
MonoGame
Mastery

Build a Multi-Platform 2D Game and
Reusable Game Engine
—
Jarred Capellman
Louis Salin

MonoGame Mastery
Build a Multi-Platform 2D Game

and Reusable Game Engine

Jarred Capellman
Louis Salin

MonoGame Mastery

ISBN-13 (pbk): 978-1-4842-6308-2		 ISBN-13 (electronic): 978-1-4842-6309-9
https://doi.org/10.1007/978-1-4842-6309-9

Copyright © 2020 by Jarred Capellman, Louis Salin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6308-2. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Jarred Capellman
Cedar Park, TX, USA

Louis Salin
Cedar Park, TX, USA

https://doi.org/10.1007/978-1-4842-6309-9

To my wife, Amy, for always supporting me through
thick and thin.

—Jarred Capellman

To my kids, in the hope that they pursue their dreams.
—Louis Salin

v

Table of Contents

Chapter 1: ��Introduction���1

Who This Book Is For?��2

What This Book Is Not��2

Reader Assumptions��3

What Is MonoGame��4

MonoGame Compared to Engines��6

Game Types Best Suited for MonoGame��6

Vertical Shooters��7

Horizontal Shooters��8

Side Scrollers���10

Role Playing��11

Puzzle���12

Strategy��13

Organization of This Book��14

Code Samples��15

Summary���16

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

vi

Chapter 2: ��Configuring the Dev Environment��������������������������������������17

Development Environment Configuration��18

Platform Agnostic���18

Set Up Your Windows Development Environment���18

Set Up Your macOS Development Environment��22

Set Up Your Linux Development Environment��27

Additional Tooling���28

Tools���29

Visual Studio Extensions��32

Summary���34

Chapter 3: ��MonoGame Architecture��35

MonoGame Architecture��35

Pipeline App��35

Game Class���38

Your First Rendered Pixels���40

Creating the Solution and Project���40

Diving into the Project��43

Diving into MainGame.cs��45

Execution Order��49

Summary���50

Chapter 4: ��Planning Your Game Engine���51

Game Engine Design��51

Player Input��52

Artificial Intelligence (AI)��53

Event Triggers���53

Graphical Rendering���53

Sound Rendering��54

Table of Contents

vii

Physics���54

State Management���54

Implementing the Architecture of the Engine��58

Creating the Project��58

Creating the State Classes���59

Creating the Scaler and Window Management��62

Event System��71

Summary���74

Chapter 5: ��Asset Pipeline��75

MonoGame Asset Pipeline���75

ContentManager Class���76

MonoGame Pipeline Tool��78

Integrate the Asset Pipeline into the Engine��79

BaseGameState��79

MainGame��81

Add a Player Sprite to the Game��82

Reviewing the New Assets���83

Adding the New Assets to Our Content���85

Game Code Changes��89

Running the Application���91

Summary���93

Chapter 6: ��Input���95

Discussing the Various Input Mechanisms��96

Keyboard State���96

Mouse State���100

Gamepad State���101

Table of Contents

viii

Scrolling Background���103

Creating a Generic Input Manager���111

Shooting Bullets���118

Summary���123

Chapter 7: ��Audio��125

Refactoring the Engine���125

Code Organization��131

Audio��133

Playing a Soundtrack��135

Sound Effects���140

Summary���145

Chapter 8: ��Particles���147

Anatomy of a Particle���149

Learning with an Online Particle Editor���150

Different Shapes of Particle Emitters���152

Adding a Particle System to Our Game��153

Particle���154

EmitterParticleState���159

IEmitterType��163

ConeEmitterType��164

Emitter��166

Adding a Missile and Smoke Trail to Our Game���172

Creating a Dev Game State to Play With���172

Adding the Missile Game Object to Our Game��184

Summary���189

Table of Contents

ix

Chapter 9: ��Collision Detection���191

Techniques���193

AABB (Axis Aligned Bounding Box)���195

OBB (Oriented Bounding Box)���196

Spheres��198

Uniform Grids���199

Quadtrees���200

Other Techniques��203

Adding Enemies to Our Game��203

Rotating Our Chopper���206

Spinning Blades��208

Making the Choppers Move��209

Adding an Explosion Particle Engine��216

Adding Collision Detection���219

Bounding Boxes��220

AABB Collision Detection��229

Summary���234

Chapter 10: ��Animations and Text���237

A Bit of Refactoring��238

Animations���242

Sprite Sheets��242

Texture Atlas���244

Animation Downsides���245

State Machines���246

Animation Engine���248

Animating Our Fighter Plane��255

Table of Contents

x

Text��262

Fonts���262

Adding Fonts to the Content Pipeline���263

Fonts As Game Objects���264

Tracking Lives���266

Game Over��267

Summary���270

Chapter 11: ��Level Design���271

Level Editors��272

What Is a Level?���273

Level Events���275

Level Readers, Levels, and Our Gameplay State��277

Adding Turrets��286

Game Art and Origins��287

Turret Bullets��299

Collision Detection��306

Cleaning Up��311

Adding Text���311

Reviewing Our Level Design��312

Improving the Gameplay��313

Summary���315

�Index��317

Table of Contents

xi

About the Authors

Jarred Capellman has been professionally

developing software for over 14 years and is

Director of Engineering at SparkCognition

in Austin, Texas. He started making QBasic

text–based games when he was 9 years old. He

learned C++ a few years later before studying

OpenGL with the eventual goal of entering

the gaming industry. Though his goal of

professionally developing games didn’t come

to fruition, he continued deep diving into

frameworks such as MonoGame, Vulkan, and

DirectX as an important part of his free time.

When not programming, he enjoys writing music and is working on his DSc

in Cybersecurity, focusing on applying machine learning to security threats. 

Louis Salin has been a developer for more

than 15 years in a wide variety of fields,

developing on Windows in the early days in

C, C++, and eventually C# before working as

a developer on Linux-based web applications

using different scripting languages, such as

Ruby and Python. His early love for coding

comes from all the time he spent as a kid

copying video games written in Basic from

books borrowed from the library. He wrote

his first game in high school and took many

classes in computer graphics.  

xiii

About the Technical Reviewer

Simon Jackson is a long-time software

engineer and architect with many years

of Unity game development experience,

as well as an author of several Unity game

development titles. He loves to both create

Unity projects and lend a hand to help educate

others, whether it’s via a blog, vlog, user group,

or major speaking event. 

His primary focus at the moment is with

the XRTK (Mixed Reality Toolkit) project;

this is aimed at building a cross-platform

Mixed Reality framework to enable both VR and AR developers to build

efficient solutions in Unity and then build/distribute them to as many

platforms as possible.

xv

Acknowledgments

There were two big drivers for bringing me to focus my career on

programming. The first being my father who handed me a QBasic book

when I was 9 years old. He supported my passion for programming

throughout my childhood, buying books and updated versions of Visual

Basic and Visual C++ every release. The other was John Carmack. When I

first played Wolfenstein 3D in 1992, I was mesmerized at how immersive

the game was. A few years later seeing John Carmack on the cover of

the Wired magazine, reading how he and John Romero had created and

transformed the first-person-shooter genre, I knew I wanted to achieve

that level of impact in my career.

