

49 // Design notes: switch seems to be faster than the if statement combat.

50 // This is original "switched" version rv_8

51 // =====================================

52 // Menu Finite State Machine (as Global FSM - Ch. 8)

53 // =====================================

54 // Default is English; easily replace with native language text.

55 // Also used as simple text buttons with hit area.

56 var menu = [[]]; // [gameStateNdx] [available menu options]

57 menu[0][0] = "Exit"; // always available

58 menu[0][1]="Disbelieve"; // always available; a simple magic spell for everyone

59 // "disengaged" game state index

60 menu[0][2] = "Dodge"; // available during "disengaged"

61 menu[0][3] = "Fire"; // available during "disengaged"

62 menu[0][4] = "Throw"; // available during "disengaged"; throw single-handed w\

63 eapon

64 menu[0][5] = "Spell"; // available during "disengaged"; cast magic spell

65

66 // "engaged" game state index;

67 menu[1] = ["","Attack","Defend","H-2-H","Disengage","Exchange"];

68 // alternate format

69 //menu[1][0] = ""; // available during "melee"

70 //menu[1][1] = "Attack"; // available during "melee"

71 //menu[1][2] = "Defend"; // available during "melee"

72 //menu[1][3] = "H-2-H"; // available during "melee"

73 //menu[1][4] ="Disengage"; // available during "melee"

74 //menu[1][5] = "Exchange"; // available during "melee"

75

76 // pre & post combat (i.e., "disengaged") game state index;

77 menu[2] = ["","Cook","Inventory","Search","1st Aid","Learn"];

78 // alternate format

79 //menu[2][0] = ""; // always available

80 //menu[2][1] = "Cook"; // available pre or post combat

81 //menu[2][2] ="Inventory"; // available pre or post combat

82 //menu[2][3] = "Search"; // available post combat

83 //menu[2][4] = "1st Aid"; // available during "melee" as potions?

84 //menu[2][5] = "Learn"; // available post combat; gain experience

As mentioned earlier, combat has an engaged, disengaged status, and a pre- or post-
combat state. It becomes a simple matter to use a 2D array. The first dimension —
the columns — is the “combat status sentinel” of engaged, disengaged, or pre/post-
combat and the rows hold the various commands a player will issue inside that status.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Dem’s fightin’ words 200

Separating our commands in this way always helps us in developing Massive Multi-
player online Games (MMoG) and placing our HUD options in various containers.

A “finite state machine” (FSM) is truly invisible to the gamers as they should “Pay no
attention to that man behind the curtain.” as the Wizard of OZ once said.58 We will
study further details about the FSM and recursive feedback in later chapters. Suffice
it to say for now, that a single click launches several algorithms:

• _combatRound: Is the administrative controller. It determines who goes first
in this round of combat. This combat initiative could be modified by previous
injuries, emotional predigest, winning, or losing. This function then calls the
combat round narrative.

• _combatNarrative: Is the work-horse for the combat turn. It generates a unique
narrative that occurred during this single combat action. It generates the random
events, compares combat skills with a helper function, evaluates the success or
failure of each antagonists’ attack and defense, and lastly calculates physical
damage imposed upon the body or equipment (i.e., damage to weapons or
shield/armor). All this from one simple click of a button.

Exercise: Download and study the combat.js in the online Source code Ap-
pendix.59

Guitar hero - Time to get it Right!

• Red Fountain Swordsman (play the original flash game here)60: Take the same
martial-arts classes in swordsmanship as the Winx club specialists of Red Foun-
tain. Practice your sword skills and timing to become the perfect swordsman
specialist like Brandon and Sky.

• Play the Phaser demonstration here.61

Note: There’s a similar game to Guitar-Hero constructed in Phaser. I encourage
you to download and review their GitHub OOP source code.62

58https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
59https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
60https://www.renown-games.com/winx/red-fountain-swordman/index.html
61https://makingbrowsergames.com/book/_rfs-Phaser/
62https://github.com/PBMCube/banjo-hero

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://www.renown-games.com/winx/red-fountain-swordman/index.html
https://makingbrowsergames.com/book/_rfs-Phaser/
https://github.com/PBMCube/banjo-hero
https://medicalxpress.com/news/2017-01-attention-curtain-human-brain-important.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat.js
https://www.renown-games.com/winx/red-fountain-swordman/index.html
https://makingbrowsergames.com/book/_rfs-Phaser/
https://github.com/PBMCube/banjo-hero

Dem’s fightin’ words 201

The Guitar Hero was a series of musical-rhythm games first published in 2005 by
RedOctane and Harmonix, and distributed by Activision, in which players use a guitar-
shaped controller to simulate playing guitar. In the original Guitar Hero game, a player
tried to press the correct guitar string at the correct time. It was a game that used
“Timing Elements”63 tied into the gamer’s personal coordination skills — refer to
Chapter 5 GM Skills. It mimicked many features of an actual guitar, including fast-
fingering riffs, “hammer-ons”, pull-offs, and a “whammy bar” to alter the notes’ tones.
The game was transcribed into Adobe Flash64, from which came my idea for this
version of combat — the Red Fountain Swordsman game.

Hint: This complete source is available only in the Bonus Download con-
tent. Developer’s Demo located at https://makingbrowsergames.com/book/
_rfs-Phaser/

Days of our Lives - Drama Theater

Conflict — as seen in so many current online games — acts out the conflict as
an animated movie such as that seen in “Street Fighter”. These conflict scenes
solicit tactics from the gamer then act out the chosen strategies compared to the
antagonists’. The best game, in my opinion, that demonstrates this, is “Adventure
Quest”65. I had many visits and exchanges with them in their earlier years at the
turn of the millennium (2000 - 2001); AQ sky-rocketed when they hired a professional
artist years later to support their online efforts! Their groundbreaking methods have
become the “bread and butter”66 of today’s RPG combat as seen in this online course
below which mimics their combat style.

63http://www.roguebasin.com/index.php?title=Time_Systems
64http://guitarflash.com/
65http://www.battleon.com/
66http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.roguebasin.com/index.php?title=Time_Systems
http://guitarflash.com/
https://makingbrowsergames.com/book/_rfs-Phaser/
https://makingbrowsergames.com/book/_rfs-Phaser/
http://www.battleon.com/
http://www.battleon.com/
http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter
http://www.roguebasin.com/index.php?title=Time_Systems
http://guitarflash.com/
http://www.battleon.com/
http://dictionary.cambridge.org/us/dictionary/english/bread-and-butter

Dem’s fightin’ words 202

Sample of Single Page Combat from Zenva

• Single Page Combat from Zenva RPGOnline Course67 FREE Source Code available
in this excellent tutorial.

• Advanced Phaser 3 – Build an RPG68 Master advanced skills in HTML5 Game
Creation as you build an RPG

SCA Virtual “Fighter Practice” by Steve Echos

The Society for Creative Anachronism is an international organization dedicated to
researching and re-creating the arts and skills of pre-16th-century Europe. Their
“Known World” consists of 20 kingdoms, with over 30,000 members residing in
countries around the world. Members, dressed in clothing of the Middle Ages and
Renaissance, attend events which feature tournaments, royal courts, feasts, dancing,
various classes & workshops, and more.

One of my life-long friends, Steve Echos, introduced me to a game he invented to
train S.C.A. warriors in their live combat. He has graciously allowed me to publish his
system for your enjoyment.

67https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=
Phaser3GamePrototyping

68https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/course/rpg-game-development-with-phaser/?a=47&campaign=Phaser3GamePrototyping
https://academy.zenva.com/product/advanced-phaser-3-build-an-rpg/?a=47&campaign=Phaser3GamePrototyping

Dem’s fightin’ words 203

Rock, Paper, Scissor in a deadly combat system
How it works: “premeditate and execute”.

The game is a simple “rock, paper, scissors” style of combat; but is extended into both
hands — a weapons hand and a shield hand — instead of using the traditional one
hand.

1. Each player selects where to defend their body with their shield hand.
* A “Norman” shield will protect 2 adjacent locations. For example, a player with
a Norman shield protects “high” then both their “head” and “body” are protected
while their legs are exposed to any attacks.
* A “Saxon” shield only protects 1 area while the adjacent areas are exposed to
attack.

2. Each player selects where to attack their opponent as: “high” (the head), “middle”
(the body), or “low” (the legs).

3. Players reveal their choices; a successful hit on the head or body will kill their
opponent’s avatar. A hit on the legs is crippling; the player cannot move.

This is a wonderful combat system for online multi-player or table-top gaming. For a
single-player game, it is a simple matter of listing all the possible combat actions for
the computer’s AI; and then, perform random (or semi-intelligent) actions. Download
the pseudocode and flowchart.69 I encourage you to combine this “SCA Virtual
Trainer” with this interesting game called Color ZAP (book)70 by William Clarkson71

for a single-player combat system.
69https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
70http://amzn.to/2njpDQn
71https://williamclarkson.net/courses/phaser-basics/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
http://amzn.to/2njpDQn
https://williamclarkson.net/courses/phaser-basics/
https://makingbrowsergames.com/p3gp-book/p3-sca/code2flow_rps.pdf
http://amzn.to/2njpDQn
https://williamclarkson.net/courses/phaser-basics/

Dem’s fightin’ words 204

SCAVT game: lines 292-318

292 // Optional Game Turn Results (GTR) display formatting

293 // 1) Place GTR on a modal JavaScript alert pop-up

294 // - alert(composedNarration);

295 // - use jQuery ui ...

296 // function showPopUp () {

297 // //JQuery method to call the modal in Semantic UI.

298 // $('.ui.modal').modal('show');

299 // }

300

301 // 2) Place GTR on a modal Phaser Text pop-up with a continue button.

302 // Others solutions are jquery, but the canvas focus will be lost.

303 // it's better to place HUD in layers, containers, or groups then

304 // change the visibility on or off (simply without animations).

305

306 // 3) Place GTR on a sliding HUD panel on either side

307 // https://jqueryui.com/

308 // https://codyhouse.co/gem/css-slide-in-panel

309 // https://codepen.io/jasesmith/pen/raqBpm

310 // http://wowslider.com/html5-slider-sunny-fade-demo.html

311 // https://davidwalsh.name/css-slide

312

313 // 4) Place GTR in a 2-column table or single column on each side

314 // 5) Place GTR into a historical logging journal

315 // - only reset journal upon new game sessions

316 // - email the journal or preserve it:

317 // - in localStorage permanently or

318 // - sessionStorage per game play.

319 // var emailLog += composedNarration;

• Demonstration single-player game here (v3.16+)72

• Demonstration multi-player game (v3.16+)73

En Guard method

En Guard was a rival to Dungeons and Dragons (D&D) and still wildly popular today.
Launched in 1975, it provided an “alternate RPG combat system” using tactics rather
than its “dice-rolling contender” D&D. The En Guard combat system is a Queued Turn

72https://makingbrowsergames.com/p3gp-book/p3-sca/
73https://leanpub.com/rrgamingsystem

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/p3-sca/
https://leanpub.com/rrgamingsystem
http://www.roguebasin.com/index.php?title=Time_Systems
http://www.roguebasin.com/index.php?title=Time_Systems
https://leanpub.com/rrgamingsystem

Dem’s fightin’ words 205

System (explained in detail here)74 — or a premeditate and execute. In this approach,
a gamer selects an attack option (cut, slash, lunge); each option is broken down into
“fix segments of time” to perform that action. For example, a “Cut” would require 4-
time segments: x-C-x-x. As you see, the “cut” happens in the 2nd time segment, the “x”
are movement actions into and out from that single maneuver. A Player has 12-time
segments (TS) per combat round; this “cut” action consumed 1/3 of the time so the
player could select other tactical options.

En Gard Combat Turn and timing segments

Turn 1 2 3 4 5 6 7 8 9 10 11 12
A X C X X X P X X C X X X
B X P X X C X X X C X X X

• C = Cut (X-C-X-X)
• P = Parry (X-P-X)
• X = Rest or time to maneuver

Two antagonists are dueling. In time segment (TS) #2 B successfully parried A’s
cutting attack. In TS #5, B’s attack was successful since A’s parry came too late. Both
combatants struck simultaneously in TS #9.

This is a wonderful combat system for online multi-players or table-top gaming. For a
single-player game, it is a simple matter of listing all the possible combat actions for
the computer’s AI; and then, perform random (or semi-intelligent) actions.

The EnGard game system. Product info is available here.75

Yeap! Ya betcha’ ‘ur life!

This is an interesting twist on combat systems since a gamer is “betting their skills
and avatar’s life in the process”. So why not turn the combat system into a “gambling”
game such as a “slot machine”?? There are GA-zillion examples for “slot machines with
the Phaser Framework”; all you would need is some interesting artwork. Each lever
pull could spin up the attacks and defenses for both attackers and antagonists. The
various combinations would translate into the combat rounds results. Studying the
up-coming chapter on Artificial Intelligence, you could skew each “slot machine pull”
using a probability table. Refer to my favorite author — Emanuele Feronato — for
source code and more ideas.76

74http://www.roguebasin.com/index.php?title=Time_Systems
75https://amzn.to/2Ncimw6
76http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://amzn.to/2Ncimw6
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/
http://www.roguebasin.com/index.php?title=Time_Systems
https://amzn.to/2Ncimw6
http://www.emanueleferonato.com/2010/04/13/17-jquery-powered-web-games-with-source-code/

Dem’s fightin’ words 206

5.9 Story narrative

Nothing is more compelling than a background story explaining why your hero
is questing. The Ruins of Able-Wyvern™ (ARRA) and the Rescue of NCC Pandora™
(ARNCCP) Gaming System (source code in the appendix) provides such a narrative
during combat and for quests.

Randomly Generate background stories

Hint: This complete source is available in the online Source code Appendix77.

77https://makingbrowsergames.com/book/index13.html#13.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/index13.html#13.3
https://makingbrowsergames.com/book/index13.html#13.3

Dem’s fightin’ words 207

5.10 Frisking, Fondling, or Groping

Our Avatar wins in Combat & Salvages rewards
After a combat encounter, our avatar has the option to search and rescue booty.

5.11 Chapter Source Code

https://makingbrowsergames.com/book/index.html

Book Combat demo (online)78

Hint: Use the Developer’s Console to study the internal game operations.

78https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.thefreedictionary.com/frisking
http://www.dictionary.com/browse/fondle
https://www.merriam-webster.com/dictionary/grope
https://makingbrowsergames.com/book/index.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/

Dem’s fightin’ words 208

5.12 Complete Combat Prototypes

We have moved the Source Code Appendix onto the supporting website and removed
it from the 1st to 6th editions. This allows us to update code changes dynamically for
Phaser v3.x.x as it matures.

• Combat Systems Game Prototype Library79

• Chapter 7 online Examples80

5.13 Summary

Here’s what we’ve fought for thus far…

• Learned the 4 virtues of a good tactical combat system.
• Separated Conflict spacial aspects;
• Developed various modes of combat: ranged, melee, and hand-to-hand.
• Provided gamers with correct weapon usage in various combat modes.
• Created a dynamic menu responding to the current state of conflict.
• Analyzed the Phaser Weapons function.
• Researched the 3rd Person missile demo.
• Discovered how to juice up games.
• Developed two distinct tactical movement styles and matching tile-maps.
• Contain combatants with a combat arena.
• Programmed several inputs to control a player’s avatar.
• Researched the Grid-less Combat demo.
• Develop tactical maneuvers as an added feature.
• Researched the Grid-ed Combat demo.
• Discovered the proper “separation of concerns” for Tiled-Maps.
• Developed movement tables as a super-set of Tiled-Maps.
• Deployed square grids for various moves and combat engagement.
• Deployed hexagonal grids with either a vertical or horizontal orientation.
• Researched the Hex Grid Combat demo.
• Deployed squishes as a movement and tile-map.
• Discovered how to import new graphics art under the “separation of concerns”

game prototyping.
• Found resource tools to develop movement tables and Tile-Maps.
• Analyzed the difference in tile-map tools and importing into Phaser.

79https://makingbrowsergames.com/p3gp-book/index-combat.html
80https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/index-combat.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/
https://makingbrowsergames.com/p3gp-book/index-combat.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/

Dem’s fightin’ words 209

• Examined various Mozilla Game Developers References for Tiled-Maps creation.
• Examined various Red Blob References for square and hexagonal Tiled-Maps

creation.
• Researched 6 different conflict systems.
• Studied popular conflict systems across various ethnic and cultural groups.
• Analyzed the “Click-fest” finite state machine.
• Learned about minimum button sizes for mobile games.
• Adapted the “Guitar Hero” style of conflict.
• Discovered the Society for Creative Anachronism and their “Virtual Fighter Prac-

tice” combat system.
• Discovered “En Guard” queued turn system.
• Learned to adapt and innovate gambling games into a combat system.
• Discovered how to enhance conflict systems with narrative storylines.

5.14 Footnotes

• To preserving CPU processing and battery, pre-calculate math formula. Refer to
sine and cosine here81. One radian equals82 180°/ π = 57.30°. Use this online
calculator83 to help reduce the CPU workload.

• T, A. (2017, January 17). Finger-Friendly Design: Ideal Mobile Touchscreen Target
Sizes - Smashing Magazine.84 Retrieved May 19, 2017,

• EnGard game system. Product info85

• Color ZAP (book)86

• Phaser Plugin for squishes.87

• Hex grid resources88

• References from Mozilla Developers: 89

• Square Grid Tile Maps samples90.
• “The Four Virtues of a good tactical turn-based combat system”91

• JavaScript for game development92

• JS Game development examples for Tilemaps93.
• HTML5 games workshop94

• How to write a Rogue-like game in 15 Steps95

81http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
82https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
83https://www.rapidtables.com/calc/math/Cos_Calculator.html
84https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
85http://www.engarde.co.uk/useful.html#Top
86http://amzn.to/2njpDQn
87http://luckylooke.github.io/phaser-islandjs-plugin/
88http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
89https://github.com/mozdevs
90https://github.com/mozdevs/gamedev-js-tiles
91http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
92https://github.com/mozdevs/js-for-gamedev
93https://github.com/mozdevs/gamedev-js-tiles
94https://github.com/mozdevs/html5-games-workshop
95http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.engarde.co.uk/useful.html#Top
http://amzn.to/2njpDQn
http://luckylooke.github.io/phaser-islandjs-plugin/
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps
http://www2.clarku.edu/faculty/djoyce/trig/cosines.html
https://ee.stanford.edu/~hellman/playground/hyperspheres/radians.html
https://www.rapidtables.com/calc/math/Cos_Calculator.html
https://www.smashingmagazine.com/2012/02/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.engarde.co.uk/useful.html#Top
http://amzn.to/2njpDQn
http://luckylooke.github.io/phaser-islandjs-plugin/
http://www-cs-students.stanford.edu/~amitp/gameprog.html#hex
https://github.com/mozdevs
https://github.com/mozdevs/gamedev-js-tiles
http://sinisterdesign.net/12-ways-to-improve-turn-based-rpg-combat-systems/
https://github.com/mozdevs/js-for-gamedev
https://github.com/mozdevs/gamedev-js-tiles
https://github.com/mozdevs/html5-games-workshop
http://www.roguebasin.com/index.php?title=How_to_Write_a_Roguelike_in_15_Steps

Dem’s fightin’ words 210

• Rogue Basin articles on combat96

96http://www.roguebasin.com/index.php?title=Articles#Combat_2

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.roguebasin.com/index.php?title=Articles#Combat_2
http://www.roguebasin.com/index.php?title=Articles#Combat_2

Game Mechanism Components 211

6. Game Mechanism Components

This section was in the former Phaser III Game Design Workbook (5th edition), and is
preserved here as I update that book to its new 6th edition and this book’s content.

6.1 Phaser III inline script - Reviewed

Phaser III Game Mechanics in main.js

1 // ==

2 // ---

3 // Main game Handler methods

4 // ---

5 //**TODO**:

6 // refactor and adjust for your game deployment

7 // remove console debug information on public deployment

8 // ==

9 main: function(){

10

11 //Phaser v3.16+

12 game = new Phaser.Game(config);

13 console.log("Game prototype (Phaser.Game): Ext? "+Object.isExtensible(Phase\

14 r));

15 //console.log(Object.values(Phaser));

16 //console.log(Object.getPrototypeOf(Phaser));

17 console.log(Object.getOwnPropertyDescriptors(Phaser));

18

19 // add all game states

20 for(var stateName in window.GAMEAPP.state){

21 console.log("Crnt State: "+stateName);

22 game.scene.add(stateName, window.GAMEAPP.state[stateName]);

23 }

24

25 //Dynamically assigned Game Mechanics from JSON Data file.

26 gameMechanics();

27

28 //move to next game phase

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 212

29 console.log("Leaving GAMEAPP.main -> boot"); //debug

30 game.scene.start('boot');

31 },

View the entire annotated “main.js” here.1

Download your v3 Project Template and demo2 from
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.
zip

Phaser v2.x.x inline script - Reviewed

1 var gameWidth = 1024; //golden ratio set-up

2 var gameHeight = 640;

3

4 //create an "instance" of our Phaser Game framework to use and call

5 // from within our game.

6 var game = new Phaser.Game(

7 gameWidth,

8 gameHeight,

9 Phaser.AUTO,

10 'game');

11 game.state.add('Boot', BasicGame.Boot);

12 game.state.add('Credits', BasicGame.Credits);

13 game.state.add('Game', BasicGame.Game);

14 game.state.add('GameOver', BasicGame.GameOver);

15 game.state.add('Languages', BasicGame.Languages);

16 game.state.add('MainMenu', BasicGame.MainMenu);

17 game.state.add('MoreGames', BasicGame.MoreGames);

18 game.state.add('Preloader', BasicGame.Preloader);

19 //Now pass control over to the Boot state.

20 game.state.start('Boot');

Adding Display objects

Game Objects — with its texture, animation capability, input events, and physics — are
called “sprites”. Sprites are an indispensable component in your game; they are used

1https://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
2https://makingbrowsergames.com/p3design/project-starterKit-demo/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.zip
https://makingbrowsergames.com/p3design/v3.15.x-standardTraditional.zip
https://makingbrowsergames.com/p3design/project-starterKit-demo/js/main.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/

Game Mechanism Components 213

for nearly everything that gamer sees. In contrast, an image, in the Phaser JavaScript
Framework, is a “lighter” Game Object with a texture and input but does not have
attached physics reactions nor animation handlers.

Sprites are computer graphics that are moved around the screen or otherwise
manipulated as a single entity by the gamer input controls (aka mechanisms). It is
the player’s representation (aka avatar) in the game’s activities. At its most basic
composition a Sprite consists of:

• a set of coordinates and a texture that is rendered to the canvas.
• contain additional properties

- allowing for physics motion (via Sprite.body),
- input handling (via Sprite.input),

• events (via Sprite.events),
• animations (via Sprite.animations), and
• camera culling and more.

Phaser III example
this.<displayNameAssigned> = this.add.<Phaser-object-types>(this, x,y,key,frame)a

Phaser v2.x.x example
this.<displayNameAssigned> = game.add.<Phaser-object-types>(this, x,y,key,frame)b

ahttp://labs.phaser.io/edit.html?src=src/game%20config/multiple%20game%20instances.js
bhttp://phaser.io/docs/2.6.2/index#display

game.add, from the GameObjectFactory library, is the quickest way to create common
game objects. These newly created objects are automatically attached to their appro-
priate “Manager”, “World”, or manually specified parent “Group”. Phaser III currently
supports different objects3 through the Game Object Factory compared to the former
v2.x.x.

NOTE: Refer to Phaser API documentation for the various display objects. And,
review Part 2 - Loading Assets4 in the official Phaser Tutorial Making your first
Phaser game5.

All sprites are typically loaded for each game phase during the “Boot”, “Preload” game
phases, or inside each scene’s “preload essential function”. Adding visual game pieces

3https://phaser.io/phaser3/contributing/part5
4http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
5http://phaser.io/tutorials/making-your-first-phaser-3-game

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/edit.html?src=src/game%20config/multiple%20game%20instances.js
http://phaser.io/docs/2.6.2/index#display
http://labs.phaser.io/edit.html?src=src/game%20config/multiple%20game%20instances.js
http://phaser.io/docs/2.6.2/index#display
https://phaser.io/phaser3/contributing/part5
http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
http://phaser.io/tutorials/making-your-first-phaser-3-game
http://phaser.io/tutorials/making-your-first-phaser-3-game
https://phaser.io/phaser3/contributing/part5
http://phaser.io/tutorials/making-your-first-phaser-3-game/part2
http://phaser.io/tutorials/making-your-first-phaser-3-game

Game Mechanism Components 214

should appear in the internal “pre-load” functions; placing the game pieces onto the
game stage should appear in the internal “create” functions of each Phaser III scene.

Phaser III example

1 "use strict";

2 /** game load assets **/

3 var load = new Phaser.Class({

4

5 Extends: Phaser.Scene,

6

7 initialize: function load (){

8 Phaser.Scene.call(this, { key: 'load' });

9 },

10

11 preload: function (){

12 console.log("Entering load -> preload"); //debug

13 this.load.image('loadScene', 'assets/images/loadScene.jpg');

14 // we have preloaded assets required for Loading group objects

15 // from the Boot state.

16 },

17

18 create: function(){

19 // loading has finished - proceed to where? demo state? languages?

20 this.add.image(0, 0, 'loadScene').setOrigin(0);

21 //this.input.once('pointerdown', function () {

22 console.log('From load to language');

23 this.scene.start('language');

24

25 //}, this);

26 }

27

28 });

Exercise: Download this skeleton scene6 file as your template.

Adding Player(s) and Opponent(s) sprites will follow similar mechanisms. Static ele-
ments, those having a fixed position, would use images. Now that the sprite sheet is
preloaded, place the sprite in the canvas by changing the “create function” this way:

6https://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/gamePhase-skeleton-class-template.js

Game Mechanism Components 215

Phaser v2.x.x example

1 preload: function(){

2 //I want physics and animation handlers

3 this.sprite = game.add.sprite(200, 150, "spriteName");

4 //no physics nor animation handlers present

5 this.rock = game.add.image(100, 100, "imageName");

6

7 //this has animation frames.

8 game.load.spritesheet(

9 "spriteName2", //assigned variable name

10 "spriteGraphics.png", //graphics file name

11 spriteWidthSize, //dimensions

12 spriteHeightSize

13);

14 },

Adding Player(s) and Opponent(s) sprites will follow similar mechanisms. Static ele-
ments, those having a fixed position, would use images. Now that the sprite sheet is
preloaded, place the sprite in the canvas by changing the “create function” this way:

Phaser v2.x.x example

1 create: function(){

2 // The difference between an Image and a Sprite

3 //is that you cannot animate nor add physics to an Image

4 game.add.image(

5 100, //x coordinates

6 100, //y coordinates

7 "rock" //your assigned variable name

8);

9 }

Hint: You could download and create all your game tokens and place them
in the “wings” of your stage — just as actors waiting to enter a stage play.
The hidden secret is game.make. It is the quickest way to create common game
objects without adding them to the game world display! Phaser currently (as
of v2.6.2) supports 20 objects7 through the Game Object Creator.

7https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html

Game Mechanism Components 216

Exercise:Create an add sprite/image for each control mechanism on your main
menu scene.

Phaser III Example: Creating for Credits Scene

1 var credits = new Phaser.Class({

2

3 Extends: Phaser.Scene,

4

5 initialize: function credits (){

6 Phaser.Scene.call(this, { key: 'credits' });

7 },

8

9 preload: function (){

10 this.load.image('creditsScene', 'assets/images/creditsScene.jpg');

11 },

12

13 create: function (){

14 this.add.image(0, 0, 'creditsScene').setOrigin(0);

15 this.input.once('pointerdown', function () {

16 console.log('From credits to menu');

17 this.scene.start('menu');

18

19 }, this);

20 }

21

22 });

Exercise:Create an add sprite/image for each control mechanism on your main
menu scene.

NOTE: Refer, as we did earlier, to your Bonus Content8 /MMM-js-
v0001/jsrc/Boot.js and Preloader.js files. I am using a button atlas to manage
my “multi-state” buttons.

8https://makingbrowsergames.com/p3design/bonusDownLoads/MMM-JSource.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3design/bonusDownLoads/MMM-JSource.zip
https://makingbrowsergames.com/p3design/bonusDownLoads/MMM-JSource.zip

Game Mechanism Components 217

Hint: You could download and create all your game tokens and place them
in the “wings” of your stage — just as actors waiting to enter a stage play.
The hidden secret is game.make. It is the quickest way to create common game
objects without adding them to the game world display! Phaser currently (as
of v2.6.2) supports 20 objects9 through the Game Object Creator.

You could create your own sprites; but, dozens of websites that offer “royalty-free”
graphics. It’s your choice. #1 and #2 below are my strongest recommendations; the
following recommendations are offered in alphabetical order only with no preference
suggested.

1. GameDevMarket.net10 Collection of Music, Sound effects (sfx), 2D/3D/GUI Art.
2. http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
3. http://spriteme.org/
4. GUI game kits11

• http://hasgraphics.com/free-sprites/
• http://opengameart.org
• http://spritedatabase.net/
• http://tsgk.captainn.net
• http://untamed.wild-refuge.net/rmxpresources.php?characters
• http://www.bogleech.com/games.html
• http://www.cgtextures.com/
• http://www.gameartguppy.com/
• http://www.hellsoft.net
• http://www.lemog.fr/lemog_textures/index.php
• https://lostgarden.home.blog/tag/free-game-graphics/
• http://www.makeflashgames.com/tutorialshtml5/draw-image.php
• http://www.pygame.org/wiki/resources
• http://www.retrogamezone.co.uk/
• http://www.rpg-palace.com/visual-resources/tilesets-rmxp
• http://www.spiralgraphics.biz/packs/
• http://www.spriteland.com/
• http://www.spriters-resource.com/
• http://www.sprites-inc.co.uk/
• http://www.videogamesprites.net/
• https://www.makegameswith.us/academy/art/set
• https://www.pinterest.com/eduardoonguard/free-game-sprites-and-assets/
• https://www.scirra.com/forum/kenney-s-free-assets-20-000-assets_t93518

9https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
10https://www.gamedevmarket.net?ally=GVgAVsoJ
11https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://www.gamedevmarket.net/?ally=GVgAVsoJ
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
http://spriteme.org/
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238
http://hasgraphics.com/free-sprites/
http://opengameart.org
http://spritedatabase.net/
http://tsgk.captainn.net
http://untamed.wild-refuge.net/rmxpresources.php?characters
http://www.bogleech.com/games.html
http://www.cgtextures.com/
http://www.gameartguppy.com/
http://www.hellsoft.net
http://www.lemog.fr/lemog_textures/index.php
https://lostgarden.home.blog/tag/free-game-graphics/
http://www.makeflashgames.com/tutorialshtml5/draw-image.php
http://www.pygame.org/wiki/resources
http://www.retrogamezone.co.uk/
http://www.rpg-palace.com/visual-resources/tilesets-rmxp
http://www.spiralgraphics.biz/packs/
http://www.spriteland.com/
http://www.spriters-resource.com/
http://www.sprites-inc.co.uk/
http://www.videogamesprites.net/
https://www.makegameswith.us/academy/art/set
https://www.pinterest.com/eduardoonguard/free-game-sprites-and-assets/
https://www.scirra.com/forum/kenney-s-free-assets-20-000-assets_t93518
https://phaser.io/docs/2.6.2/Phaser.GameObjectCreator.html
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://craftpix.net/categorys/2d-game-kits/?affiliate=112238

Game Mechanism Components 218

Warning: Be selective! Be careful to match similar themes, artistic style, and
palettes when choosing “royalty-free” artwork. The hours you spend — time
IS MONEY — trying to make everything match up might have been spent
better as a cash transaction to an artist for hire. Always verify the quality
requirements you need; and more importantly, whether the graphics are
offered as a non-commercial or commercial license for game projects. Many
artists seek projects that recognize their contributions.

Exercise: Review the entire list(!!!) and select (write down!) your preferences
for your game’s theme. If your selection is non-commercial, contact the artist
anyway and explain what you would like to do. Many artists are very eager to
display their works. It’s another “feather in their bonnets” … negotiate!

Adding Control Mechanisms

In Phaser III, an “Image“ Game Object is a light-weight static graphics in your game,
such as logos, background scenery, or any other non-animated elements. Images can
accept input events and have physics bodies that could perform tweens, tints, and
scroll across the stage. The primary difference between an “Image“ and a “Sprite“ is
that you cannot animate an “Image“ — Images do not have an Animation component.

The “Input Manager” is the control mechanism for all types of player inputs such as
the mouse, keyboard, touch, “MSPointer”, and all input sub-systems. The Phaser “core
game loop” will update its Input manager automatically.

• When an input device is “just pressed” or “just released”, the minimum default
sampling is 200 milliseconds.

• When an input (eg. Keyboard, Mouse, Touch) is “enabled”, it is processed pro-
vided that each element is also enabled.

• When not enabled, all input sources are ignored. To disable just one specific
input type — for example, the Mouse— you would use input.mouse.enabled = false.

NOTE: How often should the input pointers be checked for updates? A value
of 0 means every single frame (\60 fps or 16.667 ms); a value of 1 means every other frame (\30
fps or 33.33 ms) and so on. These are approximations based on your game
“workload”. More on this below in Advanced Concepts: Animations.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 219

Adding Buttons & Mobile Touch

Phaser v2.x.x has built-in functions for handling buttons; however, that is NOT the
case with Phaser v3.x.x (caveat: as of 20180729). The fact is that buttons — as clickable
game objects — are just as simple to make in Phaser v3.x.x. The “button” behavior
in Phaser III are separate functions (such as hovering state, animations, and other
special visual effects (sfx)) are just “decorations”.

Everything created inside a “Scene” comes from the “Phaser > GameObjects > GameOb-
ject”. So any text we add to our v3 buttons comes from “Phaser.GameObjects.Text“ and
the button itself from “Phaser.GameObjects.GameObject”. To prepare an object to become
a clickable button, we turn on one simple game object property.

//Phaser v3.x.x enabling clickable input and emit input events directly.

<objectName>.setInteractive();
<objectName>.on(EVENT, CALLBACK, this)

//listens for a pointer down event anywhere on the game canvas
this.input.on(‘<objectName>’, this.onObjectClicked, this)

//assigning a callback function
onObjectClicked(‘pointer’, ‘<objectName>’)

We could set this on our button text label or we could set our button’s body. If we
choose a game object without any geometry background, such as our text label,
Phaser v3.x.x will create a default rectangle for us. ”.setInteractive“ cause the game
object to send “events”, but we need something to “listen“ for those “events”. The
problem is understanding where are those “events“ are coming from? How can we
identify which button was pressed? We also want to filter any “events“ coming from
the “Scene“ in general too.

Any “gameObject“ with its ”.setInteractive()“ enabled sends an Event Emitter 3 (EE3)12

which are faster than the former “EventEmitter2“ events. We can listen and capture
EE3 using the Phaser v3.x.x “on“ method.

//Phaser 3.x.x button
var button = this.add.text(100,100, “I’m a button”,);
button.setInteractive();

12https://github.com/primus/eventemitter3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/primus/eventemitter3
https://github.com/primus/eventemitter3

Game Mechanism Components 220

button.on(‘pointerover’,function (pointer) {

this.setTint(0x00FF00);
console.log(‘Over the button now’);

});)

Using the code above we know our button is sending events. Other events available
in Phaser v3.x.x are:

• “pointerout“ — this is the opposite of “pointerover”. It fires when the cursor leaves
the game object geometry area.

• “pointerdown“ — this triggered when a click or a touch occurs on the game object
— when the mouse button is pushed down or when a finger touches down.

• “pointerup“ — this is the opposite of “pointerdown”. This fires when the mouse
button is released or a finger is lifted off the game object.

Read more details about how to extend Phaser III with decorative ES6 frosting
from this article13.

I am using “multi-state” buttons — a concept I learned while creating games using
Adobe Flash. When a gamer “rolls over”, “clicks” and “rolls off” my menu buttons, that
button changes colors (i.e., provides a visual clue). I use the standard (international)
colors of red (stop), green (go) to visually clue my gamers. Mobile devices are different
to simulate the same button behavior since it is impossible to “roll over” a navigation
button on a mobile device.

Buttons are deployed as sprite sheet animations. I have one frame for each state
(visual clue) my button will display — over, clicked, off. To begin, I create my button
animation in Flash. Notice the highlighting; it moves to give the illusions of animation.
I used Texture Packer14 to build the JSON atlas for my buttons

Button spriteSheet Frames

13https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
14https://www.codeandweb.com/texturepacker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
https://www.codeandweb.com/texturepacker
https://snowbillr.github.io/blog/2018-07-03-buttons-in-phaser-3/
https://www.codeandweb.com/texturepacker

Game Mechanism Components 221

Hint: I found a tool called “Flash to Phaser”15. It is simply marvelous! I salvaged
all my flash animations from 265 games and converted them into HTML5
Phaser arcade games. This allowed me to keep my substantial investment in a
“dead software package”16 and “re-tool” my current skill in ActionScript toward
ES5/6/7/8/9/10.

Phaser III “Actions”

Actions are a new set of functions in Phaser III; they perform tasks on groups of
internal game objects. In Phaser v2.x.x, groups were used as game object pools; it
permitted you to manipulate their content. In contrast, Phaser III offers the same con-
venience but is not limited to groups only! “Actions” provide access from anywhere,
as long as you provide an array of game objects. For example, observe their impact
on a “game object layer”.

Example from http://phaser.io/phaser3/api/actions

1 angle: function (value) {

2

3 Actions.Angle(this.children.entries, value);

4

5 return this;

6 },

7

8 /**

9 Depending on the Action it can also be used dynamically,

10 such as in an update function. Here we use the RotateAround

11 Action to rotate all the children of the Layer around the given point:

12 */

13 function create (){

14

15 layer = this.add.layer();

16

17 for (var i = 0; i < 256; i++) {

18 var image = this.add.image(Phaser.Math.Between(200, 600),

19 Phaser.Math.Between(100, 500),

20 'diamonds', Phaser.Math.Between(0, 4));

21

22 layer.add(image);

15http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
16https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/
http://www.photonstorm.com/phaser/flash-to-phaser-jsfl-script
https://www.online-tech-tips.com/computer-tips/flash-player-in-chrome-is-dead-in-2020-how-to-play-flash-files/

Game Mechanism Components 222

23 }

24 }

25

26 function update () {

27 layer.rotateAround({ x: 400, y: 300 }, 0.01);

28 }

Components

Phaser 2 used components to avoid duplicating Game Object code; components were
applied as “mixins” onto a Game Objects. In Phaser III, components perform the
same tasks with additional capabilities of “getters” and “setters”. Components are
not restricted to gaming objects only, they can “attach” from anywhere. Typically, a
game object describes which components are available; now they used as a mixin
array. For example:

What’s the Difference Between Class & Prototypal Inheritance?

… you have to understand that there are three different kinds of prototypal OO.

Concatenative inheritance: The process of inheriting features directly from one object
to another by copying the source objects properties. In JavaScript, source prototypes
are commonly referred to as mixins. Since ES6, this feature has a convenience
utility in JavaScript called Object.assign(). Prior to ES6, this was commonly done
with Underscore/Lodash’s .extend() jQuery’s $.extend(), and so on… The composition
example above uses concatenative inheritance.

Prototype delegation: In JavaScript, an object may have a link to a prototype for
delegation. If a property is not found on the object, the lookup is delegated to the
delegate prototype, which may have a link to its own delegate prototype, and so on
up the chain until you arrive at Object.prototype, which is the root delegate. This is
the prototype that gets hooked up when you attach to a Constructor.prototype and
instantiate with new. You can also use Object.create() for this purpose, and even mix
this technique with concatenation in order to flatten multiple prototypes to a single
delegate, or extend the object instance after creation.

Functional inheritance: In JavaScript, any function can create an object. When that
function is not a constructor (or class), it’s called a factory function. Functional
inheritance works by producing an object from a factory, and extending the produced
object by assigning properties to it directly (using concatenative inheritance). Douglas
Crockford coined the term, but functional inheritance has been in common use in
JavaScript for a long time.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 223

As you’re probably starting to realize, concatenative inheritance is the secret sauce
that enables object composition in JavaScript, which makes both prototype delegation
and functional inheritance a lot more interesting.

When most people think of prototypal OO in JavaScript, they think of prototype
delegation. By now you should see that they’re missing out on a lot. Delegate
prototypes aren’t the great alternative to class inheritance — object composition is.

Example from http://phaser.io/phaser3/api/components

1 var Image = new Class({

2 Extends: GameObject,

3

4 Mixins: [

5 Components.Alpha,

6 Components.BlendMode,

7 Components.Flip,

8 Components.GetBounds,

9 Components.Origin,

10 Components.RenderTarget,

11 Components.ScaleMode,

12 Components.Size,

13 Components.Texture,

14 Components.Transform,

15 Components.Visible,

16 ImageRender

17],

18

19 initialize:

20

21 function Image (state, x, y, texture, frame) {

22 GameObject.call(this, state, 'Image');

23

24 this.setTexture(texture, frame);

25 this.setPosition(x, y);

26 this.setSizeToFrame();

27 this.setOrigin();

28 }

29

30 });

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 224

DOM

Phaser v3 contains access to all document object model within a single namespace.
This provides v3 direct access into various DOM functions such as:

- AddEventListener
- AddToDOM
- CanvasInterpolation
- CanvasPool
- DOMContentLoaded
- ParseXML
- RemoveEventListener
- RemoveFromDOM
- RequestAnimationFrame
- TouchAction
- UserSelect

This is important since it provides the use of orphans div that can bind to the DOM
upon request.

Game Objects

How Game Objects Work (20170601)17

System Components

Some system-wide objects have their own components folder. Phaser v3 is structured
in this way to avoid having too many lines of code in any single module. In turn, this
provides a faster lookup.

17https://phaser.io/phaser3/contributing/part6

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/phaser3/contributing/part6
https://phaser.io/phaser3/contributing/part6

Game Mechanism Components 225

Example of System-wide Component

1 Tween.prototype = {

2

3 calcDuration: require('./components/CalcDuration'),

4 init: require('./components/Init'),

5 loadValues: require('./components/LoadValues'),

6 nextState: require('./components/NextState'),

7 pause: require('./components/Pause'),

8 play: require('./components/Play'),

9 resetTweenData: require('./components/ResetTweenData'),

10 resume: require('./components/Resume'),

11 seek: require('./components/Seek'),

12 setEventCallback: require('./components/SetEventCallback'),

13 update: require('./components/Update')

14

15 };

6.2 Tile Map

During the development of Phaser v3, they discovered four different approaches
toward creating Tile-maps of which two proved to be equally powerful in different
gaming scenarios. So the team decided to provide us a choice of two different —
and most effective — Tile Mapping methods from all those studied. The difference
between the two chosen Tilemap renderer can be found in how tiles are prepared
for the GPU. The new Static Tilemap stores the map data in VRAM, thereby, avoiding
data surrendered to the GPU every frame. Whereas the new Dynamic Tilemap is built
especially for the “SpriteBach“ renderer; it pushes data into the GPU every frame. If
your data is constantly or even slightly changing, you will need this new dynamic
approach.