—Jarred Capellman

Many events in my life brought me to this point, where I get to thank

the people who have helped me and believed in me. My father bought me

my first computer and enrolled me in a Basic class in sixth grade, where I

learned how to draw lines and circles on the screen.

Years later, Richard Egli, my computer graphics professor in college,

brought me to my first SIGGRAPH conference where I learned how deep

the rabbit hole goes. Thank you for believing in me.

Finally, I’d like to thank Jarred, my coauthor, for giving me a chance to

help him write this very book.

—Louis Salin

xvii

Introduction

Building video games has an undeniable appeal in the imagination of

many people coming from various backgrounds. Many children want

to be game designers when they grow up and many programmers have

learned the art of writing code thinking that they would, one day, create

their own game.

Creating a video game is both an expressive art form and a series

of logical challenges that must be solved. A game programmer needs

to be creative while materializing the content of their imagination on a

computer monitor, and at the same time, they must constantly solve the

many physical constraints placed upon them as they shape their game. For

those of us that enjoy solving problems and have a penchant for art, this is

a dream field, whether as a hobby or, professionally, as a full-time job.

There has never been a better time for regular people than today to

write video games! While hobbyists around the world have built games

since the 1970s, the amount of deep technical knowledge required has

diminished and the barrier of entry has dropped much lower in the

last few years. Game tooling and game engines now abstract away the

complexities of getting something drawn on a screen, while computers

have gotten so powerful that programmers do not have to be so precise

anymore in the way they handle memory management and the game

performance. Furthermore, getting a video game published on gaming

consoles and computers has become much more accessible today to

anyone with the perseverance to bring their game to completion, as can be

seen with the sheer number of indie games found on the market.

Software developers today have a wide array of technologies to choose

from when building their game. One of these choices is MonoGame, a

framework for creating powerful cross-platform games.

xviii

In this book, we aim to take experienced C# programmers through

a journey as we explain game development basics and build a small

two-dimensional vertical shooter video game from scratch, using

MonoGame as our framework. By the end of this book, our readers will

not only have built a reusable game engine that they will be able to use

in their future games, but they will also have gained valuable knowledge

to give them a leg up in their future projects, whatever framework or

engine they decide to use.

Introduction

1© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_1

CHAPTER 1

Introduction
Chances are by reading this opening line you are at the very least intrigued

to start learning about developing a game from scratch. This book was

written to take you from this thought to fruition utilizing the MonoGame

Framework. We will start by providing you, the reader, a strong foundation

in the MonoGame architecture and continuing through with sprites,

sound, and collision detection before wrapping up with separation of

concerns preparing you for future developments.

Unlike other books on game development, this book will evolve

with each chapter building on the last with a project-based approach as

opposed to snippets of code here and there. For this book we will start

from scratch on a vertical shooter akin to those of the late 1980s and early

1990s. The vertical shooter game type is a great starting point for aspiring

game developers as it contains all the elements found in modern games:

•	 Multilayered scrolling backgrounds

•	 Collision detection of projectiles and enemies

•	 Computer-controlled enemies

•	 Sprites

•	 Player input

•	 Event-based sound effects

•	 Level structure

https://doi.org/10.1007/978-1-4842-6309-9_1#DOI

2

In addition, this book will dive into proper engine design and game

tooling that are arguably overlooked in many game development books.

In this chapter, you will learn about

•	 MonoGame at a high level

•	 Difference between MonoGame and game engines

•	 Game types suited to MonoGame

•	 What to expect from the book and previews of the

chapters to come

�Who This Book Is For?
This book is targeting the aspiring game developer who wants to make

a 2D game. Royalty-free game assets for sound, music, textures, and

sprites will be provided (all created by yours truly), thus allowing the

book to focus on the programming and architecture components of game

development without worrying about cranking out game assets.

�What This Book Is Not
While we will review game types as it relates to what pairs well with

MonoGame, this book will not go over game design principles, asset

creation, or the game development life cycle. There are numerous

resources available including entire books devoted to these individual

components and are outside the scope of this book.

Chapter 1 Introduction

3

�Reader Assumptions
While no game development experience is required, there is an

expectation that you are a seasoned C# programmer. While MonoGame

is easy to get started with due to the architecture and the simple design,

the framework is written in C#. In addition, the project we will be

iterating on throughout this book utilizes many core aspects of the C#

programming language such as inheritance and reflection. If you find

yourself reviewing the accompanied source code and are struggling, I

suggest picking up C# Programming for Absolute Beginners also from

Apress to close the gaps.

From a development machine standpoint, this book will review how

to configure a MonoGame development environment on both macOS and

Windows with Visual Studio. Linux can also be used as a development

environment with Visual Studio Code; however, Windows will be the

preferred environment for the scope of this book due to the tooling Visual

Studio for Windows offers.

With all of the assets provided with this book in formats MonoGame’s

pipeline can natively read (more on this feature in Chapter 5), no other

tools are required. Experience with tools such as Photoshop, 3ds Max, and

Audition will come in handy for your future development efforts even if it

is simply a beginner skill level.

At the time of this writing, version 3.8 of MonoGame is the latest

production version available, which was released on August 10, 2020. This

version will be used for all code samples and snippets throughout this

book. Versions 3.8.x or later may be available by the time you are reading

this; however, based on the road map, samples should continue to work

without issue.

Chapter 1 Introduction

4

�What Is MonoGame
MonoGame at the highest level is a C# Framework that provides

the developer a canvas to quickly create the game of their dreams.

MonoGame is open source (Microsoft Public License) and royalty-

free (over 1000 games have been published to various stores). While

MonoGame does offer 3D support, the community by and large uses its

powerful 2D support almost exclusively, and that will be the focus in this

book (for 3D games the use of Unity or Unreal Engine is recommended).

MonoGame’s source code is available on GitHub (https://github.com/

MonoGame/MonoGame).

Like many frameworks and engines available today, MonoGame like

C# is cross-platform. MonoGame currently runs on

•	 Windows Desktop (7/8.x/10)

•	 Universal Windows Platform

•	 MacOS

•	 Linux

•	 PlayStation 4

•	 Xbox One

•	 Nintendo Switch

•	 Android (4.2 or later)

•	 iOS

For PlayStation 4, Xbox One, and Nintendo Switch, it should be noted

that additional developer agreements are required before publishing to the

respective stores.

Given MonoGame’s underlying usage of C#, as new platforms become

supported by C#, MonoGame should not be far behind.

Chapter 1 Introduction

https://github.com/MonoGame/MonoGame
https://github.com/MonoGame/MonoGame

5

Throughout the book, we will review any platform-specific

considerations such as resolution and input methods (touch vs. keyboard,

for instance). Fortunately, designing around a cross-platform game does

not require much upfront effort with MonoGame.

MonoGame at a high level provides

•	 The Main Game Loop

•	 Handling Updates

•	 Rendering Method

•	 Content Manager

•	 Content Pipeline

•	 Support for OpenGL and DirectX

One of the best features of MonoGame’s design is this simplicity, unlike

other frameworks that have an extremely difficult learning curve to even

get the first pixel rendered. Over the course of this book, we will extend this

structure to support more complex scenarios and provide a rich expandable

engine to not only build on with each chapter but also provide a framework to

build your own game. In Chapter 3, we will deep dive into this architecture.

Seasoned developers at this point may be wondering what the

relationship between MonoGame and Microsoft’s XNA framework is. At a

high level, there isn’t a direct relationship. The underlying structure bulleted

earlier is retained and the use of C# as the language is where the correlations

end. MonoGame grew out of a desire from Jose Antonio Leal de Farias in

2009 to create XNA Touch. Similar to the effort on Mono Touch to bring

Mono to iOS, the goal was to bring XNA to iOS. By that point, XNA was

stagnating with the release of 4.0 in 2010 (which would be the last version

released) and an official statement ending support in 2013. From there XNA

Touch was renamed to MonoGame with support coming to Android, Mac,

and Linux shortly thereafter. MonoGame eventually made it to GitHub and

at the time of this writing has over 2200 forks with 267 contributors.

Chapter 1 Introduction

6

�MonoGame Compared to Engines
MonoGame as mentioned is a pure framework. From the beginning of

development, the goals of MonoGame were to create a flexible, simple,

but powerful framework. The main design reason for this was to allow

MonoGame to be used in a wide range of genres and game types as

opposed to an engine that more often than not is tailored to a specific

genre (generally the genre that the game driving the engine’s development

was such as the Quake series).

An engine conversely like that of Unity, Unreal Engine, or id Tech,

to name a few, provides an end-to-end engine and editor with all of the

various components that make up a game engine such as rendering,

physics, level editors, and content pipelines with integrations into

modeling programs. Depending on the level of deviation from the

engine’s core, there may be very little for an implementer to have to

extend on their own. The engine approach allows a team of artists and

designers a canvas ready to start implementing the game as opposed

to waiting for the programmers to create the engine from scratch or

build on top of a framework such as MonoGame. Learning curves and

licensing fees of the aforementioned engines also should be taken into

consideration.

If you’re reading this book, chances are you wish to dive a bit lower

level with a quick learning curve – this book should achieve that.

�Game Types Best Suited for MonoGame
As mentioned previously, MonoGame is best suited for 2D games. With

the revival of classics from the 1980s and 1990s in addition to a return

to simple but fun games like Castle Crashers, this isn’t a hindrance, if

anything a benefit as the framework is set up for these game types.

Chapter 1 Introduction

7

MonoGame can be used in a wide range of game types; the following

are a few examples of types that work best. In addition, for each game

type, the pros and cons in comparison to the other types will be reviewed.

When planning a game, weighing all of the pros/cons of a particular type

should be a major part of your development efforts. For your first game

after completion of this book, choosing an easier to implement game type

is strongly suggested.

�Vertical Shooters
Popularized by Capcom’s 1942 and enhanced into the 1990s as graphics

and gameplay advancements were made, vertical shooters can range

from more science-fiction ala Major Stryker or more grounded like that

of Raptor. As mentioned earlier in this chapter, for this book we will be

building a vertical shooter from the ground up; a screenshot of the game

from Chapter 4 is depicted in Figure 1-1.

Figure 1-1.  Our 2D game from Chapter 4

Chapter 1 Introduction

8

There are some advantages and disadvantages to developing vertical

shooters:

Pros

•	 Easy to dive into.

•	 Controls are basic.

•	 Graphics are easy to implement.

•	 Level generation and tooling is simple.

•	 AI is easy to implement.

Cons

•	 Tired genre

•	 Need to generate some unique gameplay to

differentiate from Raptor and other well-known

vertical shooters.

�Horizontal Shooters
Made popular by games like Einhander in the 1990s, similar to a vertical

shooter, but affords more variety in the gameplay. A great MonoGame

example of this is Pumpkin Games’ Paladin in Figure 1-2.

Chapter 1 Introduction

9

There are some advantages and disadvantages to developing

horizontal shooters:

Pros

•	 Easy to dive into.

•	 Controls are basic.

•	 Level generation and tooling is simple.

•	 AI is easy to implement.

Cons

•	 Graphics fidelity in this genre is required to be high due

to competition.

•	 Tired genre

•	 Need to generate some unique gameplay to

differentiate from other games.

Figure 1-2.  Pumpkin Games’ Paladin

Chapter 1 Introduction

10

�Side Scrollers
Side scrollers are a genre that took off in the late 1980s and continues

to this day, offering a wide range of adventure and action games from

the horizontal perspective. MonoGame’s native support for sprites and

hardware-accelerated 2D graphics have made this an easy choice to

develop for.

Krome Studios’ Tasmanian Tiger 4 is a great example of fluid

animation and fast action using MonoGame as shown in Figure 1-3.

There are some advantages and disadvantages to developing side

scrollers:

Pros

•	 Diverse Gameplay is achievable.

Cons

•	 Graphics can be tricky to implement depending on the

gameplay.

Figure 1-3.  Krome Studios’ Tasmanian Tiger 4

Chapter 1 Introduction

11

•	 AI can also be tricky depending on the gameplay.

•	 Tooling can also be cumbersome to develop for.

�Role Playing
Made popular by the Final Fantasy series on Super Nintendo, the 2D

isometric view has been used ever since for 2D role-playing games. A

popular example of this game type with MonoGame is ConcernedApe’s

Stardew Valley as shown in Figure 1-4.

Pros

•	 Diverse Gameplay is achievable.

•	 AI can be easy to implement (depending on the level of

NPC interactions).

Figure 1-4.  ConcernedApe's Stardew Valley

Chapter 1 Introduction

12

Cons

•	 Graphics handling of the tiles and sprites can be

cumbersome.

•	 Tooling can also be cumbersome to develop for.

�Puzzle
Puzzle games especially on mobile given the popularity of Angry Birds and

Bejeweled among others in recent years coupled with MonoGame’s ease

of use are a perfect fit. An example of this game type using MonoGame is

Endi Milojkoski’s Raining Blobs as shown in Figure 1-5.

Pros

•	 Diverse Gameplay is achievable.

•	 Graphics can be easy to implement.

Figure 1-5.  Endi Milojkoski's Raining Blobs

Chapter 1 Introduction

13

•	 AI can be easy to implement.

•	 Tooling can also be easy to implement.

Cons

•	 Achieving a unique and/or fun gameplay in the

crowded market can be extremely challenging.

�Strategy
Strategy games commonly range between turn-based, real-time, and

strategy/role-playing game hybrids. While much more complex to design

and implement, they can provide a unique experience for gamers. Reason

Generator Inc’s Wayward Terran Frontier is a good example of utilizing

MonoGame to its fullest in Figure 1-6.

Figure 1-6.  Reason Generator Inc's Wayward Terran Frontier

Chapter 1 Introduction

14

Pros

•	 Diverse Gameplay is achievable.

Cons

•	 Graphics can be tricky to implement depending on the

gameplay.

•	 AI can also be tricky depending on the gameplay.

•	 Tooling can also be cumbersome to develop for.

�Organization of This Book
As stated at the start of this chapter, this book breaks down each of the

topics into manageable and isolated chapters. The following is an overview

of the book and the topics we will cover:

Chapter 2 details how to get your development environment setup

from start to finish for the remainder of the book. By the end of the chapter,

you will be able to run a blank MonoGame project. Both macOS and

Windows setup will be covered in detail. Linux will be discussed, but not

recommended going forward for the rest of the book.