Tilemap Rendering - new Dynamic method

This approach (aka Dynamic Tile-map Renderer) follows the typical canvas rendering.
It pushes vertices into the GPU (graphics processing unit) in the same manner as
“BlitterBatch” or “SpriteBach”. It works by filling the vertex data array with vertices
every frame. Yes, this is slow and will produce lag as the CPU/GPU upload from
the element buffers. The dynamic tilemap generates an array of metadata tiles that
describe the tile that will be rendered. The tile description contains such properties

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 226

as alpha, tint, and visibility. This tile is also culled — based on the current camera —
so we don’t render unnecessary tiles. Finally, the tiles are rendered by adding them
to the “SpriteBach”. This generates all the vertices during runtime and loads them into
the GPU.

“Why do — or retain — this?”, you say. It is flexible; you could modify any tile-map
in “real-time” — an important consideration when the map must change constantly
as in an “endless runner” game. The recommendation is to keep the view-port small
since you won’t be able to quickly fill large areas.

You would use this Dynamic method under the following circumstances:

• Animated Tiles can be animated by way of modifying their tile ID.
• Per-Tile Tint support (for WebGL only on a single tile)
• Per-Tile Alpha and Visibility support (on a single tile)
• Real-time modifications

Tilemap Rendering - new Static method

This approach (aka Static Tile-map Rendering) is similar to the method above with
this exception. Instead of filling and updating the vertex buffer each frame, this
method only performs an initial load — similar to rendering static meshes stored
in VRAM. Doing so, avoids synchronization between the CPU and GPU by simply
submitting graphics library drawing commands with “N to N+M” vertices, and since
tiles are in sequential order, thus facilitating “back-face culling”18. However, there are
drawbacks to this method; it does not permit “Dynamic rendering” as experienced in
the method above. However, what you lose in rapid updates; you gain in extremely
fast displays. Here are the test results for your consideration:

Quote from Devlog 82:

We used what we would consider an ‘extreme’ test map of 150 x 10,000 tiles (1.5
million tiles in total) and is rendered in a single draw call at a solid 60fps on dedicated
GPUs. On my rubbish Intel HD GPU, it managed it at 45fps. Not many games will need
1.5 million tiles, however, so if you bring this approach back down into the realm of a
normal title, it should cope even with integrated graphics.

IMPRESSIVE, Yes, indeed!
18https://en.wikipedia.org/wiki/Back-face_culling

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Back-face_culling
https://en.wikipedia.org/wiki/Back-face_culling

Game Mechanism Components 227

6.3 Phaser III Systems

v3 Boot

The new “boot“ is comprised of several methods both old and new.

• “Game Config”: This accepts a configuration object into the Phaser.Game construc-
tor.

• “Create Renderer”: This method work with the “Device Manager“ and the “Game Config“
to correctly select the proper renderer — currently Canvas or WebGL.

• “Debug header”: This method logs notifications to the console.log. It is significantly
different from v2.x.x. You could use this to promote your game or hide it
completely from the curious.

• “Game”: is the standard point of entry into “Phaser.Game”. It is now responsible for
creating all global systems.

• “TimeStep”: manages the “RequestAnimationFrame” or “SetTimeout”. It also calculates
the delta time values, handles visibility loss, delta resets, and calls the “Game step”.

• “Visibility Handler”: listens for DOM page visibility, blur, and focus events. It
sends those updates to the current Game Scene (formerly known as ‘state’).

Example from http://phaser.io/phaser3/api/boot

1 var config = {

2 width: 800,

3 height: 600,

4 resolution: 1,

5 type: Phaser.WEBGL,

6 parent: 'phaser-example',

7 scene: {

8 preload: preload,

9 create: create

10 },

11 callbacks: {

12 preBoot: function () { console.log('I get called before all

13 of the Game systems are created,

14 but afterthe Device is available')},

15 postBoot: function () { console.log('I get called after

16 all of the Game systems are running,

17 immediately before raf starts')}

18 }

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 228

19 };

20

21 var game = new Phaser.Game(config);

22

23 /**

24 Note that I could have simply inserted the config object directly.

25 */

26

27 var game = new Phaser.Game(

28 //internalized configuration object

29 {

30 width: 800,

31 height: 600,

32 resolution: 1,

33 type: Phaser.WEBGL,

34 parent: 'phaser-example',

35 scene: {

36 preload: preload,

37 create: create

38 },

39 callbacks: {

40 preBoot: function () { console.log('I get called before all

41 of the Game systems are created, but after Device is

42 available')},

43 postBoot: function () { console.log('I get called after all

44 of the Game systems are running, immediately before

45 raf starts')}

46 } //End of config object

47); //End of game instance

There is a limit of 255 arguments per MDN.19 passed into a JavaScript function.

What attributes are pre-configured in the new v3 configuration object? Here’s what
we could currently find:

19https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Game Mechanism Components 229

1 //Phaser3 template modified from brunch Phaser

2 // See <https://github.com/photonstorm/phaser/blob/master/src/boot/Config.js>

3 // <https://github.com/digitsensitive/phaser3-typescript/blob/master/cheatsheets\

4 /game-config.md>

5

6 var GAMEAPP = new Phaser.Game(

7 //internalized configuration object

8 {

9 // For all newly added settings refer to

10 // <https://github.com/photonstorm/phaser/blob/master/src/boot/Config.js>

11

12 width: 800, //maintain Golden Ration

13 height: 500, //maintain Golden Ration

14 // zoom: 1,

15 // resolution: 1,

16 type: Phaser.AUTO,

17 // parent: null,

18 // canvas: null,

19 // canvasStyle: null,

20 // scene: {}, //new 20180401

21 // seed: null,

22 title: 'Phaser3 Game Prototyping Starter Kit', //Game Title

23 url: 'https://makingbrowsergames.com/', //Game URL location

24 version: 'semver 0.0.1.0', //semver.org v1.0.0.html

25 input: {

26 keyboard: true,

27 keyboard.target: window,//new 20180401

28 mouse: true,

29 mouse.target: null, //new 20180401

30 touch: true,

31 touch.target: null, //new 20180401

32 touch.capture: true, //new 20180401

33 gamepad: false

34 },

35 // disableContextMenu: false,

36 // banner: false

37 banner: {

38 hidePhaser: false,

39 text: 'white',

40 background: ['#e54661', '#ffa644', '#998a2f', '#2c594f', '#002d40']

41 },

42 //Frame Rate config

43 //fps: {

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 230

44 // min: 10,

45 // target: 60,

46 // forceSetTimeout: false,

47 // deltaHistory: 10,

48 // panicMax: 120 //new 20180401

49 //},

50

51 // pixelArt: false,

52 // autoResize: false, //new 20180401

53 // roundPixels: false, //new 20180401

54 // transparent: false,

55 // clearBeforeRender: true,

56 // backgroundColor: 0x000000, // black

57

58 // Callbacks

59 // callbacks: {

60 //preBoot: NOOP,

61 //postBoot: NOOP,

62 //},

63

64 //Physics

65 // physics: {

66 // system: 'impact', // removed v3.23! 20200427

67 // setBounds: true,

68 // gravity: {},

69 // cellSize: 64,

70 // debug: false //new 20180401

71 // },

72 //default: false, //new 20180401

73 // Loader Defaults

74 loader: {

75 //baseURL: '', //site lock for game assets

76 path: 'assets/',

77 enableParallel: true, //new 20180401

78 maxParallelDownloads: 10, //varies by browser from 2 to 60

79 crossOrigin: 'anonymous', //required for affiliate usage

80 //responseType: ?, //new 20180401

81 asyn: true,

82 //user: ? //new 20180401

83 //password: '',

84 //timeout: 0

85 },

86 //images: {} //new 20180401

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 231

87 //images.default: ? //new 20180401

88 //images.missing: ? //new 20180401

89

90 scene: [

91 //require('scenes/boot'),

92 //require('scenes/default'),

93 //require('scenes/menu')

94],

95

96 });

97

98

99 GAMEAPP.scene.add('boot', window.GAMEAPP.boot);

100 this.scene.add('default', window.GAMEAPP.default);

101 this.scene.add('menu', window.GAMEAPP.menu);

102

103 this.scene.start('boot');

v3 Cache

As soon as the game boots, a global game-wide cache is created. This cache is
the gatekeeper to the various subordinate caches created for each game asset and
resource. For example, you could access any text by simply using cache.text. Here’s
an example of game resource caches created after booting.

• this.binary = new BaseCache();
• this.bitmapFont = new BaseCache();
• this.json = new BaseCache();
• this.physics = new BaseCache();
• this.shader = new BaseCache();
• this.sound = new BaseCache();
• this.text = new BaseCache();
• this.tilemap = new BaseCache();
• this.video = new BaseCache();
• this.xml = new BaseCache();

You can manage cache contents using common access methods of .add, .has, .get, or
even .remove; you will use string-based keys for these methods.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 232

Examples from phaser.io/phaser/api/loader

1 function preload() {

2

3 this.load.json('jsonData', 'assets/atlas/megaset-0.json');

4

5 }

6

7 function create() {

8

9 console.log(this.cache.json.get('jsonData'));

10

11 }

v3 Device Manager

Inspecting the users’ browser and its capabilities are now consolidated in this man-
ager. It determines the base operating system, browser currently used to access the
game, and various input support — such as audio, video, inputs, screen dimensions,
and canvas features.

Examples from phaser.io/phaser/api/loader

1 if (this.game.device.features.pointerLock)

2 {

3 // It does

4 }

5

6 if (this.game.device.os.iOS && this.game.device.os.iOSVersion > 9)

7 {

8 // Device is iOS9 or above

9 }

v3 Events

Events use new customized independent dispatchers throughout the game systems;
you can also create your own events listeners and bindings. Access the new v3 is easy;
simply use this.events. Events could be filtered in the case of stacked objects; events
can have priorities or even stop event propagation.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 233

Examples from phaser.io/phaser/api/loader

1 //Dispatching a custom event via the States Event Dispatcher:

2 // Here is an Event ...

3 var playerEvent = new Phaser.Event('shoot');

4

5 // We'll use the States own EventDispatcher to listen for,

6 // and dispatch the events

7

8 // And here is the listener

9 this.events.on('shoot', handler);

10

11 // Dispatch the event

12 this.events.dispatch(playerEvent);

13

14 function handler(event) {

15

16 console.log('Event Received by Handler:', event);

17

18 }

19

20 //Events can also have priorities and have their propagation stopped:

21

22 // Here is an Event ...

23 var playerEvent = new Phaser.Event('shoot');

24

25 // And here are 2 listeners.

26 // The second listener has a higher priority than the first,

27 // so will be called first.

28

29 // We'll use the States own EventDispatch to listen for, and dispatch the event\

30 s

31 this.events.on('shoot', handler1, 5);

32 this.events.on('shoot', handler2, 10);

33

34 // Dispatch the event

35 this.events.dispatch(playerEvent);

36

37 function handler1(event) {

38

39 console.log('Event Received by Handler One:', event);

40

41 }

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 234

42

43 function handler2(event) {

44

45 console.log('Event Received by Handler Two:', event);

46

47 // This stops the event getting any further, so handler1 will never fire

48

49 event.stopPropagation();

50

51 }

v3 Input Manager

The input manager takes on the new role as a global input gatekeeper. It is now
responsible for monitoring and processing all user inputs. The “config“ provides
the settings for the Input Manager to create various handlers. The Keyboard and
Gamepad are directly handled as plugins by an InputPlugin which is a Scene system
responsible for all input events with the parent Scene. The primary responsibilities of
the Input Manager are:

• manage the input event queue
• create various pointers, and
• manage various hit tests and related operations.

“Previously the Input Manager would create a Touch handler unless the
Game Config had “input.touch“ set to “false“ (the default was true). If no such
property is set, it no longer defaults to true and instead is set to whatever
“Device.input.touch“ returns. On “non-touchscreen displays” this means it will
now only create a single Pointer, rather than two.”

Phaser III handles movement differently than v2. In v3, “move events“ are an updated
feature. Quoted from DevLogs 90,

The Input Manager consists of two parts: The Global Input Manager, which is owned
by the Game itself, and the Input Manager, which is a Scene level system.

The Global Input manager is responsible for monitoring and processing user input,
regardless of input method. It starts and handles the DOM event listeners for the
keyboard, mouse and touch inputs. It then queues these events which are processed
every game step.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 235

Key handling has changed significantly in 3.16,a Mouse Handler and Touch Handler.
Gamepad and Pointer Lock will be added shortly.

These events are dispatched whenever a pointer is in the processing of moving across
an interactive object. It doesn’t have to be pressed down or dragging, it just has to be
moving. As part of the event you are sent the local coordinates of the pointer within
the sprite. So you could use it for a ‘sliding’ UI element that you control by just sliding
a finger up and down it, such as a volume meter.

Callbacks and Events

In v2 nearly all input was handled via Signals. You’d listen to a signal bound to a specific
sprite to know if the pointer was pressed down on it.

In v3 you can use both callbacks and events. The events belong to the Input Manager
itself, not the game objects. So, you could listen for a Pointer Down event from the
Input Manager. As part of the event properties you are given a list of all the Game
Objects that the pointer went down on, as well as the top-most one in the display list.

The callbacks, however, belong to the Game Objects. You can set a callback for every
type of input event: over, down, up, out, move and the drag events: start, drag and
end. Callbacks are invoked on a per-Game Object basis and are sent a bunch of
useful arguments as well. Depending on the type of game you’re building you may
favour one approach over the other, or maybe just out of personal preference too.
By having both options available though it gives you the flexibility to decide, rather
than enforcing it upon you.

//Phaser v3 method is extremely easy to activate
var mySprite = this.add.sprite(400, 300, ‘texture’).setInteractive();
mySprite.setOrigin(0,0); //set sprite anchor to upper left corner

ahttps://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-
features

Deeper Dive: v3.16+ New Keyboard rewrite!

Keyboard Input - New Features

Quoted from v3.16+ Change Loga

The specificity of the Keyboard events has been changed to allow you more control
over event handling. Previously, the Keyboard Plugin would emit the global key-
down_CODE event first (where CODE was a keycode string, like keydown_A), then it
would emit the global keydown event. In previous versions, Key objects, created via

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features

Game Mechanism Components 236

“this.input.keyboard.addKey()”, didn’t emit events.

The Key class now extends EventEmitter and emits two new events directly: down
and up. This means you can listen for an event from a Key you’ve created, i.e.:
yourKey.on(‘up’, handler).

The order has also now changed. If it exists, the Key object will dispatch its down
event first. Then the Keyboard Plugin will dispatch keydown_CODE and finally the least
specific of them all, keydown will be dispatched.

You also now have the ability to cancel this at any stage either on a local or global level.
All events handlers are sent an event object which you can call “event.stopImmediatePropagation()“
on. This will immediately stop any further listeners from being invoked in the current
Scene. Therefore, if you call “stopImmediatePropagation()“ in the Key.on handler, then
the Keyboard Plugin will not emit either the “keydown_CODE“ or keydown global events.
You can also call “stopImmediatePropagation()“ during the keydown_CODE handler, to
stop it reaching the global keydown handler. As keydown is last, calling it there has
no effect.

There is also the “stopPropagation()” function. This works in the same way as “stop
Immediate Propagation” but instead of being local, it works across all of the Scenes
in your game. For example, if you had 3 active Scenes (A, B and C, with A at the top
of the Scene list), all listening for the same key, calling “stopPropagation()“ in Scene A
would stop the event from reaching any handlers in Scenes B or C. Remember that
events flow down the Scene list from top to bottom. So, the top-most rendering Scene
in the Scene list has priority over any Scene below it.

All the above also works for keyup events.

New in 3.16 is the ability to receive a global keydown or keyup event from any key on
the keyboard. Previously, it would only emit the event if it came from one of the keys
listed in the KeyCodes file. Now, those global events will fire for any key, regardless
of location.

ahttps://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-
features

Add a mouse with game.input.mousePointer (always refers to the mouse if
present). This is the safest method if you only need to monitor the mouse.

Phaser’s mainMenu update() function checks for input events; remember, update()

attempts to run 60 times a second. The mainMenu update() function is our game loop,
which continues to run until we exit the game. So any animation, state or display
changes or game events will be in here.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features
https://github.com/photonstorm/phaser/blob/master/CHANGELOG.md#keyboard-input---new-features

Game Mechanism Components 237

Let’s turn our attention to the speed and velocity of our avatar. We should set a fixed
movement speed; you might want to “tinker”20 with this number until it “feels” correct
and proper. We should also set our “velocity” parameter to zero; because doing so,
will prevent the avatar’s movement until an arrow key is pressed. Place the following
snippet in the mainMenu update() function.

v3 Loader

As in Phaser v2, the loader is still responsible for loading external game assets and
resources. But in contrast to the global role in v2, v3 now has a separate loader per
each game Scene (formerly called “state” in v2). Each game scene in v3 is responsible
for loading its own resources and gaming assets when it starts. This scene loading
runs in parallel; meaning that a scene will load its resources even if another scene is
currently loading.

The “BaseLoader“ class governs the loading process. It is responsible for queue man-
agement, dispatching events, and load management. The “BaseLoader“ class handles
the follow “filetypes“ using the ”.addfile“ method:

• AnimationJSON File
• AtlasJSON File
• Binary File
• BitmapFont File
• GLSL File
• HTML File
• Image File
• JSON File
• SpriteSheet
• SVG File
• Text File
• XML File

Each Scene can further use this.load.image, this.load.json, and this.load.atlas.
You can also pass configuration objects to these methods.

20http://dictionary.cambridge.org/us/dictionary/english/tinker

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://dictionary.cambridge.org/us/dictionary/english/tinker
http://dictionary.cambridge.org/us/dictionary/english/tinker

Game Mechanism Components 238

Examples from phaser.io/phaser/api/loader

1 // Original image loader signature:

2 this.load.image('bunny', 'assets/sprites/bunny.png');

3 // Object based

4 this.load.image({ key: 'bunny', texture: 'assets/sprites/bunny.png' });

5

6 // Allows for arrays of objects

7 this.load.image([

8 { key: 'bunny', texture: 'assets/sprites/bunny.png' },

9 { key: 'atari', texture: 'assets/sprites/atari400.png' },

10 { key: 'logo', texture: 'assets/sprites/phaser2.png' }

11]);

12

13 // Object based including XHR Settings

14 this.load.image({

15 key: 'bunny',

16 texture: 'assets/sprites/bunny.png',

17 xhr: {

18 user: 'root',

19 password: 'th3G1bs0n',

20 timeout: 30,

21 header: 'Content-Type',

22 headerValue: 'text/xml'

23 }

24 });

25

26 // Auto-filename based on key:

27

28 // Will load bunny.png from the defined path, because '.png'

29 // is the default extension.

30 this.load.image({ key: 'bunny' });

31

32 // Will load bunny.jpg from the defined path, because of the 'ext' property.

33 this.load.image({ key: 'bunny', ext: 'jpg' });

34

35 // ----------------------

36 // Texture Atlas Examples

37 // ----------------------

38

39 // Original atlas loader signature:

40 // this.load.atlas(key, textureURL, atlasURL, textureXhrSettings, atlasXhrSetti\

41 ngs)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 239

42

43 this.load.atlas('level1', 'assets/level1/items.png',

44 'assets/level1/items.json');

45

46 // Object based

47 this.load.atlas({ key: 'level1', texture: 'assets/level1/items.png',

48 data: 'assets/level1/items.json' });

v3 Sound

Managing sound and audio is completely different from v2.x.x. v2 used Audio Tags
and Web Audio as similar system files. v3 now properly separates the Audio tags from
Web Audio; this provides you the option to exclude legacy Audio tags from your game.

I’m excited about the dynamic sound generation feature in v3. This provides a better
solution than v2.x.x and examples are given in Phaser Game Design Workbook (6th
edition)21.

The current plans for Phaser III are to tie sounds into its parent Scene (aka: formerly
known as v2.x.x “State”); this provides unique volume, sound effects, and audio
contexts for each Scene. Unfortunately, legacy Audio is not part of the current
scope, and more planning and research must be performed. All sound effects will
be governed by the new Sound Manager.

Examples from phaser.io/phaser/api/sound-manager

1 var ctx = new AudioContext();

2

3 var explosionEffect = {

4 frequency: 16,

5 decay: 1,

6 type: 'sawtooth',

7 dissonance: 50

8 };

9

10 new Phaser.Sound.Dynamic.FX(ctx, explosionEffect);

11

12 window.addEventListener('mousedown', function () {

13

14 new Phaser.Sound.Dynamic.FX(ctx, explosionEffect);

21https://leanpub.com/phaserjsgamedesignworkbook

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/phaserjsgamedesignworkbook

Game Mechanism Components 240

15

16 }, false);

v3 Scene Manager

From v2.x.x States to Scenes

Quoted from http://phaser.io/phaser3/devlog/89 and from

How “States” work in Phaser IIIa - R Davey

Since starting Phaser 3 development in earnest I have been carefully evaluating
everything that is going into it. I’m not just porting over v2 classes for the sake of it.
In fact, the vast majority of the code in v3 is brand new, written entirely from scratch.
However, the changes don’t end at just the API - this is also the time to carefully reflect
on internal choices as well, including the naming of things.

One such thing is the State Manager. Phaser has always used the term ‘state’ since
day 1 because it was inherited from the Flixel project before it. Yet as a term it has
confused a number of developers over the years. So I did a little research to see what
terminology other frameworks used and the results were quite surprising. The most
common term was ‘Scene’, used to represent a collection of Game Objects (or nodes in
some frameworks). Lots of the more visual game engines use the term ‘Level’ instead,
and others like Game Maker use the term ‘Room’, but none used State.

As a result, I have changed the use of the term ‘State’ within v3 to ‘Scene’. There is
now a “SceneManager”, all Game Objects have a property called ‘scene’ which indicates
the scene responsible for them, and internally ‘scene’ is now used everywhere as well.
It actually changes nothing with regard to features, but it does require a change in
mindset. I’ve been typing in ‘state’ for so many years now that I’m still getting used
to ‘scene’ instead :) But it’s a more logical name and now was the time to change it.
Game Objects will remain being called that however (just like in Unity) as I find the
term ‘node’ too generic.

ahttps://phaser.io/phaser3/contributing/part5

Phaser III new “State” Manager maintains and runs multiple scenes in parallel. As
mentioned earlier, former “States” are now complete scenes worlds in their own right
(the “world” property is no longer used). In Phaser v2.x.x there was a concept of the
“Game World”, in which all Game Objects lived. This concept was removed in Phaser III
and replaced with the “Scene”, which maintains their own “worlds”. Scenes are created
in several ways:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/phaser3/devlog/89
https://phaser.io/phaser3/contributing/part5
https://phaser.io/phaser3/contributing/part5

Game Mechanism Components 241

• From Scene file payloads;
• From Classes;
• From Functions;
• From Instances; or
• From Objects.

Scenes (formerly known as v2.x.x “States”) are managed by a global Manager; it parses,
creates, and maintains all the game’s scenes! The global “Scene Manager” is created
during the “Phaser.Game boot phase”. The global “Scene Manager” has four important
properties it monitors:

• the game: a single reference to Phaser.Game.
• the settings: defined by the game’s developer for each specific Scene — such as

fps, width, height, scale, etc.
• the system (“sys”): as the game State System property.
• the children: all display level objects in this scene.

When a Scene needs to reference another Scene, it must do so through the
“scene.sys“ property. For example, to add an object to the display list, you
should use “scene.sys.add“ and not the former v2.x.x method “state.add”.

Files payloads can be referenced in the Scene config now, and the files will be loaded
before the scene — meaning they’re available even before the preload function (if set)
is called. This provides the opportunity for loading in small JSON config files or small
sets of assets required by preloader itself to use:

Example from http://phaser.io/phaser3/api/scene-manager

1 /**

2 Here all we do is defined two functions, preload and create:

3 */

4

5 var stateConfig = {

6 preload: preload,

7 create: create,

8 files: [

9 { type: 'image', key: 'sonic', url:

10 'assets/sprites/sonic_havok_sanity.png' }

11]

12 };

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 242

13

14

15 var config = {

16 type: Phaser.CANVAS,

17 parent: 'phaser-example',

18 width: 800,

19 height: 600,

20 scene: stateConfig

21 };

22

23 var game = new Phaser.Game(config);

24

25 //End of this example.

26

27 /**

28 In this example we're creating 2 States using State Configuration Objects,

29 which are passed to the Game constructor.

30 */

31

32 var backgroundStateConfig = {

33 key: 'background',

34 active: true,

35 create: createBackground,

36 render: renderBackground,

37 files: [

38 { type: 'image', key: 'face', url: 'assets/pics/bw-face.png' }

39]

40 };

41

42 var modalStateConfig = {

43 key: 'modal',

44 active: true,

45 renderToTexture: true,

46 x: 64,

47 y: 64,

48 width: 320,

49 height: 200,

50 create: createModal,

51 render: renderModal,

52 files: [

53 { type: 'image', key: 'logo',

54 url: 'assets/pics/agent-t-buggin-acf-logo.png' }

55]

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 243

56 };

57

58 var gameConfig = {

59 type: Phaser.CANVAS,

60 parent: 'phaser-example',

61 width: 800,

62 height: 600,

63 scene: [backgroundStateConfig, modalStateConfig]

64 };

65

66 var game = new Phaser.Game(gameConfig);

v3 Texture Manager

The “Texture Manager“ manages all game textures as a singleton class; this means
there should only be one active and bound to the “Phaser.Game”. The “Loader“ passes
game assets and resources to the “Texture Manager“ who will store them in their
appropriate local cache. The “Texture Manager“ has several parsers to support the
following formats:

• Canvas
• Image
• Texture Atlas data in JSON arrays or JSON hash formats.
• Pyxel files
• Starling XML Atlas files and
• Sprite Sheets.

Game Objects have immediate access to their textures from the “Texture Manager”. The
“Texture Manager“ furthermore has several utility functions using the internal Phaser
Canvas Pool:

var canvas = this.textures.createCanvas('fill', 256, 256);

this.textures.get('mario_mask');

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 244

v3 Tween Manager

Each Phaser v3 Scene owns a “Tween Manager“ whose task is managing all tweens within
the Scene. Making the “Tween Manager“ subordinate to each Scene State allows you
to create different moods or simply pause all tweens of a specified Scene. This is a
dramatic change from v2.

Tweens are created from a configuration object passed into the “Tween Manager.add”.
These configurations are sent to the “TweenBuilder“ who is responsible for the execu-
tion. The “builder” returns a single object for the manager to add to the local pool
and manages its required updates. Tweens can support updating at different rates,
different ease settings, and durations — even on the same target object. Tweens
can perform “yo-yo” movement, play reverse sequence, and even seek a specific
animation point.

Example from http://phaser.io/phaser3/api/tween-manager

1 //A simple Tween that updates an Images x coordinate:

2 var image = this.add.image(100, 100, 'block');

3

4 var tween = this.tweens.add({

5 targets: image,

6 x: 600,

7 ease: 'Power1',

8 duration: 3000

9 });

10

11 /**

12 This Tween updates two properties. Note how they have their own custom durations\

13 and eases:

14 */

15

16 var image = this.add.image(100, 100, 'block');

17

18 this.tweens.add({

19 targets: image,

20 x: { value: 700, duration: 4000, ease: 'Power2' },

21 y: { value: 400, duration: 1500, ease: 'Bounce.easeOut' }

22 });

23

24 //An example of passing custom parameters to the ease function:

25

26 this.tweens.add({

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 245

27 targets: image,

28 x: 600,

29 duration: 3000,

30 ease: 'Elastic',

31 easeParams: [1.5, 0.5],

32 delay: 1000

33 });

Deeper Dive 3.19+ Tweens

The Tween system in release 3.19 is a huge overhaul and has extended the system
capabilities significantly; I would advise a review of any released games using the
old Phaser III tween system (pre-v3.19+) before migrating to this newest Phaser III.
Tweens are fully documented.22

Some new Tween Events are “COMPLETE“ or “REPEAT”; these allow triggered actions with-
out creating callbacks. Another example from v3.19+ is that tweens can implement
both ‘to‘ and ‘from‘ values. This is a handy addition whenever you’d like to start from a
specific frame in any tweened asset property. Tween.hasStarted alerts you concerning
a running tween. There’s even a new Tween seeking function that provides a search
to any point in time across a tween.

Other useful tools newly added in Phaser III.19 are:

• 'StaggerBuilder' — This provides “staggered offsets” to a collection of tweening
targets. You might use this while staggering targets across grid layouts and in
preferred directions by merely setting a starting value.

• Shader.setRenderToTexture — provides a redirection of a shader to its own frame-
buffer or WebGL texture instead of using display lists. You might even consider
piping one “output” shader as the input to another shader!

• RenderTexture.snapshot — is the answer to a popularly requested feature. This new
feature allows a “snap-shot” on any rendered texture in a point in time and then
convert that snap-shot to an image asset for the Texture Manager or as a newly
saved image in the file system. I’ve been waiting for this feature for years!

6.4 Phaser3 Finish Line: You’re AWESOME … Gloat!, Gloat!

Phaser v3 Source Code & Demos

22https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.html

Game Mechanism Components 246

Quote from Devlog 85

I appreciate it’s quite a simple game but I feel like it has shown off a number of Phaser
3 features clearly: Layer Actions, which you can easily create your own to extend in all
kinds of directions. An easy to use Phaser Class construct and even Dynamic audio.

Because the Snake is a fully self-contained class there is nothing stopping you from
taking the code and using it elsewhere or even making a version where you have to
control multiple Snakes at once. You could add in objects to avoid, power-ups, flies or
different kinds of food. There are a lot of ways it could be expanded.

I hope you enjoyed this little trip into the works of using Phaser 3 for an actual game.
Next issue we’ll resume with a normal Dev Log again, but if little tutorials like this
prove to be popular then I’ll gladly write more in the future.

Source Code and tutorial http://phaser.io/phaser3/devlog/85

6.5 v3 Animations

NOTE: This is feature is not included in my Mozart’s Music Match game; but, I
foresee I might use it for the follow-up expansions as illustrated by this clever
developer23 or this outstanding example24 and this one25.

1 function create() {

2 var mummy = game.add.sprite(300, 200, 'mummy');

3

4 //Here we add a new animation called 'walk'

5 //Because no other parameters were given, it

6 // makes an animation from available frames .

7 // in the 'mummy' sprite sheet

8 var walk = mummy.animations.add('walk');

9

10 //And this starts the animation by using

11 // its keyword ("walk"),

23http://mark-rolich.github.io/MemoryGame.js/
24http://jppresents.net/games/memory/
25http://igorminar.github.io/Memory-Game/app/index.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phaser.io/phaser3/devlog/85
http://mark-rolich.github.io/MemoryGame.js/
http://mark-rolich.github.io/MemoryGame.js/
http://jppresents.net/games/memory/
http://igorminar.github.io/Memory-Game/app/index.html
http://mark-rolich.github.io/MemoryGame.js/
http://jppresents.net/games/memory/
http://igorminar.github.io/Memory-Game/app/index.html

Game Mechanism Components 247

12 // at 30 frames rate per second (30fps)

13 // true == it will loop when it ends

14 mummy.animations.play('walk', 30, true);

15 }

One of my technology students had bought a new ultra-computer. He was so proud of
it; “… because I can get 600 frames per second!”, he boasted. I, of course, was stunned.

In the US, all electronic devices derive their power from the electrical grid and
transformers. Most devices operate at 60Hz; outside the US, it is common to see
electronics operate at 50Hz. The refresh rate of a digital display operates at the same
frequency because of the power consumed. This is *“HOW” digital electronics work;
if fact, the monitor is “THE SLOWEST” networked device; it is restricted by current
electronics. It is the last device on a local area network (LAN) that the user sees. A
game can only send so much data to its display device before the next (upcoming
refresh screen) must be delivered. “WHAT” is displayed is a software concern, and
software engineers have concocted some clever schemes to overcome the 60Hz
(or 50Hz) restriction(s). The reason why I mention this is because, while the frame
rate may be higher than the monitor’s refresh rate for displaying images, the three
variables are not dependent on each other. In other words, the number of times your
update loop is being called per second is completely independent from the number
of times you’re refreshing the pixels on the screen, which is also independent from
the refresh rate of themonitor itself. The only exception to this is the frame rate that
you’re using for images on the display screen can never be faster than the update loop
is called per second (unless you keep them separate, which in my experience is never
a good idea, at least with web games).

The reason why GPU developers and game developers are so obsessed with the
monitor’s frame rate is that it mandates two extremely important ideas. The first one
is the processing budget that you need to work within, and the second is the accuracy
and precision of certain calculations. Those clever schemes are the topics that follow.

The processing budget mandates how much time is available until the next frame is
sent. Consider this, if your game is running at 60 fps, you only have 16.67 ms to handle
the all following tasks:

* Pixels being painted on the screen
* Calling the next tick on the physics engine
* Updating variables, game state, and other objects

If for some reason your monitor is unable to process all those tasks in that amount
of time, you will skip a frame, which results in jerky and animation stuttering. For this
reason, some game developers choose to display graphics at 30 fps. So, instead of

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 248

having just 16.67 ms, they have 33.3 ms to process everything, leaving some room
to handle more demanding scenes or calculations. Others might choose to call the
update loop at 120 fps to have increased precision in physics calculations on the local
device, but only display graphics at a constant 30 fps.

Deeper Dive: History of Animation

Let’s take a brief history lesson from Walt Disney –another one of my heroes. Film (aka
Movies) technology began in the 1890s; the concept was to simply “flash” multiple
pictures — each of which was slightly different. The viewer was fooled into “thinking”
they saw a “moving picture”. Walt Disney discovered that flipping 24 picture frames
per second were the optimal rate; he was awarded an Oscar for Snow White and the
Seven Dwarves. The cartoon animation Snow White was 119,550 frames (pictures)
in length. Divided by 24 frames per second, and 60 seconds per minute, that comes
to around 83 minutes. Research any movie website and discover that 83 minutes is
the duration of the Snow White movie. Another little-known fact is how his animators
drew this film.

Snow White and the Seven Dwarfs — in Blu-raya

The famous Disney “everything in the frame is moving at the same time” isn’t there.
While the central focus of the frame has movement (2 frames per move, i.e. 12
different frames per second) the backgrounds and those elements at the sides, stay
frozen for all time. The new multi-plane camera is used to beautiful effect.

ahttp://www.hometheaterforum.com/community/threads/a-few-words-about-%E2%84%A2-snow-white-
and-the-seven-dwarfs-in-blu-ray.287313/

Disney set the industry standards for “frame rate” — how many pictures flipped per
second. The formal definition of frame rate, (also known as frame frequency), is the
frequency (rate) at which an imaging device is capable of displaying consecutive pic-
tures called frames. This definition applies equally to film technology, video cameras,
computer graphics, and motion capture systems.

Walt Disney, who had previously been in the short cartoon business, stepped into
feature films with the first English-speaking animated feature Snow White and the
Seven Dwarfs; released by RKO Pictures in 1937. 1939, a major year for American
cinema, brought such films as The Wizard of Oz and Gone With The Wind.

1982 also saw the release of Disney’s Tron which was one of the first films from a
major studio to use computer graphics extensively.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/
http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/
http://www.hometheaterforum.com/community/threads/a-few-words-about-TM-snow-white-and-the-seven-dwarfs-in-blu-ray.287313/

Game Mechanism Components 249

During 1995, the first feature-length computer-animated feature, Toy Story, was
produced by Pixar Animation Studios and released by Disney. After the success of
Toy Story, computer animation would grow to become the dominant technique for
feature-length animation, which would allow competing for film companies such as
DreamWorks Animation and 20th Century Fox to effectively compete with Disney with
successful films of their own. During the late 1990s, another cinematic transition
began, from physical film stock to digital cinema technology. Meanwhile, DVDs
became the new standard for consumer video, replacing VHS tapes. History of filma

ahttps://en.wikipedia.org/wiki/History_of_film

Animation Today

When a movie26 is displayed, each film frame is flashed on a screen for a short
time (nowadays, usually 1/24, 1/25, or 1/30 of a second; translated as 41.6 ms, 40
ms, and 33.3 ms respectively)27 and then immediately replaced by the next one.
Persistence of vision28 blends those frames together, producing the illusion29 of
a moving image. There is a point at which a human’s visual pathways are fully
saturated; it is somewhere around 70 (14.28 ms) — 80 (12.5) fps. This makes perfect
sense when compared to the fastest human reaction is the “blink of an eye” at 13
ms30, and the speed of the human nervous system is 4 ms.

The frame is also sometimes used as a unit of time so that a momentary event might
be said to last six frames, the actual duration of which depends on the frame rate
of the systema, which varies according to the video or film standard in use. In North
America and Japan, 30 frames per second (fps) is the broadcast standard, with 24 fps
now common in production for high-definition video shot to look like film. In much of
the rest of the world, 25 fps is standard.

In systems historically based on National Television System Committee (NTSC)b stan-
dards, for reasons originally related to the Chrominance subcarrier in analog NTSC TV
systemsc, the exact frame rate is actually (3579545 / 227.5) / 525 = 29.97002616 fps.
[See Information note below] This leads to many synchronization problems which are
unknown outside the NTSC world, and also brings about hacks such as drop-frame
timecoded [ed. NOTE: a software solution found in computer animation today.]

26https://simple.wikipedia.org/wiki/Movie
27http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
28https://en.wikipedia.org/wiki/Persistence_of_vision
29https://en.wikipedia.org/wiki/Optical_illusion
30http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/History_of_film
https://en.wikipedia.org/wiki/History_of_film
https://simple.wikipedia.org/wiki/Movie
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Optical_illusion
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/SMPTE_timecode
https://en.wikipedia.org/wiki/SMPTE_timecode
https://simple.wikipedia.org/wiki/Movie
http://www.vhsdvdfilmtransfer.com/blog/frame-rates-simplified.php
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Optical_illusion
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

Game Mechanism Components 250

In film projection, 24 fps is the norm, except in some special venue systems, such
as IMAX digitale, Showscan (60 frames per second – 2.5 times the standard speed of
movie film)f and Iwerks 70 (in which 30, 48 or even 60 frame/s have been used). Silent
films and 8 mm amateur movies used 16 or 18 frame/s. Flash animations and games
range from a minimum of 12 up to 60 frames/s — 15 and 32 are most common.

ahttps://en.wikipedia.org/wiki/Frame_rate
bhttps://en.wikipedia.org/wiki/NTSC
chttps://en.wikipedia.org/wiki/Chrominance_subcarrier
dhttps://en.wikipedia.org/wiki/SMPTE_timecode
ehttps://en.wikipedia.org/wiki/IMAX
fhttps://en.wikipedia.org/wiki/Showscan

NOTE: In actual practice, the master oscillator is 14.31818 MHz, which is divided
by 4 to give the 3.579545 MHz color “burst” frequency, which is further divided
by 455 to give the 31,468.5275 kHz “equalizing pulse” frequency, this is further
divided by 2 to give the 15,734.2637 Hz “horizontal drive” frequency (also the
horizontal line rate), the “equalizing pulse” frequency is divided by 525 to give
the 59.9401 Hz “vertical drive” frequency, and this is further divided by 2 to
give the 29.9700 vertical frame rate. “Equalizing pulses” perform two essential
functions: 1) their use during the vertical retrace interval allows for the vertical
synch to be more effectively separated from the horizontal synch, as these,
along with the video itself, are an example of “in-band” signaling, and 2) by
alternately including or excluding one “equalizing pulse”, the required half-line
offset necessary for interlaced video may be accommodated.

Animation Recommendations

Let’s say you have 300 fps, what that means is the Graphics Processing Unit (GPU) is
rendering 300 frames per second. However, it’s not sending all of those frames to the
display monitor. The GPU sends frames, that are partially overwritten, without any
form of sync. So, depending on the frame rate:

• If your frame rate is higher than the monitor, parts of the rendered frames will
never be sent — sometimes entire frames are lost, or never sent. Generally,
this is great for performance — it tends to reduce input and display lag, but it
makes your GPU work at nearly 100% with no graphical benefit to speak when
compared to other options. If your GPU output is 300 fps but only 144 of them
are displayed that translates into 52% of the graphical workload was lost. You’re
almost guaranteed that some frames will be completely dropped (about 1/3).
There are more efficient ways to reduce input lag.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/IMAX
https://en.wikipedia.org/wiki/Showscan
https://en.wikipedia.org/wiki/Showscan
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/Chrominance_subcarrier
https://en.wikipedia.org/wiki/SMPTE_timecode
https://en.wikipedia.org/wiki/IMAX
https://en.wikipedia.org/wiki/Showscan

Game Mechanism Components 251

• If your frame rate is exactly equal to your monitor rate (which is not quite possible
without sync), all frames sent to the display are new, and all rendered frames are
sent — although they are sent in separately displayed frames, leading to tearing,
probably the worst tearing you could achieve since it would theoretically always
cut the screen at the same height, and thus very visible.

• If your frame rate is lower than the monitor’s rate, those frames contain parts
that were already sent to the display on the last refresh cycle.

Exercise: Test your browser here https://www.testufo.com/gsync
Exercise: Read more here31

Frame Rates Recommendations

Frames per Seconds and Human perception

Frame rate and human visiona

The temporal sensitivity and resolution of human vision varies depending on the type
and characteristics of visual stimulus; and, it differs between individuals. (Is the dress
White or Blue)b The human optical system can theoretically process 1,000 separate
images per second; but, is not noticeable to the untrained eye after about 150 and
up to around 240 where motion looks realistic. [Chapter 5 footnote #2]

Modulated light, such as a computer display, is perceived as stable by the majority

31https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.testufo.com/gsync
https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/The_dress
https://en.wikipedia.org/wiki/The_dress
https://www.blurbusters.com/gsync/gsync101-input-lag-tests-and-settings/

Game Mechanism Components 252

of participants in studies when the rate is higher than 50 Hz through 90 Hz. This
perception of modulated light “as steady” is known as the flicker fusion thresholdc.
However, when the modulated light is non-uniform and contains an image, the flicker
fusion threshold can be much higherd. [Chapter footnote 3]

With regard to image recognition, people have been found to recognize a specific
image, in an unbroken series of different images, each of which lasts as little as
13 millisecondse. Persistence of visionf sometimes accounts for very short single-
millisecond visual stimulus having a perceived duration of between 100 ms and 400
ms. Multiple stimuli, that are very short, are sometimes perceived as a single stimulus,
such as a 10 ms green flash of light immediately followed by a 10 ms red flash of light
perceived as a single yellow flash of lightg.

ahttps://en.wikipedia.org/wiki/Frame_rate
bhttps://en.wikipedia.org/wiki/The_dress
chttps://en.wikipedia.org/wiki/Flicker_fusion_threshold
dhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
ehttp://link.springer.com/article/10.3758%2Fs13414-013-0605-z
fhttps://en.wikipedia.org/wiki/Persistence_of_vision
ghttp://link.springer.com/article/10.3758%2FBF03211193

Tweens

Earlier, I have presented the secrets of my hero Richard Williams. His secret is 2
movements during 12 frames!. Negotiate with your artists or draft your animations
with this secret that I learned from Richard Williams32 — The Animator’s Survival Kit
Expanded edition (25 Sept. 2012)33

Computer Animationa tricks the eye and the brain into thinking they are seeing a
smoothly moving object, the pictures should be drawn at around 12 frames per
second or fasterb. With rates above 75-120 frames per second, no improvement in
realism or smoothness is perceivable due to the way the eye and the brain both
process images. At rates below 12 frames per second, most people can detect
jerkiness associated with the drawing of new images that detract from the illusion
of realistic movementc. Conventional hand-drawn cartoon animation often uses 15
frames per second in order to save on the number of drawings needed, but this is
usually accepted because of the stylized nature of cartoons. To produce more realistic
imagery, computer animation demands higher frame rates.

Films seen in theaters in the United States run at 24 frames per second, which is

32https://www.youtube.com/watch?v=Abkz-oJ3HSs
33http://amzn.to/2dSSZ59

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
https://en.wikipedia.org/wiki/Persistence_of_vision
http://link.springer.com/article/10.3758%2FBF03211193
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/The_dress
https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
http://link.springer.com/article/10.3758%2Fs13414-013-0605-z
https://en.wikipedia.org/wiki/Persistence_of_vision
http://link.springer.com/article/10.3758%2FBF03211193
https://www.youtube.com/watch?v=Abkz-oJ3HSs
http://amzn.to/2dSSZ59
http://amzn.to/2dSSZ59
https://en.wikipedia.org/wiki/Computer_animation
http://amzn.to/2ecIHrO
http://amzn.to/2ecIHrO
http://amzn.to/2elnVqz
http://amzn.to/2elnVqz
https://www.youtube.com/watch?v=Abkz-oJ3HSs
http://amzn.to/2dSSZ59

Game Mechanism Components 253

sufficient to create the illusion of continuous movement. VCR display at 29.967fps
(Frames Per Second) for NTSC and 352x288 at 25fps for PAL-Md. Peter Jackson’s Lord
of the Rings series displays at 48 fpse. The HTC Vive and Oculus Rift are virtual reality
headsets that refresh at 90 Hzf. YouTube allowed users to upload videos at 60fps in
June 2014. PC gaming monitors can display 144 Hz through 240 Hzg. 240fps is near the
limits of perceivable smoothness. Interpolated 300 FPS along with other high frame
rates have been tested by BBC Research for use in sports broadcastsh. 300 FPS can be
converted to both 50 and 60 FPS transmission formats without major issues. 300fps
is also the maximum frame rate for the HEVC format.

ahttps://en.wikipedia.org/wiki/Computer_animation
bhttp://amzn.to/2ecIHrO
chttp://amzn.to/2elnVqz
dhttp://www.divx-digest.com/articles/vhs_capture.html
ehttps://en.wikipedia.org/wiki/Computer_animation
fhttps://en.wikipedia.org/wiki/Computer_animation
ghttp://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
hhttp://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf

Hint: Should I tell my high-school student? or let his parent pay the monthly
credit card payment PLUS interest???

Exercise: Study this game developer’s use of tweens in Phaser34. This guy is a
genius!

6.6 Camera & Viewports

Exercise: Study this implementation of Camera and Viewports35 in a multi-
player environment. His source code is available from GitHub36

A Camera is your “viewport“ into the game world. It has a position and size properties
and renders only those visual objects within the “viewport”. The game will create

34http://jppresents.net/games/memory/
35https://phaser-multiplayer-game.herokuapp.com/
36https://github.com/xicombd/phaser-multiplayer-game

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.divx-digest.com/articles/vhs_capture.html
http://www.divx-digest.com/articles/vhs_capture.html
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Computer_animation
http://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf
https://en.wikipedia.org/wiki/Computer_animation
http://amzn.to/2ecIHrO
http://amzn.to/2elnVqz
http://www.divx-digest.com/articles/vhs_capture.html
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Computer_animation
http://120hzmonitors.com/monitor-list-120hz-144hz-165hz-200hz-240hz/
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP169.pdf
http://jppresents.net/games/memory/
https://phaser-multiplayer-game.herokuapp.com/
https://github.com/xicombd/phaser-multiplayer-game
http://jppresents.net/games/memory/
https://phaser-multiplayer-game.herokuapp.com/
https://github.com/xicombd/phaser-multiplayer-game

Game Mechanism Components 254

automatically a single (Stage sized) camera upon boot-up. Use “Phaser.Camera.x“ or
“Phaser.Camera.y“ to Move the camera “viewport“ around the world.

See how I use Phaser III cameras and viewport in Jigsaw Puzzles as game
mechanisms in “Making Puzzle Browser Games”37

1 new Camera(

2 game, //reference to the current game

3 id, //Not supported; but, will have more cameras

4 x, y, //position of the camera on the grid

5 width, //same as the Game size

6 // and should not be adjusted for now

7 height //same as the Game size

8 // and should not be adjusted for now

9)

The Phaser v2.6.2 Camera supports currently supports 32 properties and 15 special
effects38 through the Game instance global references. You can control the camera
via “this.camera“ from any scene, or more specifically via the “game.camera“ if the game
has been globally defined — as we already have done on our index page. The Phaser
III can support “multiple cameras”.

As any movie director knows, camera shots enhance the emotional value of a film and
provide “suspended disbelief” — both of which are crucial in game development. This
could be the topic of an entirely different book; so, I refer you to these resources to
maintain our focus on Phaser development.

• “bounds“ (a “Phaser.Rectangle“) The Camera is bound to this rectangle and cannot
move beyond it. It is enabled and initially set to the world’s size by default.
This viewport rectangle can expose any surface of the world. The values can be
anything and are in World coordinates, with 0,0 being the top-left of the world. If
you wish to disable the Camera then set it to “null”.

• “fx“ a Graphics object used to handle such view effects as fade and flash.
• “lerp“ (a “Phaser.Point“) This is a linear interpolation value and used to follow a

target. The default value is 1 which means that the camera will instantly snap
to the set target coordinates. A lower value, for example, 0.1, means that the
camera will track slowly toward a target resulting in a smooth transition. You
can set either the horizontal and/or vertical values independently. You may also
adjust these values dynamically in real-time during your game.

37http://leanpub.com/mbg-puzzle
38https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://leanpub.com/mbg-puzzle
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html
http://leanpub.com/mbg-puzzle
https://phaser.io/docs/2.6.2/Phaser.GameObjectFactory.html

Game Mechanism Components 255

• “target“ (a “Phaser.Sprite“) tells the camera to track the designated sprite; other-
wise, the target is set to “null”.

• “view“ (a “Phaser.Rectangle“) This is the viewport into the world; by default, it is
the game dimensions. The “x” and “y” values are in world coordinates, not screen
coordinates; the “width” and “height” is the dimension and quantity of pixels to
render. If “Sprite.autoCull“ is set to “true”, sprites are not rendered if positioned
outside of this viewport.

• “fade(color, duration, force)“ This creates a camera fade effect. It works by filling
the viewport with a color specified, over a set duration in seconds, and ending
with a solid fill of the color specified initially. The game will remain filled at the
end of this effect. To reset this operation, you can call “Camera.resetFX“ to clear
the fade effect. Or you could call “Camera.flash“ with the same specified color as
the fade operation; doing so will reverse the process (fading the color’s “alpha
to 0”), bringing the game back into view again. When the “fade” effect ends the
signal “Camera.onFadeComplete“ is dispatched.

• “follow(target, style, lerpX, lerpY)“ Tells the camera which target sprite to
follow. If a slight “jitter” effect is observed when following the target, it is probably
the results of sub-pixel rendering concerning the sprite’s position. This can be
disabled by setting the following code snippet to force full pixel rendering. Set
unfollow() to stop following the targeted sprite.

game.renderer.renderSession.roundPixels = true

NOTE: Using any of the camera’s “shake” features consumes battery power
significantly on mobile devices.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 256

6.7 Summary

Another intensive chapter! Are you getting your money worth? Good!
Here’s what we covered in this section:

* Dove into the Phaser Library and discover various items in a “Bottom-Up develop-
ment” approach.
* Studied the Input Manager
* Research 26 game.add objects
* Deploy sprites and images in the typical game states.
* Deployed sprites and sprite sheets
* Studied the game.make
* Research 40 artwork resources
* Create control mechanisms for keyboard, touch, tap, customized button, and device
buttons.
* Studied deprecated keyboard issue.
* Created pointers (mouse, touch, and tap.)
* Learned how to adjust control mechanism timing.
* Created, text, debug feedback, and Heads Up Displays.
* Created Tilemaps.
* Studied several innovative game developments.
* Discovered resources to build unique game worlds.
* Researched building a Game dynamic World editor.
* Created audio for a game.
* Distinguished various audio formats and which to use.
* The discovered mobile issue with the audio drivers.
* Determined whether customized font was essential.
* Learned secrets of computer animations
* Studied hardware capabilities about frame per second.
* Discovered limitations of human optics
* Developed motion cameras
* Discovered visual camera effects similar to movies

6.8 Chapter Footnotes:

1. Masson, Terrence (1999). CG 101: A Computer Graphics Industry Reference. page
148, Digital Fauxtography Inc. ISBN 0-7357-0046-X.

2. Paul; Meyer, Mark-Paul; Gamma Group (2000). Restoration of motion picture film.
Conservation and Museology. Butterworth-Heinemann. pp. 24–26. ISBN 0-7506-
2793-X.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Game Mechanism Components 257

3. FREE BOOK39: James Davis (1986), Humans perceive flicker artifacts at 500 Hz,
Wiley, PMC 4314649

39https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314649/

Whazzz-sUP! …. HUD Development 258

7. Whazzz-sUP! …. HUD Development

HUD Topics:

• Review Phaser III 68 Plugins1

• Character Inventory & Development Scene (ARRAv15)
• Forum discussions here2

• Best, in my opinion, supporting library forHUDDevelopment https://www.zebkit.
com/

Variety of FREE online tutorial from Game Dev Academy:

• How to Create a Game HUD Plugin in Phaser.3
• Create a Game UI with the HTML5 CANVAS4

The “heads-up display” is a critical part of your game flow in the “Play Phase”. It is the
one item that provides feedback on how well a gamer is playing. Sure, animations
and blood gushing everywhere can be entertaining(?), but the HUD tells the player
whose blood it is! It is the one item in your game that encourages your “customer” to
continue “spending their time” in your game; the better your customer feels about
their experience the more they spend. Now tell me, have you ever returned to a
restaurant that gave you bad service, poor quality, and awful food? Do you NOT
see a relationship between what you’re serving up as a “tasty” game and other
entertainment services? The HUD should encourage, entice, taunt and titilize5, in
“Phaser Render phase”, for more of what’s to come from your game!

1https://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
2http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
3https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
4https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
5http://www.urbandictionary.com/define.php?term=titilizing

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
https://www.zebkit.com/
https://www.zebkit.com/
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
http://www.urbandictionary.com/define.php?term=titilizing
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/#list-of-my-plugins
http://www.html5gamedevs.com/topic/15822-building-in-game-ui/
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
https://gamedevacademy.org/create-a-game-ui-with-the-html5-canvas/?a=47
http://www.urbandictionary.com/define.php?term=titilizing

Whazzz-sUP! …. HUD Development 259

HUD information The Rogue Prince Main Menu

Richard Davey said this concerning HUDs, “No it’s too game-specific, anything we
provide would only cater for a small set of games. I’d suggest you just create a Group
and put all your HUD related items in it then just keep that Group on the top of your
game.” Quote from Phaser.io Foruma

ahttp://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/

Hint: I recommend that this HUD Group float, in a separate layer, above the
Tilemap inside the canvas or use the “DOM” feature external to the canvas.

7.1 HUD Housing Development

You can have multiple “Phaser III Scenes” all running in parallel. This is similar in my
mind as Flash MovieClips running on their main time-line. Each section of your overall
stage could be divided into several “Scenes” views. The HUD leads players — with the

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/
http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/

Whazzz-sUP! …. HUD Development 260

information the HUD provides — into decisions about what to do next in the game.
HUD placement should enhance gameplay; it should readily display the pertinent
information a gamer needs for their avatar’s actions, and current gameplay. Here
are some suggestions from this excellent Game Dev Academy tutorial6 showing the
“border layout” positioning style.

Phaser v3.17 has the features I’ve long waited for — DOM, CSS, load.css, and
Load.html. The new DOM elements can appear either above or below the game
canvas. The new CSS works to modify the DOM elements. Both act as a typical game
object. So, that means external html panels might be a thing of the past, and internally
controlled Phaser III panels are the “go-to method”. Refer to the following links to
discover what you can do!

• About the new DOM elements7

• Examples in the Phaser III labs.8

Activate the new Phaser v3.17+ DOM elements

1 // Add to the config object

2 dom {

3 createContainer: true

4 }

5 /*

6 When this is added, Phaser will automatically create a DOM Container

7 div that is positioned over the top of the game canvas. This div is

8 sized to match the canvas, and if the canvas size changes, as a

9 result of settings within the Scale Manager, the dom container is

10 resized accordingly.

11 */

12

13 // then inside a scene create

14 /*

15 You can create a DOM Element by either passing in DOMStrings,

16 or by passing in a reference to an existing Element that you wish

17 to be placed under the control of Phaser.

18 */

19 var hud = this.add.dom(x,y,'div',

20 // 4th parameter sets the CSS for the DOM element

21 'background-color': black;

6https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
7http://phaser.io/news/2019/05/phaser-3170-released
8http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
http://phaser.io/news/2019/05/phaser-3170-released
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47
http://phaser.io/news/2019/05/phaser-3170-released
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=

Whazzz-sUP! …. HUD Development 261

22 width: 220px; height: game.height;

23 font: 48px Arial',

24 // last parameter is the key name of html DOM

25 'Phaser');

Quote Newsletter 146

“You should … always, without exception, use explicitly sized HTML Elements, in order
to fully control alignment and positioning of the elements next to regular game
content.

Rather than specify the CSS and HTML directly you can use the “load.html“ File Loader
to load it into the cache and then use the “createFromCache“ method instead. You can
also use “createFromHTML“ and various other methods available in this class to help
construct your elements.

Once the element has been created you can then control it like you would any
other Game Object. You can set its position, scale, rotation, alpha, and other
properties. It will move as the main Scene Camera moves and be clipped at the edge
of the canvas. It’s important to remember some limitations of DOM Elements: The
obvious one is that they appear above or below your game canvas. You cannot blend
them into the display list, meaning you cannot have a DOM Element, then a Sprite,
then another DOM Element behind it.”

You can find lots of examples on using DOM Elements in the Phaser 3 Examples here.a
ahttp://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=

Exercise: Learn more about the border layout style9 from Oracle and Java
implementation.

9http://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
http://labs.phaser.io/index.html?dir=game%20objects/dom%20element/&q=
http://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm
http://www.java2s.com/Tutorial/Java/0240__Swing/WhatistheBorderLayout.htm

Whazzz-sUP! …. HUD Development 262

HUD information prior to combat
The HUD is composed of various items such as text, images, sprites, animations. These
should be contained within the new Phaser III DOM element or use a separate Phaser
III Scene.

Sample 8.1: Prototyping a HUD

//Load images during `preload`

this.load.image('background', 'assets/images/menubkgrnd.jpg');

//Assign variable and Add text parameters.

var playtxt = this.add.text(0, 0, "Play" , style); // "Play" text

//Assign text styles and placements with new Phaser III.17 CSS.

var style = {

font: "32px Monospace",

fill: "#C60",

align: "center"

}

//Assign variable and Add text parameters.

this.scoreText = this.add.text(5, 5,

"Score (hints off): " + (score * 2), style);

if(hints){

//Assign variable and Add text parameters.

this.scoreText = this.add.text(5, 5,

"Score (hints on): " + score, style);

}

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Whazzz-sUP! …. HUD Development 263

//Assign variable and Add text parameters.

this.timeText = this.add.text(5, game.height - 5,

"Time left: " + timeLeft, style);

this.timeText.setOrigin(0, 1);

7.2 HUD as Panels

The illustrations, thus far, have shown HUDs in fixed positions. The HUD could be
created into a “group collection or container” as suggested earlier by Richard Davey.
A group is a “collection bucket” for any display objects. Groups and containers are
treated as sprites with physics and movement. For example, all the children, inside a
group collection, are also “moved”, “rotated”, “scaled“ when its containing parent group
is “moved”, “rotated”, “scaled”. This allows the group to act a sliding panel onto and
from the game area using Phaser. Groups are also displayed objects; this means
that groups could nest children within larger parent groups. Lastly, groups utilize fast
pooling and object recycling.

new Group(game, parent, name, addToStage, enableBody, physicsBodyType)

Remember the “Dynamic Combat Menu” mentioned earlier? Instead of merely mov-
ing buttons in and out of the viewport, we could move an entire Phaser v3.17 DOM
element instead of a “group” with its buttons, graphics, and text information as a
single DOM element. We can create standard html pages and load them into the
game cache, and then use them, either above or below. These new DOM elements
are managed as we would any typical game object.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Whazzz-sUP! …. HUD Development 264

Clicking the Menu buttons reveals HUD Panels as Phaser III Scenes

Play the Rogue PrinceTM demonstration here10

7.3 HUD Panels outside the Canvas?!?

Phaser helps display an “html5 canvas“ element; in Phaser v3.17, we can use the new
load.html for DOM elements and load.css into the Phaser cache. Why should we limit
ourselves only to HUDs only inside canvas elements? It’s a simple matter to leverage
our front-end development skills and let Phaser III manage our DOM elements. If
you have studied mobile web design, as suggested by Josh Morony,11 it becomes an
innovation to have HUD Panels controlled by the Browser, jQuery, and CSS. However,
with the Phaser v3.17 features, we can control those same HUD Panels from our
Phaser framework. It becomes a simple matter to have a sliding HUD information
panel on one or both sides of the canvas game.

Exercise: Review examples at w3Schools.com:12

10https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
11https://www.joshmorony.com/mobile-development-for-web-developers/getting-started-with-phaser.html
12https://www.w3schools.com/jquerymobile/jquerymobile_panels.asp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://www.joshmorony.com/mobile-development-for-web-developers/getting-started-with-phaser.html
https://www.w3schools.com/jquerymobile/jquerymobile_panels.asp
https://makingbrowsergames.com/starterkits/rpg/_arrp-phaser/p3/
https://www.joshmorony.com/mobile-development-for-web-developers/getting-started-with-phaser.html
https://www.w3schools.com/jquerymobile/jquerymobile_panels.asp

Whazzz-sUP! …. HUD Development 265

• Open Panel13

• Overlay, Reveal, and Push Panels14

• Right-side15

• Create a Dialog Modal Plugin in Phaser 316

• https://jqueryui.com/
• https://codyhouse.co/gem/css-slide-in-panel
• https://codepen.io/jasesmith/pen/raqBpm
• http://wowslider.com/html5-slider-sunny-fade-demo.html
• https://davidwalsh.name/css-slide

Demonstration of external panels and PIXI game canvas here.17

13https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_basic
14https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_display
15https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_rightpos
16https://gamedevacademy.org/create-a-dialog-modal-plugin-in-phaser-3-part-1/?a=47&campaign=

Phaser3GamePrototyping
17https://www.merixstudio.com/skytte/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_basic
https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_display
https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_rightpos
https://gamedevacademy.org/create-a-dialog-modal-plugin-in-phaser-3-part-1/?a=47&campaign=Phaser3GamePrototyping
https://jqueryui.com/
https://codyhouse.co/gem/css-slide-in-panel
https://codepen.io/jasesmith/pen/raqBpm
http://wowslider.com/html5-slider-sunny-fade-demo.html
https://davidwalsh.name/css-slide
https://www.merixstudio.com/skytte/
https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_basic
https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_display
https://www.w3schools.com/jquerymobile/tryit.asp?filename=tryjqmob_panels_rightpos
https://gamedevacademy.org/create-a-dialog-modal-plugin-in-phaser-3-part-1/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/create-a-dialog-modal-plugin-in-phaser-3-part-1/?a=47&campaign=Phaser3GamePrototyping
https://www.merixstudio.com/skytte/

Whazzz-sUP! …. HUD Development 266

7.4 HUD Demos

Zoe Dress-Up (v3.16+)

Example 8.3: HUD Menu Grouping

function HUD(game, parent, name, useStage) {

var hudPanel = this.physics.add.staticGroup();

//Your elements here text information displaye.

//Animated components (i.e., health bars)

};

HUD.prototype = Object.create(Phaser.Group.prototype);

HUD.prototype.constructor = HUD;

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Whazzz-sUP! …. HUD Development 267

HUD as a game editor
HUD displays provide users feedback, collect menu choices, and modify abstract data
structures and properties.

Troops HUD details in Rulers of Renown™ (RRTE) MMoG

Info: Several Phaser plugins are available to enhance HUDs. Research http://
zebkit.org/light/about.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://zebkit.org/light/about.html
http://zebkit.org/light/about.html

Whazzz-sUP! …. HUD Development 268

7.5 Summary

Step-by-step guide: Create a Game HUD Plugin in Phaser18

Here’s an inventory of what we’ve learned thus far about HUDs.

• Importance of player feedback in Heads Up Displays.
• Where to place HUD: in separate Groups, on avatars, and map layers.
• What to place in a HUD with examples.
• Code Snippet to generate a HUD.
• HUDs are NOT REQUIRED in the canvas tag only; they could be placed in the DOM

and manipulated with standard JQuery, CSS, and JS libraries.
• Learned from other authors using HUD outside the canvas.
• Played a HUD Demonstration.
• Reviewed 5 various HUD Panels and the sample code.
• 23% of Users Abandon an App after 1 use … and why!
• Methods to increase customer retention and loyalty.
• Best locations to place HUDs
• Found and studied a Phaser HUD plugin.

7.6 Footnotes

• Phaser.io Forum19

• HUD Manager via plugins.20

• Game Dev Academy tutorial21

18https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=
Phaser3GamePrototyping

19http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/
20http://phaser.io/docs/2.6.2/Phaser.PluginManager.html
21https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=

Phaser3GamePrototyping

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping
http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/
http://phaser.io/docs/2.6.2/Phaser.PluginManager.html
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping
http://www.html5gamedevs.com/topic/1924-hud-how-to-implement-it/
http://phaser.io/docs/2.6.2/Phaser.PluginManager.html
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping
https://gamedevacademy.org/how-to-create-a-game-hud-plugin-in-phaser/?a=47&campaign=Phaser3GamePrototyping

Don’t make me think or “Artificial Intelligence for Dummies” 269

8. Don’t make me think or “Artificial
Intelligence for Dummies”

So far in our game prototype, “monsters” have just stood there and have taken our
punishment bravely. Now, comes the rise of the down-trodden; they’ve gotten mad,
saying, “I’m a monster, Gaul Dawn it! My life has value. …”; they’re “… madder than
hell and they’re not going to take it anymore” (movie: 1:40 minutes)1, a paraphrased
quote (with generous liberties) from the movie “Network”2.

8.1 The “6 of 9”

Not to be confused with 7 of 9
These are only 6 artificial intelligence (AI) routines3 we’ll review of the nine (9) in
Gaming Theory.

• Chasing: the relentless hunting of a player’s avatar.
1https://www.youtube.com/watch?v=rGIY5Vyj4YM
2http://www.tcm.com/tcmdb/title/342/Network/
3https://en.wikipedia.org/wiki/Artificial_intelligence

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.youtube.com/watch?v=rGIY5Vyj4YM
https://www.youtube.com/watch?v=rGIY5Vyj4YM
http://www.tcm.com/tcmdb/title/342/Network/
https://en.wikipedia.org/wiki/Artificial_intelligence
https://www.youtube.com/watch?v=rGIY5Vyj4YM
http://www.tcm.com/tcmdb/title/342/Network/
https://en.wikipedia.org/wiki/Artificial_intelligence

Don’t make me think or “Artificial Intelligence for Dummies” 270

• Evading: the “shy retiring” or “withdrawal from” a player’s avatar.
• Patterns: are detailed choreographed patterns of movements (aka Kata) prac-

ticed either solo or in parts of the whole.
• Fuzzy logic: the random selection of inconsequential decisions.
• Recursive: environmental feedback.
• Finite State Machines (FSM).4

8.2 Chasing

Is a simple intelligence routine; it involves comparing the player’s avatar x- and y-
coordinates to the antagonist’s and moving closer.

Example 9.1: Combat Pseudo Code

//Let ex, ey be the enemy x- and y- grid positions.

//Let px, py be the avatar's x- and y- grid positions.

//During the updates, enemy moves to avatar.

if (ex < px){ex += 1;}

if (ex > px){ex -= 1;}

if (ey < py){ey += 1;}

if (ey > py){ey -= 1;}

8.3 Evading

Is a simple intelligence routine; it involves comparing the player’s avatar x- and y-
coordinates to the antagonist’s and moving farther away.

Example 9.2: Combat Pseudo Code

//Let ex, ey be the enemy x- and y- grid positions.

//Let px, py be the avatar's x- and y- grid positions.

//During the updates, enemy runs from avatar.

if (ex > px){ex += 1;}

if (ey > py){ey += 1;}

if (ex < px){ex -= 1;}

if (ey > py){ey -= 1;}

4https://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
https://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf

Don’t make me think or “Artificial Intelligence for Dummies” 271

8.4 Patterns

There are dozens of Phaser tutorials about artificial intelligence patterns. And if you
squint really hard5, you might see that these AI patterns are similar to “Key Frame
Animation” and their associated atlas.6

Apple Gameplay Kit: Animation state machine
For a combat example, consider this pattern:

Random numbers to select a patterned response

• “Patrolling” monsters7 is a simple AI pattern discussed in this tutorial. You might
want to compare another method to implement patrolling here.8

5https://en.wikipedia.org/wiki/Squint
6https://www.joshmorony.com/how-to-create-animations-in-phaser-with-a-texture-atlas/
7https://phaser.io/news/2016/04/patrolling-enemy-ai
8http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-

enemies/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Squint
https://www.joshmorony.com/how-to-create-animations-in-phaser-with-a-texture-atlas/
https://www.joshmorony.com/how-to-create-animations-in-phaser-with-a-texture-atlas/
https://phaser.io/news/2016/04/patrolling-enemy-ai
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/
https://en.wikipedia.org/wiki/Squint
https://www.joshmorony.com/how-to-create-animations-in-phaser-with-a-texture-atlas/
https://phaser.io/news/2016/04/patrolling-enemy-ai
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/

Don’t make me think or “Artificial Intelligence for Dummies” 272

• “Flocking” is another AI pattern discussed here with Phaser examples.9
• “A*” (aka A-star) is a method to determine movement along paths to any destina-

tion.
• http://www.easystarjs.com/ is the most popular Phaser plugin to use for path

finding or
• perhaps you might find this tutorial10 to your liking. Their Phaser Plugin11 is open-

source.
• GameDevAcademy has my favorite tutorial on Path-finding here.12

• My favorite author wrote an interesting article13 on the use of “antenna feelers”
for a top-down racing game.

• Here’s my low IQ routine14 used in Ruins of Able-Wyvern™.

Example 9.3: Enemy mirrored movement

//frame refresh and display updates

var speed = 250;

this.player.body.velocity.x = 0;

this.player.body.velocity.y = 0;

this.enemy.body.velocity.x = 0;

this.enemy.body.velocity.y = 0;

//monitor player's movement input

//Example 5.3 Enemy AI mirrored movement

if (this.cursor.up.isDown){

this.player.body.velocity.y -= speed;

this.enemy.body.velocity.y += speed;

}

if (this.cursor.down.isDown){

this.player.body.velocity.y += speed;

this.enemy.body.velocity.y -= speed;

}

if (this.cursor.right.isDown){

this.player.body.velocity.x += speed;

this.enemy.body.velocity.x -= speed;

}

if (this.cursor.left.isDown){

this.player.body.velocity.x -= speed;

9https://processing.org/examples/flocking.html
10https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
11https://github.com/appsbu-de/phaser_plugin_pathfinding
12https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
13http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
14https://www.verywell.com/what-is-considered-a-low-iq-2795282

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://processing.org/examples/flocking.html
http://www.easystarjs.com/
https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
https://github.com/appsbu-de/phaser_plugin_pathfinding
https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
https://www.verywell.com/what-is-considered-a-low-iq-2795282
https://processing.org/examples/flocking.html
https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
https://github.com/appsbu-de/phaser_plugin_pathfinding
https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
https://www.verywell.com/what-is-considered-a-low-iq-2795282

Don’t make me think or “Artificial Intelligence for Dummies” 273

this.enemy.body.velocity.x += speed;

}

//Applying fuzzy logic ...

Play AI Combat demo15

Exercise: Find the “Street Fighter” game16 and determine how your opponent
selects its tactics in a single-player game. Does it use a pattern of animation?

8.5 Fuzzy logic

What I mean by “fuzzy logic” is doing something randomly, just as we did in some of
the previous “Patterns”. We can extend this idea, not only to selecting responses but
becoming a response itself. There are no reasons why we can’t add one more type of
behavior to our “enemy’s mirrored movement” patterns — namely random motion.

The random movement is used in many games today as one of the many responses
an antagonist could take. The “fuzzy logic” comes into play when an opponent selects
an action without any or all of the information available — in other words, “without
perfect knowledge”. There’ll be no cheating here! For example, an opponent is
chasing a player’s avatar across a room. The avatar steps behind a protective table
and stands still, all the while, firing missiles at the antagonist. Should the monster
just stands there and takes it?! I don’t think so. Now, if we gave our monster some
“fuzzy logic” and some “secret sauce” (which we’ll discuss in the combat chapter);
the monster may make a “fuzzy” (aka hair-brain; Sorry, just couldn’t pass that one
up!) decision to step around the table and continue chasing the avatar. The direction
the monster takes around the table is inconsequential; it makes no difference going
around it to the right or left.

8.6 Finite State Machines (FSM)

The true power of AI is reached when finite state machines (FSM)17 are used. We will
study more about “how to use FSM” in an opponent’s combat actions and decisions
later in this chapter and the next chapter on Ruins of Able-Wyvern™.

15https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
16https://en.wikipedia.org/wiki/Street_Fighter
17https://en.wikipedia.org/wiki/Finite-state_machine

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
https://en.wikipedia.org/wiki/Street_Fighter
https://en.wikipedia.org/wiki/Finite-state_machine
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
https://en.wikipedia.org/wiki/Street_Fighter
https://en.wikipedia.org/wiki/Finite-state_machine

Don’t make me think or “Artificial Intelligence for Dummies” 274

A finite state machine18 is a “State and Transition Diagram” expressed visually. It
is used to show all the states, inputs and outputs, and the event relationships that
cause a move into a new state. Transition events are labeled with an input event that
triggers the transition and possibly an output that results from that trigger’s activation.
A “double-circled state” shows the “final acceptance” or “resting” state”. We’ve used
FSM since chapter 1; now, we will apply this same idea to opponents’ behaviors and
reactions.

Sample FSM and PacMan FSM
The example above shows an Opponent behavior FSM.

18https://en.wikibooks.org/wiki/A-level_Computing_2009/AQA/Problem_Solving,_Programming,_Data_
Representation_and_Practical_Exercise/Problem_Solving/Finite_state_machines

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikibooks.org/wiki/A-level_Computing_2009/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/Problem_Solving/Finite_state_machines
https://en.wikibooks.org/wiki/A-level_Computing_2009/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/Problem_Solving/Finite_state_machines
https://en.wikibooks.org/wiki/A-level_Computing_2009/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/Problem_Solving/Finite_state_machines

Don’t make me think or “Artificial Intelligence for Dummies” 275

Apple Gameplay Kit: Enemy Behavior State Machine

Note: Here is a tutorial on “How To Design A Finite State Machine”19, worked
out from start to finish.

Machina.js20 “ … is a JavaScript framework you could adopt for highly customizable
finite state machines (FSMs). Many of the ideas for Machina.js have been loosely
inspired by the Erlang/OTP FSM behaviors.”

FSM Resolving Combat Outcomes

19http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
20http://machina-js.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
http://machina-js.org/
http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
http://machina-js.org/

Don’t make me think or “Artificial Intelligence for Dummies” 276

Example 9.4: Combat Pseudo Code

//How to find the raw skill

//(refer to Bonus Content rulebooks for further details):

//Parrying ability or Thrown Weapon's attack.

defensive = (ModifiedCoordination) + WeaponSkill

//Missile & Melee Weapon's attack

offenseMissiles = (ModifiedCoordination) + BallisticsSkill

offenseMelee = Stamina + WeaponsSkill

How to determine whether a combat action was successful: calculate your character’s
ability to cause or prevent damage (i.e. parry), do the following:

Hit Percentage = (Characteristic * 2) + (SpecificSkill * 5)

Generate a random number from 0 to 100; if the results are less than or equal to the
character’s chance to “Hit”, the attack was successful. Assign a 1 for success or a zero
(0) for a miss. If the results are 10% of what was needed or less (Hit Percentage/10)
then the attack was unusually powerful and produced “critical” damage. Double all
damage for these critical hits and assign a 10. Do the same for the defender and cross-
reference the attacker’s results to the defender’s result in the FSM Combat chart. The
chart provides the combat outcome. Negative numbers favor the defender in some
fashion; positive outcomes favor the attacker. For example, a combat outcome of “9”
would mean a powerful “critical hit” attack possibly damaging the defender’s armor
or weapon that successfully shielded or block the strike. A “-9” would have the same
effects described but switching the roles “vice versa”21 of attacker and defender.

FSM for Combat Outcome resolution
Your character’s Hit Percentage might exceed 100%. This shows a high level of combat
mastery, and the potential to engage multiple adversaries at once. If your character

21http://www.lukemastin.com/testing/phrases/cgi-bin/database.cgi?database2=phrases&action=view_product2&
productID=288&category2=Latin

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.lukemastin.com/testing/phrases/cgi-bin/database.cgi?database2=phrases&action=view_product2&productID=288&category2=Latin
http://www.lukemastin.com/testing/phrases/cgi-bin/database.cgi?database2=phrases&action=view_product2&productID=288&category2=Latin
http://www.lukemastin.com/testing/phrases/cgi-bin/database.cgi?database2=phrases&action=view_product2&productID=288&category2=Latin

Don’t make me think or “Artificial Intelligence for Dummies” 277

has a 40% higher Hit Percentage than his opponent, he may engage an additional
opponent in the same mega-square. Provided that the sum of (each Opponent’s Hit
Percentage + 40%) is not greater than your character’s total Hit Percentage.

There is always a 5% chance that any attack or defense may fail. There is also a chance
that your attack may cause unusually high or grotesque damage. As your character’s
com bat skills increase, so will the chance to produce critical injuries. However, the 5%
at tack failure is fixed. No matter how good one gets at a skill; there is still a chance of
failure.

FSM Resolving AI behaviors

We could stretch FSM into how an antagonist responds to our avatar by using
a Combat Tactics selection table. We could set “predetermined” prestigious and
repulsion in various ethnic groups, so that, when they encounter each other within a
“hostile” environment, a predictable behavior emerges.

1 Attitude FSM object for predispositions:

2 var attitude = {hate:-1, neutral:0, like:2}

Prejudice chart ties into Action/Attitudes Chart
If we defined various behavioral actions a character could perform in combat as FSM
events, and then compare those actions to combat resulting outcomes states, we
have created the “Recursive World Feedback” described elsewhere. We can further
use this FSM behaviors chart to dictate which “Keyed Animation Frame” to use from
our avatar sprite sheets.

Let’s present some examples:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Don’t make me think or “Artificial Intelligence for Dummies” 278

1. An Elf — known for ancient feuds with Orcs— meets an Orc in combat. Both start
in the “idle” FSM state.

• The first round of combat determines that we shift the encounter left (-1) for the
elf; the elf prepares to fight and engage the Orc. The Orc senses a “charge” is
imminent from the elf; if the Orc has a missile weapon already at hand, it will fire.
If the Orc has a melee weapon ready, it decides to charge also.

• The second combat round begins with both antagonists engaged in melee
combat, and both conduct successful attacks and different defensive moves —
the Orc fails its defensive action; the Elf successfully blocked the Orc’s attack. Orc
is now injured and checks its morale to remain in combat; Elf senses it is winning.

• The third combat round begins. The Orc’s “morale checked” failed and attempts
to withdraw from combat; it forfeits its attack to “disengage”; but, was successful
in its defense. The Elf senses the disengagement; it was able to land a “critical”
attack but missed its defensive maneuver. The Elf’s “critical attack” shatters
(FSM 9) the Orc’s shield into splinters — the shield is now useless, and the Orc
receives the remaining bodily damage. The Orc is “losing” and “morale checks”
now enforce “disengagement” or possibly “flight” from combat.

• Fourth combat round. Elf has a higher movement rate than the Orc and is
becoming overconfident in the victory. The Elf engages in “hand to hand” combat
and is successful! The two antagonists are now wrestling and grappling on the
floor. The Orc — having superior strength and the advantage in “hand to hand”
combat— achieves a successful attacking strangle-hold on the Elf. The Elf misses
its “defensive wrestling move” and receives a “critical” and mortal choke from the
Orc. The Elf is dead.

2. Another Elf meets a “dark” elf in combat. Being there is a kinship being the two,
they begin a conversation and talk about their encounters thus far.

• Second combat round. The high elf makes a remark concerning the dark elf’s
“human” mother. This does not sit well with the dark elf who successfully fires an
arrow that “hits” the high elf.

• Third combat round. High elf is wounded and “check morale” which failed. The
high elf retreats from the combat encounter followed by a “hail of arrows”.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Don’t make me think or “Artificial Intelligence for Dummies” 279

Example 9.5: New Combat States Module Added

//FSM Actions & Animations chart

var AAstates = {

'H2H': Combat.H2H,

'Fight': Combat.Fight,

'Idle': Combat.Idle,

'Flight': Combat.Flight,

'Talk': Combat.Talk

//etc add more?

};

for(var state in AAstates){

//add combat FSM to Phaser

game.scene.add(state, AAstates[state]);

}

8.7 Recursive World Feedback

Let’s get to the fun part of AI — the environment-driven Finite State Machine (FSM)!
We could force an FSM to make state changes based on a set of parameters that
have to do with the game world environment itself. In other words, we control the
FSM with the very environment’s current conditions; just as our own brains act and
react to our surrounding environment. This would provide a challenging game that
is always different!

Here’s how it would work. We have several different AIs mentioned; we could instead
use these and the “current combat conditions” as an input into our game’s FSM. For
example:

1. If the player’s avatar is nearby, we could switch over to one of the random “Patterns
AI” of patrolling.
2. If the player’s avatar is NOT nearby, we could have the opponents hunt them down
using the “Chase AI”.
3. If the player’s avatar was firing a hail of missiles at our poor little monster, we could
switch to an “Evade AI” only if it is loosing “hit point”. Otherwise, if nothing is “striking”,
our poor little monster turns MONSTROUS and charges!
4. Finally, if none of these premises are met, we could simply just switch over to a
“Random AI” fuzzy state.

We could add one more consideration I call the “preemptive state control”. This
fancy terminology simply means changing states before all the involved actions are

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Don’t make me think or “Artificial Intelligence for Dummies” 280

completed. This is similar to the idea of the switch “Key Frame Animations” from
walking to dying — one animation series is interrupted during its sequence and
changed into a new series of action animations.

Our recommended AI integration

Probability Data Tables

What’s a “Probability Data Tables”? Let’s start with an example using a deck of cards. In
a deck of poker cards, you should find Ace to 10, and 3 royalty cards per each suite of
which there are hearts, spades, clubs and diamonds, and a couple of “jokers” thrown
in for fun. Now, what if you took out all the hearts suite the chances of drawing a
card has increased because the overall population has decreased — that is probability
tables.

1 //Probability Table with 50% of selecting "1"

2 var reaction = [1,1,1,1,1,2,2,3,3,4]

Here’s a well-kept secret about Phaser, you can download scripts! Think of this:
you could download various probability tables — JSON scripts— and have a variety
of environmental behaviors as dynamically loaded Recursive World Feedback! Just
imagine what your game could do by dynamically downloading the appropriate .js

script.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Don’t make me think or “Artificial Intelligence for Dummies” 281

script(key, URL, callback, callbackContext)

The URL can be relative or absolute. If the URL is relative the Loader.baseURL and
Loader.path values will be apprehended to it. If the URL isn’t specified the Loader will
take the key and create a file name from that. For example, if the key is “alien” and
no URL is given, then the Loader will set the URL to be “alien.js”. It will always add the
.js as an extension. If you do not want this to happen then provide an URL. Upon a
successful load, the JavaScript has turned automatically into a script tag and then
executed, so be careful what you load! The callback, which will be invoked as the
script tag was created, can also be specified. The callback must return relevant data.
paraphrased from Phaser.io v2.6.2a

ahttps://phaser.io/docs/2.6.2/Phaser.Loader.html

8.8 Complete AI Prototypes

We have moved the Source Code Appendix onto a website and removed it from the
book editions 1-6. This allows us to update code changes dynamically for Phaser v3.24
and the upcoming v3.5 as it nears completion.

8.9 Chapter Source Code

https://makingbrowsergames.com/book/index.html

8.10 Summary

Here’s a review of how smart we’ve become:

• Gaming Theory has 9 various artificial intelligence method; we studied 6 of 9
• Chasing: the relentless stocking of a player’s avatar with code samples.
• Evading: the “shy retiring” or “withdrawal from” a player’s avatar with code

samples.
• Patterns: are detailed choreographed patterns of movements (aka Kata) prac-

ticed either solo or in parts of the whole with several online tutorials.
• Fuzzy logic: the random selection of inconsequential decisions.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/docs/2.6.2/Phaser.Loader.html
https://phaser.io/docs/2.6.2/Phaser.Loader.html
https://makingbrowsergames.com/book/index.html

Don’t make me think or “Artificial Intelligence for Dummies” 282

• Recursive: environmental feedback.
• Finite State Machines (FSM).
• Learned the relationship between AI Patterns and Keyed Animations.
• Discovered the most popular Phaser plugin for A* (A-star).
• Played an AI sample demonstration.
• Discovered the Recursive World Feedback.
• Discovered what Finite State Machines (FSM) are, and how to deploy it for combat

and AI behaviors.
• Created Probability Tables.
• Learned about the best-kept secret about Phaser — downloading scripts!
• Studied how to design an FSM.
• Review sample FSM combat turns.
• Learned how to create probability data tables for gambling games.