Chapter 3 deep dives into the MonoGame architecture including going

into detail about 2D graphics, the game timer, and input. This chapter should

not be overlooked even if you have done game development in the past as it

will offer a deep insight into how MonoGame’s architecture is set up.

Chapter 4 starts the deep dive into creating an architecture that we will

be building off of for the remainder of the book. As with Chapter 3, this

chapter should not be skipped as the objects, managers, and Game class

changes will be described in detail.

Chapter 1 Introduction

15

Chapter 5 goes into detail of how the Asset pipeline works in

MonoGame. In addition, integration with the ContentManager into the

Game States will also be detailed. At the end of the chapter, we will render

our first sprite.

Chapter 6 covers the handling of input with both a keyboard and

mouse. In addition, platform-specific considerations will be reviewed to

handle gamepad and touch screen input.

Chapter 7 goes into how to add audio to our architecture and add

audio triggers to our event system. In addition, supporting background

music layers will also be discussed.

Chapter 8 deep dives into how to integrate particles into our

architecture to handle the bullet fire from both our player object and setup

for future enemy objects.

Chapter 9 reviews various methods of collision detection used in

games. For our project, we will use box collision and integrate it into our

architecture to handle not only player object collisions but also projectile

collisions.

Chapter 10 adds animations into our architecture and reviews

approaches used throughout the industry. At the end of the chapter,

animations of objects are added to the game.

Chapter 11 reviews the importance of level design and goes into detail

of how to add level loading to our game engine.

�Code Samples
Code samples starting with Chapter 3 will be referenced throughout

each section. Outside of the code samples, there is also an Assets archive

that contains all of the music, sound effects, sprites, and graphics used

throughout the book.

Chapter 1 Introduction

16

�Summary
In this chapter, you learned what MonoGame is exactly and the differences

between MonoGame and game engines. In addition, you learned about

game types that lend themselves to MonoGame and the book’s chapter

structure.

Up next is setting up your development environment to begin your

MonoGame development.

Chapter 1 Introduction

17© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_2

CHAPTER 2

Configuring the
Dev Environment
Now that the initial introduction to MonoGame is out of the way, we

are ready to begin coding right? Not quite – we need to set up our

development environment first in Visual Studio. Thankfully, over the years,

this has become a much more streamlined process and will not take much

time. In addition, configuring Linux for MonoGame development will be

reviewed; however, as mentioned in Chapter 1, Windows will be used for

all screenshots and included sample code.

Like most developments, a single tool can be used for development,

but there are additional tools, plug-ins, and extensions to improve

productivity. To help on your journey at the end of this chapter, I

will review several tools that help me with both game and regular

development.

In this chapter, you will

•	 Learn how to set up your development environment

(Windows, macOS, and Linux)

•	 Review and suggest a few additional tools

•	 Review and suggest Visual Studio extensions

https://doi.org/10.1007/978-1-4842-6309-9_2#DOI

18

�Development Environment Configuration
�Platform Agnostic
Regardless of the platform being used, all of the packages are found on

www.monogame.net/downloads/. As mentioned in Chapter 1, at the time of

this writing, version 3.8 is used for all of the coding examples. If by the time

you are reading this there is a later version and run into issues running the

samples, please install 3.8.0.1641.

You can download MonoGame 3.8 here: https://github.com/

MonoGame/MonoGame/releases/tag/v3.8.

�Set Up Your Windows Development Environment
The first requirement on Windows is to install Visual Studio. For the

samples in this book, Visual Studio 2019 Professional Edition (Version

16.7.2) is utilized. The community edition is freely available on https://

visualstudio.microsoft.com/. When installing, be sure to install the

.NET desktop development as shown in Figure 2-1. If you are planning

on targeting UWP or mobile targets, also install the Universal Windows

Platform development and Mobile development with .NET, respectively.

Chapter 2 Configuring the Dev Environment

http://www.monogame.net/downloads/
https://github.com/MonoGame/MonoGame/releases/tag/v3.8
https://github.com/MonoGame/MonoGame/releases/tag/v3.8
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

19

I would strongly suggest installing Visual Studio on a SSD or NVMe

drive (if available) as running Visual Studio especially the MonoGame

compiling process is significantly slower on a traditional mechanical disk.

In addition, make sure to have at least 8gb of RAM available.

After Visual Studio 2019 has been installed, on the downloads page

mentioned earlier, click MonoGame 3.8 for Visual Studio from the

previously referenced GitHub link. After downloading the MonoGame

template installer for MonoGame (specifically MonoGame.Templates.

CSharp.3.8.0.1641.vsix was used for the following screenshots in Figures 2-2

through 2-5), there are a few screens to get through. These are detailed in

the following.

Figure 2-1.  Visual Studio installer

Chapter 2 Configuring the Dev Environment

20

Figure 2-3.  License Agreement

Figure 2-2.  MonoGame for Windows template installation

Chapter 2 Configuring the Dev Environment

21

A major change in 3.8 compared to previous releases was the switch

from a traditional installer in favor of NuGet packages and a simple vsix

installation for the templates.

You only need to select Visual Studio 2017 even when using Visual

Studio 2019 (the specific support is targeted in the next release).

Figure 2-5.  MonoGame templates installed

Figure 2-4.  Installing the project templates

Chapter 2 Configuring the Dev Environment

22

Once completed as shown in Figure 2-5, your Windows development is

almost ready to go.

If the MonoGame project types do not show, please ensure you

followed the preceding steps exactly.

�Set Up Your macOS Development Environment
The first requirement on macOS is to install Visual Studio for Mac. The

samples used in this book have been tested against Visual Studio 2019 for

mac (version 8.7.4). The community edition is freely available on https://

visualstudio.microsoft.com/.

After Visual Studio for mac has been installed, on the downloads

page mentioned earlier, click the download prefixed with MonoDevelop.

MonoGame_IDE_VisualStudioForMac. After downloading the installer,

there are a few screens to get through. These are detailed in the following.

The first step is to open Visual Studio 2019 for mac as shown in Figure 2-6.

Figure 2-6.  Initial Visual Studio 2019 for mac screen

Chapter 2 Configuring the Dev Environment

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

23

From this screen, browse to the top menu and select Extensions as

shown in Figure 2-7.

After selecting Extensions, the Extension Manager will be shown as

depicted in Figure 2-8.

Figure 2-7.  Visual Studio 2019 for menu showing the Extensions
selection

Chapter 2 Configuring the Dev Environment

24

Click Install from file…, which will open the file selection window like

that shown in Figure 2-9.

Figure 2-8.  Visual Studio 2019 for mac showing the Extension
Manager

Chapter 2 Configuring the Dev Environment

25

From this window, browse for where you had downloaded the mpack

file in the first step. Upon clicking Open after selection, a confirmation

window will appear as shown in Figure 2-10.

Figure 2-9.  Visual Studio 2019 for mac Extension file selection
window

Chapter 2 Configuring the Dev Environment

26

After a few moments, the installation will complete. Click the Close

button to close the Extension Manager. Upon creating a new project, you

will now see MonoGame templates as shown in Figure 2-11.