8.11 Footnotes

• Machina.js22

• “How To Design A Finite State Machine”23

• “Patrolling” monsters24

• Implement patrolling here.25

• “Flocking” is another AI pattern discussed here with Phaser examples.26

• “A*” (aka A-star) is a method to determine movement along paths to any destina-
tion.
- http://www.easystarjs.com/ is the most popular Phaser plugin to use for path
finding or
- perhaps you might find this tutorial27 to your liking. Their Phaser Plugin28 is open
source.
- GameDevAcademy has my favorite tutorial on Path finding here.29

• My favorite author wrote an interesting article30 on the use of “antenna feelers”
for a top-down racing game.

• My favorite author wrote an interesting article31

22http://machina-js.org/
23http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
24https://phaser.io/news/2016/04/patrolling-enemy-ai
25http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-

enemies/
26https://processing.org/examples/flocking.html
27https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
28https://github.com/appsbu-de/phaser_plugin_pathfinding
29https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
30http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
31http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://machina-js.org/
http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
https://phaser.io/news/2016/04/patrolling-enemy-ai
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/
https://processing.org/examples/flocking.html
http://www.easystarjs.com/
https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
https://github.com/appsbu-de/phaser_plugin_pathfinding
https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
http://machina-js.org/
http://www.cs.princeton.edu/courses/archive/spr06/cos116/FSM_Tutorial.pdf
https://phaser.io/news/2016/04/patrolling-enemy-ai
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/
http://www.emanueleferonato.com/2015/03/05/create-an-html5-game-like-drop-wizard-with-phaser-patrolling-enemies/
https://processing.org/examples/flocking.html
https://phaser.io/news/2016/02/how-to-use-pathfinding-in-phaser
https://github.com/appsbu-de/phaser_plugin_pathfinding
https://gamedevacademy.org/how-to-use-pathfinding-in-phaser/?a=47
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/
http://www.emanueleferonato.com/2010/06/28/create-a-flash-racing-game-tutorial-artificial-intelligence/

Part III: “Walk-thru” Tutorials &
Resources

Part III implements all our Phaser v2.x.x and v3.24+ Game Prototype Libraries in these
“Walk-Through Tutorials”. These “Step-by-Step” tutorials show how to create Game
Recipes™ either manually or with the help of our online automation tools32.

In Part III, we’ll take our various elements from Parts I & II and combine them in the
“Walk-Thru Tutorials”. We’ll construct:

• RPG maze games,
• code 6 different combat systems,
• heads-up displays (HUD) both internal to and outside of theHTML5 <canvas> tag33,
• apply 6 different Artificial Intelligence (AI) systems,
• build grids and tiled-maps in Phaser III,
• create other actions with these popular game perspective of 2D, 2.5D, and 3D.

You’ll discover how to develop multiple game levels, isometric games using newest
features available in Phaser III. All of these techniques and supporting source code
are explained in an easy-to-understand manner for game designers to scaffold new
skills into JavaScript Game Development.

We have moved all the Source Code onto our book’s website and removed it
from within book editions 1 to 6. This allows us to update code changes dynam-
ically, reduces the book’s retail price, and eliminates re-publishing expenses.

32https://makingbrowsergames.com/gameDesigner/
33https://www.w3schools.com/graphics/game_canvas.asp

https://makingbrowsergames.com/gameDesigner/
https://www.w3schools.com/graphics/game_canvas.asp
https://makingbrowsergames.com/gameDesigner/
https://www.w3schools.com/graphics/game_canvas.asp

Game Prototype Libraries 284

9. Game Prototype Libraries

• Book’s website: https://makingbrowsergames.com/p3gp-book/
• Phaser Game Prototype Libraries:

- Phaser v3.16+ Game Prototype Library1

- Phaser v3.24+ Game Consolidated Examples2

- Phaser v2.x.x Game Prototype Library3

- Phaser v2.x.x Game Consolidated Examples4

- Phaser v2.x.x Combat Systems Game Prototype Library5

9.1 Walk-through Tutorial Series

Are you “new” to Phaser JavaScript Gaming Frameworks?

Start with these introduction tutorials. Then tackle the intermediate Game Recipes™.
This section includes proprietary Game Rule Books and Gaming License EULA6 in-
cluded as a part of your book purchase. See the “terms of service” here7. Your
license number is your book invoice number. You can learn about further benefits by
registering your book’s invoice number as your license at RenownGames Developers8

The “Walk-through Tutorials” Series (WTTS) are listed below by complexity — “1” =
easiest (introduction skills) to “4” = most complex (advanced skills required across
several “Full-stack” technology9 disciplines).

Introductory (Difficulty Rating #1)

Official Phaser Tutorials.
1https://makingbrowsergames.com/book/index10.html
2https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
3https://makingbrowsergames.com/book/index9.html
4makingbrowsergames.com/book/index12.html
5https://makingbrowsergames.com/p3gp-book/index3.html
6https://www.renown-games.com/LICENSE.pdf
7https://www.renown-games.com/shop/index.php?id=tos
8https://www.renown-games.com/shop/index.php?id=prod-developers
9https://www.w3schools.com/whatis/default.asp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/book/index10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
https://makingbrowsergames.com/book/index9.html
makingbrowsergames.com/book/index12.html
https://makingbrowsergames.com/p3gp-book/index3.html
https://www.renown-games.com/LICENSE.pdf
https://www.renown-games.com/shop/index.php?id=tos
https://www.renown-games.com/shop/index.php?id=prod-developers
https://www.w3schools.com/whatis/default.asp
https://makingbrowsergames.com/book/index10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
https://makingbrowsergames.com/book/index9.html
makingbrowsergames.com/book/index12.html
https://makingbrowsergames.com/p3gp-book/index3.html
https://www.renown-games.com/LICENSE.pdf
https://www.renown-games.com/shop/index.php?id=tos
https://www.renown-games.com/shop/index.php?id=prod-developers
https://www.w3schools.com/whatis/default.asp

Game Prototype Libraries 285

• Making your first platform game (Phaser v2.x.x)10

• Making your first platform game (Phaser III)11

Free Game Developer Courses:

• Phaser III Game Design Course12 FREE! as a bonus with this book’s purchase;
(valued at $19.99) — join the 100s who’ve already earned their Phaser III Game
Developer Certifications. Free license included in your Bonus Content.

• Phaser v2.x.x Game Design Course13 FREE! as a bonus with this book’s purchase;
(valued at $19.99) — join the 100s who’ve already earned their Phaser v2.x.x
Game Developer Certifications. Free license included in your Bonus Content.

Intermediate (Difficulty Rating #2 to #3)

• Kiko Escapes™14 — a “Clue Mystery” (aka “Cludo” in the UK) Game Engine in
“pure” JavaScript. Find and rescue the Fairies’ Queen.

• Blood Pit™ (Walk-thru tutorial)15 and game EULA license (valued at $48)16

included with your book’s purchase — a significant 80% discount! Blood Pit™
is a “hero vs hero” in-game module (IGM) written in Phaser III as an expansion for
the Legends of Renown Deeds™17 Gaming System. The FREE game rule book18

will help you “deconstruct” this game’s mechanics. — also sold separately on
Amazon.com; search for “Stephen Gose”19.

Advanced — “The Full Monty!” (Difficulty Rating #4)

The Ruins of Able-Wyvern™20 (ARRA), rv_8 1994-2008 Flash release, is the foundational
project for the upcoming Rogue Prince Quests™ (IGM)21. We are building an updated
Phaser III CMS standalone version.

10https://phaser.io/tutorials/making-your-first-phaser-2-game
11https://phaser.io/tutorials/making-your-first-phaser-3-game
12https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
13https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
14https://makingbrowsergames.com/p3gp-book/index-bonus-clue.html
15https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
16https://www.renown-games.com/shop/index.php?id=arbp
17http://legends-of-renown-deeds.com/
18https://leanpub.com/tigs/c/f3d6wFdxNdHk
19https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=stephen+gose
20https://www.renown-games.com/shop/index.php?id=arra
21https://leanpub.com/c/arrp

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/tutorials/making-your-first-phaser-2-game
https://phaser.io/tutorials/making-your-first-phaser-3-game
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://makingbrowsergames.com/p3gp-book/index-bonus-clue.html
https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
https://www.renown-games.com/shop/index.php?id=arbp
http://legends-of-renown-deeds.com/
https://leanpub.com/tigs/c/f3d6wFdxNdHk
https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias=aps&field-keywords=stephen+gose
https://www.renown-games.com/shop/index.php?id=arra
https://leanpub.com/c/arrp
https://phaser.io/tutorials/making-your-first-phaser-2-game
https://phaser.io/tutorials/making-your-first-phaser-3-game
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://leanpub.com/c/phasergamedesignworkshop/c/3IWDBydPFVj1
https://makingbrowsergames.com/p3gp-book/index-bonus-clue.html
https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
https://www.renown-games.com/shop/index.php?id=arbp
http://legends-of-renown-deeds.com/
https://leanpub.com/tigs/c/f3d6wFdxNdHk
https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias=aps&field-keywords=stephen+gose
https://www.renown-games.com/shop/index.php?id=arra
https://leanpub.com/c/arrp

Game Prototype Libraries 286

The Ruins of Able-Wyvern™* is an introductory game of man-to-Hero tactical
combat with arcane weapons in the Adventurers of Renown™22 gaming series. This
game has been online continuously since 1994 with 18+ million total games plays,
hosted on 1,174 websites. You can play the original flash versions here23 or the
Phaser v2.x.x in-game-module (IGM) here24. The Town of Lake-Shore provides the
best place to begin your first-few campaigns. This game is statistically balanced and
allows your newest characters to grow in status, skills, and renown before launching
into its parent game — the Legends of Renown Deeds™: The Hero’s Quest (LoRD).25

(… also continuously online since 1994!)

The Ruins of Able-Wyvern™ (ARRA), © 1994 — 2007, original Flash plugin CMS
Download and Review the source code from this website.26

• Phaser v2.x.x Lifetime license27 (a $48 value included with this book’s purchase!)
• JS Modules Listed alphabetically.

22https://renown-games.com
23https://www.adventurers-of-renown.com/quests/arra.php/
24https://makingbrowsergames.com/book/GAMEAPP_rv_8/index.html
25http://www.legends-of-renown-deeds.com/
26https://makingbrowsergames.com/p3gp-book/
27https://makingbrowsergames.com/book/index11.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://renown-games.com/
https://www.adventurers-of-renown.com/quests/arra.php/
https://makingbrowsergames.com/book/GAMEAPP_rv_8/index.html
http://www.legends-of-renown-deeds.com/
https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/book/index11.html
https://renown-games.com/
https://www.adventurers-of-renown.com/quests/arra.php/
https://makingbrowsergames.com/book/GAMEAPP_rv_8/index.html
http://www.legends-of-renown-deeds.com/
https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/book/index11.html

Game Prototype Libraries 287

• Refer to your download Bonus Content Files
• We use the Phaser Editor28 to develop the room sub-states.

Adventurers of Renown: Ruins of Able-Wyvern™ (2010 release)

• Phaser v3.24+ Lifetime license29 and a Walk-thru tutorial30 included with your
book’s purchase at a significant 80% discount!

9.2 References:

• Creating Adventure Games On Your Computer31 by Tim Hartnell
• Modular Game Worlds in Phaser 332

• How to Make a Roguelike Game33

• RogueLike Engines34

28http://phasereditor.boniatillo.com/
29https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
30https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
31https://amzn.to/2LAkJb5
32https://itnext.io/modular-game-worlds-in-phaser-3-tilemaps-3-procedural-dungeon-3bc19b841cd
33http://www.gamasutra.com/blogs/JoshGe/20181029/329512/How_to_Make_a_Roguelike.php
34http://www.roguebasin.com/index.php?title=RogueLike_Engines

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://phasereditor.boniatillo.com/
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
https://amzn.to/2LAkJb5
https://itnext.io/modular-game-worlds-in-phaser-3-tilemaps-3-procedural-dungeon-3bc19b841cd
http://www.gamasutra.com/blogs/JoshGe/20181029/329512/How_to_Make_a_Roguelike.php
http://www.roguebasin.com/index.php?title=RogueLike_Engines
http://phasereditor.boniatillo.com/
https://makingbrowsergames.com/p3gp-book/_p3-arrav15/
https://leanpub.com/c/bloodpit-wtts/c/ZlApCvzPlvz2
https://amzn.to/2LAkJb5
https://itnext.io/modular-game-worlds-in-phaser-3-tilemaps-3-procedural-dungeon-3bc19b841cd
http://www.gamasutra.com/blogs/JoshGe/20181029/329512/How_to_Make_a_Roguelike.php
http://www.roguebasin.com/index.php?title=RogueLike_Engines

What’s next? 288

10. What’s next?

10.1 Game Distribution & Marketing

Short Excerpt from the Phaser Game Design Workbook1.

“How to publish a game on the web??”

Quoted from the Unity forum
Hello, I have a little problem with the publishing thing. I’ve created a little “game”,
which has only one scene and exported it as a web game. OK, now I have an HTML and
a Unity 3d files. But, the problem is, I don’t knowanything about creatingwebsites,
or uploading files to servers. I know that there are several questions about this, but I
just can’t understand what to do. I would really appreciate it if someone could explain
to me how to publish my “game” on the web step by step. By the way, I’ve created
a WIX site, but I’m not sure if I can put a Unity 3d game in there. Read answers herea

ahttps://answers.unity.com/questions/59535/how-to-publish-a-game-on-the-web.html

I forbid my students using WIX when attempting to “showcase” their Web
Developer or Gaming Programming Skills in their portfolios.

Introduction: 8-Step Deployment Method.

1. Research game publishers. Learn who they are, what games they favor, and who
their target audience is. Be careful when analyzing Return On Investments (ROI).
This article2 gives a proper perspective.

1https://leanpub.com/LoRD
2https://medium.com/@sm_app_intel/a-bunch-of-average-app-revenue-data-and-why-you-should-ignore-it-

2bea283d37fc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/LoRD
https://answers.unity.com/questions/59535/how-to-publish-a-game-on-the-web.html
https://answers.unity.com/questions/59535/how-to-publish-a-game-on-the-web.html
https://medium.com/@sm_app_intel/a-bunch-of-average-app-revenue-data-and-why-you-should-ignore-it-2bea283d37fc
https://leanpub.com/LoRD
https://medium.com/@sm_app_intel/a-bunch-of-average-app-revenue-data-and-why-you-should-ignore-it-2bea283d37fc
https://medium.com/@sm_app_intel/a-bunch-of-average-app-revenue-data-and-why-you-should-ignore-it-2bea283d37fc

What’s next? 289

2. Contact those publishers, discover their submission policies and requirements
for Software Development Kit (SDK) usage. Read carefully about surrendering
your rights. Learn what game genre peek their interests. However, be careful
not to lock yourself in and become entirely dependent on a single company’ SDK
for your entire marketing strategy. I learned my lesson from the MochiMedia
collapse. While there’s no doubt you should integrate a tracking SDK to register
conversions, I recommend that you keep tracking and usage analytics technically
distinct from your advertising collection management, to remain flexible and be
able to switch partners if you are not satisfied with the results.

3. Create your game …. (duh!) You can’t sell “blue-sky” ideas.
4. Create a domain name and game website.3 (NOTE: Some ISPs include a 1-year

FREE domain name4 with their web hosting packages.) Demonstrate your game
prototype(s) to their buyers in a protected section of your website — as an
example click here.5

5. Refine your game mechanics. Get strangers (non-developers with their “gut
reactions”)6 and other indie developers7 to play it. An excellent place to find
fellow developers is in the new Phaser Forum8. They’ll find problems you may
have overlooked. Naturally, you’ll want to fix those errors they find.

6. Deploy the latest obfuscated/compacted game version on your public website.
7. Wait … wait … read their feedback and if necessary return to step #1. Otherwise,

continue to step #8.
8. Negotiate a contract wisely. Your new publisher might require the use of their

Software Development Kit (SDK).
9. Start your next game project(s). … return to Step #1

Shareably (SBLY) looking to rent your Phaser games

SBLYa is looking for new game titles to add to their platform through rental sponsor-
ships ($50 - $100 per month) and possibly non-exclusive or exclusive licensing deals.

SBLY is fairly new to the web game space, but by no means new to publishing. They
started in 2015 and have now amassed over 50 million monthly readers across their
publishing networks. Finding early success in this space they now believe that bringing
on new titles from other developers is a worthwhile investment. Your game will be
on their publishing site https://shareably.net although this will transition to a new
domain in the coming months.

3http://gose-internet-services.net/openvz-vps-2/
4http://gose-internet-services.net/domain-names-hosting/
5https://makingbrowsergames.com/book/ch2/index.html
6https://www.newgrounds.com/games/under_judgment
7https://phaser.discourse.group/c/showcase
8https://phaser.discourse.group/c/showcase

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gose-internet-services.net/openvz-vps-2/
http://gose-internet-services.net/domain-names-hosting/
http://gose-internet-services.net/domain-names-hosting/
https://makingbrowsergames.com/book/ch2/index.html
https://www.newgrounds.com/games/under_judgment
https://www.newgrounds.com/games/under_judgment
https://phaser.discourse.group/c/showcase
https://phaser.discourse.group/c/showcase
https://shareably.net/about/
https://shareably.net/about/
http://gose-internet-services.net/openvz-vps-2/
http://gose-internet-services.net/domain-names-hosting/
https://makingbrowsergames.com/book/ch2/index.html
https://www.newgrounds.com/games/under_judgment
https://phaser.discourse.group/c/showcase
https://phaser.discourse.group/c/showcase

What’s next? 290

SBLY’s product lead engineer, John Lee, explains: “We like the rental sponsorships
because we can quickly see if your game will succeed with low commitment early on
and of course, developers are free to do this with many other publishers!

As for games, I’m particularly looking for familiar games (Minesweeper, FreeCell,
spider solitaire, matching games, etc) right now, but in the future, we’ll be open to
all categories so please don’t hesitate to reach out so we can get the conversations
rolling.”

If you’re interested, you can reach John at john@sbly.com, or on the Phaser Discord
(@jawnwee)

ahttps://shareably.net/about/

10.2 Book Review Protocol

Did you “like” or “learn” anything from this Book?

If you liked this book, it would mean the world to me if you took just a moment to
leave an honest positive review on your “book distributor’s review page”.

Remember, you can earn commissions by recommending this book
through your affiliate links!

If your opinion is less than 3 stars out of 5, please allow me to make amends
before you “publically crucify me” and tell me what you believe is missing in a personal
one-on-one email. I’ve learned that “poor reviews” from “angry readers” were never
revisited and never updated by them after I’ve made those corrections in the
following book’s editions. Those belligerent comments only make the reviewer appear
vindictive when the newest edition has those corrections.

E-Mail me at (https://leanpub.com/phaser3gameprototyping/email_author/new
) with the “Subject: Book concerns – (the book title)”. Please provide, in your email:

• the page number, and
• supporting evidence from primary technical references that support your opin-

ion(s). (Sorry, I don’t consider “rumors”, “crowd following”, “comments from
forums” and any unsubstantiated opinions— even if you do hold a Ph.D. or have
“a gazillion years” of experience)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://shareably.net/about/
https://leanpub.com/phaser3gameprototyping/email_author/new

What’s next? 291

• allow me sufficient time to respond with an updated book edition—which I will
email directly to you as a DRM .pdf format.

• THEN, provide your rating (or update your rating if you didn’t follow my request?!)
to 3+.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

What’s next? 292

10.3 Tell the world about your game!

Excellent! You completed this workbook and constructed your game. Do you want to
brag about your additional features or unique modifications? Do you have additional
features or game “tweaks” you want to show to the world? Then, let me use your
creation in up-coming articles and book edition updates! Earn the popularity you
deserve!

Use this contact email:

• E-Mail me at (https://leanpub.com/phaser3gameprototyping/email_author/
new) with the “Subject: Game Show Case - (your game’s title)”. Please provide, in
your email:

• the book you read to develop your bespoke game edition. (hint: use your affiliate
link and earn commissions!)

• a list of your game’s unique and / or innovations.
• a website URL to play your demo or licensed versions.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaser3gameprototyping/email_author/new
https://leanpub.com/phaser3gameprototyping/email_author/new

Appendix

Excellent! You completed this workbook and constructed your game. Still hungry for
more? Take some time and review the following resources.

More Resources 294

More Resources

Still hungry for more? Take some time and review the following resources.

JavaScript Garden

JavaScript Garden9 is a growing collection of documentation about the most
quirky parts of the JavaScript programming language. It advises to avoid com-
monmistakes and subtle bugs, as well as performance issues and bad practices,
that non-expert JavaScript programmers may encounter on their endeavors
into the depths of the language.

JavaScript Garden does not aim to teach you JavaScript. Former knowledge of the
language is strongly recommended to understand the topics covered in this guide.
To learn the basics of the language, please head over to the excellent guide on the
Mozilla Developer Network.

Additional Appendices

Available Bonus Content has 76-pages of external downloads.

• Appendix: Building HTML5 Web Page (3-pages)10

• Appendix: Conversion Cheat-sheet (9-pages)11 — into and from Phaser v2.x.x
and Phaser

• Appendix: Distribution Channels (2-pages)12

• Appendix: Game Design Considerations (1-page)13

• Appendix: Game Design Overview (3-pages)14

• Appendix: Game Resources and References (17-pages)15

• Appendix: JS Coding Styles (7-pages)16

• Appendix: Networking (9-pages)17

9http://bonsaiden.github.io/JavaScript-Garden/#intro
10https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
11https://makingbrowsergames.com/book/Appendix-CC.pdf
12https://makingbrowsergames.com/book/Appendix-Channels.pdf
13https://makingbrowsergames.com/book/Appendix-GD.pdf
14https://makingbrowsergames.com/book/Appendix-GameDesignOverview.pdf
15https://makingbrowsergames.com/book/Appendix-Game.pdf
16https://makingbrowsergames.com/book/Appendix-CodingStyles.pdf
17https://makingbrowsergames.com/book/Appendix-Networking.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://bonsaiden.github.io/JavaScript-Garden/#intro
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/book/Appendix-CC.pdf
https://makingbrowsergames.com/book/Appendix-Channels.pdf
https://makingbrowsergames.com/book/Appendix-GD.pdf
https://makingbrowsergames.com/book/Appendix-GameDesignOverview.pdf
https://makingbrowsergames.com/book/Appendix-Game.pdf
https://makingbrowsergames.com/book/Appendix-CodingStyles.pdf
https://makingbrowsergames.com/book/Appendix-Networking.pdf
http://bonsaiden.github.io/JavaScript-Garden/#intro
https://makingbrowsergames.com/book/Appendix-buildHTML5webPage.pdf
https://makingbrowsergames.com/book/Appendix-CC.pdf
https://makingbrowsergames.com/book/Appendix-Channels.pdf
https://makingbrowsergames.com/book/Appendix-GD.pdf
https://makingbrowsergames.com/book/Appendix-GameDesignOverview.pdf
https://makingbrowsergames.com/book/Appendix-Game.pdf
https://makingbrowsergames.com/book/Appendix-CodingStyles.pdf
https://makingbrowsergames.com/book/Appendix-Networking.pdf

More Resources 295

• Appendix: Phaser 3 Resources (2-pages)18

• Appendix: Project Management Analysis (13-pages)19

• Appendix: Security (5-pages)20

• Appendix: US Business Start-ups (4-pages)21

• FREE Phaser III Game Developer Course22

• Facebook Game AI & WebXR Developers23

• Facebook Game Developers24

Other resources:

• Phaser FAQ25 OR Phaser Discord26

• Phaser Plugins (.com)27 121+ Phaser Plugins (as of 20191001) for either v2.x.x or
III.

• 9-slice: https://github.com/jdotrjs/phaser3-nineslice
• Pathbuilder28 — A tool to build paths for Pathfollowers and path tweens. Draw

and edit Lines, Bezier Curves, Splines, and Ellipses during runtime and export
them to Phaser.

• Weapons Plugin29 — A Phaser v3 compatible port of the Weapon Plugin shipped
with Phaser v2.x.x. The author considers this plugin is stable and mostly feature
complete. Most bugs should be fixed, but if any do occur please help us by
reporting them.

• Phaser 3 Ninepatch Plugin30 — Phaser3 Nine Patch plugin adds 9-slice scaling
support to Phaser 3 by KoreezGames

• Generic Platformer andPhaser Bootstrap Project31 — Generic platformer and
Phaser 3 bootstrap project

18https://makingbrowsergames.com/book/Appendix-Phaser3.pdf
19https://makingbrowsergames.com/book/Appendix-PM.pdf
20https://makingbrowsergames.com/book/Appendix-Security.pdf
21https://makingbrowsergames.com/book/Appendix-USBusiness.pdf
22https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
23https://developers.facebook.com/products/#filter-id=gaming
24https://developers.facebook.com/search/?q=html5%20build%20games¬found=1
25https://github.com/samme/phaser3-faq/wiki
26https://github.com/phaser-discord/community/blob/master/FAQ.md
27https://phaserplugins.com/
28https://github.com/samid737/phaser3-plugin-pathbuilder
29https://github.com/16patsle/phaser3-weapon-plugin
30https://github.com/koreezgames/phaser3-ninepatch-plugin
31https://github.com/nkholski/phaser3-es6-webpack

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/book/Appendix-Phaser3.pdf
https://makingbrowsergames.com/book/Appendix-PM.pdf
https://makingbrowsergames.com/book/Appendix-Security.pdf
https://makingbrowsergames.com/book/Appendix-USBusiness.pdf
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://developers.facebook.com/products/#filter-id=gaming
https://developers.facebook.com/search/?q=html5%20build%20games¬found=1
https://github.com/samme/phaser3-faq/wiki
https://github.com/phaser-discord/community/blob/master/FAQ.md
https://phaserplugins.com/
https://github.com/jdotrjs/phaser3-nineslice
https://github.com/samid737/phaser3-plugin-pathbuilder
https://github.com/16patsle/phaser3-weapon-plugin
https://github.com/koreezgames/phaser3-ninepatch-plugin
https://github.com/nkholski/phaser3-es6-webpack
https://makingbrowsergames.com/book/Appendix-Phaser3.pdf
https://makingbrowsergames.com/book/Appendix-PM.pdf
https://makingbrowsergames.com/book/Appendix-Security.pdf
https://makingbrowsergames.com/book/Appendix-USBusiness.pdf
https://leanpub.com/c/p3gdc/c/Tx4iHQ6m64c5
https://developers.facebook.com/products/#filter-id=gaming
https://developers.facebook.com/search/?q=html5%20build%20games¬found=1
https://github.com/samme/phaser3-faq/wiki
https://github.com/phaser-discord/community/blob/master/FAQ.md
https://phaserplugins.com/
https://github.com/samid737/phaser3-plugin-pathbuilder
https://github.com/16patsle/phaser3-weapon-plugin
https://github.com/koreezgames/phaser3-ninepatch-plugin
https://github.com/nkholski/phaser3-es6-webpack

More Resources 296

Selling your Game Assets

This is similar to selling a car in parts32 from a “hack-shop”. See how AppGameKit33

manages their “piecemeal”34 sales.

• Sell your knowledge, discoveries, concepts, and designs as tutorials, ebooks,
guides, and courses (examples here)35.

• Sell your 3D Models here36 or from my favorite 3D publisher DAZ 3D37 download
their FREE DAZ 3D Studio Manager38.

• As a Commercial Game Starter Kits39 (examples)
• Creative Market40 — is the world’s marketplace for design. Bring your cre-

ative projects to life with ready-to-use design assets from independent creators
around the world. Sell your game assets.

• Envato Elements41 — Sell your graphics, audio, images, plugins, themes, and
videos.

• Game Developer’s Market42 — GameDev Market (GDM) is a community-driven
marketplace based in the UK that connects indie game developers with talented
asset creators. There are asset stores specific to certain game engines, huge
generic stock websites with an overwhelming catalog of assets of varying quality,
and smaller indie stores with small selections of very niche assets.

• HumbleBundle for Developers43 — Humble Games wants to make it easier for
indie developers to succeed. Publishing is their way to give back to the indie
community by helping great ideas to become successful games. They want to
share their Humble Bundle’s experience and international marketing scale to
help every developer make more games and reach more customers. You can
create your own webpage to showcase and sell your game. Hosting is free, and
you keep 95% of the proceeds after payment processing and taxes. You can edit
your page whenever you want, and you also have access to our customer support
team. Get many of the features and benefits of their “Humble Gamepage” in a
handy widget that you can add directly to your site to sell your game. Edit and

32https://www.cashcarsbuyer.com/how-to-sell-a-car-for-parts/
33https://www.appgamekit.com/order
34https://www.dictionary.com/browse/piecemeal
35https://gamedevelopment.tutsplus.com/tutorials?ref=PBMCube
36https://help.sketchfab.com/hc/en-us/articles/115004259063-Selling-your-3D-Models?utm_source=website&utm_

campaign=footer
37https://www.daz3d.com/community/community-publishing
38https://www.daz3d.com/get_studio/
39https://codecanyon.net/search?utf8=%E2%9C%93&term=html5+mobile+fighting+game&ref=PBMCube&referrer=

search&view=grid
40https://creativemarket.com/?u=PBMCube
41https://community.envato.com/become-an-elements-author/?ref=PBMCube
42https://www.gamedevmarket.net/?ally=GVgAVsoJ
43https://www.humblebundle.com/subscription?refc=vu8nCv

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.cashcarsbuyer.com/how-to-sell-a-car-for-parts/
https://www.appgamekit.com/order
https://www.dictionary.com/browse/piecemeal
https://gamedevelopment.tutsplus.com/tutorials?ref=PBMCube
https://gamedevelopment.tutsplus.com/tutorials?ref=PBMCube
https://help.sketchfab.com/hc/en-us/articles/115004259063-Selling-your-3D-Models?utm_source=website&utm_campaign=footer
https://www.daz3d.com/community/community-publishing
https://www.daz3d.com/get_studio/
https://codecanyon.net/search?utf8=%E2%9C%93&term=html5+mobile+fighting+game&ref=PBMCube&referrer=search&view=grid
https://creativemarket.com/?u=PBMCube
https://community.envato.com/become-an-elements-author/?ref=PBMCube
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.humblebundle.com/subscription?refc=vu8nCv
https://www.cashcarsbuyer.com/how-to-sell-a-car-for-parts/
https://www.appgamekit.com/order
https://www.dictionary.com/browse/piecemeal
https://gamedevelopment.tutsplus.com/tutorials?ref=PBMCube
https://help.sketchfab.com/hc/en-us/articles/115004259063-Selling-your-3D-Models?utm_source=website&utm_campaign=footer
https://help.sketchfab.com/hc/en-us/articles/115004259063-Selling-your-3D-Models?utm_source=website&utm_campaign=footer
https://www.daz3d.com/community/community-publishing
https://www.daz3d.com/get_studio/
https://codecanyon.net/search?utf8=%E2%9C%93&term=html5+mobile+fighting+game&ref=PBMCube&referrer=search&view=grid
https://codecanyon.net/search?utf8=%E2%9C%93&term=html5+mobile+fighting+game&ref=PBMCube&referrer=search&view=grid
https://creativemarket.com/?u=PBMCube
https://community.envato.com/become-an-elements-author/?ref=PBMCube
https://www.gamedevmarket.net/?ally=GVgAVsoJ
https://www.humblebundle.com/subscription?refc=vu8nCv

More Resources 297

customize it at any time, and keep 95% of proceeds after payment processing
and taxes.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Online Game Development 298

Appendix: Online Game Development

• Modd.io44 — Make a game in 3 days, not in 3 months. Modd.io is running on
a Multi-Player game engine with Box2d physics built-in. Many features have
been put in place over the years such as client-side prediction and bandwidth
optimization.

44https://www.modd.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.modd.io/
https://www.modd.io/

Appendix: Making WebXR Games! 299

Appendix: Making WebXR Games!

Refer to the following pioneers who are building 3D Phaser Games.

• Headless Game Design45

• CubeVilleTM46 — an Online Life-Simulation Game (and social science research).
Alpha concept demonstrations for Phaser III here47 and Phaser v2.x.x here48.

• WebXR Device API Explained49

• Making DOOM 3D in Phaser50

• Enabled 3D for Web, Mobile, and PC51

• Phaser III 3D Camera Plugin52

• Phaser v3.5 Extern Code for Three.js53

• 34 3d examples in Phaser III54

• Build fake 3D HTML5 games with Phaser, Arcade physics, three.js, and Phaser
3D library55 advice from Emanuele Feronato

• Super-Powers56 — 2D and 3D game making for indies; Free and open source.
Superpowers is powered by three.js, Socket.IO, TypeScript, Electron, Node.js, and
many other lovely Open Source projects.

45http://leanpub.com/hgd
46https://pbmcube.com/cubeville
47https://daan93.github.io/phaser-isometric-demo/
48https://dozenschuiven.daniel-dewit.nl/
49https://github.com/immersive-web/webxr/blob/master/explainer.md
50https://phaser.io/news/2018/01/making-doom-3d-in-phaser
51https://github.com/yandeu/enable3d#readme
52https://github.com/photonstorm/phaser/tree/master/plugins/camera3d
53https://labs.phaser.io/edit.html?src=src%5Cbugs%5Cextern.js
54https://phaser.io/news/2019/04/phaser-backer-examples-april
55https://www.emanueleferonato.com/2019/11/27/build-fake-3d-html5-games-with-phaser-arcade-physics-three-js-

and-phaser-3d-library/
56http://superpowers-html5.com/index.en.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://leanpub.com/hgd
https://pbmcube.com/cubeville
https://daan93.github.io/phaser-isometric-demo/
https://dozenschuiven.daniel-dewit.nl/
https://github.com/immersive-web/webxr/blob/master/explainer.md
https://phaser.io/news/2018/01/making-doom-3d-in-phaser
https://github.com/yandeu/enable3d#readme
https://github.com/photonstorm/phaser/tree/master/plugins/camera3d
https://labs.phaser.io/edit.html?src=src%5Cbugs%5Cextern.js
https://phaser.io/news/2019/04/phaser-backer-examples-april
https://www.emanueleferonato.com/2019/11/27/build-fake-3d-html5-games-with-phaser-arcade-physics-three-js-and-phaser-3d-library/
https://www.emanueleferonato.com/2019/11/27/build-fake-3d-html5-games-with-phaser-arcade-physics-three-js-and-phaser-3d-library/
http://superpowers-html5.com/index.en.html
http://leanpub.com/hgd
https://pbmcube.com/cubeville
https://daan93.github.io/phaser-isometric-demo/
https://dozenschuiven.daniel-dewit.nl/
https://github.com/immersive-web/webxr/blob/master/explainer.md
https://phaser.io/news/2018/01/making-doom-3d-in-phaser
https://github.com/yandeu/enable3d#readme
https://github.com/photonstorm/phaser/tree/master/plugins/camera3d
https://labs.phaser.io/edit.html?src=src%5Cbugs%5Cextern.js
https://phaser.io/news/2019/04/phaser-backer-examples-april
https://www.emanueleferonato.com/2019/11/27/build-fake-3d-html5-games-with-phaser-arcade-physics-three-js-and-phaser-3d-library/
https://www.emanueleferonato.com/2019/11/27/build-fake-3d-html5-games-with-phaser-arcade-physics-three-js-and-phaser-3d-library/
http://superpowers-html5.com/index.en.html

Appendix: Making WebXR Games! 300

First-person view of the 3D environment
See more about using Phaser III in 3D projects:

• Phaser v2.x.x (GitHub)57 and Phaser III (GitHub)58 Isometric Plugins.
• Phaser III Dev Log #9859.
• Phaser III 3D examples60

• Phaser III / Enable.io integration61

See items that “won’t be fixed”62 concerning 3D Sprites63 — as of 27 APR 2020
— and design your 3D projects accordingly.

57http://rotates.org/phaser/iso/
58https://github.com/sebashwa/phaser3-plugin-isometric
59https://phaser.io/phaser3/devlog/98
60https://phaser.io/news/2019/04/phaser-backer-examples-april
61https://enable3d.io/
62https://github.com/photonstorm/phaser/issues/5091
63https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite3D.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://rotates.org/phaser/iso/
https://github.com/sebashwa/phaser3-plugin-isometric
https://phaser.io/phaser3/devlog/98
https://phaser.io/news/2019/04/phaser-backer-examples-april
https://enable3d.io/
https://github.com/photonstorm/phaser/issues/5091
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite3D.html
http://rotates.org/phaser/iso/
https://github.com/sebashwa/phaser3-plugin-isometric
https://phaser.io/phaser3/devlog/98
https://phaser.io/news/2019/04/phaser-backer-examples-april
https://enable3d.io/
https://github.com/photonstorm/phaser/issues/5091
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite3D.html

Appendix: Phaser III Plugins 301

Appendix: Phaser III Plugins

I highly recommend phaser3-rex-notes on GitHub64 and Awesome-phaser65 as your
first couple of stops for any Phaser III plugins. Also, there is superior documenta-
tion located at https://rexrainbow.github.io/phaser3-rex-notes/docs/site/ Cur-
rent, as of the last visit, there are the following Phaser III available plugins:
20181211

• actions (Hexagon and Quad grid)
• audio (fade and midiplayer)
• behaviors (boid, bullet, 8-directions, fade, flash, interception, moveto, pathfol-

lower, rotateto, scale, ship,textpage, texttyping)
• board (board, chess, grid, hexagonmap, match, miniboard, monopoly, moveto,

pathfinder, shape utils)
• data (bank, csvtoarray, csvtohashtable, pool, restorabledata)
• gameobjects (bbocdtext, canvas, containerlite, gridtable, shape, tagtext)
• geom (hexagon, quad, rhombus, utils)
• input (button, cursoratbound, drag, dragscale, dragspeed, mousewheeltoup-

donw, scroller, slider, touchsursor, touchstate, virtualjoystick)
• loader (awaitloader, webfontloader)
• logic (achievements, conditionstable, fsm, runcommands, waitevents)
• math/gashapon (Gashapon.js)
• shaders (pixelation, swirl)
• string (lzstring, xor)
• time (clock, lifetime)
• utils (… 25 total! in this directory)

64https://github.com/rexrainbow/phaser3-rex-notes/tree/master/plugins
65https://github.com/Raiper34/awesome-phaser

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/rexrainbow/phaser3-rex-notes/tree/master/plugins
https://github.com/Raiper34/awesome-phaser
https://rexrainbow.github.io/phaser3-rex-notes/docs/site/
https://github.com/rexrainbow/phaser3-rex-notes/tree/master/plugins
https://github.com/Raiper34/awesome-phaser

Appendix: Network Concepts 302

Appendix: Network Concepts

This chapter is a sample excerpt from Multi-player Gaming Systems66

Game Scenes
I debated about this section of the workbook whether to include how networks impact
the delivery of games and the reason for implementing these next three sections:
Initialize, Boot and Preload (traditional method). There are technical reasons that
support this laborious and seemingly redundant part of your game’s design. Many
Wide-Area Networks (WAN) use the MPLS (Multi-protocol Label Switching) protocol67.
Briefly, it forces routers to collapse data streams to switching only, thus reducing
network delay by 30% to 40%.

NOTE:Want to learn more? I elected to offer those that are interested a coupon
to access this content as a FREE TCP/IP Networking tutorial68. Access to this
course does not have an expiration date, but it is a one-time access only
access. You will need your purchase invoice number as the second part of your
coupon’s code.

66https://leanpub.com/rrgamingsystem
67http://www.protocols.com/pbook/mpls/
68http://www.tbcube.com/courses/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/rrgamingsystem
http://www.protocols.com/pbook/mpls/
http://www.tbcube.com/courses/
https://leanpub.com/rrgamingsystem
http://www.protocols.com/pbook/mpls/
http://www.tbcube.com/courses/

Appendix: Network Concepts 303

Security Concerns

In this section, I will develop more methods to foil piracy attempts on your game.

Protecting Game Assets

You will spend many hours developing your game; and, as you learned, copyrights
only protect the tangible expression of your idea — not the idea itself! Yahoo User In-
terface team provides a hint in the note below entitled Minification vs Obfuscation69.
(See Chapter Notes for more references.)

JavaScript is a load-and-go language. Programs are delivered to the execu-
tion site as text (not as executable or semi-compiled class files) where it is
compiled and executed. JavaScript works well with the Web, which is a text
delivery system because it is delivered as text.

There are two downsides of textual delivery of programs. The first is code size. The
source can contain material (such as white-space and comments) which aids in the
human interpretability of the program, but which is not needed for its execution.
Transmitting superfluous material can significantly delay the download process,
which keeps people waiting. If we could first strip out the white-space and comments,
our pages would load faster.

The second downside is code privacy. There might be a concern that someone could
read the program and learn our techniques, and worse, compromise our security by
learning the secrets that are embedded in the code.

There are two classes of tools which deal with these problems: minifiers and obfusca-
tors.

69http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/
http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/

Appendix: Network Concepts 304

… Then finally, there is the question of code privacy. This is a lost cause.
There is no transformation that will keep a determined hacker from un-
derstanding your program. This turns out to be true for all programs in
all languages, it is just more obviously true with JavaScript because it is
delivered in source form. The privacy benefit provided by obfuscation is an
illusion. If you don’t want people to see your programs, unplug your server.

Use of <iframe>

The reason behind using an <iframe> (short for the inline frame) is “… the ultimate
modularization tool, allowing you to break up content, seamlessly display content
from other sources, and better manage downloading. It’s a must-have for any web
designer’s arsenal.” (See footnote 1)

Other possible reasons developers deploy iframes (instead of AJAX) could be:

1. Iframes circumvent the cross-domain origin policy; whereas images, scripts, and
styles do not. This trick is beneficial for pulling content relatively safely from other
domains. The results are presenting foreign content without clobbering one’s
page content and styling — something JSONP would be able to do.

2. Iframes are not restricted to a single resource mime-type. Google Gmail is a
perfect example because it is a set of inline frames.

3. Poor architecture design or resorting to a simple fix.

However, the problem with an <iframe> is that whenever you navigate to an HTML5
game inside a browser, the game’s <iframe> does not automatically receive “focus”.
This means the gamer must click on the game’s displayed <iframe> before the game
can accept any keyboard input. Annoying? Sure is!

Other web developers point to a number of reasons to further avoid iframe usage70.
But as scary as they might wail, several game distribution channels insist on using
iframes to preserve their website integrity through game content isolation.

Here is a suggested workaround, but remember what we discussed in previous
chapters about the window.onload??? And do NOT FORGET that using iframes
is the most costly method of securing your content.

70http://stackoverflow.com/questions/23178505/good-reasons-why-not-to-use-iframes-in-page-content

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://stackoverflow.com/questions/23178505/good-reasons-why-not-to-use-iframes-in-page-content
http://stackoverflow.com/questions/23178505/good-reasons-why-not-to-use-iframes-in-page-content

Appendix: Network Concepts 305

Mostly Costly Web Page elements

Read - Using Iframes Sparingly71

1 <script>

2 window.onload = function() {

3 document.getElementById('frame').focus();

4 };

5 </script>

6 <iframe id="frame" width="768" height="480" src="yourDomain.com">

Bad Bot!

No this is not about the movie studio72. Bots, spiders, spam bots, crawlers search
websites for content — your game content you spent hours creating. There are a few
minimal steps that should be implemented.

• A “silence is golden” index.htm(l) in every directory you require privacy.
• .htaccess for Linux servers. Here’s the best book, in my opinion,73 on .htaccess.
• logging

71https://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
72https://en.wikipedia.org/wiki/Bad_Robot_Productions
73http://htaccessbook.com/?ap_id=PBMCube

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
https://en.wikipedia.org/wiki/Bad_Robot_Productions
http://htaccessbook.com/?ap_id=PBMCube
https://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
https://en.wikipedia.org/wiki/Bad_Robot_Productions
http://htaccessbook.com/?ap_id=PBMCube

Appendix: Network Concepts 306

• Black hole bot trap74 “for those stubborn, hard to get rid of” bots.

Exercise: Refer the to index.php file and compare it to both the
MMM-js-SPWA/index-mobile-mmm.html and MMM-js-SPWA/index-mobile-mmmSPWA.html

(Single Web Page Application). The index.php launches the CodeIgniter
application, controllers, system, and views. It is the “mmm” directory/views
that have all the page components to dynamically constructor the content
delivered to the end-user.

NOTE: how the entire game’s JavaScript in the
MMM-js-SPWA/index-mobile-mmmSPWA.html page is exposed to the end-user!
Deploying a game in this manner does not protect my tangible copyrighted
idea; I might as well have released it as a public domain or copyleft distribution.
In a few days after releasing it in the “wild”, thousands of similar “copy-cat”
versions — with different graphics or not — would appear on the Internet.

Exercise: Open and edit the index.html file in MMM-js0CI3.1.2-v0001. This would
be an excellent place for a “bot trapper” or a “hacker logger”. Research
Blackhole bot trap version 175 and the newest version for WordPress as of Feb
201676. Determine if you need such a system for your game.

74https://perishablepress.com/blackhole-bad-bots/
75https://perishablepress.com/blackhole-bad-bots/
76https://perishablepress.com/new-plugin-blackhole-bad-bots/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://perishablepress.com/blackhole-bad-bots/
https://perishablepress.com/blackhole-bad-bots/
https://perishablepress.com/new-plugin-blackhole-bad-bots/
https://perishablepress.com/new-plugin-blackhole-bad-bots/
https://perishablepress.com/blackhole-bad-bots/
https://perishablepress.com/blackhole-bad-bots/
https://perishablepress.com/new-plugin-blackhole-bad-bots/

Appendix: Network Concepts 307

Other Considerations

N-Tier Cloud Architecture
The topic concerning network and application security is huge! I recommend the
following sites for more details on security.

• 64 Network DO’s and DON’Ts for Multi-Player Game Developers77

• Storage Area Network Security * sans.org78 you will find 1,000 of free references,
avenues to earn a Cyber Security Master Degree and certifications.

Game Services (Back-end)

PHP is a popular server-side middleware; there are others available, but I will focus
on my own servers and implementations that support Mozart’s Music Match. So
instead of blindly following my recommendation, let’s review several web middleware
frameworks.

Among the hundreds of technical choices made available, the choice of a web
framework is probably one of the most important — behind that of a client-side
development framework (such as Phaser).

This article details79 the various stress tests performed on seven different middleware
sources.

77http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-viib-security-concluded/
78http://www.sans.org/
79https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-viib-security-concluded/
http://www.sans.org/
https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/
http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-viib-security-concluded/
http://www.sans.org/
https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/

Appendix: Network Concepts 308

Mean Response Time (Smaller is Better)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Network Concepts 309

80th Percentile Response Time (Smaller is Better)
As demonstrated, node.js, as a single-threaded process, has limitations; whereas PHP
barely shows any “sweat”! Looking further into this stress-test “response time” were
analyzed. The article concludes:

So a few conclusions

• There’s a marked difference in RPS and response time for new async
frameworks and sync frameworks – this becomes especially obvious
as the number of concurrent requests exceeds the number of physical
cores on the box. Async frameworks achieve a peak RPS at above
concurrent workers

• Workloads demonstrating a richer I/O workload (as a % of all time) get
larger benefits from using an async framework. Workloads with a pure
CPU workload should demonstrate near identical performance on both
sync and async frameworks.

• Go achieves very terrible scores on workload 1 and really excellent
scores on workload 2 – I think this is pointing to particularly crappy JSON
and ZLib implementations present in Go.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Network Concepts 310

• Mono 3.0.1’s implementation of .NET 4.5 is super disappointing and
really not ready for primetime (async keyword isn’t implemented yet).

• It’s a giant mistake to assume that system utility libraries demonstrate
good/best performance. The best JSON lib can be 10x faster than the
worst.

• There appears to be an emerging trend of decoupling a web framework
from its server container (e.g. having a local nginx proxy). This introduces
some new complexity in managing both processes and making sure that
the guest web framework keeps its service and workers in a healthy state.
(See footnote 2)

CMS - Server-side Frameworks

Content Management Systems (CMS) is the topic of this section. We have focused on
Phaser as a single web page, but what if we created a game (Part III — Mozart Music
Match) that was a “game-shell” and packaged multiple individual games inside it? How
would we manage handing-off the gamer into a subordinate-games and then return
them back to the game-shell canvas? If you are familiar with Bulletin Board Systems
(BBS) “Door Games”, then you quickly see my direction. For those who are not familiar,
please indulge my following explanation.

Nearly every book on Phaser demonstrates how to create a “single page / web
application” (SPWA) (I call it “the Phaser Traditional Method”) canvas game using a
linear sequence:

IndexPage > Boot/Preload/Splash > MainMenu > Play > Win/Lose > Again?

What if we broke that sequence into a “tree hierarchy”? Meaning that the Main Menu is
an altogether separate canvas page (tree trunk) than its individual game components
(tree branches)? We would need a Content Management System (CMS) for this type
of game structure. Building our game in this manner also permits us to easily convert
it into “Android Intents” and further extend it into multi-player mode.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Network Concepts 311

CMS Game

Index Page (Non-Traditional Method)

I prefer CodeIgniter as my CMS; others might like(??) to use WordPress. Consider that
the Phaser canvas is a single web page, and the CMS is the over-arching umbrella
that permits access. You can review samples on how I use CodeIgniter here80 or on
my mobile game site.

• Blood Pit81

• Rogue Prince82

• Ruins of Able-Wyvern83

• Rulers of Renown84

• Soldiers Test85

Notice that the “indexes” are “.php” middleware pages, and are dynamically executed
from the server-side — we are sooooo close to a multi-player construction. Can ya
smell it?? The advantage provided by CMS is a common head and footer template
per dynamically generated body content.

80https://renown-quests.com/
81https://www.adventurers-of-renown.com/quests/arbp.php
82https://www.adventurers-of-renown.com/quests/arrp.php
83https://www.adventurers-of-renown.com/quests/arra.php
84https://www.adventurers-of-renown.com/quests/rrte.php
85https://www.adventurers-of-renown.com/quests/arst.php

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://renown-quests.com/
https://www.adventurers-of-renown.com/quests/arbp.php
https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arst.php
https://renown-quests.com/
https://www.adventurers-of-renown.com/quests/arbp.php
https://www.adventurers-of-renown.com/quests/arrp.php
https://www.adventurers-of-renown.com/quests/arra.php
https://www.adventurers-of-renown.com/quests/rrte.php
https://www.adventurers-of-renown.com/quests/arst.php

Appendix: Network Concepts 312

Exercise: Study the links above and discover how I can direct players to
specifically tailored pages for the devices and tailor access game versions.

NOTE: Refer to your Bonus Content: /back-endServices/samplePHPIndex.php86

High Scores Services

You have several options when storing game information as a “non-invasive cross-cut
concern”;87 you may storage game scores and progress locally on the gamer’s device
or remotely on your database server/service. Below is some generic client-side script
you will need for you “High Score” Menu.

1 //create a data structure to hold high scores

2 var highScores = [];

3 //create a data structure to track ranking

4 var hsPosition =[10,9,8,7,6,5,4,3,2,1];

5 //create a data structure to remote/local storage

6 var dbURL;

7

8 //create a high score function

9 BasicGame.HighScores = function(){};

10 BasicGame.HighScores.prototype = {

11 preload: function(){},

12 create: function(){

13 //link to your storage

14 //dbURL = new ("<where is your database?>");

15

16 for(var i = 1; 1< 11; i++){

17 hsPosition = game.add.text(

18 x, y + (i + 50),

19 i+" . "+ hsPosition[i],

20 {fonSize:"40ps"}.anchor.serTo(1,0);

21 }

22

23 //dbURL api to pull remote/local data records

86https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
87https://software.intel.com/en-us/html5/hub/blogs/oop-is-not-your-hammer/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
https://software.intel.com/en-us/html5/hub/blogs/oop-is-not-your-hammer/
https://software.intel.com/en-us/html5/hub/blogs/oop-is-not-your-hammer/
https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
https://software.intel.com/en-us/html5/hub/blogs/oop-is-not-your-hammer/

Appendix: Network Concepts 313

24 }

25 //CRUD

26 updateHSPosition: function(){

27 for(var i = 1; 1< 11; i++){

28 hsPosition[i].text = hsPosition[i];

29 }

30 }

31

32 }

Exercise: Study the High Score PHP page in your Bonus Content:
/back-endServices/samplePHPIndex.php88. Determine what information you
might collect on your game.
Exercise: Where would you permanently store gamers’ score? on the server
in a database? or local on their device using storage such as SQLite3 89,
ForeRunnerDB90 or perhaps PouchDB91?

NOTE: Refer to your Bonus Content: /back-endServices/HighScores.php

Hint: CodeIgniter support all the databases above.

Membership Login

This is a tricky topic. Some distribution channels forbid this, others allow it only IF you
use their software development kits (SDK).

Exercise:If you were to provide privileged access, where would you store the
information? locally on their device or in a server-side storage system?
Exercise:What security would you provide for privileged user passwords?

88https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
89https://www.sqlite.org/version3.html
90https://github.com/Irrelon/ForerunnerDB
91https://github.com/pouchdb/pouchdb

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
https://www.sqlite.org/version3.html
https://github.com/Irrelon/ForerunnerDB
https://github.com/pouchdb/pouchdb
https://makingbrowsergames.com/design/bonusDownLoads/back-endServices.zip
https://www.sqlite.org/version3.html
https://github.com/Irrelon/ForerunnerDB
https://github.com/pouchdb/pouchdb

Appendix: Network Concepts 314

Collecting credit card information is restricted by merchant account policies
and qualifications. Collecting biological information is restricted by US Federal
Laws. You will need a competent lawyer to guide you in these matters.

Production release version.

My desire is to have my games load as quickly as possible. I covet those game
producers’ abilities to load and launch their games “in a blink of the eye.”; don’t you??!!
How do they achieve such lighting fast game downloads? We’ve covered some of
those topics in Chapter 3 and 4. This becomes the focus of our efforts in this section.

We plan to reduce our web server’s workload across the web for our “production
released” index file. Rather than loading each individual JavaScript script tags listed in
the head, I will load the minimum scripts possible and apply a little-known feature in
Phaser — game.add.script. So, my final result becomes just the phaser.js and a single
game logic script file (called as you please, “game.js”? “app.js”? Just keep those hackers
guessing).

Now I hear you saying, “Why are we putting all those scripts into one file? Won’t a
monolithic file take the same amount of time to download as several smaller files?”
Wow! you are learning a trick or two, but hear me out. Don’t worry, we’re not going to
put everything in one monolithic file! I plan to “bootstrap my game’s loading” using
a daisy-chain/tree hierarchy discussed earlier in the CMS section.

Hint:Remember Phaser paints the game onto an HTML5 canvas. We’re using
Phaser as a “thick client”. The JavaScript files are easy to capture and read
unless some security precautions are followed, and even then a determined
“hacker/cracker” will reverse engineer your code. Much of your game logic
resides on your server when using a CMS framework.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Network Concepts 315

CodeIgniter & Phaser Integrated CMS

PHP development frameworks

NOTE: More detailed comparison information found here92

CodeIgnitera is a powerful open-source PHP framework with a very small footprint,
built for developers who need a simple and elegant toolkit to create full-featured web

92https://www.valuecoders.com/blog/technology-and-apps/top-popular-php-frameworks-web-dev/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.valuecoders.com/blog/technology-and-apps/top-popular-php-frameworks-web-dev/
https://github.com/bcit-ci/CodeIgniter
https://www.valuecoders.com/blog/technology-and-apps/top-popular-php-frameworks-web-dev/

Appendix: Network Concepts 316

applications.
ahttps://github.com/bcit-ci/CodeIgniter

We are using a recent CodeIgniter stable release v3.1.2 (28 Oct 2016), since CodeIgniter
2.x version tree was discontinued 31 October 2015. CodeIgniter project is supported
by Yeoman which facilitates rapid project creation or you could take the more
traditional approach93. If this is your first exposure to CodeIgniter, you might like to
review “the broad concepts behind CodeIgniter”94 or create a “practice project”95.

We will scaffold our CodeIgniter (CI) as a simple download of version 3.1.2. If you
prefer, you could use Yeoman to build this CI project for you. I recommend either:

• RobonKey96 offers several favors of CMS (Express for NodeJS97, WordPress,
Drupal, CodeIgniter, Laravel sub-generators).

• “CI3 Fire Starter”98 — a CodeIgniter3 skeleton application that includes jQuery
and Twitter Bootstrap. It is intended to be lightweight, minimalistic and not get
in our way. Also for your convenience, it was created for developers new to the
CodeIgniter (CI) framework who want a simple, easy platform for learning the CI
framework. My mind “gets stoked” when I see excellent work as his.

Exercise: Review both recommendations above. List several ways you might
use the features presented in your game development.

NOTE: If you are a WordPress developer or fanatic user, RobonKey would be
your “Yeoman”. Everything we are studying about CodeIgniter in this chapter
could be tweaked to WordPress Posts or Pages. Express JS Framework is a web
application framework for Node.js, released as free and open-source software
under the MIT License. It is designed for building web applications and APIs. It
is the de facto standard server framework for Node.js.99

93http://www.codeigniter.com/user_guide/installation/index.html
94http://www.codeigniter.com/user_guide/overview/index.html
95http://www.codeigniter.com/user_guide/tutorial/index.html
96https://www.npmjs.com/package/generator-robonkey
97http://expressjs.com/
98https://github.com/JasonBaier/ci3-fire-starter
99https://en.wikipedia.org/wiki/Express.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/bcit-ci/CodeIgniter
http://www.codeigniter.com/user_guide/installation/index.html
http://www.codeigniter.com/user_guide/installation/index.html
http://www.codeigniter.com/user_guide/overview/index.html
http://www.codeigniter.com/user_guide/tutorial/index.html
https://www.npmjs.com/package/generator-robonkey
http://expressjs.com/
https://github.com/JasonBaier/ci3-fire-starter
https://en.wikipedia.org/wiki/Express.js
https://en.wikipedia.org/wiki/Express.js
http://www.codeigniter.com/user_guide/installation/index.html
http://www.codeigniter.com/user_guide/overview/index.html
http://www.codeigniter.com/user_guide/tutorial/index.html
https://www.npmjs.com/package/generator-robonkey
http://expressjs.com/
https://github.com/JasonBaier/ci3-fire-starter
https://en.wikipedia.org/wiki/Express.js

Appendix: Network Concepts 317

CMS File Structure

Exercise: Review the CMS in your Bonus Content/MMM-js-CI3.1.2-v0001100

directory. I have changed the “application” directory name to “mmm”; all
CodeIgniter (CI)applications have … well … an application directory. Changing
its name is a simple security step. All the Content Management System is in
the application directory.

Next, we need a way of running our CI CMS application. We can’t simply open the
index.html file in a web browser because our CI CMS create pages dynamically with
the help of PHP. There are two files that launch our CodeIgniter CMS: mmm.php
and index.php. Both of these files are exactly alike. Web servers always search and
serve-up an index.* file by default. I use the mmm.php for internal CMS launches to
distinguish between externally and internally CMS activation; this is logged for my
security analysis.

Our migration plan is to let CodeIgniter handle all the navigation to and between
(aka routing) for the various Phaser-content pages while letting Phaser concentrate
its efforts on the current single-canvas display as a “thick client” and use the Phaser
internal function game.add.script. Why? Because the content delivered to the gamer
does NOT reveal any specific state changes; those state changes remain on the server
and invisible inside of CodeIgniter. Furthermore, we can dynamically generate pages
and select which Phaser modules to send; and, the delivered JavaScript files through
game.add.script are dynamically generated only for that current gaming session’s page.
In short, a drastic increase in asset protection and overall game security.

100https://makingbrowsergames.com/design/bonusDownLoads/MMM-js-CI3.1.2-v0001.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/design/bonusDownLoads/MMM-js-CI3.1.2-v0001.zip
https://makingbrowsergames.com/design/bonusDownLoads/MMM-js-CI3.1.2-v0001.zip

Appendix: Network Concepts 318

1 script(

2 key, //Unique name for this script file.

3 url, //file URL. If undefined or null

4 // the url will be set to <key>.js,

5 // i.e. if key was "alien" then

6 // the URL will be "alien.js".

7 callback, //called after the script is loaded

8 callbackContext // loader context

9)

Warning: Using game.add.script means that we are taking the browser’s load
management into our own hands. Remember what Ilya Grigorik stated in
chapter 4?

“Unfortunately, these optimizations do not apply to resources that are
scheduled via JavaScript; the preload scanner cannot speculatively execute
scripts. As a result, moving resource scheduling logic into scripts may offer
the benefit of more granular control to the application, but in doing so, it will
hide the resource from the preload scanner, a trade-off that warrants close
examination.”

CodeIgniter Prep Step-by-Step

Step 1) Review your newly loaded CodeIgniter Directory; my application sub-directory
is labeled “mmm-CMS”. I have moved the CodeIgniter Systems directory to a “safe
directory” outside of my root web server. Why?

• I have multiple games that use this CMS concept, and all of which use a common
system.

• It is typically “beyond the reach” of a website hacker. If they were accessed, * IT’S
TIME TO FIND A BETTER Internet Service Provider (ISP)101!!*

Step 2) Dive into the (root CI directory)/index.php. Review my “index.php” file. There
are a few entries to observe, and the comments will help you to create your index.php.

• Lines 40 to 91 separate your development from your production environment
automatically.

101http://gose-internet-services.net/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://gose-internet-services.net/
http://gose-internet-services.net/

Appendix: Network Concepts 319

• Lines 92 to 102 must be changed to reflect your web-server path to the CodeIgniter
Systems directory. I have kept the standard $system_path = 'system'; and you see
I have “commented out” mine.

• Line 103 to 119 must be changed to reflect your web-server path to the CodeIgniter
application directory. Remember, I renamed my “application” directory to “mmm-
CMS”.

• Lines 120 to 134 if you would like to move your “view” content outside the web
server, you would modify that path here.

• Lines 135 to 164 concerns “routing”. I left this section alone and unchanged.
However, this provides an additional and powerful security feature you might
consider. I recommend going to another of my heroes and reading his tutorials
on “CodeIgniter CMS”102. More tutorial references are listed in the Appendix.

• Lines 164 to 185 concludes the recommended configuration changes.

Step 3) Dive into the (application directory)/config/ and review my “Config” file.
CodeIgniter is very flexible, and with the flexibility comes responsible configuration
settings. We have two mandatory files to configure — config.php and database.php
and two very handy files to consider — autoload.php and constants.php. Let’s start
with the config.php:

Step 3A) Config.php

• Lines 1 to 14 is my own concoction for Affiliate sales. I have provided my own
code. If you are interested in becoming an Affiliated Sales agent, please read the
Affiliate Guide in your Bonus Content or click this link103, more information about
this FREE program is here104.

• Lines 15 to 40 tells CI where your project is located on your development server.
You can see my project directory is active and my “live production” path was
commented out.

• Lines 40 to 52 have a number of articles how to make the “index” file invisible.
My development server uses the mmm.php as my internal access (mentioned
above).

• Lines 53 to 69 are set to the default settings. You might research the other
settings and determine if they are appropriate for your project.

• Lines 70 to 81 allow you to set your default page extensions. The default is ‘’
(nothing); I prefer “.html”. You could tailor this to .jsp, .xhtm, .shtml depending
on how you choose to deploy your general released game.

• Lines 82 * 93 are initial language settings.
• Lines 94 to 106 are character set settings.

102http://avenir.ro/en/
103http://www.stephen-gose.com/online-docs/AffiliateGuide/index.html
104http://www.stephen-gose.com/products/affiliates-program/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://avenir.ro/en/
http://www.stephen-gose.com/online-docs/AffiliateGuide/index.html
http://www.stephen-gose.com/online-docs/AffiliateGuide/index.html
http://www.stephen-gose.com/products/affiliates-program/
http://www.stephen-gose.com/products/affiliates-program/
http://avenir.ro/en/
http://www.stephen-gose.com/online-docs/AffiliateGuide/index.html
http://www.stephen-gose.com/products/affiliates-program/

Appendix: Network Concepts 320

• Lines 107 to 117 allows for CI extensions (aka hooks)
• Lines 118 to 131 set apart your controllers that override core class.
• Lines 132 to 153 active Composer — a Dependency Manager for PHP105.
• Lines 154 to 175 are provided for input security and the permitted characters in

a URL.
• Lines 176 to 206 are the default settings for query strings.
• Lines 208 to 230 are your debugging logs. The default is “0”; you should turn

this “on” while developing your CMS, and set back to “0” in the production
environment.

• Lines 231 to 278 where would you like to find the logs? What log extensions would
you prefer? Who has access to those logs? and date format for log files.

• Lines 279 to 289 sets your error on your “views” directory. The default is ‘’
(nothing).

• Lines 290 to 318 sets your cache path and query strings.
• Lines 320 to 331 is critical! This is your encryption key settings.
• Lines 332 to 411 sets your sessions and cookies information.
• Lines 446 to 460 set your cross-site scripting and global XSS filters. These are
critical as you deploy your game across various distribution channels.

• Lines 461 to 482 enable output compression. The default is off. Turning it “on”
puts additional work-load on your server.

• Lines 483 to 495 set your time references.
• Lines 510 to 527 are a concern if you are using a Content Delivery Network (CDN

such as cloudflare).

Step 3B) database.php
The default setting is for ‘mysqli’. I prefer to use ‘pdo’, and my reference notes are
included in the file. More details are provided in the User Guide106.

An often overlooked feature of CI is the database forge107 that will help you manage
your database and migrations. The Database Utility Class108 contains methods that
help maintain and backup your databases automatically.

Step 3 Optional) autoload.php and constants.php. I have provided the default ver-
sions of my project.

Game Shell (click dummy)

At this point in our game development, we are taking our ideas and affixing them
to tangible media from all those grocery lists we have created. I would like to
demonstrate how easy it is to build our CMS with Phaser game pages.

105https://getcomposer.org/doc/00-intro.md
106https://www.codeigniter.com/user_guide/database/configuration.html
107https://www.codeigniter.com/user_guide/database/forge.html
108https://www.codeigniter.com/user_guide/database/utilities.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://getcomposer.org/doc/00-intro.md
https://www.codeigniter.com/user_guide/database/configuration.html
https://www.codeigniter.com/user_guide/database/forge.html
https://www.codeigniter.com/user_guide/database/utilities.html
https://getcomposer.org/doc/00-intro.md
https://www.codeigniter.com/user_guide/database/configuration.html
https://www.codeigniter.com/user_guide/database/forge.html
https://www.codeigniter.com/user_guide/database/utilities.html

Appendix: Network Concepts 321

All of our pages have 3 standard components: head, body and Copyright footer infor-
mation. Review my MMM-js-CI3.1.2-v0001/mmm-CMS/views directory. This holds everything
“seen” by the gamer. Then review my MMM-js-CI3.1.2-v0001/mmm-CMS/controller directory,
the controllers listen for input from the gamer(s), dissects it, pulls information from
the database, if required, and merrily returns the resulting view back to the gamer(s).
Yes, this is a standard MVC (Model, View, controller) client-server arrangement. You will
find relief that CI also support jQuery/AJAX as the default. Here’s is the code (jQuery
Form Plugin)109 I use in CI for that.

I take all the HTML head information and create a single template file called “head.php”
and save it to my MMM-js-CI3.1.2-v0001/mmm-CMS/views/templates directory. I do the same
for the Copyright footer; calling it “footer.php”.

Exercise:Review the content of my MMM-js-CI3.1.2-v0001/mmm-CMS/views/templates

directory.

What remains for me to create in a “click dummy” game shell is the body of the
“welcome page” — this combines the Phaser modules of Boot, Preload, Splash were
avoided. CI did all this work for us and presented the gamer a simple “welcome/intro-
duction page”. CI dynamically generated:

• anchors and links in the head,
• page titles,
• JavaScript for this single page,
• the body,
• updated internal PHP variables,
• game state status,
• the footer, and generated
• live statistics

Exercise: Study my online “click dummy” game shell here110.

PHP anchor references in the index.php such as <?php echo site_url('welcome/lobby')?>

permit a dynamically created href. If I choose to move directories, server names, or
even ISPs, these references will always create the correct URL. This powerful feature

109http://jquery.malsup.com/form/
110https://www.renown-games.com/MozartMusicMatch/mmm.php

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://jquery.malsup.com/form/
http://jquery.malsup.com/form/
https://www.renown-games.com/MozartMusicMatch/mmm.php
http://jquery.malsup.com/form/
https://www.renown-games.com/MozartMusicMatch/mmm.php

Appendix: Network Concepts 322

allows you to create generic games and sell your source code on marketplaces such as
itch.io111 or CodeCanyon112. Clicking the anchor takes the gamer to the “Game Lobby”.

Exercise: Study my controller file located in
MMM-js-CI3.1.2-v0001/mmm-CMS/controllers/ are the Welcome.php and the Area.php

files.

CI creates the default index page inside the welcome controller. Each HTML page is a
function. The function builds or redirects (routes) gamers to their destinations. The
gamer arrives in the “Game Lobby” where they are offered several decisions. Gamers
may select how they want the game displayed by choosing a device and then choosing
which music game to play. Many of the input controls are disabled to simplify the area

controller.

The “Game” Lobby function inside the welcome controller redirects the gamer to a
selected game. The information collected is sorted by the area controller and builds
that page for the gamer. The page sent is a Phaser SWPA — the traditional method
found on phaser.io113 and many other tutorials. In my example, I am sending either
the gamer to index-mobile-mmm.html or index-mobile-mmmSWPA.html (pages that we have
constructed earlier in the workbook).

111https://itch.io/
112https://codecanyon.net/become-an-author?ref=PBMCube
113http://phaser.io/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://itch.io/
https://codecanyon.net/become-an-author?ref=PBMCube
http://phaser.io/
https://itch.io/
https://codecanyon.net/become-an-author?ref=PBMCube
http://phaser.io/

Appendix: Network Concepts 323

Summary

This chapter had numerous reference to external resources and examples. Here’s
what you accomplished:

• Learned about minimization and obfuscation methods.
• Correctly use inline frames (iframes) when deploying finalized game releases.
• Discover 64 “do” and “do not do”
• Found 1,000 of free security references, certifications, and a college degree in

Cyber Security.
• Analyzed, compared and found shocking information on various middleware

capabilities.
• Discovered most Phaser deployments are single-page games.
• Created a new method to deploy Phaser games through a Content Management

System.
• Studied various server back-end services and middleware.
• Analyzed a CMS index.php.
• Learned the flexibility provided by using CMS hierarchy and “Non-Traditional”

index page.
• Reviewed to potential local storage methods for JavaScript.
• Became aware of legal requirements for privileged user access.

Chapter Footnotes

1. Rohler, N. (n.d.). The Magical Tag: An Introduction114. Retrieved November 2016.
2. Benchmarking Web Frameworks for Games.115 (2012). Retrieved November 01,

2016.

114http://www.dwuser.com/education/content/the-magical-iframe-tag-an-introduction/
115https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.dwuser.com/education/content/the-magical-iframe-tag-an-introduction/
https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/
http://www.dwuser.com/education/content/the-magical-iframe-tag-an-introduction/
https://juiceboxgaming.wordpress.com/2012/11/20/benchmarking-web-frameworks-for-games/

Appendix: “How to Start a WebSocket” 324

Appendix: “How to Start a WebSocket”

Excerpt from Chapter 6
“Phaser Making Massive Multi-Player Online Games”

With the solid foundation from Parts I & II, your research, and answers to the various
exercises, we are — at last! — ready to begin our source coding sessions. We will start
on the client-side and migrate across the MMoG Architecture we discussed in Part II.
Our goal, by the end of this chapter, is to have:

• a functional WebSocket conduit (aka “telecommunications channel”) starting
from client-side proxy to server API with data formatted as either an RPC or MOM.
It becomes our MMoG prototype to expand into more specific game messages
in later chapters.

• a guiding regimen showing us where to place our source code across our MMoG
systems.

To use WebSockets, you need a browser, a web server, and a socket app server
that all support the same WebSocket protocol. (You learned that in Part I, and all
the reasons to avoid using Socket.IO and its incompatibilities). Your best friend will
become “Can I Use” website116; it provides current information about the WebSocket
technology, browsers to avoid, known issues, and resources. You were given two test
sites in Part II; it’s time to create your own testing server — this is not the same as
Web Server. You will need a traditional web server (such as Apache or IIS) on your
local development workstation to serve your game’s dynamic content. (You’ll recall
from Part I that Node.js and Express only deliver static content? Right?) You have
a “Project Game Starter Kit” in your Bonus Content you need to copy this into your
workstations web server root directory and make sure it’s running in the background
of your development workstation. You’ll need to make sure not to close the command
prompt window!

Exercise: Download the “Project-GameStarterKit”: https:

116https://caniuse.com/#search=websocket

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://caniuse.com/#search=websocket
https://makingbrowsergames.com/mmog/bonusContent/WebSockets.zip
https://makingbrowsergames.com/mmog/bonusContent/WebSockets.zip

Appendix: “How to Start a WebSocket” 325

//makingbrowsergames.com/mmog/bonusContent/WebSockets.zipor any client SDK
from https://kaazing.com/download/

New MMoG Information Flow - Single Player to MMoG Server
The Client-side has several important responsibilities while processing the game logic
so that it works well with the remote server (or local proxy server) and provides a
quality game-play experience:

• Rendering — the Client-side is responsible for rendering the game on the player’s
display, and may be responsible for non-important physics simulations, such as
cloth simulations or particle effect — such special effects (sfx) should NOT come
from a remote server, RIGHT? If a client-side animation doesn’t have gameplay
relevance but is merely “frosting or eye-candy” to make the game “taste” better,
it shouldn’t be executed on the MMoG App server at all. RIGHT? Why should we add
network lag and delay to sfx that do NOT impact other players?

• Sound — The Client-side plays all audio sound effects and/or music tracks. It is
preposterous117 to think that the server would stream audio playback.

• Input — The Client-side collects a player’s input, packages it, and then sends that
information to the server in a negotiated format. We’ll study RPC or MOM JSON
declarative formats in the upcoming Server and MMoG App chapters.

• User Preferences — Many games store user preferences on the local machine
where the game runs. However, that also depends on the type of data. Obviously,
a gamer’s subscription account balance would be safely stored in the back-end
business logic and storage. Safe data might be the gamer’s native language,
volume controls, and any keyboard adjustments.

117https://www.dictionary.com/browse/preposterous

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://kaazing.com/download/
https://www.dictionary.com/browse/preposterous
https://www.dictionary.com/browse/preposterous

Appendix: “How to Start a WebSocket” 326

• Prediction — The Client-side could predict what might happen to game objects
in the short term while it awaits for the centralized server to synchronize and
send “confirmations”. I’ll show you how this works later in this chapter using a
client-side proxy server.

• Interpolation — As part of the Client-side prediction process, the Client can
calculate where a game object needs to be, and where it thought it should be, and
where the authoritative server confirms where it is, and shall go. Interpolation
is important in “Real-time” games — when multiple players are simultaneously
modifying the game state. Many MMoG tutorials don’t tell you about “Separation
of Concerns”. The “interpolation and extrapolation”118 calculations are perfect
candidates for a client-side proxy server.

Chapter 5 Exercise revisited: You’ll recall that Colt McAnlis from Google
Chrome Games (https://www.youtube.com/watch?v=Prkyd5n0P7k video
51:40; see 21:23 to 21:27) stated (quote), “ . . . we’re going to ignore client-
side prediction, is hands down, is the perceptive correct solution from
all the game players. If you’re writing games, make sure you do this way.”

The whole idea is amazing, that JavaScript can do all this locally. Then add onto this
idea that JavaScript is based on a single-threaded environment that increases the
“awesome factor”. Web Workers remove (partially) this single-threaded limitation as
you’ve read in the previous MMoG Application Architecture chapter.

Testing Your Browser

As of 20190327, we know that over 95% of all browsers already support WebSockets
natively! We should check if our browsers support WebSockets before we go any
further writing our MMoG.

JS check for client-side WebSocket.

1 // Make sure the browser supports WebSocket

2 if (!window.WebSocket) {

3 displayMessage("Your browser does not support WebSockets");

4 return;

5 }

118https://gamedev.stackexchange.com/questions/118006/when-should-i-extrapolate-and-when-should-i-interpolate

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://gamedev.stackexchange.com/questions/118006/when-should-i-extrapolate-and-when-should-i-interpolate
https://gamedev.stackexchange.com/questions/118006/when-should-i-extrapolate-and-when-should-i-interpolate

Appendix: “How to Start a WebSocket” 327

In your “Project Game Starter Kit”, you downloaded earlier, search for the directory
“WebSocket” and inside the “WebSocketTest.html” file and open it with your favorite
browser. Click the link — “Run WebSocket” link. Testing completed. Did it worked?
Right? If not, then research https://canIuse.com119 at the bottom of the page are tabs
leading to “Notes”, “Known Issues”, and current “Issues”. You also might like to import
their usage data and discover how much of the world already supports WebSockets
natively in browsers. You also noticed that we didn’t need a webserver to run this
simple test; but, we will need a “full-stack” web server installed on our development
workstation eventually.

NOTE: What you just did above is how your gamers will also enter your MMoG.
Study these files; it’s just pure JavaScript and only your browser. There’s only
the native WebSocket protocol; Socket.IO is nowhere to be seen! All the current
MMoG tutorials spend half their time just getting Socket.IO up and running on
your local workstation? Why? Yeap,120 we’ve already covered all those reasons
in Part I, and now I’m demonstrating what I’ve claimed from those previous
chapters.

Open the WebSocketTest.html and study what we just did. You may also test your active
browser against eithermydemo socket server121 or againstwebsocket.org.122 Review
chapter 5 for other details:

Test sites:

https://mmog.pbmcube.net/index.php
https://websocket.org/demos.html
Client Interface: http://www.abrandao.com/lab/websocket/client.html

WebSocket Protocol Handshake

To switch into an “upgraded WebSocket connection”, the gamer’s browser should
send a “WebSocket handshake request”, — which we did. The game testing servers
will return a “WebSocket handshake response”, — which it did; nothing new thus far
. . . same old, same old that we studied in Parts I & II.

119https://caniuse.com/#search=Websockets
120https://www.urbandictionary.com/define.php?term=yeap
121https://mmog.pbmcube.net/index.php
122https://websocket.org/echo.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://caniuse.com/#search=Websockets
https://www.urbandictionary.com/define.php?term=yeap
https://mmog.pbmcube.net/index.php
https://websocket.org/echo.html
https://mmog.pbmcube.net/index.php
https://websocket.org/demos.html
http://www.abrandao.com/lab/websocket/client.html
https://caniuse.com/#search=Websockets
https://www.urbandictionary.com/define.php?term=yeap
https://mmog.pbmcube.net/index.php
https://websocket.org/echo.html

Appendix: “How to Start a WebSocket” 328

Deeper Dive: WebSocket API

Upgrade to WebSockets

The WebSocket API - Read more …

Event handler Event handler types123

onopen open
onmessage message
onerror error
onclose close

Both server- and client-side WebSocket objects support the following API.

• on(‘open’, function(event)) fires when the socket connection is established. Event
has no attributes. Ensure your data is sent only when a connection exists; we
should wrap our send() method with onopen event.

• on(‘message’, function(event)) fires when the socket receives a message. The
“Event” has one attribute, data, which is either a String (for text frames) or a Buffer
(for binary frames). The default data format is “blob” which is particularly useful
when sending and receiving files.

• on(‘error’, function(event)) fires when there is a protocol error due to bad data
sent by the other peer. This event is purely informational, you do not need
to implement error recovery because WebSockets rides on top of TCP/IP. “So
how do errors still creep in?” Superior question; the answer is found in RFC
6455 Section 5.1 Overview124 which you’ve already read (?) from the Networking

124https://tools.ietf.org/html/rfc6455#page-27

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3.org/TR/websockets/
http://dev.w3.org/html5/spec/webappapis.html#event-handler-event-type
https://tools.ietf.org/html/rfc6455#page-27
https://tools.ietf.org/html/rfc6455#page-27
https://tools.ietf.org/html/rfc6455#page-27

Appendix: “How to Start a WebSocket” 329

Chapter exercises.
• on(‘close’, function(event)) fires when either the client or the server closes the

connection conduit. This event has two optional attributes — code and reason
— that expose the status code and message sent by the peer that closed the
connection. It also has three properties you can use for error handling and
recovery: wasClean, code, and error.

• send(message) accepts either a String or a Buffer and sends a text or binary
messages over the connection conduit to the other remote peer.

• ping(message, function()) sends a “ping” frame with an optional message and
fires the callback when a matching answer (aka “pong”) is received. This is typically
used to dynamically adjust the MMoG for network latency issues.

• close(code, reason) closes the connection conduit, sending the given status code
and reason text, both of which are optional.

• version is a string containing the version of the WebSocket protocol the connec-
tion is using.

• protocol is a string (which may be empty) identifying the sub-protocol the socket
is using. We discuss various “sub-protocols” in the upcoming Server chapters.

The illustration above demonstrates the responsibilities of the client and the remote
MMoG server on each end of the WebSocket communications conduit.

This line in our testing script
var ws = new WebSocket(‘ws://mmog.pbmcube.net:30113/’, ‘mmog’);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: “How to Start a WebSocket” 330

WebSockets Upgrade Dialog
Property Description
bufferedAmount Returns the total number of bytes that were queued

when the send() method was called binaryType

Returns the binary data format we received when the
onmessage event was raised

protocol Returns the protocol used by the server
readyState Reports the state of the connection and can take one

of the following self-explanatory values:
- WebSocket.OPEN
- WebSocket.CLOSED
- WebSocket.CONNECTING
- WebSocket.CLOSING

url Returns the URL of the WebSocket

Gamer’s client requests above are similar to HTTP requests, each line ends with \r\n

and there must be an extra blank line at the end. This is the standard format. The
handshake resembles an HTTP request so that the game server can handle standard
HTTP connections (port 80) as well as the new WebSocket connections across the
same initial port 80 (or 443 for https). Once the new WebSocket request creates
that connection, communications between the client and game server switches into
a bidirectional binary protocol that does not conform to the former HTTP protocol.
After a WebSocket connects, the gaming client and server can send WebSocket binary
data or text frames in full-duplex mode — in either direction at the same time!
This is a point-to-point connection as if the client and server were peers. The data
is minimally framed (for us by the WebSocket Protocol) with just two bytes. (Review
Chapter 3 Network Basics) There’s no need to write code to package these frames

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: “How to Start a WebSocket” 331

as some tutorials lead us to believe. However, it is a “stream” of data; if your MMoG
needs to understand discreet components, you might like to use a message format
inside these WebSocket frames.

The WebSocket API allows for multiple types of data (UTF8 text, binary, and blob data),
and unlike the browser, these messages on the server are stored using different
properties based upon those data types. In the case of text frames, each frame
starts with a 0x00 byte, ends with a 0xFF byte, and contains UTF-8 data in between.
(Review Chapter 3 Network Basics page 62) This binary data stream is difficult for
humans to read since it is a bidirectional binary protocol. WebSocket text frames
use a terminator,125 while binary frames use a length prefix.

A typical Server’s response header looks like this:

1 HTTP/1.1 101 Switching Protocols

2 Upgrade: websocket

3 Connection: Upgrade

4 Sec-WebSocket-Accept: cGxheWVyMzIxfGdhbWUxMjN8QUNL

5 Sec-WebSocket-Protocol: mmog, soap, wamp, sip, amqp, mqtt, xmpp

In addition to Upgrade headers, the client sends a Sec-WebSocket-Key header containing
base64-encoded126 random bytes, and the server replies with a hash of the key in
the Sec-WebSocket-Accept header. This is intended to prevent a caching proxy from re-
sending any previous WebSocket dialog, (see footnote 1127) and does not provide
any authentication, privacy or integrity. The hashing function appends the fixed
string 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 (a GUID) to the value from Sec-WebSocket-Key

header (which is not decoded from base64), applies the SHA-1 hashing function, and
encodes the result using base64. (see footnote 2128)

125https://www.ietf.org/proceedings/76/slides/hybi-1.pdf
126https://www.base64decode.net/
127https://trac.ietf.org/trac/hybi/wiki/FAQ
128https://tools.ietf.org/html/rfc6455#section-1.3

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.ietf.org/proceedings/76/slides/hybi-1.pdf
https://www.base64decode.net/
https://trac.ietf.org/trac/hybi/wiki/FAQ
https://tools.ietf.org/html/rfc6455#section-1.3
https://www.ietf.org/proceedings/76/slides/hybi-1.pdf
https://www.base64decode.net/
https://trac.ietf.org/trac/hybi/wiki/FAQ
https://tools.ietf.org/html/rfc6455#section-1.3

Appendix: “How to Start a WebSocket” 332

Observe WS Header Exchange in Developer Console

Launched the following

1 Request Headers . . .

2 GET ws://mmog.pbmcube.net:30113/demo/server.php HTTP/1.1

3 Host: mmog.pbmcube.net:30113

4 Connection: Upgrade

5 Upgrade: websocket

6 Origin: http://mmog.pbmcube.net

7 Sec-WebSocket-Version: 13

8 Sec-WebSocket-Key: zfG4XfYTSKp6NdIpCaYe+w==

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: “How to Start a WebSocket” 333

9 Sec-WebSocket-Protocol: mmog, soap, wamp, sip, amqp, mqtt, xmpp

10 Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

Exercise: WebSocket monitoring with Wire-Shark in 3 min129

Observe these WebSocket frames withWire-shark.130 (Refer to the Network Appendix
on where to getWire-shark.) Registered IANA Sec-WebSocket-Protocol is referenced
here.131 The server can’t send more than one Sec-Websocket-Protocol header. If the
server doesn’t want to use any sub-protocol, it shouldn’t send any Sec-WebSocket-
Protocol header. Sending a blank header is incorrect. The client may close the
connection if it doesn’t get the sub-protocol it wants.