Figure 2-10.  Visual Studio 2019 for mac MonoGame Extension
confirmation

Chapter 2 Configuring the Dev Environment

27

Congratulations, your macOS development machine is now configured

for use with MonoGame!

�Set Up Your Linux Development Environment
For Linux development, Visual Studio Code will need to be used. Visual

Studio Code is an open source editor that works across Windows, macOS,

and Linux.

The first step is to download Visual Studio Code from https://

code.visualstudio.com/. At the time of this writing, 1.48.0 is the latest

production build and is the version that will be used for the rest of this

book. In addition, Ubuntu 18.04 LTS will be used as the distribution. Other

Figure 2-11.  Visual Studio 2019 for mac showing the MonoGame
templates

Chapter 2 Configuring the Dev Environment

https://code.visualstudio.com/
https://code.visualstudio.com/

28

popular distributions such as Debian and openSUSE should be similar if

not identical, in addition to newer versions of Ubuntu.

Starting with MonoGame 3.8 and the migration to using .NET Core

as the foundation as opposed to Mono, .NET Core 3.1 is required to be

installed as it is likely not installed on your Linux distribution by default.

The first step is to add the repository to your distribution like so:

wget https://packages.microsoft.com/config/ubuntu/20.04/

packages-microsoft-prod.deb -O /tmp/packages-microsoft-prod.deb

sudo dpkg -i /tmp/packages-microsoft-prod.deb

sudo apt update

After the repository has been added, the .NET Core SDK can be

installed:

sudo apt-get install -y apt-transport-https

sudo apt-get install -y dotnet-sdk-3.1

You can verify .NET Core’s installation by executing a dotnet --info call

on the terminal.

After .NET Core 3.1 is installed, calling the following will install the

MonoGame templates:

dotnet new --install MonoGame.Templates.CSharp

After installation, your environment will be set up to develop on Linux.

�Additional Tooling
Just having Visual Studio and MonoGame will be enough to get you started

on your path toward creating a game and to follow along with this book;

however, there are several tools and Visual Studio extensions to accelerate

and enhance the development process. The following are some of the tools

I use daily for both my general and game development.

Chapter 2 Configuring the Dev Environment

29

�Tools
�Source Control Tools

GitHub (Windows, macOS, Linux)

There are several free tools I strongly suggest installing in addition to

Visual Studio and MonoGame. One of the first things I would suggest

however is creating a GitHub account (https://github.com). Since the

Microsoft purchase of GitHub, private repositories are free and will provide

you, as an iterative developer, source control for your work. In addition,

recent additions to provide free CI/CD (continuous integration and

continuous deployment) make the platform even more attractive for open

source projects.

TortoiseGit (Windows Only)

While Visual Studio offers built-in Git support, I prefer the open source

project TortoiseGit (https://tortoisegit.org/). The side-by-side diff

tools, merge conflict resolution, and Windows Explorer integration I find

do provide a better source control experience in addition to giving me an

additional review process away from Visual Studio prior to a pull request

or commit. See Figure 2-12.

Chapter 2 Configuring the Dev Environment

https://github.com
https://tortoisegit.org/

30

Figure 2-12.  TortoiseGit Windows Explorer Context Menu

Chapter 2 Configuring the Dev Environment

31

�Graphics Tools

Blender (Windows, macOS, Linux)

While there are several 3D modeling applications available, Blender

(www.blender.org/), version 2.8 at the time of this writing, is an excellent

free 3D modeling and animation package. In addition, Blender supports

many file formats for both import and export, allowing you or an artist to

create assets for your project. See Figure 2-13.

Gimp (Windows, macOS, Linux)

Gimp (www.gimp.org/), version 2.10.12 at the time of this writing, offers an

easy-to-use open source image editor. In addition, being cross-platform

Gimp supports all of the major file formats for both import and export. See

Figure 2-14.

Figure 2-13.  Blender 2.8

Chapter 2 Configuring the Dev Environment

https://www.blender.org/
https://www.gimp.org/

32

�Visual Studio Extensions
The following are a few highly recommended free Visual Studio extensions

for you to enhance your Visual Studio/development experience.

�Live Share (2019 and Code)

In a multiple-person development team, getting live help or a live code

review can be challenging. Fortunately, a free extension called Live

Share (https://marketplace.visualstudio.com/items?itemName=MS-

vsliveshare.vsls-vs) offers this functionality and is highly beneficial for

distributed teams where in-person meetups are difficult or impossible. See

Figure 2-15.

Figure 2-14.  Gimp 2.10.12

Chapter 2 Configuring the Dev Environment

https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsls-vs
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsls-vs

33

�Visual Studio Spell Checker (2019)

On a large project, you will often have an extensive amount of strings,

variables, and comments. More than likely, you will also have spelling

errors scattered throughout your code. As a result, I strongly suggest

installing the Visual Studio Spell Checker extension (https://

marketplace.visualstudio.com/items?itemName=EWoodruff.VisualStu

dioSpellCheckerVS2017andLater&ssr=false#overview).

�Visual Studio IntelliCode (2019 and Code)

With the advent of machine learning becoming an integral part of the

technology industry, Microsoft has provided a machine learning code

analysis extension that builds a custom model based on your code. When

working with a distributed team or just as an additional consistency

Figure 2-15.  Visual Studio Live Share

Chapter 2 Configuring the Dev Environment

https://marketplace.visualstudio.com/items?itemName=EWoodruff.VisualStudioSpellCheckerVS2017andLater&ssr=false#overview
https://marketplace.visualstudio.com/items?itemName=EWoodruff.VisualStudioSpellCheckerVS2017andLater&ssr=false#overview
https://marketplace.visualstudio.com/items?itemName=EWoodruff.VisualStudioSpellCheckerVS2017andLater&ssr=false#overview

34

check, I strongly suggest installing this extension (https://marketplace.

visualstudio.com/items?itemName=VisualStudioExptTeam.

VSIntelliCode) and creating a model (just a single click). See Figure 2-16.

�Summary
In this chapter, you learned how to configure your development for

MonoGame development. In addition, we reviewed additional tools and

Visual Studio extensions that can help your future developments.

Up next is deep diving into the MonoGame architecture.

Figure 2-16.  Visual Studio IntelliCode

Chapter 2 Configuring the Dev Environment

https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.VSIntelliCode
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.VSIntelliCode
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.VSIntelliCode

35© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_3

CHAPTER 3

MonoGame
Architecture
With the introduction of MonoGame and your development environment

configuration behind us, we are now ready to deep dive into MonoGame’s

architecture. Understanding the architecture in detail will help you to

understand not only future chapters but enable you to extend MonoGame

as you develop your skills.

In this chapter, you will

•	 Learn about the MonoGame Pipeline app

•	 Learn about MonoGame’s Game Class

•	 Render your first pixels in MonoGame

�MonoGame Architecture
�Pipeline App
When thinking about a game, some of the biggest components are the

assets such as textures, music, sprites, and sound effects. MonoGame

makes this extremely easy, fortunately. At the heart of MonoGame’s asset

pipeline is the MonoGame Pipeline app, a tool that takes game assets like

texture images, sound files, or text fonts and transforms them into binary

https://doi.org/10.1007/978-1-4842-6309-9_3#DOI

36

files that can be consumed easily by the game. In addition, the asset

pipeline enables the game programmer to easily reference their game

assets in the code.

For those with XNA experience, building and compiling game assets

was part of the build process and caused extremely long build times for

almost every project. Thankfully, MonoGame allows you to use the asset

pipeline app to compile the assets into a MGCB (MonoGame Content

Binary) file independently from compiling the game code in Visual Studio.

That way, any code change does not force your assets to be rebuilt as well.

Figure 3-1 illustrates the MonoGame Pipeline app.

Figure 3-1.  MonoGame Pipeline app

Chapter 3 MonoGame Architecture

37

The assets that the pipeline tool supports out of the box are

•	 Effects (or shaders), which are small programs that

are meant to run on your graphics card and serve to

change the color of existing pixels on the screen

•	 3D models in the .fbx, .X, or Open Asset Import Library

formats

•	 Fonts, to allow the game developer to draw text on the

screen

•	 Video files in the H.264 or .wmv formats

•	 Audio files in the .mp3, .ogg, .wav, or .wma formats

•	 Texture files

•	 XML files

When adding assets to the pipeline tool, an importer and processor

must be selected to inform MonoGame how to process the asset. Those

processors and importers are classes within the MonoGame code base

that know how to read the contents of the file, how to serialize that

content to a binary format, and how to transform that content into a data

structure that can be used within a game’s code base. In Figure 3-1,

an image in the PNG format is being added to the asset pipeline and

set up to be imported using MonoGame’s default Texture Importer, and

processed using MonoGame’s default Texture processor. Doing things

this way allows developers to later access the texture in the code by using

something that will look like this:

contentManager.Load<Texture2D>("Stone");

For asset types not supported by the asset pipeline, MonoGame allows

developers to create their own, custom importers and processors.

Chapter 3 MonoGame Architecture

38

Generally, for all of your noncode assets, you will manually add the

files in this application and rebuild your assets. In the case of textures

as shown in Figure 3-1, the application will also compress, resize, and

generate mipmaps for you, which are a collection of images at different

resolutions. Chapter 5 will go into how to use this application in more

detail for our purposes.

�Game Class
At the heart of MonoGame’s Framework is the Game class, which is the

entry point into a game. Its main utility is to set up the game’s window,

with a graphics device used to draw to the screen, and to set up the

important game loop. The game loop is at the heart of all video games

in the wild. It is essentially an infinite loop that continuously calls the

game code responsible for updating the state of the game and the code

that draws things on the screen via methods that are called Update()

and Draw().

The game loop must be fast and efficient. Just like a cartoon, where

animation frames must be displayed at 24 frames per second to achieve

the illusion of movement, a video game must appear smooth and react

quickly to the player’s commands. Most games try to achieve 60 frames

per seconds, which means each call to both Update() and Draw() within

one iteration of the game loop must take at most 1/60th of a second. When

things are faster than this, MonoGame will pause to ensure that it took

exactly 1/60th of a second to run through the loop and ensure a consistent

output to the screen. When things are slower than this, MonoGame will

try to skip the Draw() method a few times to allow the updates to catch up,

which can cause the game to stutter a little. It could also drop to a lower

frame rate automatically.

To create a game, we must create our own game class, which will

inherit from MonoGame’s Game class.

Chapter 3 MonoGame Architecture

39

The Game class provides an extremely simple interface to the

MonoGame Framework via four main functions as shown in Figure 3-2.

The Initialize() method provides the entry point to initializing

background threads, the graphics device, and other noncontent-

related managers. The LoadContent() method provides the entry point

for creating the SpriteBatch, the object that we will use to draw our

game objects to the screen. It is also used to load Content from the

aforementioned MGCB file.

As we discussed in our quick game loop introduction earlier, the

Update() and Draw() methods are called successively within the game

loop. Update() provides the entry point for handling game input, physics,

and other non-graphics-related updates on the game timer. On the other

hand, the Draw() method provides the entry point to handle all of the

graphical rendering.

Over the course of this book, we will be adding manager classes to

handle these scenarios in a dynamic and powerful way to create the book’s

game project and allow you to expand for your own creations.

Figure 3-2.  Game class main methods

Chapter 3 MonoGame Architecture

40

�Your First Rendered Pixels
Now that you have a basic understanding of the MonoGame architecture,

it is finally time to create your first MonoGame Project in Visual Studio.

Those who want the pre-setup project can look at the chapter3 folder for

the Visual Studio Solution and Project and skip to the subsection, “Diving

into the Project.”

�Creating the Solution and Project
For this step by step, I will be using Visual Studio 2019 on Windows as

configured in Chapter 2. If you have not either installed and configured

Visual Studio or MonoGame, please return to Chapter 2 and then come

back to this section.

First, launch Visual Studio and you will be presented with the Create a

new project dialog as shown in Figure 3-3. If your settings are configured

to not show the Create a new project dialog on startup, simply click File ➤

New ➤ Project.

Chapter 3 MonoGame Architecture

41

In the Search bar at the top, type “MonoGame”. If Visual Studio

does not return any results, please verify you have properly installed

MonoGame as detailed in Chapter 2. Otherwise, you will see many

different options. MonoGame is a cross-platform library and can be

used to create video games on phones, tablets, on Linux or MacOS, on

Windows, and on consoles, such as the Nintendo Switch, the Xbox, or the

PlayStation. But because some of these options require some platform-

specific code, you must choose the project that satisfies your goals.

We will be building a PC game, so we have two classic options: a

DirectX- or OpenGL-based game. While DirectX will work on Windows

and Xbox, it will not work on Linux or MacOS systems. However, OpenGL

is a graphical library that has been cross-platform for a long time. Select

“MonoGame Cross-Platform Desktop Application (OpenGL)” and click

Next, as shown in Figure 3-4.

Figure 3-3.  Visual Studio 2019 Create a new project dialog

Chapter 3 MonoGame Architecture

42

On the next dialog, feel free to give the project name any name you

wish; as this is Chapter 3, I have given it the name chapter3 as shown in

Figure 3-5.

Figure 3-4.  Visual Studio 2019 Create a new project dialog with the
MonoGame Cross-Platform Desktop Application (OpenGL) template
selected

Chapter 3 MonoGame Architecture

43

After entering your project name, click Create. You will then be

presented with a blank canvas for MonoGame.

�Diving into the Project
Now that we have the project and solution created, let us review all of the

files that come in the basic MonoGame template. The exact files may vary

based on the platform and future revision, but I have personally not seen

much variation between versions over the years.

Let us begin by looking at the Solution Explorer (Ctrl+W,S on Windows

if your configuration is defaulted to have it closed). You should see

something very similar to Figure 3-6.

Figure 3-5.  Visual Studio 2019 Configure your new project dialog

Chapter 3 MonoGame Architecture

44

Starting at the top of the Solution File list:

•	 Content.mgcb: The file that contains all of your assets,

such as textures, music, and sound effects, among

others. In the template and for the sake of this chapter,

it will remain empty.

•	 Game1.cs: A default extended Game class

implementation that will update later in this chapter.

•	 Icon.ico: Icon for the project (defaulted to the

MonoGame Icon)

•	 Program.cs: Contains the Program’s Main method and

call to the Game1 class

Let’s update the project and rename the Game1.cs file. Right-click the

file and select the “Rename” option. Rename the file to MainGame.cs.