Observe WS Message Content Exchange in Developer Console

129https://youtu.be/5R1ugZ_jLDI
130https://wiki.wireshark.org/WebSocket
131http://www.iana.org/assignments/websocket/websocket.xml

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://youtu.be/5R1ugZ_jLDI
https://wiki.wireshark.org/WebSocket
http://www.iana.org/assignments/websocket/websocket.xml
http://www.iana.org/assignments/websocket/websocket.xml
https://youtu.be/5R1ugZ_jLDI
https://wiki.wireshark.org/WebSocket
http://www.iana.org/assignments/websocket/websocket.xml

Appendix: “How to Start a WebSocket” 334

. . . and receives the following

1 Response Headers . . .

2 HTTP/1.1 101 Web Socket Protocol Handshake

3 Upgrade: websocket

4 Connection: Upgrade

5 WebSocket-Origin: mmog.pbmcube.net

6 WebSocket-Location: ws://mmog.pbmcube.net:30113/demo/rrte-mmog.php

7 Sec-WebSocket-Accept:EZtDpyc+cXnNbqdzXW1QCmdm//Y=

Exercise: Go back and re-do the browser test to either mmog.pbmcube.net or
websocket.org/demos.html. This time open your Develop Console and observe
your information headers and responses.
Exercise: Need help using the Developer Tools? With the Chrome Dev Tools,132

you can now see the WebSocket traffic coming to and going from your browser
without using tools like Wireshark.133 Review this article https://developers.
google.com/web/tools/chrome-devtools/

Note: Although the Web Sockets protocol is ready to support a diverse set
of clients beyond the gaming community, it cannot deliver raw binary data
to JavaScript, because JavaScript does not support a byte type. Therefore,
binary data is ignored if the client is JavaScript — but raw binary data could be
delivered to other clients that support it; the WebSocket protocol is platform-
independent.

Sample Source Code: Client-side WebSocket

The client-side is easy; it’s merely a JavaScript inside of an index page. Once we know
our MMoG App server is running — the remote end of our WebSocket conduit —
your gamers can connect to it through your “Web Server” and “subscribe to gaming
messages” pushed from your MMoG App Server. The gamers will establish WebSocket
connections through a process known as “WebSocket handshake”. This “handshake”
starts when the gamer visits a “Game’s index page” from the Web Server to enter a
specific game. The Web Server will then include an Upgrade header in this request that
tells the “MMoG App Server” a gamer wants to establish a WebSocket connection. All
of this was covered in Part I; this was simply a review.

132https://developers.google.com/web/tools/chrome-devtools/
133http://www.wireshark.org/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developers.google.com/web/tools/chrome-devtools/
http://www.wireshark.org/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
http://www.wireshark.org/

Appendix: “How to Start a WebSocket” 335

To Summarize into our 4-Step development process (Chapter 5)

1. Step #1: Inside the game’s index page, create a JavaScript WebSocket object — it
is the client-side conduit toward the MMoG server’s URL.

2. Step #2: Generate code for the following events — “onopen”, “onclose”, and “on-
error” as WebSocket event handlers. Construct the “onmessage” event handler
(the client-side workhorse and potentially a proxy-server) to handle, deserialize,
and read all incoming Game Turn Responses (GTR) coming from the MMoG App

server.
3. Step #3: Sending Game Turn Orders (GTO) “messages” to the MMoG App server using

the WebSocket send() method. This is the topic in later chapters and Part IV when
we create Game Turn Orders and server’s Game Turn Results.

4. Step #4: Closing the client-side WebSocket conduit connection to the MMoG App

server using the WebSocket close() method and transition into a new game
phase.

Using HiveMQ, you don’t need a dedicated web-server in front of an MMoG
App Server to forward the WebSocket connection. Read more about HiveMQ
…134

134https://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq/
https://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq/
https://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq/

Appendix: “How to Start a WebSocket” 336

WARNING:a User agents must not convey any failure information to scripts in a way
that would allow a script to distinguish the following situations:

• A server whose hostname could not be resolved.
• A server to which packets could not successfully be routed.
• A server that refused the connection on the specified port.
• A server that failed to correctly perform a TLS handshake (e.g., the server

certificate can’t be verified).
• A server that did not complete the opening handshake (e.g. because it was not

a WebSocket server).
• A WebSocket server that sent a correct opening handshake, but that specified

options that caused the client to drop the connection (e.g. the server specified a
sub-protocol that the client did not offer).

• A WebSocket server that abruptly closed the connection after successfully com-
pleting the opening handshake.

ahttps://html.spec.whatwg.org/multipage/web-sockets.html#feedback-from-the-protocol

In all of these cases, the WebSocket connection close code135 would be 1006, as
required by the WebSocket Protocol specification. WSP136

Allowing a script to distinguish these cases would allow a script to probe the user’s
local network in preparation for an attack. In particular, this means the code 1015 is
not used by the user agent (unless the server erroneously uses it in its close frame,
of course).

Step #1: Game index page

135https://html.spec.whatwg.org/multipage/infrastructure.html#concept-websocket-close-code
136https://html.spec.whatwg.org/multipage/references.html#refsWSP

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://html.spec.whatwg.org/multipage/web-sockets.html#feedback-from-the-protocol
https://html.spec.whatwg.org/multipage/web-sockets.html#feedback-from-the-protocol
https://html.spec.whatwg.org/multipage/infrastructure.html#concept-websocket-close-code
https://html.spec.whatwg.org/multipage/references.html#refsWSP
https://html.spec.whatwg.org/multipage/infrastructure.html#concept-websocket-close-code
https://html.spec.whatwg.org/multipage/references.html#refsWSP

Appendix: “How to Start a WebSocket” 337

Typical index.html with WebSocket

1 <!doctype html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <link rel="dns-prefetch" href="http://mmog.pbmcube.net/">

6 <title>WebSocket MMoG Client Example</title>

7

8 <!-- Typically Phaser Library is here with your gaming scripts -->

9

10 </head>

11 <body>

12 <h1>MMoG Client-side via WebSockets</h1>

13 <p>Open the JavaScript console to see what's up!

14 Notice we're not using Node.js, Socket.IO; we're just

15 using your vanilla browser for now.</p>

16 <form>

17 <label for="message">Send a Game Turn</label>

18 <input id="message" name="message" type="text">

19 <button id="send" name="send">Submit</button>

20 </form>

21

22 <!-- The secret sauce is in this external file

23 or simply insert the script directly. -->

24 <script src="ws_client.js"></script>

25 </body>

26 </html>

This index.html file (above) is placed on the WWW server; it is sent to the gamer’s browser.
The client browser runs the JavaScript that will create the WebSocket conduit. This file
is available in the “Project Game Starter Kit” at

• Download the WebSockets.zip137 OR
• Download the MMoG server-side example138.

Step #2: Generate Event handlers

Let’s turn our attention to that JavaScript just above the closing body tag. Initializing a
WebSocket is just as simple as the following lines of JQuery code. Create an external

137https://makingbrowsergames.com/mmog/bonusContent/WebSockets.zip
138https://makingbrowsergames.com/mmog/bonusContent/mmog-server-side.zip

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/mmog/bonusContent/WebSockets.zip
https://makingbrowsergames.com/mmog/bonusContent/mmog-server-side.zip
https://makingbrowsergames.com/mmog/bonusContent/WebSockets.zip
https://makingbrowsergames.com/mmog/bonusContent/mmog-server-side.zip

Appendix: “How to Start a WebSocket” 338

file entitled ws_client.js or insert the following script directly into the index.html —
search in your Bonus Content for the directory “/WebSockets/” and inside that for the
ws_client.js (click to review)139 or test online here:140

Testing a WebSocket script (ws_client.js)

1 (function () {

2 // ---------------------------------

3 // You can check the number of bytes that have been

4 // queued but not yet transmitted to the server,

5 // this is very useful if the client application transports

6 // large amounts of data to the server.

7 // ---------------------------------

8 var MAX_BUFFER = 8192;

9

10 // ---------------------------------

11 // Warning! NEVER USE WEBSOCKET 12345!

12 // port 12345 is a known virus;

13 // Read in Phaser Multi-Player Gaming Systems

14 // Chapter 6.2 WebSocket Protocol HandShake

15 // ---------------------------------

16 // new WebSocket (url, optional sub-protocol)

17 var ws = new WebSocket('ws://localhost:12345', 'echo-protocol');

18

19 //============================

20 // Step 2: 4 WebSocket Protocol Msg

21 //============================

22 // WebSocket Events:

23 // you simply add callback functions to the WebSocket object

24 // or you can use the addEventListener() DOM method on your

25 // WebSocket objects. It's important to implement these events

26 // before attempting to send any messages.

27 // ---------------------------------

28 // Step #4: Close client-side conduit

29 // FIN finished and cleaning up connection.

30 ws.onclose = function (event) {

31 console.log('Connection closed.');

32 }

33

34 // Example of "close" addEventListner

35 // Set handler for when the socket connection is closed

139https://makingbrowsergames.com/mmog/bonusContent/WebSockets/ws_client.js
140https://makingbrowsergames.com/mmog/bonusContent/WebSockets/WebSocketTest.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/mmog/bonusContent/WebSockets/ws_client.js
https://makingbrowsergames.com/mmog/bonusContent/WebSockets/WebSocketTest.html
https://makingbrowsergames.com/mmog/bonusContent/WebSockets/ws_client.js
https://makingbrowsergames.com/mmog/bonusContent/WebSockets/WebSocketTest.html

Appendix: “How to Start a WebSocket” 339

36 // websocket.addEventListener("close", function() { ...}

37

38 // Oops! Discovered an error the TCP/IP

39 // overlooked RTT or RTO problems

40 // See RFC6455 Section 5.1 for more potential errors.

41 ws.onerror = function (event) {

42 console.log('An error occurred. Sorry for that.');

43 }

44 // ---------------------------------

45

46 // Conversations / dialogs messages to and from

47 // We'll cover this topic in later Chapters & Part IV.

48 // alternate method:

49 // ws.onmessage = incomingMsg(event);

50 // Example of "message" addEventListner

51 // Set handler for when the socket receives a message

52 // websocket.addEventListener("message", function() { ...}

53 ws.onmessage = function (event) {

54 console.log('Response from server: ' + event.data);

55 }

56

57 ws.onopen = function (event) {

58 console.log('Connection opened.');

59 // let's try to send every second?

60 setInterval(function() {

61 if (ws.bufferedAmount < MAX_BUFFER) {

62 ws.send(checkTheStatusAndSendData());

63 }

64 }, 1000);

65 }

66

67 // Add our customized handling

68 // The readyState attribute may have one of the four values:

69 // - CONNECTING (The connection is not yet fully open)

70 // - OPEN (The connection is open and ready to communicate)

71 // - CLOSING (The connection is in the process of closing)

72 // - CLOSED (the connection closed or couldn't be opened)

73 // Knowing the current state can be very useful in

74 // troubleshooting your application.

75 ws.sendMessage = function (message) {

76 if(ws.readyState === ws.OPEN){

77 this.send(message);

78 console.log('Message sent: ' + message);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: “How to Start a WebSocket” 340

79 } else {

80 console.log('Connection failed.')

81 }

82 }

83

84 // Attach created game turn orders into a message frame

85 document.getElementById('send').addEventListener('click',

86 function (event) {

87 event.preventDefault();

88 var message = document.getElementById('message').value;

89 ws.sendMessage(message);

90 });

91

92 })();

Review the sample code above. It contains the WebSocket API in a few events —
onclose, onerror, onmessage, and onopen. That’s it! Sending messages to the server uses
the method send() and disconnecting from the server uses the method close(). Why
does everyone try tomake this so difficult? AND! it’s supported in 95%of all browsers
NATIVELY! We managed to flip from HTTP connection into a WebSocket connection
using a simple upgrade command! Why was it so simple? Because both are “peer
protocols” to each other riding above the TCP/IP transportation layer. Everything is
explained in the official W3C WebSocket API.141 In Part I & II, we investigated that
many other programming languages use this exact same WebSocket API specifica-
tions; without a doubt, WebSocket is ubiquitous.142

In the code examples above, the bufferedAmount attribute is used to ensure that
updates are sent at a rate of one update every 1000 ms (1 fps) if the network can
handle that rate, or at whatever rate the network can handle, if that is too fast. The
bufferedAmount attribute could saturate a network by sending data at a higher rate than
the network can handle; this requires careful monitoring by using WebSocket “Pings”
and “Pong” commands. We’ll study and apply this information in upcoming server
chapters.

Study ws_client.js! There’s no Socket.io, nor Node.js, nor Express.js! We are using the
internal native WebSocket protocol already available inside our browsers. How easy
was that? No extra code, no formatting the data stream, no encoding nor decoding,
AND protocols are software language-agnostic! Everything was already performed
for us by our browsers. Furthermore, Phaser — either version v2.x.x. or v3.16+ —
had nothing to do with any of this; the WebSocket conduit simply opened. Phaser

141https://www.w3.org/TR/websockets/
142https://www.merriam-webster.com/dictionary/ubiquitous

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3.org/TR/websockets/
https://www.merriam-webster.com/dictionary/ubiquitous
https://www.w3.org/TR/websockets/
https://www.merriam-webster.com/dictionary/ubiquitous

Appendix: “How to Start a WebSocket” 341

is inside an HTML5 canvas tag (i.e., a Layer 7 application) — Applications receiving
services from lower communication layers services (i.e., our WebSockets, and TCP/IP
bindings) and let’s keep it that way. This is the primary idea behind the concept of
“Separation of Concerns” covered in both the Phaser Game Design Workbook,143 and
Phaser Game Prototyping workbook, new 6th Edition144

WARNING: Do not use port 12345 as shown above145; it appears as a Trojan
Viruses: cron / crontab, Fat Bitch trojan, GabanBus, icmp_pipe.c, Mypic , NetBus,
NetBus Toy, NetBus worm, Pie Bill Gates, Whack Job, X-bill. Click the link above
to see all known port viruses. Port 54321146 in the example above is used
by Back Orifice 2000 and School Bus viruses. Research your port number
selections wisely!

If your ISP permits WebSockets or Node.js, they will assign you a software port
number to use. I’m fortunate to use an ISP147 that supports both Node.js and
WebSockets. Yes, Node.js can have a role in MMoG development if applied correctly
as we learned in Part II. We covered all those “ins and outs” of Node.js and all the
“whens and how-tos” previously.

Exercise: Research the other WebSocket API attributes and commands148 on
Mozilla.
Exercise: Study MDN: Writing WebSocket client applications149 for more de-
tails.

143https://leanpub.com/phaserjsgamedesignworkbook
144https://leanpub.com/LoRD
145https://isc.sans.edu/port.html?port=12345
146https://www.speedguide.net/port.php?port=54321
147http://gose-internet-services.net/the-hepsia-hosting-cp/advanced-features/
148https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
149https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://isc.sans.edu/port.html?port=12345
https://www.speedguide.net/port.php?port=54321
http://gose-internet-services.net/the-hepsia-hosting-cp/advanced-features/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications
https://leanpub.com/phaserjsgamedesignworkbook
https://leanpub.com/LoRD
https://isc.sans.edu/port.html?port=12345
https://www.speedguide.net/port.php?port=54321
http://gose-internet-services.net/the-hepsia-hosting-cp/advanced-features/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications

Appendix: “How to Start a WebSocket” 342

Server-side target

Exercise: Research the following and select, not less than 5 port nominations
for your MMoG server. This will be useful if you are using Dockers, Kubernetes,
or Cloud-based virtual environments.

• Trojan Port Table150

• TCP & UDP ports for your online games151

• Special Application Port List152

• NMap Services153

• Internet Storm Center154

• Service Name and Transport Protocol Port Number Registry155

150http://www.chebucto.ns.ca/~rakerman/trojan-port-table.html
151http://www.gameconfig.co.uk/
152http://www.practicallynetworked.com/sharing/app_port_list.htm
153https://svn.nmap.org/nmap/nmap-services
154https://isc.sans.edu//
155http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.chebucto.ns.ca/~rakerman/trojan-port-table.html
http://www.gameconfig.co.uk/
http://www.practicallynetworked.com/sharing/app_port_list.htm
https://svn.nmap.org/nmap/nmap-services
https://isc.sans.edu//
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.chebucto.ns.ca/~rakerman/trojan-port-table.html
http://www.gameconfig.co.uk/
http://www.practicallynetworked.com/sharing/app_port_list.htm
https://svn.nmap.org/nmap/nmap-services
https://isc.sans.edu//
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Appendix: Project Mgmt Methods 343

Appendix: Project Mgmt Methods

Everyone has an opinion on “how to create game-design documentation” and “how
to manage game product development”. Formal Project Management suggests the
“Systems development life cycle”156 for software game design — writing “big designs
up-front” (BDUF) whose goal is to answer all questions about the game development
process in a tome. The main problem with this formal process is the misconception
of “perfect knowledge”.

For small development studios such as ours, this formal process is expensive in time,
man-hours, risk, and money. In reality, one can never truly know everything about
a game initially. In the early stages of the game development process, one has the
greatest range of “uncertainty”.

One gains more knowledge as development proceeds through the Game Mechanics
rules, data, and logic. The mistake of large development teams using formal project
management is realized only too late in the postmortem follow-ups. The postmortem
reveals:

• Creating knowledge has a high cost in man-hours,
• Knowledge is the greatest asset produced aside from the final game product

itself. Is it a marvel that many small indie developers are moving to this new
business model of … “Actual Start The Damn Game”!?

Flash was acclaimed as a “rapid application development” (RAD) environment. In
general, the RAD approach to software development puts less emphasis on planning
tasks and more emphasis on the development and encoding process. The RAD
approach emphasizes the necessity of adjusting requirements in reaction to current
knowledge gained as the project progresses. This relies on the use of “throw-away
prototypes” in addition to (or even sometimes in place of) design documentation.
If RAD is adopted, and under closer scrutiny, indie flash game developers simply
used “Cowboy Coding” — immediately producing source code. At some point, they
would begin testing (often near the end of the project’s production cycle), and the
unavoidable bugs would then be fixed before distribution to “app stores”. In its
essence, it’s programmingwithout a design; it could be labeled “design on-the-fly” or
“wouldn’t that be cool, if …” All too often “scope creeps” and excellent game ideas die

156http://en.wikipedia.org/wiki/Systems_development_life_cycle

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://en.wikipedia.org/wiki/Systems_development_life_cycle
http://en.wikipedia.org/wiki/Systems_development_life_cycle

Appendix: Project Mgmt Methods 344

in mid-development. Yet, indie developers have created revenues from simply having
a “game concept”.

Game Project Management (GPM) is becoming easier for the range of game studios
— smaller game indie to larger development teams. It seems the new trend is to
integrate GPM into their game design editors.157 At Stephen Gose Game Studios
(SGGS), we use a GPM method known as “Software Prototyping” with “Extreme
Programming”.On paper (aka “throw-away prototyping”), we identify the game’s basic
features and requirements in:

1. client and server technology,
2. business logic (i.e. Revenue generation),
3. environment themes, and
4. Gaming Mechanics — the mode, genre, rules, data, and logic.

We follow the “4-core umbrella” steps in our GPM:

1. Concept,
2. Design,
3. Production, and
4. Distribution.

Part I Introduction to Game Design System™

157See this article: “P4Connect Project Management Software into the Unity engine”. P4Connect embeds the firm’s P4D
versioning engine into the Unity developer environment, allowing users to access “Perforce’s featuresTM” such as code and
asset management, tracked change history, and automation” directly within Unity. Developers will not need a Unity Pro
or Team Unity license, making P4Connect available to all indie developers that use Unity.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.develop-online.net/news/perforce-s-p4connect-introduces-unity-integration/0202509

Appendix: Project Mgmt Methods 345

The first two steps are called the project’s “Development Phase “, we are asking pre-
production questions such as “what”, “how”, and “is it fun” questions. Some seasoned
experts in the game industry would say we are following a “Waterfall method” or
possibly “SCRUM” project management — if labels are important to you. We are
cutting the fat off SCRUM and using a “leaner more agile” model for our small studio
development. Since our team consists of one, two, or sometimes as many as three
people, we already have tight integration within multiple disciplines.

Capturing the ideas and research are the major activities in the “Development Phase”.
We generate knowledge before we enter the “Production Phase”. In this “development
phase”, we’re starting with the game’s metadata structures and building our data
model’s “ERDs” in StarUML. Next, we draft — on paper! — the game user interfaces
(UI), menus, and navigation interactions. Afterwards, we move into a game prototype
“click dummy” of the game shell in either the Flash IDE of Phaser Editor 2D. It worth
mentioning at this stage, we are moving from paper into physical design calling this
phase “pre-production”.

Now the fun starts, source encoding! Iteration is paramount; development testing
is usually done concurrently with, or at least in the same iteration as, code gener-
ation. As we write procedures, frames, and functions, we write “just barely good
enough” documentation as comment annotations in the source code, so that we
will understand what we’re doing and its rational “why”. These “notes” become the
rudimentary outline for our “Making Browser Game” Series. Understand that we
create games based on inspiration and that we may not return to a game idea for
weeks, months or, — in some cases — years! We have adopted a philosophy that
game ideas alone won’t help us and won’t get us to the market. So, we create a working
“game shell” component with fully operational navigation among scenes for either
ActionScript 2 and/or 3. ActionScript 2 is easily transpiled into JavaScript. We spiral
through each section of code until it works. We are using Flash as an “Artwork GUI
Builder”158. Creating this initial code, we often notice repetitive patterns or simpler
ways to achieve the same results by generalizing, pushing, or pulling content code; at
this point, we are re-factoring and “abstracting”.

In 2010, we were considering the option of moving our ActionScript source code
off the main-timeline into external source files. This was a significant rework and
divergent work-flow with low priority. In 2014, MochiMedia died, and Flash is meeting
its “end-of-life” DEC 2020. We began transpiling all our Flash game products (at
that time we had 88 products of which 60% were still in the development pipeline).
Today (20200907), we have 255 games in our development pipeline of which 105 are
deployed as either Phaser v2.x.x and/or Phaser III.

158Refer to Project Management RAD.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 346

Prototyping

Prototyping Project Management
Framework Type: Iterative

Basic Principles

1. Not a standalone, complete development methodology, but rather an

approach to handling selected portions of a larger, more traditional
development methodology (i.e., Incremental, Spiral, or Rapid
Application Development (RAD)).

2. Attempts to reduce inherent project risk by breaking a project into

smaller segments and providing more ease-of-change
during the development process.

3. User is involved throughout the process, which increases the

likelihood of user acceptance of the final implementation.

4. Small-scale mock-ups of the system are developed following an

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 347

iterative modification process until the prototype evolves to meet
the users’ requirements.

5. While most prototypes are developed with the expectation that they

will be discarded, it is possible in some cases to evolve from
prototypes toward a working system.

6. A basic understanding of the fundamental business problem is

necessary to avoid solving the wrong problem.

Strengths:

1. “Addresses the inability of many users to specify their information

needs, and the difficulty of systems analysts to understand the
user’s environment, by providing the user with a tentative system
for experimental purposes at the earliest possible time.” (Janson
and Smith, 1985)

2. “Can be used to realistically model important aspects of a system

during each phase of the traditional life cycle.” (Huffaker, 1986)

3. Improves both user participation in system development and

communication among project stakeholders.

4. Especially useful for resolving unclear objectives; developing and

validating user requirements; experimenting with or comparing
various design solutions; or investigating both performance and the
human-computer interface.

5. A potential exists for exploiting knowledge gained during earlier

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 348

iteration as later iterations are developed.

6. Helps to easily identify confusing or difficult functions and

missing functionality.

7. May generate specifications for a production application.

8. Encourages innovation and flexible designs.

9. Provides a quick implementation of an incomplete, but

functional, application.

Weaknesses:

1. The approval process and control are not strict.

2. Incomplete or inadequate problem analysis may occur whereby only the

most obvious and superficial needs will be addressed, resulting in
current inefficient practices being easily built into the
new system.

3. Requirements may frequently change significantly.

4. The identification of non-functional elements is difficult to document.

5. Designers may prototype too quickly, without sufficient up-front

user’s “needs analysis”, resulting in an inflexible design with a narrow
focus that restricts future system potential.

6. Designers may neglect documentation, resulting in insufficient

justification for the final product and inadequate records for
the future.

7. Can lead to poorly designed systems. Unskilled designers may

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 349

substitute prototyping for sound design, which can lead to a “quick
and dirty system” without global consideration of the integration of
all other components. While initial software development is often
built to be a “throwaway”, attempting to retroactively produce a
solid system design can sometimes be problematic.

8. Can lead to false expectations, where the customer mistakenly

believes that the system is “finished” when in fact it is not; the
system looks good and has adequate user interfaces, but is not
truly functional.

9. Iterations add to project budgets and schedules, thus the added

costs must be weighed against the potential benefits. Very small
projects may not be able to justify the added time and money, while
only the high-risk portions of very large, complex projects may gain
benefit from prototyping.

10. The prototype may not have sufficient checks and balances incorporated.

Situations wheremost appropriate:

1. The project is for the “development phase” of an online system requiring extensive
user dialogs, or for a less well-defined expert and decision support system.

2. The project is large with many users, interrelationships, and functions,

where project risk relating to requirements definition needs to
be reduced.

3. Project objectives are unclear.

4. Pressure exists for an immediate implementation of something.

5. Functional requirements may change frequently and significantly.

6. The user is not fully knowledgeable.

7. Team members are experienced (particularly if the prototype is not

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 350

a throw-away).

8. The team composition is stable.

9. The Project Manager is experienced.

10. No need exists to absolutely minimize resource consumption.
11. No strict requirement exists for approvals at designated milestones.
12. Analysts/users appreciate the business problems involved, before

they begin the project.
13. Innovative, flexible designs that will accommodate future changes

are not critical.

Situations where least appropriate:

1. Mainframe-based or transaction-oriented batch systems.

2. Web-enabled e-business system

3. The project team composition is unstable.

4. Future design scalability is critical.

5. Project objectives are very clear; project risk regarding

requirements definition is low.

Incremental

Framework Type: Combination Linear and Iterative

Basic Principles:

Various methods are acceptable for combining linear and iterative
system development methodologies, with the primary objective of each
being to reduce inherent project risk by breaking a project into
smaller segments and providing more ease-of-change during the
development process:

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 351

1. A series of mini-waterfalls are performed, where all phases of the

Waterfall development model are completed for a small part of the
system, before proceeding to the next increment; OR

2. Overall requirements are defined before proceeding to evolutionary,

mini-Waterfall development of individual increments of the system,
OR

3. The initial software concept, requirements analysis, and design of

architecture and system core are defined using the Waterfall
approach, followed by iterative Prototyping, which culminates in
installation of the final prototype (i.e., working system).

Strengths:

1. Potential exists for exploiting knowledge gained in an early

increment as later increments are developed.

2. Moderate control is maintained over the life of the project through

the use of written documentation and the formal review and
approval/signoff by the user and information technology management
at designated major milestones.

3. Stakeholders can be given concrete evidence of project status

throughout the life cycle.

4. Helps to mitigate integration and architectural risks earlier

5. Allows delivery of a series of implementations that are gradually

more complete and can go into production more quickly as
incremental releases.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 352

6. The gradual implementation provides the ability to monitor the effects

of its incremental changes, isolate issues, and make adjustments before
the organization is negatively impacted.

Weaknesses:

1. When utilizing a series of mini-Waterfall for a small part of the

system before moving on to the next increment, there is usually a
lack of overall consideration of the business problem and technical
requirements for the overall system.

2. Since some modules will be completed much earlier than others,

well-defined interfaces are required.

3. Difficult problems tend to be pushed to the future to demonstrate

early success to product management.

Situations wheremost appropriate:

1. Large projects where requirements are not well understood or are

changing due to external changes, changing expectations, budget
changes or rapidly changing technology.

2. Web Information Systems (WIS) and event-driven systems.

3. Leading-edge applications.

Situations where least appropriate:

1. Very small projects of very short duration.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 353

2. Integration and architectural risks are very low.

3. Highly interactive applications where the data for the project

already exists (completely or in part), and the project largely
comprises analysis or reporting of the data.

Spiral

Framework Type: Combination Linear and Iterative

Basic Principles:

1. Focus is on risk assessment and on minimizing project risk by

breaking a project into smaller segments and providing more
ease-of-change during the development process, as well as providing
the opportunity to evaluate risks and weigh consideration of the project continues
throughout the life cycle.

2. “Each cycle involves a progression through the same sequence of

steps, for each portion of the product, and each of its levels of
elaboration, from an overall “concept-of-operation” document down to
the coding of each individual program.” (Boehm, 1986)

3. Each trip around the spiral traverses four basic quadrants: (1)

determine objectives, alternatives, and constraints of the
iteration; (2) evaluate alternatives; identify and resolve
risks; (3) develop and verify deliverables from the iteration;
and (4) plan the next iteration. (Boehm, 1986 and 1988)

4. Begin each cycle with an identification of stakeholders and their

win conditions, and end each cycle with review and commitment.
(Boehm, 2000)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 354

Strengths:

1. Enhances risk avoidance.

2. Useful in helping to select the best methodology to follow for

development of a given software iteration, based on project risk.

3. Can incorporate Waterfall, Prototyping, and Incremental

methodologies as special cases in the framework, and provide
guidance as to which combination of these models best fits a given
software iteration, based on the type of project risk. For
example, a project with low risk of not meeting user requirements,
but high risk of missing budget or schedule targets would
essentially follow a linear Waterfall approach for a given
software iteration. Conversely, if the risk factors were reversed,
the Spiral methodology could yield an iterative
Prototyping approach.

Weaknesses:

1. Challenging to determine the exact composition of development

methodologies to use for each iteration around the Spiral.

2. Highly customized to each project, and therefore is quite complex,

limiting reusability.

3. A skilled and experienced project manager is required to determine

how to apply it to any given project.

4. There are no established controls for moving from one cycle to

another cycle. Without controls, each cycle may generate more work
for the next cycle.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 355

5. There are no firm deadlines. Cycles continue with no clear

termination condition, so there is an inherent risk of not meeting
budget or schedule.

6. The possibility exists that a project ends up implemented

following a Waterfall framework

Situations wheremost appropriate:

1. Real-time or safety-critical systems.
2. Risk avoidance is a high priority.
3. Minimizing resource consumption is not an absolute priority.
4. The Project Manager is highly skilled and experienced.
5. A requirement exists for strong approval and documentation control.
6. The Project might benefit from a mix of other development methodologies.
7. A high degree of accuracy is essential.
8. Implementation has priority over functionality, which can be added

in later versions.

Situations where least appropriate:

1. Risk avoidance is a low priority.
2. A high degree of accuracy is not essential.
3. Functionality has priority over implementation.
4. Minimizing resource consumption is an absolute priority.

Rapid Application Development (RAD)

Framework Type: Iterative

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 356

Basic Principles:**

1. The key objective is for the fast development and delivery of a high-quality system
at a relatively low investment cost.

2. Attempts to reduce inherent project risk by breaking a project into

smaller segments and providing more ease-of-change during the
development process.

3. Aims to produce high-quality systems quickly, primarily through the

use of iterative Prototyping (at any stage of development), active
user involvement, and computerized development tools. These tools
may include Graphical User Interface (GUI) builders, Computer-Aided
Software Engineering (CASE) tools, Database Management System
(DBMS), fourth-generation programming languages, code generators,
and object-oriented techniques.

4. The primary emphasis is on fulfilling the business need, while

technological or engineering excellence is of lesser importance.

5. Project control involves prioritizing development and defining

delivery deadlines or “time frames”. If the project starts to slip,
emphasis is on reducing requirements to fit the time box, not in
increasing the deadline.

6. Generally includes Joint Application Development (JAD), where users

are intensely involved in system design, either through consensus
building in structured workshops, or through electronically
facilitated interaction.

7. Active user involvement is imperative.

8. Iteratively produces production software, as opposed to a

throwaway prototype.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 357

9. Produces documentation necessary to facilitate future development

and maintenance.

10. Standard systems analysis and design techniques can be fitted into

this framework.

Strengths:

1. The operational version of an application is available much earlier

than with Waterfall, Incremental, or Spiral frameworks.

2. Because RAD produces systems more quickly and to a business focus,

this approach tends to produce systems at a lower cost.

3. Engenders a greater level of commitment from stakeholders, both

business and technical, than Waterfall, incremental, or
Spiral frameworks. Users are seen as gaining more of a sense of
ownership of a system, while developers are seen as gaining more
satisfaction from producing successful systems quickly.

4. Concentrates on essential system elements from a client’s viewpoint.

5. Provides the ability to rapidly change system design as demanded

by users.

6. Produces a tighter fit between user requirements and

system specifications.

7. Generally produces dramatic savings in time, money, and man-hours.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 358

Weaknesses:

1. More speed and lower costs may lead to lower overall system quality.

2. The danger of the developed system misalignment with the business drivers due
to missing information.

3. The project may end up with more requirements than

needed (aka “gold-plating”).

4. Potential for feature creep where more and more features are added

to the system course of development.

5. The potential for inconsistent designs within and across systems.

6. Potential for violation of programming standards related to

inconsistent naming conventions and inconsistent documentation.

7. The difficulty with module reuse for future systems.

8. The potential for the designed system to lack scalability.

9. Potential for lack of attention to later system administration needs

built into the system.

10. The high cost of commitment on the part of key user personnel.
11. Formal reviews and audits are more difficult to implement that for a

complete system.
12. The tendency for difficult problems migrated to future iterations to

demonstrate early success to senior management.
13. Since some modules will be completed much earlier than others,

well-defined interfaces are required.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 359

Situations where most appropriate:

1. Project is of small-to-medium scale and short duration (no more

than 6 man-years of development effort).

2. Project scope is focused, such that the business objectives are well

defined and narrow.

3. The application is highly interactive, has a clearly defined user group,

and is not computationally complex.

4. The functionality of the system is clearly visible at the

user interface.

5. Users possess detailed knowledge of the application area.

6. Senior management commitment exists to ensure end-user involvement.

7. The requirements of the system are unknown or uncertain.

8. It is not possible to define requirements accurately ahead of time

because the situation is new or the system being employed is
highly innovative.

9. Team members are skilled both socially and in terms of business.

10. Team composition is stable; continuity of the core development team can
be maintained.

11. Effective project control is definitely available.
12. Developers are skilled in the use of advanced tools.
13. Data for the project already exists (completely or in part), and the

project largely comprises analysis or reporting of the data.
14. Technical architecture is clearly defined.
15. Key technical components are in place and tested.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 360

16. Technical requirements (e.g., response times, throughput, database
sizes, etc.) are reasonable and well within the capabilities of the
technology being used. Targeted performance should be less than 70%
of the published limit of the technology.

17. The development team is empowered to make design decisions on a
day-to-day basis without the need for consultation with their
superiors and decisions can be made by a small number of people who
are available and preferably co-located or in communication.

Situations where least appropriate:

1. Very large, infrastructure projects; particularly large, distributed

information systems such as corporate-wide databases.

2. Real-time or safety-critical systems.

3. Computationally complex systems, where complex and voluminous data

must be analyzed, designed, and created within the scope of
the project.

4. The project’s scope is broad and the business objectives are obscure.

5. Applications in which the functional requirements have to be fully

specified before any programs are written.

6. Many people must be involved in the decisions on the project, and

the decision-makers are not available on a timely basis or they are
geographically dispersed.

7. The project team is large or there are multiple teams whose work

needs to be coordinated.

8. When user resource and/or commitment is lacking.

9. There is no project champion at the required level to make

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 361

things happen.

10. Many new technologies are to be introduced within the scope of the
the project or the technical architecture is unclear and much of the
technology will be used for the first time within the project.

11. Technical requirements (e.g., response times, throughput, database
sizes, etc.) are tight for the equipment that is to be used.

Test-Driven Development

Framework Type: Iterative

Basic Principles:

“Test-driven development” refers to a style of programming in which three activities
are tightly interwoven: coding, testing (in the form of writing unit tests), and design
(in the form of refactoring).

It can be succinctly described by the following set of rules:

• write a “single” unit test describing an aspect of the program
• run the test, which should fail because the program lacks that feature
• write “just enough” code, the simplest possible, to make the test pass
• “refactor” the code until it conforms to the simplicity criteria
• repeat, “accumulating” unit tests over time

Expected Benefits

Many teams report significant reductions in defect rates, at the cost of a moderate
increase in initial development effort the same teams tend to report that these
overheads are more than offset by a reduction in effort in projects’ final phases
although empirical research has so far failed to confirm this, veteran practitioners
report that TDD leads to improved design qualities in the code, and more generally a
higher degree of “internal” or technical quality, for instance improving the metrics of
cohesion and coupling

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 362

Common Pitfalls

Typical individual mistakes include:

• forgetting to run tests frequently
• writing too many tests at once
• writing tests that are too large or coarse-grained
• writing overly trivial tests, for instance omitting assertions
• writing tests for trivial code, for instance, “accessors”

Typical team pitfalls include:

• partial adoption — only a few developers on the team use TDD
• poor maintenance of the test suite — most commonly leading to a test suite with

a prohibitively long running time
• an abandoned test suite (i.e. seldom or never run) — sometimes as a result of

poor maintenance, sometimes as a result of team turnover

Signs of Use

• “Code coverage” is a common approach to evidencing the use of TDD; while high
coverage does not guarantee appropriate use of TDD, coverage below 80% is
likely to indicate deficiencies in a team’s mastery of TDD

• version control logs should show that test code is checked in each time product
code is checked in, in roughly comparable amounts

Skill Levels

Beginner

• able to write a unit test before writing the corresponding code
• able to write code sufficient to make a failing test pass

Intermediate

• practices “test-driven bug fixing”: when a defect is found, writes a test exposing
the defect before a correction

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Project Mgmt Methods 363

• able to decompose a compound program feature into a sequence of several unit
tests to be written

• knows and can name several tactics to guide the writing of tests (for instance
“when testing a recursive algorithm, first write a test for the recursion terminating
case”)

• able to factor out reusable elements from existing unit tests, yielding situation-
specific testing tools

Advanced

• able to formulate a “road-map” of planned unit tests for macroscopic features
(and to revise it as necessary)

• able to “test drive” a variety of design paradigms: object-oriented, functional,
event-drive

• able to “test drive” a variety of technical domains: computation, user interfaces,
persistent data access…

Further Reading on Test Driven Development

• Test-Driven Development By Example159, by Kent Beck

Game Project Management Foot Notes:

1. See Game Business Development Appendix & References
2. See Appendix for Game Design & References.
3. See article at Gamasutra — A Primer for the Design Process160.

159http://amzn.to/2AtVxgV
160http://www.gamasutra.com/view/feature/131558/a_primer_for_the_design_process_.php

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://amzn.to/2AtVxgV
http://www.gamasutra.com/view/feature/131558/a_primer_for_the_design_process_.php
http://amzn.to/2AtVxgV
http://www.gamasutra.com/view/feature/131558/a_primer_for_the_design_process_.php

Appendix: Consolidated Phaser Examples 364

Appendix: Consolidated Phaser Examples

Instructions: Open the “bareBonesIndex.html”161 and game.js162 in your fa-
vorite text editor. Use your browser’s “developers Tools -> Console” to watch
and monitor the live code in operations. Some examples are embed the JS code
inside the index.html page instead of using externally loaded files.

Phaser III (1st to 6th editions):

Demonstrations:

https://makingbrowsergames.com/p3gp-book/_p3-demos/
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

https://makingbrowsergames.com/p3gp-book/_p3-demos/game-noNameSpace.js

Searching for Game Mechanics and Mechanisms.

https://makingbrowsergames.com/p3gp-book/_p3-demos/Ch5-game.js

Content Management System embedded in HTML5 <canvas> tag.

https://makingbrowsergames.com/p3design/project-starterKit-demo/

—
161https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
162https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/game-noNameSpace.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/Ch5-game.js
https://makingbrowsergames.com/p3design/project-starterKit-demo/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js

Appendix: Consolidated Phaser Examples 365

Phaser III Examples

Instructions: Search inside the file for “Example n.n” where “n” is the number
of the example.

• Example: 1.1 Creating Namespace for games163

• Sample: Bare Bones Index.html164

• Sample: Bare Bones with no name-space165

• Sample: Mobile Index.html166

—

• Example: 2.1 Prototyping Graphics (Lines 876 to 889)167

• Example: 2.2: Starting the Game.js (Preload Game Phase)168

—

• Example: 3.1 Creating Game Phases (traditional method)169

• Example: 3.1a CreatingGamePhase Continued - Game.js (traditionalmethod)170

• Example: 3.2 Additional Phaser Properties JS (Lines 218 to 270)171

• Example: 3.3 Additional Phaser Properties172

—
163https://makingbrowsergames.com/p3gp-book/_p3-demos/_index.html
164https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
165https://makingbrowsergames.com/p3gp-book/_p3-demos/game-noNameSpace.js
166https://makingbrowsergames.com/p3gp-book/_p3-demos/index-mobile.html
167https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
168https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
169https://makingbrowsergames.com/p3gp-book/_p3-demos/index3.html
170https://makingbrowsergames.com/p3gp-book/_p3-demos/index3a.html
171https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
172https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/_index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game-noNameSpace.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/index-mobile.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index3.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index3a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/_index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game-noNameSpace.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/index-mobile.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index3.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index3a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html

Appendix: Consolidated Phaser Examples 366

Phaser III Game Prototyping Demonstrations

Open the the index.html in your favorite text editor.
Use your browser’s “developers Tools -> Console” to watch and monitor the live code.
Reference the book explanations and find the embedded sourced code in the html
as script tags.