Then, build and run the project; you should see a window popup like in

Figure 3-7.

Figure 3-6.  Visual Studio 2019 Solution Explorer MonoGame for
Desktop Template

Chapter 3 MonoGame Architecture

45

�Diving into MainGame.cs
Open the MainGame.cs file. Starting at the top of the file, you may notice

the usage of Microsoft.XNA namespaces vs. MonoGame:

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input;

The reasoning for keeping the old XNA name in place is that the

abundance of documentation, samples, and existing code that would need

to be updated would be a huge undertaking for an open source project.

It had been discussed possibly changing it for a future major version, but

nothing at the time of this writing has been put in place.

Figure 3-7.  Chapter 3 example

Chapter 3 MonoGame Architecture

46

Next up in the source file is the declaration of two private variables:

GraphicsDeviceManager graphics;

SpriteBatch spriteBatch;

The GraphicsDeviceManager class provides the MonoGame interface

to the graphics card. For those who have done DirectX 12 or Vulkan,

this is akin to enumerating a device and having a single class object to

request commands. In addition, the class also provides device information

exposed in the GraphicsDevice.Adapter property. A graphics device is a

low-level module that is responsible for rendering graphical objects and

sending them to the screen. In the next chapter, we will dive into some of

the other properties of the GraphicsDeviceManager such as requesting the

video resolution, full screen or not, and multisampling.

The SpriteBatch class provides the main interface to the extremely

powerful 2D Rendering Engine provided in the MonoGame Framework.

While the name implies it is only used for sprites, it actually provides a

rendering interface for all 2D rendering.

Next in the file is the constructor call for Game1. Change the name of

the class to MainGame so it will match the name of the file:

public MainGame()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

}

In line 3, the graphics variable is initialized, and on line 4, the Root

Directory is set to Content. Referring back to Figure 3-6, you will notice

the Content.mgcb file resides in the Content subfolder. If you rename this

folder, be sure to update this line. This book and all examples will retain

this name.

Chapter 3 MonoGame Architecture

47

The Initialize method is initially empty and simply calls its base class’s

Initialize method. Let’s take a look at LoadContent:

protected override void LoadContent()

{

 // �Create a new SpriteBatch, which can be used to draw

textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 // �TODO: load your game content here

}

In line 4, the spriteBatch is initialized. Traditionally, this LoadContent

method also gives us with the opportunity to load our assets from the

pipeline tool, which we will do in Chapter 5.

Moving down to the next method, Update:

protected override void Update(GameTime gameTime)

{

 �if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==

ButtonState.Pressed || Keyboard.GetState().IsKeyDown

(Keys.Escape))

 Exit();

 // TODO: Add your update logic here

 base.Update(gameTime);

}

Line 3 in the preceding code block as you probably guessed checks to

see if the Escape button has been hit and, if so, exits the game.

Chapter 3 MonoGame Architecture

48

The TODO comment on line 6 earlier typically gets expanded to

include calls to collision detection, AI, physics, and other non-graphics-

related components in video games. This is where the state of the game

is maintained, where game object coordinates in the game world are

updated, where enemy game objects’ movement speeds are updated

based on some acceleration variable, or where verifying if the player died

takes place. A lot can happen here, but we will make sure to structure our

code so this method doesn’t get overwhelmed with too many details and

responsibilities.

Line 8 calls the Game class’s Update method, which for the scope of

this book we will retain as we will use the Game class for simplicity.

Last but not least is the Draw method:

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 // TODO: Add your drawing code here

 base.Draw(gameTime);

}

The call to the GraphicsDevice.Clear method on line 3 in the preceding

code block clears the screen to CornflowerBlue. Clearing the screen before

rendering new objects is important to avoid previously drawn artifacts

from remaining on the screen and avoiding objects from creating trails

as they move. For most of the book, we will be clearing to Black, but to

demonstrate actual rendering has occurred, the default template clears to

CornflowerBlue.

The TODO comment on line 5 earlier is where we will be calling our

single call to render all of the objects in the next chapter.

Chapter 3 MonoGame Architecture

49

Lastly, the call to base.Draw on line 7 calls the base Draw method of the

Game class, which is important for MonoGame programmers that want to

use Game Components in their code. While this won’t be the case for us in

this book, we recommend leaving the base call in place, just in case.

�Execution Order
A common question I often ask myself when using a new framework,

especially when extending or first deep diving, is in what order should the

methods be called?

Using the project as a reference, here is the order:

	 1.	 Program Class ➤ Creates Game object ➤ Calls Run

on the Game object

	 2.	 MainGame Constructor

	 3.	 MainGame.Initialize

	 4.	 MainGame.LoadContent

	 5.	 Game Loop ➤ (MainGame.Update and then

MainGame.Draw)

	 6.	 MainGame.UnloadContent

	 7.	 MainGame.Finalizer

Knowing this order, receiving null exceptions, content issues, or other

rendering anomalies may be due to doing operations out of order.

Chapter 3 MonoGame Architecture

50

�Summary
In this chapter, you learned about the MonoGame architecture and you

dove into the default template and set up your first project. In addition,

you ran and rendered your first pixels with the MonoGame Framework!

Up next is planning the architecture for the rest of the book with

MonoGame.

Chapter 3 MonoGame Architecture

51© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_4

CHAPTER 4

Planning Your
Game Engine
Building upon the last chapter, in this chapter we will start architecting the

game engine. For each chapter, we will implement another component

until completion. Proper planning and architecting are crucial to creating

a successful engine, game (or any program for that matter). This chapter

will also go over a couple design patterns used in game engines in case you

want to explore other patterns in your own projects.

In this chapter, you will learn

•	 Game engine design patterns

•	 Programming design patterns

•	 State management

•	 MonoGame architecture

�Game Engine Design
Game engines are used everywhere. From simple indie games to AAA

games with multimillion-dollar budgets, any time developers want to

reuse common game code, an engine is created. The most sophisticated

engines are highly complex pieces of code that take teams dozens (or

more) of months and in some cases years to release. The Unreal Engine

https://doi.org/10.1007/978-1-4842-6309-9_4#DOI

52

3 has over two million lines of code for reference. On the other hand,

we could design a very small and simple engine that simply draws game

objects for us and capture player input without doing anything else.

However, properly designing and architecting prior to writing any code is

critical to ensuring its reusability. In this chapter, we will first dive into the

major components of the game engine we will write using the MonoGame

Framework. Figure 4-1 shows the overall architecture of the engine.

�Player Input
Driving many (if not most) of the interaction of your game engine is the

input. Depending on your target platform, this can include everything

from a standard gamepad, keyboard, and mouse combination to touch or

head tracking via a virtual reality headset. In Chapter 6 we will deep dive

into integrating a generic interface to gracefully handle the various inputs

that exist today for games and future proofing as much as possible.

Figure 4-1.  Game engine design architecture

Chapter 4 Planning Your Game Engine

53

�Artificial Intelligence (AI)
Artificial intelligence has been a critical component of games for decades.

One of the earliest examples being Space Invaders in the late 1970s.