Table of Contents:173

• Example: 4.1: Prototyping a Visual Avatars174

• Example: 4.2: Loading Game Phase175

• Example: 4.3: Creating Game Mechanics176

• Example: 4.4: Creating & Moving Avatars177

• Example: 4.5: Arrow Keys Movement Integration178

• Example: 4.6: World Boundaries Integration179

• Example: 4.7: Interior Walls Integration180

• Example: 4.8: Doors as Buttons181

• Example: 4.9: Collision Detection Integration182

• Example: 4.10: Collision Results Determination183

• Example: 4.11: New Game Over State184

- Example: 4.11a: Collecting User Input185

- Example: 4.11b: Responding to User Input186

• Example: 4.12: Elementary HUD Creation187

—
173https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
174https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson01.html
175https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson02.html
176https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson03.html
177https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
178https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html
179https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
180https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
181https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
182https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
183https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html
184https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
185https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
186https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
187https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson12.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/lesson12.html

Appendix: Consolidated Phaser Examples 367

Game Mechanics & Mechanisms identified

Instructions: Search inside the file for “GM” where game mechanics and
mechanisms are identified according to Schell’s definitions.

• Example: 6: Identifying Schell’s Game Mechanics188

—

WebSockets, Dynamic Menus, Combat, and FSM

Open the the index.html in your favorite text editor.
Use your browser’s “developers Tools -> Console” to watch and monitor the live code.
Reference the book explanations and find the embedded sourced code in the html
as script tags.

Table of Contents189

• Example: 7.1: Launching Web Sockets190 (see Appendix for details)
• Example: 7.2: Dynamic Combat Menus191

• Example: 7.3: Dynamic Combat Menus supporting function192

• Sample: Projectile Templates Phaser v3.5+193

• Example: 7.4: Combat Grid194 (checker-board using Phaser III grid feature)
• Example: 7.5: Grid-less Combat Encounter Demo195

• Example: 7.6: Hexagonal Combat Grid196 (Lines 216 to 233; using Phaser III
Shapes feature as hexagonal vertical-align)

• Sample: 7.7: Simple AI reactions (see AI chapter)
• Sample: Combat Finite State Machine (see AI chapter)

188https://makingbrowsergames.com/p3gp-book/_p3-demos/Ch5-game.js
189https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/index.html
190https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html
191https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
192https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson03.html
193https://labs.phaser.io/view.html?src=src/games/top%20down%20shooter/topdown_combatMechanics.js&v=3.50.0-

beta.5
194https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson04.html
195https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
196https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson06.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/Ch5-game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson03.html
https://labs.phaser.io/view.html?src=src/games/top%20down%20shooter/topdown_combatMechanics.js&v=3.50.0-beta.5
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/Ch5-game.js
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson01.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson03.html
https://labs.phaser.io/view.html?src=src/games/top%20down%20shooter/topdown_combatMechanics.js&v=3.50.0-beta.5
https://labs.phaser.io/view.html?src=src/games/top%20down%20shooter/topdown_combatMechanics.js&v=3.50.0-beta.5
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch7-examples/lesson06.html

Appendix: Consolidated Phaser Examples 368

• Sample: SCAVT game (play demo)197: review lines 292-318 (here)198

• Example: Dynamic Story Narrative199 (from “Dating Veronica Darlene”200)
• Example: CombatNarrative (demohere)201 and review code here202 — journaled

narrative for each combat turn using Single-Player optimized FSM menus.

—
Sample: 8.1: Prototyping a HUD (in book)
Sample: 8.2: Heads Up Display Plugin (in book)
Example: 8.3: HUD Menu Grouping (in book)

—
Sample: 9.1: Combat Pseudo Code (in book)
Sample: 9.2: Combat Pseudo Code (in book)
Example: 9.3: Enemy mirrored movement203

Sample: 9.4: Combat Pseudo Code (in book)
Sample: 9.5: New Combat States Module Added (in book)

197https://makingbrowsergames.com/p3gp-book/p3-sca/
198https://makingbrowsergames.com/p3gp-book/p3-sca/js/state/play1.js
199https://makingbrowsergames.com/starterkits/quiz/p3game3/
200http://leanpub.com/mbg-dating
201https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
202https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat-SinglePlayer-OptimizedMenu.js
203https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/p3-sca/
https://makingbrowsergames.com/p3gp-book/p3-sca/js/state/play1.js
https://makingbrowsergames.com/starterkits/quiz/p3game3/
http://leanpub.com/mbg-dating
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat-SinglePlayer-OptimizedMenu.js
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1
https://makingbrowsergames.com/p3gp-book/p3-sca/
https://makingbrowsergames.com/p3gp-book/p3-sca/js/state/play1.js
https://makingbrowsergames.com/starterkits/quiz/p3game3/
http://leanpub.com/mbg-dating
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1/js/state/combat-SinglePlayer-OptimizedMenu.js
https://makingbrowsergames.com/p3gp-book/_p3-bloodPitv1

Appendix: Game Automation Tools 369

Appendix: Game Automation Tools

We’ve generated a bunch of code snippets204 so far. This codebase205 won’t stop with
just the Phaser III JS Gaming Framework but you might eventually include Phaser
v2.x.x and any other JavaScript Gaming Frameworks206 based upon your clients’
requests. This process is a gentle introduction into “cloud-based”207 services and
eventual MMoG development.208

Exercise: Research applications that save “snippets”. Here’s a good starting
point:

• JetBrains WebStorm209 or,
• Snippet Designer for Visual Studio210 or,
• Snip2Code211 a community “Where Coders Share Snippets”. Their base service is
Free!

• https://codeburst.io/how-to-share-code-and-make-it-shine-f5ffcea1794f
• https://www.codepile.net/home
• Purchase? https://www.qsnipps.com/

You’ll quickly discover that “snippet codebases” are not new and have been around
for quite some time. The real problem is “HOW” to organize your codebase. Yes, you
could mimic the Phaser website; but to be quite blunt, their naming syntax never
made sense to me. Yes, thank you, I realize it’s listed by OOP Classes, but I would
have arranged the associations different in my own mind. But to use it in “bottom-up
design” you must understand completely their “vocabulary” taxonomy.212 AND, the
newest Phaz3r “documentation” … well, enough ranting for one sentence ;)

204https://en.wikipedia.org/wiki/Snippet_(programming)
205https://en.wikipedia.org/wiki/Codebase
206https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
207https://www.w3schools.com/appml/appml_architecture.asp
208https://www.ics.uci.edu/~wscacchi/GameIndustry/Lecture06-MMORPG-Planning.html
209https://blog.jetbrains.com/webstorm/2018/01/using-and-creating-code-snippets/
210https://marketplace.visualstudio.com/items?itemName=vs-publisher-2795.SnippetDesigner
211https://www.snip2code.com/
212https://en.wikipedia.org/wiki/Taxonomy

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Snippet_(programming)
https://en.wikipedia.org/wiki/Codebase
https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
https://www.w3schools.com/appml/appml_architecture.asp
https://www.ics.uci.edu/~wscacchi/GameIndustry/Lecture06-MMORPG-Planning.html
https://blog.jetbrains.com/webstorm/2018/01/using-and-creating-code-snippets/
https://marketplace.visualstudio.com/items?itemName=vs-publisher-2795.SnippetDesigner
https://www.snip2code.com/
https://codeburst.io/how-to-share-code-and-make-it-shine-f5ffcea1794f
https://www.codepile.net/home
https://www.qsnipps.com/
https://en.wikipedia.org/wiki/Taxonomy
https://en.wikipedia.org/wiki/Snippet_(programming)
https://en.wikipedia.org/wiki/Codebase
https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
https://www.w3schools.com/appml/appml_architecture.asp
https://www.ics.uci.edu/~wscacchi/GameIndustry/Lecture06-MMORPG-Planning.html
https://blog.jetbrains.com/webstorm/2018/01/using-and-creating-code-snippets/
https://marketplace.visualstudio.com/items?itemName=vs-publisher-2795.SnippetDesigner
https://www.snip2code.com/
https://en.wikipedia.org/wiki/Taxonomy

Appendix: Game Automation Tools 370

Let’s learn something from one of my colleagues and how he organizes his code.213

Organization and correct labeling (in your own mind) is the foundation. It will
greatly help when we begin to create our “Entity Relationship Diagrams”214 for our
codebase.

William Clarkson online codebase
This is an excellent start into category classification;215 — software professionals
cannot hide their mastery in “taxis” (Greek for “arrangement”) and “nomos”
(Greek for “law”) = Taxonomy.216 His website is also a public FREE access site. Is
that what you’d like to have? … Providing your competitors with your raw codebase?
My friend, Will, is an instructor —like myself— and makes many excellent online
tutorials217 and books. His focus is on helping and training others. If that is your goal
then follow our lead.However, I’m going to take you on a different path into a private
codebase repository similar to what I use.

213https://williamclarkson.net/code/phaser-snippets/
214https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
215https://www.britannica.com/science/taxonomy
216https://www.britannica.com/science/taxonomy
217https://click.linksynergy.com/link?id=sfDExpt0ZWY&offerid=507388.2034380&type=2&murl=https%3A%2F%2Fwww.

udemy.com%2Fmaking-html5-games-with-phaser-3%2F

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://williamclarkson.net/code/phaser-snippets/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.britannica.com/science/taxonomy
https://www.britannica.com/science/taxonomy
https://www.britannica.com/science/taxonomy
https://click.linksynergy.com/link?id=sfDExpt0ZWY&offerid=507388.2034380&type=2&murl=https://www.udemy.com/making-html5-games-with-phaser-3/
https://click.linksynergy.com/link?id=sfDExpt0ZWY&offerid=507388.2034380&type=2&murl=https://www.udemy.com/making-html5-games-with-phaser-3/
https://williamclarkson.net/code/phaser-snippets/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.britannica.com/science/taxonomy
https://www.britannica.com/science/taxonomy
https://click.linksynergy.com/link?id=sfDExpt0ZWY&offerid=507388.2034380&type=2&murl=https://www.udemy.com/making-html5-games-with-phaser-3/
https://click.linksynergy.com/link?id=sfDExpt0ZWY&offerid=507388.2034380&type=2&murl=https://www.udemy.com/making-html5-games-with-phaser-3/

Appendix: Game Automation Tools 371

Deeper Dive: Database Protection Considerations

Remember how we cataloged the various prototype components in Chapter 1 in the
“second (2nd)” Chart? Let’s use that “second (2nd)” Chart to begin creating our private
codebase. You can store your snippets in simple text files and directories — that’s
the oldest style of data-basing — using your O/S. OR, we could decide to persist our
codebase in the “Cloud” online (i.e., GitHub publicly or privately) so that it’s available
whenever an idea presents itself.

Database collections can carry their own legal copyrights! Your collection of code
snippets, in database form, could become an alternate game product and alternate
source of income for your studio.

Exercise: Research these articles:

• Intellectual Property Rights: Copyright and databases218 quote: “In principle, the
facts themselves can not be protected but the order and organization can if
they show a certain level of creativity on the part of the author. When referring
to databases it is necessary to distinguish between creative and non-creative
databases because each is dealt with under a different set of legal rules. …
However, the Directive does not protect software used to create the database
or for the material contained in the database. It is the scheme of the database
that is protected.”

• Database Legal Protection219 quote, “Protection for databases under copyright
law is provided under the concept of a compilation copyright. Compilation
copyrights protect the collection and assembling of data or other materials.
The extent of the protection provided to databases is explained in the following
sections … (read more)”

Database Schema Construction (Copyright-able!!)

Let’s catalog the various game prototypes we’ve created thus far. You’ll find in Chapter
1 we‘ve begun220 this process with “Chart 2” already. Here are other categories to
include:

218https://www.esa.int/About_Us/Law_at_ESA/Intellectual_Property_Rights/Copyright_and_databases
219https://www.bitlaw.com/copyright/database.html
220https://brians.wsu.edu/2016/05/19/began-begun/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.esa.int/About_Us/Law_at_ESA/Intellectual_Property_Rights/Copyright_and_databases
https://www.bitlaw.com/copyright/database.html
https://brians.wsu.edu/2016/05/19/began-begun/
https://www.esa.int/About_Us/Law_at_ESA/Intellectual_Property_Rights/Copyright_and_databases
https://www.bitlaw.com/copyright/database.html
https://brians.wsu.edu/2016/05/19/began-begun/

Appendix: Game Automation Tools 372

• Visual — which can be any “images, sprites or geometrical shapes” represen-
tation displayed. We will keep “what is seen separate from what its data
information is.”221

• Objects — “buttons”, “text” and “game object” — a generic building block
containing metadata.222 Everything in JavaScript is an object, but we’ll use this
category to mean non-visual items and source code.

• Events — “coded” — will be our “messengers” that look and listen for some set
of conditions and respond with and action notice.

• Behaviors— “animation”—we’ll place source code in this category to modify any
objects’ actions. For example, “physics“ behavior makes objects react to events.

• Scenes — “game phase/menu” — as we will see in later chapters these “camera”
views will be our game phases. Each autonomous scene will contain its own
objects, events, and HUD.

Aki Järvinen, in his article “Introducing Applied Ludology: Hands-on Methods for
Game Studies” on page 2 (available here),223 provides a way to help identify game
mechanisms. He suggests nine (9) categories common in all games. Furthermore, with
what we’ve learned in Chapter 1, we can create our database catalogs.

Quote: “Introducing Applied Ludology: Hands-on Methods for Game Studies”

Component — The resources for play; what is being moved or modified – physically,
virtually, in transactions — in the game, between players and the system. Tokens, tiles,
balls, characters, points, vehicles are common examples of game components.
Context — Where, when, and why the gaming encounter takes place.
Environment — The space for play – boards, grids, mazes, levels, worlds.
Game Mechanics — What actions the players take as means to attain goals when
playing. Placing, shooting, maneuvering are examples of what players are put to
perform in many games.
Information — What the players need to know and what the game system stores and
presents in game states: Points, clues, time limits, etc.
Interface — In case there are no direct, physical means for the player to access game
elements, interface provides a tool to do that.
Players — Those who play, in various formations and with various motivations, by
performing game mechanics in order to attain goals.
Rule Set — The procedures with which the game system constrains and moderates
play, with goal hierarchy as an especially important subset.
Theme — The subject matter of the game which functions as a metaphor for the
system and the rule-set.

221https://softwareengineering.stackexchange.com/questions/229479/how-did-separation-of-code-and-data-become-
a-practice

222https://cuahsi.zendesk.com/hc/en-us/articles/208639877-What-is-Metadata-
223https://makingbrowsergames.com/book/IntroducingAppliedLudology.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://softwareengineering.stackexchange.com/questions/229479/how-did-separation-of-code-and-data-become-a-practice
https://softwareengineering.stackexchange.com/questions/229479/how-did-separation-of-code-and-data-become-a-practice
https://cuahsi.zendesk.com/hc/en-us/articles/208639877-What-is-Metadata-
https://makingbrowsergames.com/book/IntroducingAppliedLudology.pdf
https://softwareengineering.stackexchange.com/questions/229479/how-did-separation-of-code-and-data-become-a-practice
https://softwareengineering.stackexchange.com/questions/229479/how-did-separation-of-code-and-data-become-a-practice
https://cuahsi.zendesk.com/hc/en-us/articles/208639877-What-is-Metadata-
https://makingbrowsergames.com/book/IntroducingAppliedLudology.pdf

Appendix: Game Automation Tools 373

By minimum, a game has to have Components, Environment, and at least one
Game Mechanic. When the relationships of these three elements are defined and
implemented, it means that a Rule-set emerges, as does Information. Then we need
Players, and any gaming encounter brings about various Contexts, that may vary from
one encounter to the next one.

Database Record Construction

Suggested snippet record fields:

• snippet (ID)entification record number (primary key as “sID”)
• category grouping (foreign key into “category table” mentioned above using
“catID”)

• “framework” ID grouping (foreign key into “framework table”; 1:1;)
• “deployed” on either “client”, “client-proxy”, “server” or “both” (enumeration text)
• mechanism’s “description” narrative (text)
• source code snippet (text as “src”)
• anything else you might like to associate?? Remember to follow 1NF, 2NF, and
3NF.224 when supplementing this suggest record format.

SQL sample table creation

1 //created with SQLite browser; visit http://sqlitebrowser.org/

2 BEGIN TRANSACTION;

3 CREATE TABLE IF NOT EXISTS `snippets` (

4 `sID` INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE,

5 `catID` INTEGER,

6 `frameworkID` INTEGER,

7 `deployed` TEXT NOT NULL DEFAULT 'client, server or both?',

8 `description` TEXT NOT NULL, DEFAULT 'designer notes here.'

9 `src` BLOB NOT NULL DEFAULT 'source code goes here.'

10);

11 COMMIT;

Do I need to say that all source code snippets must be “self-contained functional
programming paradigm?? They should never expect nor require anything externally.

224https://www.guru99.com/database-normalization.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.guru99.com/database-normalization.html
https://www.guru99.com/database-normalization.html
https://www.guru99.com/database-normalization.html

Appendix: Game Automation Tools 374

Database structure

There are several technologies we might consider to “store” information as either
“static pages” or “dynamic pages”. I use XML for avatar records and I’ve found that
“Microsoft XML Notepad” (GitHub)225 a valuable editing tool (learn more about it
here226). It is open-source and easy to use. XML Notepad 2.8.0.11 / 31 May 2020
in the most current release. Another option is the XAML tool integrated into Visual
Studio. You can find it by searching for “xmlnotepad”.

Exercise: Download the following XML or JSON databases for our codebase:

• XML: GetSimple CMS http://get-simple.info/ is an XML-based FREE content man-
agement system. It perfect for storing a codebase of snippets.

• JSON: The advantage here is that we can fully automate the game construction
process by “gluing together” the various snippets directly into game mechanic
templates.

• TaffyDB227 — An “open source” library that brings database features into your
JavaScript applications using JSON recordsets — similar to MongoDB228. This is a
“hint” on my private snippet collection and game production pipeline229.

Hint: Once you have a spiffy XML database file, you might like to convert it into
JSON. I use this online tool230 or you might like to pick your own.

Remote Codebase Using AppML

A simple local snippet pool would have been sufficient for our games and similar
to what we did on the Game Designer231 website. Google Actions232 uses an “Excel

225https://github.com/microsoft/xmlnotepad
226https://en.wikipedia.org/wiki/XML_Notepad
227http://taffydb.com/
228https://en.wikipedia.org/wiki/MongoDB
229https://makingbrowsergames.com/gameDesigner/
230http://convertjson.com/xml-to-json.htm
231https://makingbrowsergames.com/gameDesigner/
232https://developers.google.com/actions/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/microsoft/xmlnotepad
https://en.wikipedia.org/wiki/XML_Notepad
https://en.wikipedia.org/wiki/XML_Notepad
http://get-simple.info/
http://taffydb.com/
https://en.wikipedia.org/wiki/MongoDB
https://makingbrowsergames.com/gameDesigner/
http://convertjson.com/xml-to-json.htm
https://makingbrowsergames.com/gameDesigner/
https://developers.google.com/actions/
https://github.com/microsoft/xmlnotepad
https://en.wikipedia.org/wiki/XML_Notepad
http://taffydb.com/
https://en.wikipedia.org/wiki/MongoDB
https://makingbrowsergames.com/gameDesigner/
http://convertjson.com/xml-to-json.htm
https://makingbrowsergames.com/gameDesigner/
https://developers.google.com/actions/

Appendix: Game Automation Tools 375

spreadsheet-style” for its pool with similar data content which I plan to use, but we
will create a JSON file for our collection. The data formatwill be like that used in the
GameDesigner233. Also, I have decided to use theW3School’s version of AppML234 for
this codebase remote access from my server. AppML is far more technology than
what this simple tool demonstration demands, but it will provide a way to add more
features if I choose to grow and upgrade this codebase tool into a deluxe version
for purchase at some later time. Instead of AppML, we have another alternative in
AngularJS, SQLite, or PouchDB. But let’s first review AppML.

AppML stands for “Application Modeling Language”. AppML runs in any standard
HTML page; we will have to do some “tweaking” to display snippets inside a canvas or
textbox. AppML was based on HTTP request communication between a web client
and the web server. The AppML-based system was launched in 2001, several
months before schedule, as theworld’s first commercial AJAX application. Thank
goodness AppML provides full HTML, CSS, and JavaScript freedom. AppML makes it
easy to create Single Page Applications (SPA) in a very clean and efficient way. You
should visit the Game Designer,235 if you haven’t already. It easily adapts AppML
and retrieves generated snippets from my remote server. Originally, AppML was
abandoned by its creators in September 2007 but was revived by W3Schools in
2015. Other potential data formats are listed below, and are compared at https:
//www.w3schools.com/js/js_json_xml.asp:

• XML — Extensible Markup Language is a markup language that defines a set
of rules for encoding documents in a format that is both human-readable and
machine-readable. This was a popular protocol at the turn of the millennium but
has been replaced by JSON. It is a very flexible text format derived from SGML
(ISO 8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange
of a wide variety of data on the Web and elsewhere. Learn more about XML at
https://www.w3schools.com/xml/

• JSON — JavaScript Object Notation is an open-standard file format that uses
human-readable text to transmit data objects consisting of attribute-value pairs
and array data types (or any other serializable value). It is a very common data
format used for the asynchronous browser-server communication, including
as a replacement for XML in some AJAX-style systems. JSON is a language-
independent data format. It was derived from JavaScript, but as of 2017, many
programming languages include code to generate and parse JSON-format data.
The official Internet media type for JSON is application/json. JSON filenames use
the extension .json. Learn more about https://www.w3schools.com/js/js_json_
intro.asp

233https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
234https://www.w3schools.com/appml/default.asp
235https://makingbrowsergames.com/gameDesigner/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
https://www.w3schools.com/appml/default.asp
https://makingbrowsergames.com/gameDesigner/
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/xml/
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://makingbrowsergames.com/gameDesigner/index-randommechanic.html
https://www.w3schools.com/appml/default.asp
https://makingbrowsergames.com/gameDesigner/

Appendix: Game Automation Tools 376

AppML is a modern JavaScript library for bringing data into HTML applications
currently maintained by W3Schools; it is free to use. No license is necessary. No
installation is required. Even if you have never worked with web development before,
you will find AppML very easy to use. If you are an experienced web developer, you
will soon discover the power of AppML. The AppML language and syntax conform to
XML nicely.

* AppML uses XML to describe Internet applications.
* AppML applications are self-descriptive.
* AppML is a declarative language.
* AppML is independent of operating systems.
* AppML uses AJAX asynchronous technology.
* AppML is Open Source.
* AppML is a language created and maintained by the W3Schools.

Building an AppML application

AppML applications are simple to build. The AppML tutorial236 could be summarized
in this 4-step process.

1. Describe the elements of the snippets application with AppML. (style / XML
conformance) Review the record construction above.

2. Save that XML file to a web (or database) server.
3. Link the file to an AppML Web service. (See this example)237 or this page.238 or

consider putting your snippets in the “cloud”239 as a service.
4. To change the application later, just change the contents of the XML file and save

it, the web service will do the rest.

Sample AppML codebase (Public Access)

• https://makingbrowsergames.com/gameDesigner/
• https://makingbrowsergames.com/gameDesigner/index-genre.html

Membership subscriptions available for Game Design Documentation Tool240

and private Game Construction Tool.241

236https://www.w3schools.com/appml/default.asp
237https://www.w3schools.com/appml/appml_data.asp
238https://www.w3schools.com/appml/appml_php.asp
239https://www.w3schools.com/appml/appml_google_cloud_sql.asp
240https://makingbrowsergames.com/gameDesigner/?#
241https://www.renown-games.com/shop/index.php?id=prod-members

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.w3schools.com/appml/default.asp
https://www.w3schools.com/appml/appml_data.asp
https://www.w3schools.com/appml/appml_php.asp
https://www.w3schools.com/appml/appml_google_cloud_sql.asp
https://makingbrowsergames.com/gameDesigner/
https://makingbrowsergames.com/gameDesigner/index-genre.html
https://makingbrowsergames.com/gameDesigner/
https://www.renown-games.com/shop/index.php?id=prod-members
https://www.w3schools.com/appml/default.asp
https://www.w3schools.com/appml/appml_data.asp
https://www.w3schools.com/appml/appml_php.asp
https://www.w3schools.com/appml/appml_google_cloud_sql.asp
https://makingbrowsergames.com/gameDesigner/
https://www.renown-games.com/shop/index.php?id=prod-members

Appendix: Game Automation Tools 377

Remote codebase Using JSON

Since AppML is basically the template engine part of AngularJS. Let’s also consider us-
ing AngularJS and deliver JSON snippet codebase. Research the following instructions:

https://phaser.io/news/2014/11/building-multiplayer-games-with-angular

Exercise: Review the following JSON databases for Game Designer242:

Per-user storage

Nowadays, mobile users expect their data to be synced to “the cloud”, and to all
their other “IoT” devices.243 This attitude is also becoming prominent for desktop
applications. Traditionally in the past, ISPs stored data in their database servers.
However, DevOps and new innovations244 can allow clients to synchronize and store
application data inside their own devices. This is possible from modern browsers —
using CORS — without going into your gaming server. Allowing gamers to store their
data in their local device gives them full control of their data content

New “unhosted web app” architecture
It’s possible to include such storage capabilities by using simple JavaScript libraries on
the client-side. Consider these:

242https://makingbrowsergames.com/gameDesigner/
243https://internetofthingsagenda.techtarget.com/definition/IoT-device
244https://www.atlassian.com/devops

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://phaser.io/news/2014/11/building-multiplayer-games-with-angular
https://makingbrowsergames.com/gameDesigner/
https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://www.atlassian.com/devops
https://makingbrowsergames.com/gameDesigner/
https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://www.atlassian.com/devops

Appendix: Game Automation Tools 378

Per-User
Backend

Dropbox Google
Drive

Open
Remote
Storage

Per-user
Hoodie

Dropbox.js Yes x x x
Google Drive
JS

x Yes x x

Hoodie.js x x x Yes
Nimbus Base Yes Yes x x
Remote
storage.js

(alpha) (alpha) Yes (planned)

NOTE: None of these libraries support Apple iCloud nor Microsoft OneDrive.
The reason is that those services don’t provide a cross-origin “REST+CORS” API.
“Open Remote Storage” providers, such as Dropbox and Google, do support
“REST+CORS” API.

Exercise: Excited about “per-gamer storage”? Read more from this FREE 147-
page online book245 from “Unhosted”.

245https://unhosted.org/book/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://unhosted.org/book/
https://unhosted.org/book/
https://unhosted.org/book/

Appendix: Game Automation Tools 379

Chapter Source Code & Demo

book website: https://makingbrowsergames.com/p3gp-book/

Complete Chapter Source Code in the online appendix.246

Play III Game Prototype Demo thus far247

• Example 2.4 Bare-bones Index Page - Traditional Method248

• Example 2.5: Starting the Game.js249

• Example 3.1a: Creating State Objects in Game.js - traditional method250

• Example 4.1: Prototyping a Visual Avatars251

• Example 4.2: Prototyping Movement Properties in v3252

• Example 4.3: Movement Arrows v3 Integration253

• Example 4.4: World Boundaries Grouping254

• Example 4.5: World Boundaries Integration255

• Example 4.6: Interior Boundaries Integration256

• Example 4.7: Collision Detection Integration257

• Example 4.8: Collision Results Determination258

• Example 4.9: New Game Over State259

• Example 4.10: Elementary HUD Creation260

• Example 4.11: Collecting User Input261

• Example 4.12: Responding to User Input262

246https://makingbrowsergames.com/p3gp-book/tools.html
247https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
248https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
249https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
250https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
251https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
252https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
253https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
254https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
255https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
256https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
257https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
258https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
259https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html
260https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
261https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
262https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/tools.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/ch4-examples/
https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson02.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson03.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson04.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson05.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson06.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson07.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson08.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson09.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson10.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson12.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/lesson11a.html

Appendix: Game Automation Tools 380

Summary

Examples:

• https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
• https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
• https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html

Here’s an inventory of what we’ve learned thus far.

• Game Prototyping uses simple graphics and focuses on game mechanics.263

• Created Game Prototype that accepts inputs.
• Created Game Prototype that moves various game components.
• Created Game Prototype that reacts with internal objects.
• Created a web page to launch our Phaser Prototype.
• Learned about Content Delivery Networks.
• Discovered various game phases and states to modularize264 our game.
• Learned each Phaser game state has separate functions of which create and

update are the most active.
• Studied a typical Skeleton state file.
• Reviewed the traditional game menu states.
• Discovered a Phaser game can use multiple physics engines, but only one physic

engine is assigned to one graphics sprite.
• Created a gamer’s representation in the game world.
• Learned how to generate sprite graphics from code.
• Attached speed and velocity to moving game objects.
• Attached various input signals to manipulate game objects.
• Attached reactions to immovable and movable objects.
• Learned how to trigger various behaviors.
• Created game stage boundaries.
• Discovered how to transition game between states.

263http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
264http://www.dictionary.com/browse/modularize

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/p3gp-book/_p3-demos/bareBonesIndex.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index.html
https://makingbrowsergames.com/p3gp-book/_p3-demos/index-OLOO.html
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize
http://www.lostgarden.com/2006/10/what-are-game-mechanics.html
http://www.dictionary.com/browse/modularize

Appendix: Game Automation Tools 381

Chapter References

(See more “Our references” in the front)

• How to Prototype a Game in Under 7 Days265

• MDN Game development266

• Game Design Concepts 5.1: Prototyping267

• Plain English Guide to JavaScript Prototypes268

• JavaScript Classes269

• https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.
html

• https://www.bitlaw.com/copyright/database.html
• https://data.research.cornell.edu/content/intellectual-property
• https://en.wikipedia.org/wiki/Sui_generis_database_right
• https://www.michalsons.com/blog/the-rights-to-a-database/2937

265http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php?print=1
266https://developer.mozilla.org/en-US/docs/Games
267https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
268http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
269https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php?print=1
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.nolo.com/legal-encyclopedia/types-databases-that-cant-be-protected.html
https://www.bitlaw.com/copyright/database.html
https://data.research.cornell.edu/content/intellectual-property
https://en.wikipedia.org/wiki/Sui_generis_database_right
https://www.michalsons.com/blog/the-rights-to-a-database/2937
http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php?print=1
https://developer.mozilla.org/en-US/docs/Games
https://learn.canvas.net/courses/3/pages/level-5-dot-1-prototyping
http://sporto.github.io/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Appendix: OLOO - Safe JavaScript 382

Appendix: OLOO - Safe JavaScript

A Tutorial for Creating Games in JavaScript using OLOO

An excerpt from “JavaScript ‘Objects Linking to Other Objects’ (OLOO) in Game
Development”270 — a FREE online course for book patrons studying and contrasting
JS delegation vs OOP Inheritance.

JS Objects: “TL;DR”

JavaScript has been plagued since the beginning with misunderstanding and awk-
wardness around its “prototypal inheritance” system, mostly because “inheritance”
isn’t how JS works at all, and trying to do that only leads to “gotchas” and “confusions”
that we have to pave over with “user-land helper libraries”. Instead, embracing that JS
has “behavior delegation” — simple delegation links between objects — fits naturally
with how JS syntax works, which creates more sensible code without the need of
helpers. …

When you set aside distractions like mixinsa, polymorphism,b composition, classes,c
constructors, and instances, and only focus on the objects that link to each other,
you gain a powerful tool in behavior delegation that is easier to write, reason about,
explain, and code-maintain. Simpler is better. JS is “objects-only” (OO). Leave the
classes to those other languages! …

At this point of understanding, we should really ask ourselves: is the difficulty of
expressing classes and inheritance in pure JavaScriptd a failure of the language
(one which can temporarilye be solvedf with user librariesg and ultimately solved by
additions to the languageh like class { } syntax), as many game developers
feel,i or is it something deeper?

Is it indicative of a more fundamental disparity, that we’re trying to do something in
JSj that it’s just not meant to do?k

ahttps://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/
bhttps://davidwalsh.name/javascript-objects-distractions
chttps://davidwalsh.name/javascript-objects-deconstruction
dhttp://javascript.crockford.com/inheritance.html
ehttp://prototypejs.org/learn/class-inheritance
fhttp://mootools.net/docs/core/Class/Class
ghttp://ejohn.org/blog/simple-javascript-inheritance/
hhttp://wiki.ecmascript.org/doku.php?id=strawman:maximally_minimal_classes

270https://leanpub.com/c/jsoloo

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://leanpub.com/c/jsoloo
https://leanpub.com/c/jsoloo
https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/
https://davidwalsh.name/javascript-objects-distractions
https://davidwalsh.name/javascript-objects-deconstruction
http://javascript.crockford.com/inheritance.html
http://prototypejs.org/learn/class-inheritance
http://mootools.net/docs/core/Class/Class
http://ejohn.org/blog/simple-javascript-inheritance/
http://wiki.ecmascript.org/doku.php?id=strawman:maximally_minimal_classes
http://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/
http://www.kirupa.com/html5/objects_classes_javascript.htm
http://www.kirupa.com/html5/objects_classes_javascript.htm
http://webreflection.blogspot.com/2010/01/better-javascript-classes.html
https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/
https://davidwalsh.name/javascript-objects-distractions
https://davidwalsh.name/javascript-objects-deconstruction
http://javascript.crockford.com/inheritance.html
http://prototypejs.org/learn/class-inheritance
http://mootools.net/docs/core/Class/Class
http://ejohn.org/blog/simple-javascript-inheritance/
http://wiki.ecmascript.org/doku.php?id=strawman:maximally_minimal_classes
https://leanpub.com/c/jsoloo

Appendix: OLOO - Safe JavaScript 383

ihttp://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/
jhttp://www.kirupa.com/html5/objects_classes_javascript.htm
khttp://webreflection.blogspot.com/2010/01/better-javascript-classes.html

JavaScript features stalled around 2007 to 2008; we’ve recently seen JavaScript lan-
guage development making a fair amount of progress with promised releases every
year (typically in June). In 2012, Object.create appeared in the standards. It allowed
us to create objects with a selected prototype but didn’t allow us to get nor set them.
So, browsers implemented a non-standard __proto__ accessor that permitted getting

and setting a prototype at any time. Later in the year 2015, Object.setPrototypeOf and
Object.getPrototypeOf were added to the standards. The __proto__ was the “de-facto”
— implemented everywhere — so, it made its way into the standard’s Annex B — a
description for optional non-browser environments.

The ECMAScript 6-standard271 is 4+ years old and all major browsers currently
support it (see this table).272 The next ECMA version273 was ES6 (or ES2015, or
“ESNext” (at that time), there are a lot of names for JavaScript release versions274)
that were only partially supported by browsers back then.275 However, since the ES5
specification is fully defined, software engineers wrote tools called “transpilers”276

— it takes ES6/7/8/9 formatted code and returns it into the standard ES5 code. You
must be thinking, “Why would they do that?” Because, it allows software engineers
to use the newest released versions of the JavaScript specification and all the newest
features; yet, still allow their code to be run in any browser. So, this is a perfect
time to latch onto277 the new JS features and migrate to the modern style of game
development using Phaser Gaming Frameworks v2.x.x and/or v3.x.x.

Before ECMAScript 6, there was a lot of confusion about how to use Object Oriented
Programming (OOP) in JavaScript;278 the two methods used were either the “factory
pattern”279 or the “constructor function pattern”.280 ES6 added a new keyword to
resolve this confusion and provide a single primary method to insert OOP into JS —
the class keyword was introduced. Many believed, by adding this class keyword, it
would solve many problems. In reality, it didn’t! It simply poisoned the minds and
added another layer of abstraction that misrepresented the JS prototype-based

271http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
272http://kangax.github.io/compat-table/es2016plus/
273https://medium.freecodecamp.org/whats-the-difference-between-javascript-and-ecmascript-cba48c73a2b5
274https://www.w3schools.com/js/js_versions.asp
275http://kangax.github.io/compat-table/es2016plus/
276https://babeljs.io/
277https://idioms.thefreedictionary.com/latch+onto
278http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/
279https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch09s10.html
280https://www.safaribooksonline.com/library/view/learning-javascript-design/9781449334840/ch09s01.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/
http://www.kirupa.com/html5/objects_classes_javascript.htm
http://webreflection.blogspot.com/2010/01/better-javascript-classes.html
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
http://kangax.github.io/compat-table/es2016plus/
http://kangax.github.io/compat-table/es2016plus/
https://medium.freecodecamp.org/whats-the-difference-between-javascript-and-ecmascript-cba48c73a2b5
https://www.w3schools.com/js/js_versions.asp
http://kangax.github.io/compat-table/es2016plus/
https://babeljs.io/
https://idioms.thefreedictionary.com/latch+onto
http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/
http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/
https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch09s10.html
https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch09s10.html
https://www.safaribooksonline.com/library/view/learning-javascript-design/9781449334840/ch09s01.html
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
http://kangax.github.io/compat-table/es2016plus/
https://medium.freecodecamp.org/whats-the-difference-between-javascript-and-ecmascript-cba48c73a2b5
https://www.w3schools.com/js/js_versions.asp
http://kangax.github.io/compat-table/es2016plus/
https://babeljs.io/
https://idioms.thefreedictionary.com/latch+onto
http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/
https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch09s10.html
https://www.safaribooksonline.com/library/view/learning-javascript-design/9781449334840/ch09s01.html

Appendix: OLOO - Safe JavaScript 384

inheritance chain as masquerading as standard classic OOP inheritance. If you’re
using ES6 with classical Object-Oriented Programming, you will need a different
structured approach known as Objects Linking to Other Objects (OLOO). Yes, there
are many ways to style your JS source code. One prevalent way is to shoehorn281 JS
into a Classical OOP format with inheritance;282 but, to do so is a misuse of the native
objects and prototypical delegation found in the core of the JavaScript syntax. In fact,
the Gang of Four (GoF) states,283 “… favor object composition over class inheritance
…”.284 Read what Apple Game Develop says about “Inheritance-Based Architecture
Hinders Game Design Evolution”285

ES9 (June 2018)286 says this about OOP in JS, (quote pg 48), “… In a class-based object-
oriented language, in general, ‘state’ is carried by instances, methods are carried by
classes, and inheritance is only of structure and behavior. In ECMAScript, the state and
methods are carried by objects, while structure, behavior, and state are all inherited.
All objects that do not directly contain a particular property that their prototype
contains share that property and its value.”

Furthermore, “ES6 restricts what a class body content might contain.” Quoted from
Exploring ES6 by Dr. Axel Rauschmayer287

15.2.2 Inside the body of a class definition

A class body can only contain methods, but not data properties. Prototypes having
data properties is generally considered an anti-pattern, so this just enforces a best
practice.

Deeper Dive: JS Delegation (aka “Inheritance”?)

• 3 Different Kinds of Prototypal Inheritance: ES6+ Edition288 by Eric Elliott.
• The Gang of Four is wrong and you don’t understand delegation289 by Jim Gay.

281https://www.urbandictionary.com/define.php?term=shoehorn
282https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
283https://hackernoon.com/favor-object-composition-over-class-inheritance-they-said-9f769659b6e
284https://en.wikipedia.org/wiki/Composition_over_inheritance
285https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/

EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
286http://www.ecma-international.org/publications/standards/Ecma-262.htm
287http://exploringjs.com/es6/
288https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9
289https://www.saturnflyer.com/blog/the-gang-of-four-is-wrong-and-you-dont-understand-delegation

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.urbandictionary.com/define.php?term=shoehorn
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://hackernoon.com/favor-object-composition-over-class-inheritance-they-said-9f769659b6e
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://exploringjs.com/es6/
http://exploringjs.com/es6/
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9
https://www.saturnflyer.com/blog/the-gang-of-four-is-wrong-and-you-dont-understand-delegation
https://www.urbandictionary.com/define.php?term=shoehorn
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://hackernoon.com/favor-object-composition-over-class-inheritance-they-said-9f769659b6e
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/GameplayKit_Guide/EntityComponent.html#//apple_ref/doc/uid/TP40015172-CH6-SW1
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://exploringjs.com/es6/
https://medium.com/javascript-scene/3-different-kinds-of-prototypal-inheritance-es6-edition-32d777fa16c9
https://www.saturnflyer.com/blog/the-gang-of-four-is-wrong-and-you-dont-understand-delegation

Appendix: OLOO - Safe JavaScript 385

The old way

Let’s assume you’re building a game studio/workshop and you need to create some
release game products. In the old days (1997 to 2008) – before ECMAScript 5 (ES5),
you would have written something like a function this way:

1 //"pseudo-constructor" JS Function; functions are "hoisted"

2 function game (name) {

3 this.name = name;

4 };

5

6 game.prototype.showName = function() {alert(this.name);};

7

8 ///

9 // OR when ES5 appeared, you may have shifted to an "object literal"

10 // "pseudo-constructor" JS object literal; object literals are

11 // NOT "hoisted".

12 ///

13 var game = functionName(name) {

14 this.name = name;

15 };

16

17 game.showName = function() {alert(this.name);};

18

19 //Phaser v2.x.x uses object literals with "new" keyword.

20 var game = new Phaser.Game(640,450,Phaser.Auto,"gameDiv",boot);

21

22 document.addEventListerner('DOMContentLoaded',

23 function(){ window.game());, false });

This wasn’t so bad. You have a function acting as a pseudo-“constructor”290 (an
adopted terminology from OOP) to create your game object singleton291 and attach
methods to the game’s prototype. All individual games would have these methods.
“Constructor functions” are technically just normal, old, regular functions — nothing
more! For instance:

290https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
291http://gameprogrammingpatterns.com/singleton.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
http://gameprogrammingpatterns.com/singleton.html
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
http://gameprogrammingpatterns.com/singleton.html

Appendix: OLOO - Safe JavaScript 386

1 function User(name) {

2 this.name = name;

3 this.isAdmin = false;

4 }

5

6 let user = new User("Jack");

7

8 alert(user.name); // Jack

9 alert(user.isAdmin); // false

When “new User(...)“ is called, it does several things:

• A new empty object was created.
• The “this“ keyword was assigned to that newly created object. Additionally, the
“constructor“ property was changed to the parent function and “__proto__“ was
set to that parent’s “constructor“ prototype. If no return value was set at the end
of this function, then the function would return “this“ — a reference to the object
itself.

• The function body executes its statements and usually, it modifies this reference
and adds other new properties into itself.

• The value of “this“ was returned upon completion.

In other words, “new User(...)“ really does something like this:

1 function User(name) {

2 // this = {}; (implicitly)

3

4 // add properties to this

5 this.name = name;

6 this.isAdmin = false;

7

8 // return this; (implicitly)

9 }

10

11 //or something like this

12 var User = {

13 constructor:

14 this.name = name;

15 this.isAdmin = false;

16

17 //If we put methods here; every instance will use these

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: OLOO - Safe JavaScript 387

18 // same methods.

19 }

However, there are several concepts to consider:

• There are no private attributes in the JavaScript language unless you choose
to modify the Object.defineProperty read-only into a writable flag to false.292 Be
warned! Once you change this, you cannot reverse your selection. The value
inside a named variable can be changed at any time from outside its function;
unless you set the property as “ready only”.

• The methods and properties are scattered. Even if you put them all in one
tight collection (aka a class), there is not a single structure concept to define your
classic classful objects due to “hoisting” — just as you would do with classes in
many other purely classical object-oriented languages. Objects use “values by
reference”.

• You might easily forget to use the new keyword. It doesn’t throw an error and is
perfectly acceptable in JS. It just leads to completely different behavior than you
would expect and some nasty unintended bugs that become difficult to discover.

• Classical OOP Inheritance will provide further problems. There isn’t an agreed-
upon method in the JS-community about how to do this properly. In fact, in JS, it is
not inheritance at all (i.e., copying attributes andmethod into the new instance).
Nothing in an object/function is “copied” in JavaScript. When an object variable
is copied — it’s the reference (aka the memory address where the value lives)
that is copied, the object is not duplicated.

If an internal property doesn’t exist in an object, JavaScript refers up the protocol
chain to find it; it is “delegation”. John Dugan has an excellent illustration.

“Object Oriented JavaScript Pattern Comparison”

“When your parents had you, you inherited their DNA — you received a copy of it.
When they broke their leg, yours did not break. JavaScript is the opposite of this.
In JavaScript, when your parents break their leg, yours breaks too. A term better
suited than prototypical inheritance to JavaScript is prototypical delegation. When
a new object is created from another object in JavaScript, it links back to the parent
object’s prototype properties and methods as opposed to copying them.”

292http://www.ecma-international.org/ecma-262/7.0/index.html#sec-property-attributes

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.ecma-international.org/ecma-262/7.0/index.html#sec-property-attributes
https://john-dugan.com/object-oriented-javascript-pattern-comparison/
http://www.ecma-international.org/ecma-262/7.0/index.html#sec-property-attributes

Appendix: OLOO - Safe JavaScript 388

(Read more on this topic from, “You don’t know JS” Chapter 6293).

Here’s a summary of the Feature changes in ES6 here294)

A class with only a single instance with global access points.

1 // v2.x.x

2 var game = new Phaser.Game(480, 320, Phaser.AUTO, null, game.Boot);

3

4 // v3.x.x

5 var game = new Phaser.Game(config); OR

6 var game = Object.assign({},Phaser.Game(config)); OR

7 var game.prototype = Object.create(Phaser.prototype);

When the new keyword is placed in front of any function call, four things happen:

1. A new object is created and assigned to the variable; new helps create an object
from the parent function.

2. The new object gets linked into the parent object’s prototype.
3. The new object gets associated with the keyword this within the constructor

function call.
4. If the constructor function does not return a value, JavaScript implicitly inserts

this context and returns it as a reference at the end of the constructor function’s
execution.

ECMA-262 7th Edition / June 2016

ECMAScript® 2016 Language Specificationa

(QUOTE) “A function object is an object that supports the [[Call]] internal methods.
A constructor (also referred to as a constructor function) is a function object that
supports the [[Construct]] internal method.”

Refer to Table 6b

A function object is not necessarily a constructor and such non-constructor function
objects do not have a [[Construct]] internal method.

ahttp://www.ecma-international.org/ecma-262/7.0/index.html#table-6
bhttp://www.ecma-international.org/ecma-262/7.0/index.html#table-6

293https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20%26%20object%20prototypes/ch6.md
294http://es6-features.org/#Constants

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
http://es6-features.org/#Constants
http://www.ecma-international.org/ecma-262/7.0/index.html#table-6
http://www.ecma-international.org/ecma-262/7.0/index.html#table-6
http://www.ecma-international.org/ecma-262/7.0/index.html#table-6
http://www.ecma-international.org/ecma-262/7.0/index.html#table-6
https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/this%20&%20object%20prototypes/ch6.md
http://es6-features.org/#Constants

Appendix: OLOO - Safe JavaScript 389

Because of these points, many developers have created libraries, frameworks, and
tools that provide all types of object creation and instantiation logic to subjugate JS
into the classical OOP comfort-zone. Many of these “shackles”, introduced by OOP
classes (e.g. Prototype295, ES6, TypeScript, LiveScript296, or CoffeeScript297), are noth-
ing more than “syntactic sugar”298 to fatten up299 JS. I trust you haven’t drunk this pre-
sweetened “Kool-Aid”!?300 (oh! I offer my apology301 to those who’ve misunderstood
my meaning).

You can skip down this yellow-brick road302 of classic OOP if you want, but I wouldn’t
recommend it because your game will perform slower. Test it for yourself303; you’ll
see that using OOP is 12% slower (click to see results)304 because of hierarchy “tree
walking”. It may be hard to swallow (Kool-Aid reference above)305, yet prototypical
delegation — Objects Linking to Other Objects (OLOO) — is much easier than classful-
based OOP and provides additional further benefits. Just look at other prototypical
languages such as IO306 or Self307. These are an old pre-JavaScript syntax that made
prototypes initially difficult to use.

295http://www.prototypejs.org/
296http://livescript.net/
297http://coffeescript.org/
298https://github.com/getify/You-Dont-Know-JS/blob/2nd-ed/objects-classes/apA.md#class-gotchas
299https://idioms.thefreedictionary.com/fatten+up
300https://www.urbandictionary.com/define.php?term=drink%20the%20kool-aid
301https://www.washingtonpost.com/posteverything/wp/2014/11/18/the-phrase-drank-the-koolaid-is-completely-

offensive-we-should-stop-saying-it-immediately/?noredirect=on&utm_term=.c0835724bc46
302https://imgur.com/gallery/NUKAetS
303https://jsperf.com/crockford-object-create-with-cached-function
304https://makingbrowsergames.com/starterkits/_CrockfordObjectComparisonTest.pdf
305https://idioms.thefreedictionary.com/hard+to+swallow
306https://en.wikipedia.org/wiki/Io_(programming_language)
307https://en.wikipedia.org/wiki/Self_(programming_language)

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.prototypejs.org/
http://livescript.net/
http://coffeescript.org/
https://github.com/getify/You-Dont-Know-JS/blob/2nd-ed/objects-classes/apA.md#class-gotchas
https://idioms.thefreedictionary.com/fatten+up
https://www.urbandictionary.com/define.php?term=drink%20the%20kool-aid
https://www.urbandictionary.com/define.php?term=drink%20the%20kool-aid
https://www.washingtonpost.com/posteverything/wp/2014/11/18/the-phrase-drank-the-koolaid-is-completely-offensive-we-should-stop-saying-it-immediately/?noredirect=on&utm_term=.c0835724bc46
https://imgur.com/gallery/NUKAetS
https://jsperf.com/crockford-object-create-with-cached-function
https://makingbrowsergames.com/starterkits/_CrockfordObjectComparisonTest.pdf
https://idioms.thefreedictionary.com/hard+to+swallow
https://en.wikipedia.org/wiki/Io_(programming_language)
https://en.wikipedia.org/wiki/Self_(programming_language)
http://www.prototypejs.org/
http://livescript.net/
http://coffeescript.org/
https://github.com/getify/You-Dont-Know-JS/blob/2nd-ed/objects-classes/apA.md#class-gotchas
https://idioms.thefreedictionary.com/fatten+up
https://www.urbandictionary.com/define.php?term=drink%20the%20kool-aid
https://www.washingtonpost.com/posteverything/wp/2014/11/18/the-phrase-drank-the-koolaid-is-completely-offensive-we-should-stop-saying-it-immediately/?noredirect=on&utm_term=.c0835724bc46
https://www.washingtonpost.com/posteverything/wp/2014/11/18/the-phrase-drank-the-koolaid-is-completely-offensive-we-should-stop-saying-it-immediately/?noredirect=on&utm_term=.c0835724bc46
https://imgur.com/gallery/NUKAetS
https://jsperf.com/crockford-object-create-with-cached-function
https://makingbrowsergames.com/starterkits/_CrockfordObjectComparisonTest.pdf
https://idioms.thefreedictionary.com/hard+to+swallow
https://en.wikipedia.org/wiki/Io_(programming_language)
https://en.wikipedia.org/wiki/Self_(programming_language)

Appendix: OLOO - Safe JavaScript 390

Comparison of JS OOP Class Systems
Douglas Crockford developed this approach308. He wrote a short method — called
Object.create — and it was adopted into the ES5 standards.

308http://javascript.crockford.com/prototypal.html

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html

Appendix: OLOO - Safe JavaScript 391

Objects Linking to Other Objects (OLOO)

Entities and Component Game Design viewed as a cross-reference
In the OLOO style of creating objects, we strip away the “class” focus of objects typi-
cally seen in ES6 oriented programming and embrace the true nature of JavaScript’s
prototype features. In OLOO, objects delegate directly from other objects without
needing to use a constructor as a middleman.

OLOO takes advantage of the Object.create method to take care of object creation and
inheritance.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: OLOO - Safe JavaScript 392

1 var myGame = {

2 init: function config(width, height) {

3 this.width = width;

4 this.height = height;

5 },

6

7 gameDim: function gameDim(config) {

8 console.log('Dimensions: ' + this.width + 'x' + this.height);

9 }

10 }

11

12 var gameCanvas = Object.create(myGame); //.init('800', '500');

13

14 //Debug Review

15 console.log("Game prototype (myGame): =======");

16 console.log("Match TYPE: "+myGame.isPrototypeOf(gameCanvas));

17 console.log("GET myGame: "+Object.getPrototypeOf(myGame));

18 console.log("myGame Properties: "+Object.values(myGame));

19 console.log("End of (myGame): =======");

Read more on other Object properties here.309

Compare your code

You can check the finished code for this lesson in the live demo below, and run it to
understand how it works:

https://makingbrowsergames.com/jsoloo/index-OLOO.pdf

Object.create

But what does Object.create do exactly? How is it different from OOP constructors?
309http://www.ecma-international.org/ecma-262/7.0/index.html#table-5

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.ecma-international.org/ecma-262/7.0/index.html#table-5
https://makingbrowsergames.com/jsoloo/index-OLOO.pdf
http://www.ecma-international.org/ecma-262/7.0/index.html#table-5

Appendix: OLOO - Safe JavaScript 393

Object.create is like an OOP constructor in that it creates a new object from the
referenced object passed into it and builds a chain (aka inherits). In other words, it
changes the value of __proto__ on the newly created object pointing to the object
referenced. However, the true advantage of Object.create is its emphasis on prototype
chains and delegation. To get a better idea of what Object.create does, you can rewrite
it as a new function:

1 function createObject(obj) {

2 var newObj = {}; //new object created

3 newObj.__proto__ = obj; //chain to properties of referenced obj

4 return newObj; //return "THIS" newObj reference

5 }

As you can see (in the code above), the new object (newObj) created doesn’t have
properties nor method behaviors. It inherits all of those from the referenced object
handed in as an argument. If we should call any method on this new bare object, our
program would find that method following the __proto__ property (instead of inside
the object itself).

However, if you plan to create unique properties for this object, you need to create
an initialize method as in the former example using config.

There is a drawback for Object.create. It doesn’t allow you to use instanceof for quick
“inheritance” checks because it doesn’t touch the constructor property. Instead,
to check for an inheritance, you use the .isPrototypeOf method on the originally
referenced object.

The good news is that you don’t need a modern browser with any ES5 implementation.
Mozilla Developer Network provides a polyfill310. It allows you to use this way of
creating objects since 2011, even inside older browsers. But before you get all
happy with this free gift, refer to https://caniuse.com/#search=ES5 and update your
information — today this is not an issue anymore. This is important, considering the
adoption trends of browsers311. It is not an issue if you only target Firefox, Chrome,
Safari, or Opera users. If you have doubts, research this compatibility chart312 or go
to http://canIuse.com.

310https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/create/
311http://www.w3schools.com/browsers/browsers_explorer.asp
312http://kangax.github.com/es5-compat-table/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/create/
https://caniuse.com/#search=ES5
http://www.w3schools.com/browsers/browsers_explorer.asp
http://kangax.github.com/es5-compat-table/
http://canIuse.com
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/create/
http://www.w3schools.com/browsers/browsers_explorer.asp
http://kangax.github.com/es5-compat-table/

Appendix: OLOO - Safe JavaScript 394

1 //Mozilla Polyfill:

2 if (! Object.create) {

3 Object.create = function (o) {

4 if (arguments.length > 1) {

5 throw new Error('Object.create implementation

6 only accepts the first parameter.');

7 }

8 }

9 }

10

11 function F() {

12 F.prototype = o;

13 return new F();

14 };

You will have a function for the Object.create by just including the above source code.
The first line checks whether Object.create exists already. This ensures that it won’t
override any native implementation should the browser produce one.

Basic Syntax:

Object.create(prototype_object, propertiesObject)

Exercise Lesson 9:

The issues derive from writing source code in ES6 and using transpilers; don’t believe
me?? Research and record information from here313

Instructions:
- Click on the “6” or “2016+” tab at the top of the page.
- Find the “Syntax” in the Feature Name column and then drop-down “default function
parameters” Slide down the new list that appears and find “new Function() support”

Record which compilers/polyfills support the “new Function()” feature.

Record which compilers/polyfills support the “new.target” feature.
313http://kangax.github.com/es5-compat-table/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://kangax.github.com/es5-compat-table/
http://kangax.github.com/es5-compat-table/

Appendix: OLOO - Safe JavaScript 395

Record which compilers/polyfills support the Functions “class” feature.

Record which compilers/polyfills support the Functions “super” feature.

Do any compilers/polyfills support Annex b.

How many total features are supported by:

1. TypeScript + core.js;
2. Babel 6 or 7 + core.js

Game Singletons

“Let’s take another look at our Phaser game project. If you would like to create only
one game, there is no need for Object.create. Just create the object directly. All JS
objects are “singletons”. A Singleton is a class with only a single instance with global
access points. In my example below, you don’t need (and cannot) create an instance
of the game object (mistaken for a class), it already exists. “… So, you simply start using
the instance. In “classical” languages such as Java, singleton means that you can have
only one single instance of this class at any time, you cannot create more objects of
the same class. However, in JavaScript (no classes, remember?) this concept makes
no sense anymore since all objects are singletons to begin with.” quoted from Stoyan
Stefanov — a Facebook engineer and O’Reilly authora

ahttp://www.phpied.com/3-ways-to-define-a-javascript-class/

1 // creates our game name-space

2 var game = {} || game;

3

4 /**

5 //

6 // PHASER v2.x.x

7 //

8 // using traditional new keyword found in all Phaser Tutorials

9

10 game = new Phaser.Game(

11 this.viewportWidth,

12 this.viewportHeight,

13 Phaser.AUTO,

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://www.phpied.com/3-ways-to-define-a-javascript-class/
http://www.phpied.com/3-ways-to-define-a-javascript-class/
http://www.phpied.com/3-ways-to-define-a-javascript-class/

Appendix: OLOO - Safe JavaScript 396

14 document.body,

15 window.GAMEAPP.state.boot);

16

17 */

18

19 // main function - using Object.create

20 main: function(){

21 //game IS Phaser!!

22 game = Object.create(Phaser);

23 },

24

25 //

26 // NEW Phaser v3.x.x method

27 //

28 // passing via Object.create

29 // config submitted as an external object

30 main: function(){

31 this.game = Object.create(Phaser);

32 },

33

34

35 /**

36 // config object embedded into Phaser v3 instantiation

37 this.game = new Phaser.Game(

38 //configuration object submitted to Phaser v3

39 {

40 type: Phaser.AUTO,

41 parent: document.body,

42 scene: [],

43 width: window.Game.viewportWidth,

44 height: window.Game.viewportHeight

45 }

46);

47 */

Download the main.js314 example file.

However, this isn’t our best solution. You might manipulate those properties inside
the object easily from outside and there are no precautions for the assigned values.
Take into consideration an assignment like game.price = -20. A mistake like this
would ensure the sale of your game products quickly with really happy customers —

314https://makingbrowsergames.com/jsoloo/OLOO-v2gameSkeleton.pdf

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://makingbrowsergames.com/jsoloo/OLOO-v2gameSkeleton.pdf
https://makingbrowsergames.com/jsoloo/OLOO-v2gameSkeleton.pdf

Appendix: OLOO - Safe JavaScript 397

customers who receive $20 bucks from you with every game purchased. Your studio
wouldn’t be able to do that for very long!

Years of experience in object-oriented programming and design tells us to separate
the inner states of an object from its outer interfaces. You usually want to make
your game attributes private and provide some protection methods.

Deeper Dive: Object Manipulation objects in ES5/6

Objects get a major overhaul in ES6. Things like object destructuring and rest/spread
operators made working with objects very easy. Let’s jump to the code and try to
merge two objects in ES5.

1 var obj1 = { a: 1, b: 2 }

2 var obj2 = { a: 2, c: 3, d: 4}

3 var obj3 = Object.assign(obj1, obj2)

We have to merge the object using Object.assign() which takes both objects as input
and outputs the merged object. Let’s take a look at how we can tackle this problem in
ES6.

1 const obj1 = { a: 1, b: 2 }

2 const obj2 = { a: 2, c: 3, d: 4}

3 const obj3 = {...obj1, ...obj2}

Simple isn’t it? The spread operator makes merging objects a breeze for the developer.
But how does that apply to Phaser v2.x.x or III? Well, you’ve noticed by now that
there are segregated preload, config, create, and updates function along with the global
window. Why not simply write them once and “Merge” them like this.

1 var preload = { loads all game assets };

2 var create = { assigns cached assets to scene }

3

4 var GameMechanics = Object.assign(preload, create);

5 var scene1 = Object.assign(GameMechanics,Phaser.Scene);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: OLOO - Safe JavaScript 398

Lesson Summary

As of 20180720, “328 out of 330 liked/approved” this answer provided onUnderstand-
ing the difference between Object.create() and new SomeFunction()315

(Quote) “Very simply said, new X is Object.create(X.prototype) with additionally
running the constructor function. (And giving the constructor the chance to
return the actual object that should be the result of the expression instead
of this.)
That’s it. :)
The rest of the answers are just confusing because apparently nobody else
reads the definition of new either. ;)”

Resource References:

• Not Awesome ES6 Classes316

• How to fix the ES6 class keyword317

• ECMA-262 7.0318

• http://www.crockford.com/javascript/inheritance.html
• http://crockford.com/javascript/

315https://stackoverflow.com/questions/4166616/understanding-the-difference-between-object-create-and-new-
somefunction

316https://github.com/petsel/not-awesome-es6-classes/blob/master/README.md
317https://medium.com/javascript-scene/how-to-fix-the-es6-class-keyword-2d42bb3f4caf
318http://www.ecma-international.org/ecma-262/7.0/index.html#sec-createdynamicfunction

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://stackoverflow.com/questions/4166616/understanding-the-difference-between-object-create-and-new-somefunction
https://stackoverflow.com/questions/4166616/understanding-the-difference-between-object-create-and-new-somefunction
https://github.com/petsel/not-awesome-es6-classes/blob/master/README.md
https://medium.com/javascript-scene/how-to-fix-the-es6-class-keyword-2d42bb3f4caf
http://www.ecma-international.org/ecma-262/7.0/index.html#sec-createdynamicfunction
http://www.crockford.com/javascript/inheritance.html
http://crockford.com/javascript/
https://stackoverflow.com/questions/4166616/understanding-the-difference-between-object-create-and-new-somefunction
https://stackoverflow.com/questions/4166616/understanding-the-difference-between-object-create-and-new-somefunction
https://github.com/petsel/not-awesome-es6-classes/blob/master/README.md
https://medium.com/javascript-scene/how-to-fix-the-es6-class-keyword-2d42bb3f4caf
http://www.ecma-international.org/ecma-262/7.0/index.html#sec-createdynamicfunction

Appendix: Common Pitfalls 399

Appendix: Common Pitfalls

This section helps those new to game development. Senior Software Engineers, no
doubt, have learned these from past experiences — it’s not fun smashing your thumb,
yet sometimes accidents happen all over again ” ;) “!!

Lacking Debugging Tools?

While writing code, it’s common to write errors. Errors come incorrect syntax; these
are easily repaired with a “good” Integrated Development Environment (IDE) editor.
Hidden logical and code flow are more difficult to find. Such errors come from ambi-
guity in logic flow as a result of client and programmers’ product definitions. These
errors can remain invisible to the programmer’s eye and can create havoc or appear
under unexpected circumstances. To identify these errors, we need “Debugger Tools”
that can run through the program, and provide hints on why the code is not working
as expected.

I’ve found “Log Rocket”319 extremely helpful in both local testing AND IN THE
CLOUD.

Mozilla states, “The Performance tool gives you insight into your site’s general respon-
siveness, JavaScript and layout performance. With the Performance tool, you create a
recording, or profile, of your site over some time. The tool then shows you an overview
of the things the browser was doing to render your site over the profile and a graph
of the frame rate over the profile.”

One of the simplest tools is in JavaScript already — debugger! The debugger keyword
is used in the code to force stop the execution of the code at a breaking point and
calls the debugging function. The debugger function is executed if any debugging is
needed at all else no action is performed.

319https://logrocket.com/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://logrocket.com/
https://logrocket.com/

Appendix: Common Pitfalls 400

JavaScript debugger

1 // html page

2 <p>The solution of 20 * 5 is: </p>

3

4 <script>

5 var x = 20;

6 var y = 5;

7 var z = x * y;

8

9 debugger;

10

11 document.getElementById("test").innerHTML = z;

12 </script>

Generally, you can enter the “Developers tool” section by pressing the F12 key and
go to the “Sources” tab. In the source tab section, select any JavaScript file and set
breakpoints by either selecting from the provided list like DOM breakpoints or “Event
listener” breakpoints. This will stop the code execution whenever your chosen event
occurs.

Note: Uses the frame rate and Waterfall tools to highlight performance prob-
lems caused by long-running JavaScript — such a Phaser Game running in the
canvas — and how using workers can help in this situation.

Deeper Dive: Console Commands

Exercise: Review Console Commands here.320

Exercise: Study how to use the console from the Chrome Console Tutorial
here321

• Console.assert() — Log a message and stack trace to console if the first argument
is false.

• Console.clear() — Clear the console.
320https://developer.mozilla.org/en-US/docs/Web/API/Console
321https://developers.google.com/web/tools/chrome-devtools/console/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developers.google.com/web/tools/chrome-devtools/console/
https://developers.google.com/web/tools/chrome-devtools/console/
https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developers.google.com/web/tools/chrome-devtools/console/

Appendix: Common Pitfalls 401

• Console.count() — Log the number of times this line has been called with the
given label.

• Console.countReset() — Resets the value of the counter with the given label.
• Console.debug() — Outputs a message to the console with the log level “de-

bug”. Note: Starting with Chromium 58 this method only appears in Chromium
browser consoles when level “Verbose” is selected.

• Console.dir() — Displays an interactive listing of the properties of a specified
JavaScript object. This listing lets you use disclosure triangles to examine the
contents of child objects.

• Console.dirxml() — Displays an XML/HTML Element representation of the speci-
fied object if possible or the JavaScript Object view if it is not possible.

• Console.error() — Outputs an error message. You may use string substitution
and additional arguments with this method.

• Console.exception() — An alias for error().
• Console.group() — Creates a new inline group, indenting all following output by

another level. To move back out a level, call “groupEnd()”.

Chrome Tutorial: Using Console Groups

1 function name(obj) {

2 console.group('name');

3 console.log('first: ', obj.first);

4 console.log('middle: ', obj.middle);

5 console.log('last: ', obj.last);

6 console.groupEnd();

7 }

8

9 function doStuff() {

10 console.group('doStuff()');

11 name({"first":"Wile","middle":"E","last":"coyote"});

12 console.groupEnd();

13 }

14

15 doStuff();

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Common Pitfalls 402

Chrome Tutorial: Using Console Groups

• Console.groupCollapsed() — Creates a new inline group, indenting all following
output by another level. However, unlike group() this starts with the inline group
collapsed requiring the use of a disclosure button to expand it. To move back out
a level, call groupEnd().

• Console.groupEnd() — Exits the current inline group.
• Console.info() — Informative logging of information. You may use string substi-

tution and additional arguments with this method.
• Console.log() — For general output of logging information. You may use string

substitution and additional arguments with this method. NOTE: Precision format-
ting doesn’t work in Chrome

• Console.profile() — Starts the browser’s built-in profiler (for example, the Firefox
performance tool). You can specify an optional name for the profile.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Common Pitfalls 403

• Console.profileEnd() — Stops the profiler. You can see the resulting profile in the
browser’s performance tool (for example, the Firefox performance tool).

• Console.table() — Displays tabular data as a table.

Chrome Tutorial: Using Console Groups

1 let data = [

2 { name: "Yusuf", age: 26 },

3 { age: 34, name: "Chen" }

4];

5

6 console.table(data);

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Common Pitfalls 404

Chrome Tutorial: Using Console Table

• Console.time() — Starts a timer with a name specified as an input parameter. Up
to 10,000 simultaneous timers can run on a given page.

• Console.timeEnd() — Stops the specified timer and logs the elapsed time in
seconds since it started.

• Console.timeLog() — Logs the value of the specified timer to the console.
• Console.timeStamp() — Adds a marker to the browser’s Timeline or Waterfall tool.

Refer to more details in “Using the Timeline Tool” guide322

322https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool

Appendix: Common Pitfalls 405

Chrome Tutorial: Using Console timeStamp Label

• Console.trace() — Outputs a stack trace.

Copyright © 1972-2017 Stephen Gose. All rights reserved.

Appendix: Common Pitfalls 406

Chrome Tutorial: Using Console Trace

• Console.warn() — Outputs a warning message. You may use string substitution
and additional arguments with this method.

Hint: Not all of these console commands are available in all browsers. Review
their availability here323

323https://developer.mozilla.org/en-US/docs/Web/API/Console#Browser_compatibility

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://developer.mozilla.org/en-US/docs/Web/API/Console#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/Console#Browser_compatibility

Appendix: Common Pitfalls 407

Same “Name-spaces”

Whenever “animations”, prefabrication, and audio sounds files share the same names-
pace, every resource is managed by the Resource Manager; and thereby, taxing the
CPU processing capabilities. For this reason, their name must be uniquely stored in
separate namespaces. For example, a sound file cannot have the same name as an
animation file.

It is recommended to prefix the audio file names with a common moniker label. For
example, sound effects with the “sfx“ file-name prefix, to avoid such conflicts.

Callbacks

Quote from “How Do I Organise Files in A Phaser.js Project?”324

When using <script> tags in an HTML page, many new JavaScript developers mis-
takenly include the <script> tags referencing their libraries in the wrong order (for
instance, by adding their reference to Phaser after the reference to their source code).
This would result in their game’s code executing, but not knowing about Phaser yet.
The code will break and throw an error similar to Phaser is not defined in the console.
… read morea

ahttps://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

JS scripts inserted in the wrong order.

1 <html>

2 <head>

3 <script src="localhost:3000/my-game.js"></script>

4 <script src="localhost:3000/phaser.js"></script>

5 </head>

6 <body>

7 <!-- WRONG ... Will break. Phaser is not defined -->

8 </body>

9 </html>

324https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/
https://glcheetham.name/2016/03/18/organise-files-phaserjs-project/

Appendix: Common Pitfalls 408

Missing Documentation

Lacking source code documentation and internal comments, in my opinion, is the
worst sin325 a software engineer could commit! I can recall, dozens of times to my
confessed shame, when I return to a game written decades ago only to discover
missing documentation and no clue “what the @#$^!!” (aka naughty explanatory326)
I was thinking at that time. Can you relate senior software engineers??

It takes mere moments to insert comments into source code; and if you don’t have
time then use “Dragon Speak”327 or its professional version328 if you’re running a
financially successful studio.

Creating documentation is a snap with open source tools such as JSDoc 3329 JSDoc
3 is an API documentation generator for JavaScript only. JSDoc even has a toolkit330

that can export into “html” or “JSON“ to simplify the process of creating supporting
documentation.

Exercise: Return to Chapter 4 Game Recipe™ Automation Tool and see how
the JSDoc toolkit can become a supporting feature when exporting parameter
types.

Some of the more popular annotation tags used in modern JSDoc are:

Tag Description
@author Developer’s name
@constructor Marks a function as a constructor
@deprecated Marks a method as deprecated
@exception Synonym for @throws
@exports Identifies a member that is exported by the module
@param Documents a method parameter; a data type indicator

can be added between curly braces
@private Signifies that a member is private
@return Documents a return value
@returns Synonym for @return
@see Documents an association to another object
@todo Documents something that is missing/open
@this Specifies the type of the object to which the keyword

“this” refers within a function.
325https://www.merriam-webster.com/dictionary/sin
326https://biblehub.com/commentaries/proverbs/6-12.htm
327https://amzn.to/2q51UCN
328https://amzn.to/2S4jVOA
329https://github.com/jsdoc3/jsdoc
330https://en.wikipedia.org/wiki/JSDoc

Copyright © 1972-2017 Stephen Gose. All rights reserved.

https://www.merriam-webster.com/dictionary/sin
https://www.merriam-webster.com/dictionary/sin
https://biblehub.com/commentaries/proverbs/6-12.htm
https://amzn.to/2q51UCN
https://amzn.to/2S4jVOA
https://github.com/jsdoc3/jsdoc
https://en.wikipedia.org/wiki/JSDoc
https://www.merriam-webster.com/dictionary/sin
https://biblehub.com/commentaries/proverbs/6-12.htm
https://amzn.to/2q51UCN
https://amzn.to/2S4jVOA
https://github.com/jsdoc3/jsdoc
https://en.wikipedia.org/wiki/JSDoc

Appendix: Common Pitfalls 409

Tag Description
@throws Documents an exception thrown by a method
@version Provides the version number of a library

Exercise: Follow the JSDoc 3 tutorials, commands, and articles on http://
usejsdoc.org/

Exercise: Compare various documentation generators here331 and select the
one best suited to your workflow.

Deeper Dive: What is Dragon Speak

• Dragon Professional Individual 15 makes it easy to get started with speech
recognition and become proficient quickly with regular use, delivering up to 99%
speech recognition accuracy

• Define simple voice commands to shortcut repetitive processes speed up docu-
ment creation and boost your productivity; easily create custom words such as
proper names and specific industry terminology

• Supports Nuance-approved digital voice recorders and smart-phones for ad-
vanced recording functionality and can automatically transcribe the audio files
to text back at your PC

• Sync with separate Dragon Anywhere Mobile Solution; letting you create and edit
documents of any length by voice directly on your iOS or Android device

• Helps prevent fatigue and repetitive stress injuries by offering an ergonomic
alternative to the keyboard; supports Section 508 standards to eliminate barriers
for those with disabilities that limit their ability to use a keyboard and mouse

331https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

Copyright © 1972-2017 Stephen Gose. All rights reserved.

http://usejsdoc.org/
http://usejsdoc.org/
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

Answers to Exercises

Appendix

Appendix: OLOO - Safe JavaScript

1.
2.
3.
4.
5.
6.

	Table of Contents
	Distribution Permission
	Supporting website

	Forwards
	Disclosures
	Disclaimer
	About this Workbook:
	Viewing the Source Code
	Links and References
	Who should use this workbook?
	Your newly obtained skills…

	Game Design System™
	Game Studio - Book Series
	Game Studio - Online Courses
	``Making Browser Games'' - Books Series
	``Making Browser Games'' Series - online Courses
	Programming Courses
	``Walk-Thru Tutorial'' Series - Online Courses

	Part I: Product Management
	Game Studio & Project Preparations
	Workstation Setup
	Batteries not included … Web Server Required
	Deeper Dive: Testing ``MMoGs'' Locally??!
	Development Tools

	Project Setup
	Deeper Dive: Project Data Structure
	Deeper Dive: And its name shall be called …
	Project Directories & Files

	Game Project ``Concept & Design''
	Introduction to Game Design System™
	What makes a Good Game?

	Preparing a ``Gaming Product''
	Why are you doing this?
	What are you making?
	What technology will you use?
	``Loose lips sink ships'' … and revenues!
	What features are included?
	What features are mandatory?
	How will you encode it?

	Game Design Architecture
	``Oh! Oh!''
	``Top-down''
	``Bottom-up''
	``Oh! Oh!'' vs. Top-Down vs. Bottom-Up vs. OLOO

	Game Project Summarized:
	Concept Development:
	Design:
	Production Encoding:

	Summary
	Chapter References:

	Building a Game Prototype
	Creating Prototype Mechanisms — 4-Step method
	Step 0) Preparation and Research
	Step 1) Generate Game Phases (as needed).
	Step 2) Generate code for triggering events.
	Step 3) Generate transition
	Step 4) Create your Game's Core & auxiliary functions

	Using ``Box'' Graphics
	Game Practicum: Box Prototyping
	Phaser III Code Review
	Phaser v2.x.x Code Review

	3D Prototypes
	``ToTo, … we're not in Kansas anymore'' — Dorothy
	Starting Your ``Game Recipe''™
	Step #0) the Front-Door
	Task #1-1 Instructions:
	Compare your code
	Mobile ``Single Web Page Applications'' (SWPA)
	Cocoon.js - Cloud Alternatives
	Task #2: Launching a Game
	Deeper Dive: Launching a Phaser III Game.
	Game ``Config''

	Deeper Dive: To Infinity and Beyond!
	Summary
	Chapter References:

	Game Phases, Scenes & Roses.
	Bare-Bones Prototypes
	Using a Phaser Scene as a ``Game Phase''
	9 Essential Functions of a Phaser ``Scene''
	Game Phases as Modules
	``Phaser.Game'' — One File to Rule them all …
	Main.js (aka ``launch'' or index.js)
	Boot.js
	Preload.js
	Deeper Dive: Artwork & Resources Security
	Deeper Dive: Phaser Cache
	Deeper Dive: Loader Examples
	Splash.js or Language.js?
	Main Menu.js
	Play.js
	Deeper Dive: JS Modules

	Step #1 of 4: Generate Game Phases
	Dynamically Including Game Phases
	Deeper Dive: D.R.Y. Stand-alone
	Step #3 of 4: Game Phase Transitions
	Deeper Dive: The CMS ``Game Shell''
	Deeper Dive: When to use a game shell

	Encoding Phaser Scenes as a ``Game Phase''
	Vanilla, Chocolate, or Strawberry Creme-filled?
	Overriding Essential Functions inside Phaser.Scene
	Creating Scenes using ES5 Prototypes
	Creating Scenes using Phaser.Class
	Creating Scenes by extending Phaser.Class
	ES6 Considerations: ``Strawberry''
	Creating Scene Configuration files
	Deeper Dive: Defining Other Scene Properties
	Deeper Dive: ES9 Modules

	Summary
	Chapter References:

	Part II: Mechanisms vs. Mechanics
	Building Game Prototypes, Mechanisms & Tools
	Task #3: Mini-Me
	Creating an Avatar - ``visual display''
	Deeper Dive: Display selected frames from a sprite-sheet.
	Deeper Dive: Using Base64 Images
	Creating an Avatar's metadata
	Deeper Dive 3.19+ Tweens

	Task #4: Moving Game Elements
	Deeper Dive: Phaser III Input Manager
	Deeper Dive: Future Proofing your source code.
	Deeper Dive: Configuring the Keyboard (Phaser v3.16+ updated)

	Task #5: Things that go bump …
	Walls and Camera boundaries
	Interior Decoration
	Deeper Dive on Game Objects hit areas.
	Doors, Knobs, and Buttons
	Deeper Dive: Writing Optimized Code
	Deeper Dive: Buttons as a ``Class'' or ``Scenes''?!!?
	Deeper Dive: Button size considerations
	Deeper Dive: Adding Buttons & Mobile Touch

	Task #6: When Worlds Collide …
	Task #7: It's curtains for you …
	Other Game Mechanics Categories
	The Finish Line: You're AWESOME … Gloat, Gloat …
	Chapter Source Code & Demo
	Summary
	Chapter References

	Dem's fightin' words
	Launching Web Sockets
	Dynamic Combat Menus
	So, Give Me Some Space …
	Melee Weapons
	Ranged Weapons

	OO!, OW! AH!, OW! Stayin' alive! Stayin' alive!
	Grid-less Combat
	Grid-ed Combat

	Tactical Tiled-Maps
	Squares and Checkered Grids
	Deeper Dive: Phaser III Grids
	Hexagonal Grids
	Deeper Dive: Real hexagonal grids
	Squishes

	Rules of Engagement: Take 5 paces, turn, and …
	Been there … done that …

	``Where's the beef?''
	Click-fest
	Guitar hero - Time to get it Right!
	Days of our Lives - Drama Theater
	SCA Virtual ``Fighter Practice'' by Steve Echos
	En Guard method
	Yeap! Ya betcha' `ur life!

	Story narrative
	Frisking, Fondling, or Groping
	Chapter Source Code
	Complete Combat Prototypes
	Summary
	Footnotes

	Game Mechanism Components
	Phaser III inline script - Reviewed
	Phaser v2.x.x inline script - Reviewed
	Adding Display objects
	Adding Control Mechanisms
	Adding Buttons & Mobile Touch
	Phaser III ``Actions''
	Components
	DOM
	Game Objects
	System Components

	Tile Map
	Tilemap Rendering - new Dynamic method
	Tilemap Rendering - new Static method

	Phaser III Systems
	v3 Boot
	v3 Cache
	v3 Device Manager
	v3 Events
	v3 Input Manager
	Deeper Dive: v3.16+ New Keyboard rewrite!
	v3 Loader
	v3 Sound
	v3 Scene Manager
	v3 Texture Manager
	v3 Tween Manager
	Deeper Dive 3.19+ Tweens

	Phaser3 Finish Line: You're AWESOME … Gloat!, Gloat!
	Phaser v3 Source Code & Demos

	v3 Animations
	Deeper Dive: History of Animation
	Animation Today
	Animation Recommendations
	Frame Rates Recommendations
	Tweens

	Camera & Viewports
	Summary
	Chapter Footnotes:

	Whazzz-sUP! …. HUD Development
	HUD Housing Development
	HUD as Panels
	HUD Panels outside the Canvas?!?
	HUD Demos
	Summary
	Footnotes

	Don't make me think or ``Artificial Intelligence for Dummies''
	The ``6 of 9''
	Chasing
	Evading
	Patterns
	Fuzzy logic
	Finite State Machines (FSM)
	FSM Resolving Combat Outcomes
	FSM Resolving AI behaviors

	Recursive World Feedback
	Probability Data Tables

	Complete AI Prototypes
	Chapter Source Code
	Summary
	Footnotes

	Part III: ``Walk-thru'' Tutorials & Resources
	Game Prototype Libraries
	Walk-through Tutorial Series
	Introductory (Difficulty Rating #1)
	Intermediate (Difficulty Rating #2 to #3)
	Advanced — ``The Full Monty!'' (Difficulty Rating #4)

	References:

	What's next?
	Game Distribution & Marketing
	Introduction: 8-Step Deployment Method.

	Book Review Protocol
	Tell the world about your game!

	Appendix
	More Resources
	JavaScript Garden
	Additional Appendices
	Other resources:
	Selling your Game Assets

	Appendix: Online Game Development
	Appendix: Making WebXR Games!
	Appendix: Phaser III Plugins
	Appendix: Network Concepts
	Security Concerns
	Protecting Game Assets
	Use of <iframe>
	Bad Bot!
	Other Considerations

	Game Services (Back-end)
	CMS - Server-side Frameworks
	Index Page (Non-Traditional Method)
	High Scores Services

	Membership Login
	Production release version.
	CodeIgniter & Phaser Integrated CMS
	CodeIgniter Prep Step-by-Step
	Game Shell (click dummy)

	Summary
	Chapter Footnotes

	Appendix: ``How to Start a WebSocket''
	Testing Your Browser
	WebSocket Protocol Handshake
	Deeper Dive: WebSocket API

	Sample Source Code: Client-side WebSocket
	Step #1: Game index page
	Step #2: Generate Event handlers

	Appendix: Project Mgmt Methods
	Prototyping
	Basic Principles
	Strengths:
	Weaknesses:
	Situations where most appropriate:
	Situations where least appropriate:

	Incremental
	Basic Principles:
	Strengths:
	Weaknesses:
	Situations where most appropriate:
	Situations where least appropriate:

	Spiral
	Basic Principles:
	Strengths:
	Weaknesses:
	Situations where most appropriate:
	Situations where least appropriate:

	Rapid Application Development (RAD)
	Basic Principles:**
	Strengths:
	Weaknesses:
	Situations where most appropriate:
	Situations where least appropriate:

	Test-Driven Development
	Basic Principles:
	Expected Benefits
	Common Pitfalls
	Typical team pitfalls include:
	Signs of Use
	Skill Levels
	Further Reading on Test Driven Development

	Game Project Management Foot Notes:

	Appendix: Consolidated Phaser Examples
	Phaser III (1st to 6th editions):
	Demonstrations:
	Searching for Game Mechanics and Mechanisms.
	Content Management System embedded in HTML5 <canvas> tag.

	Phaser III Examples
	Phaser III Game Prototyping Demonstrations
	Game Mechanics & Mechanisms identified
	WebSockets, Dynamic Menus, Combat, and FSM

	Appendix: Game Automation Tools
	Deeper Dive: Database Protection Considerations
	Database Schema Construction (Copyright-able!!)
	Database Record Construction
	Database structure

	Remote Codebase Using AppML
	Building an AppML application
	Sample AppML codebase (Public Access)
	Remote codebase Using JSON
	Per-user storage

	Chapter Source Code & Demo
	Summary
	Chapter References

	Appendix: OLOO - Safe JavaScript
	Deeper Dive: JS Delegation (aka ``Inheritance''?)
	The old way
	Objects Linking to Other Objects (OLOO)
	Compare your code
	Object.create
	Exercise Lesson 9:
	Game Singletons
	Deeper Dive: Object Manipulation objects in ES5/6
	Lesson Summary
	Resource References:

	Appendix: Common Pitfalls
	Lacking Debugging Tools?
	Deeper Dive: Console Commands

	Same ``Name-spaces''
	Callbacks
	Missing Documentation
	Deeper Dive: What is Dragon Speak

	Answers to Exercises
	Appendix
	Appendix: OLOO - Safe JavaScript