While primitive by today’s standards, Space Invaders offered the player

a challenge against the computer-controlled players with two different

enemy types. In today’s games, pathfinding and decision trees drive most

games.

�Event Triggers
At the heart of our engine and many others is an Event Trigger system.

The idea behind this is to define a generic event such as a Player clicks the

left mouse button. The actual game would then listen in on this event and

perform one or more actions. The advantage here is to keep complexity to

a minimum. A more traditional programming approach here would be to

have specific calls to Render the Player, but then when the player clicked

the right button have very similar code in another Render the Player

method. This approach as you can see also creates DRY (don’t repeat

yourself) violations. Later in this chapter, we will create the basis for our

Event Trigger subsystem that we will build on in subsequent chapters.

�Graphical Rendering
One of the most focused on components in a game engine is the graphics.

Graphics rendering in most modern game engines includes sprites, 3D

models, particles, and various texturing passes, to name a few. Fortunately,

MonoGame provides easy-to-use interfaces, and for the purposes of this

book, we will only focus on 2D rendering. Over the course of the remaining

chapters, we will expand the rendering capabilities of our engine. In

addition, we will specifically deep dive into adding a particle subsystem in

Chapter 8.

Chapter 4 Planning Your Game Engine

54

�Sound Rendering
Often overlooked, sound rendering is arguably equally critical to provide

your audience with a high-quality auditory experience. Imagine watching

your favorite action film without sound or music – it is missing half of the

experience. In MonoGame, fortunately, it is very easy to add even a basic

level to your game engine to provide both music and sound. Those that

have done XNA development in the past, MonoGame has overhauled the

interface and does not require the use of the XACT (Cross-Platform Audio

Creation Tool). At a high level, MonoGame provides a simple Song class for

as you probably inferred for music and SoundEffect for your sound effects.

We will dive more into audio with MonoGame in Chapter 7 by adding

music and sound effects to our engine.

�Physics
Depending on the game, physics may actually be a more critical

component than sound, input, or even graphics. There is a growing genre

of games where the focus is on physics with relatively simple graphics

such as Cut the Rope 2 or Angry Birds 2, where birds are slingshot toward

precariously balanced structures that crumble to the ground as the bird

crashes into its foundations. Much like the sound and graphic triggers,

physics triggers may cause additional events such as the main character

sprite colliding with an enemy, which in turn would cause an animation,

health, and possibly the enemy to be destroyed.

�State Management
State management is a common pattern to apply in games and MonoGame

in particular due to the simple design it offers. The idea behind state

management is that no matter how complex the video game, each screen,

like the start menu that appears when the game is launched or the screen

that displays the gameplay, can be broken into their own unique state.

Chapter 4 Planning Your Game Engine

55

Take, for instance, a traditional game’s different states:

•	 Splash Screen

•	 Main Menu

•	 Gameplay

•	 End of Level Summary

Each of these states often offers different input schemes, music, and

sounds effects, not to mention different rendering of assets.

For example, a splash screen typically is comprised of

•	 Full-screen scaled image or animated video

•	 Music

•	 Timed-based transitions or input-based progression

•	 An input manager that waits on the user to start the

game by pressing some key on their input device

On the other hand, the gameplay state will bring in physics, particles,

and AI agents used to control enemies. It also has a much more complex

input manager, capturing player movement and actions precisely. The

gameplay state could also be responsible for synching up game state over

a network if the player is playing with friends on the Internet. All this to say

that breaking your game into groups of similar states will help as you begin

to architect your game. Akin to designing around inheritance, properly

grouping similar functionality and only extending when necessary will

make the time to maintain your project and the development effort much

smaller.

To further illustrate, let us look at a few of the MonoGame-powered

Stardew Valley’s states in Figures 4-2, 4-3, and 4-4.

Chapter 4 Planning Your Game Engine

56

Figure 4-2.  Stardew Valley Main Menu

Figure 4-3.  Stardew Valley Menus

Chapter 4 Planning Your Game Engine

57

Starting with Figure 4-2, the Stardew Valley Main Menu state is

comprised of

•	 Layered animated sprites (some aligned)

•	 Clickable buttons

•	 Background music

While Figure 4-3’s Character Creation state is comprised of those same

elements with the addition of input fields and more complex positioning

of elements, allowing the player to create a new character with the desired

appearance.

Finally, Figure 4-4 shows the main gameplay screen and has many

components of the first two states but increases the complexity of the

graphical rendering by adding game objects that can change over time and

allowing the player to move around the game world.

Figure 4-4.  Stardew Valley Gameplay

Chapter 4 Planning Your Game Engine

58

�Implementing the Architecture
of the Engine
Now that each of the components in a modern game engine has been

reviewed, it is now time for us to begin architecting our engine.

For those wanting to download the completed solution, see the

chapter-4 folder for both the blank project in the start folder and the

completed project in the end folder.

�Creating the Project
Following the same steps we reviewed in Chapter 3, we will be creating

the same project type for this chapter. Going forward, keep in mind this

chapter’s project will be the basis for all remaining chapters of the book.

Like in the previous chapter, create a new MonoGame Cross-Platform

Desktop Application (OpenGL) project and rename the Game1.cs file and

Game1 class to MainGame.cs and MainGame. After this, you should see a

project like that shown in Figure 4-5.

Figure 4-5.  Visual Studio 2019 showing the blank Chapter 4 project

Chapter 4 Planning Your Game Engine

59

�Creating the State Classes
As reviewed earlier in this chapter when we talked about state

management, the main ideology in state management is an inheritance

model to create a structure and cut down on the amount of code

reuse for each state of your game. For the scope of this chapter, we

will be creating the initial BaseGameState class followed by an empty

SplashState and empty GameplayState class to be populated in the next

chapters. Figure 4-6 illustrates the relationship between these states.

You will find in the following texts the starting code for our abstract

BaseGameState class, which we will build upon throughout this book.

Open up the chapter-4 end solution and look at the BaseGameState.cs

class in States\Base\BaseGameState.cs file:

using System;

using System.Collections.Generic;

using System.Linq;

using chapter_04.Objects.Base;

Figure 4-6.  Game States to be implemented

Chapter 4 Planning Your Game Engine

60

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.Graphics;

namespace chapter_04.States.Base

{

 public abstract class BaseGameState

 {

 �priv�ate readonly List<BaseGameObject> _gameObjects =

new List<BaseGameObject>();

 �publ�ic abstract void LoadContent(ContentManager

contentManager);

 �publ�ic abstract void UnloadContent(ContentManager

contentManager);

 public abstract void HandleInput();

 �public event EventHandler<BaseGameState> OnStateSwitched;

 protected void SwitchState(BaseGameState gameState)

 {

 OnStateSwitched?.Invoke(this, gameState);

 }

 protected void AddGameObject(BaseGameObject gameObject)

 {

 _gameObjects.Add(gameObject);

 }

Chapter 4 Planning Your Game Engine

61

 public void Render(SpriteBatch spriteBatch)

 {

 �fore�ach (var gameObject in _gameObjects.OrderBy

(a => a.zIndex))

 {

 gameObject.Render(spriteBatch);

 }

 }

 }

}

Let’s start with the abstract method declarations of LoadContent

and UnloadContent. These methods will provide an interface for, as you

probably guessed, the loading and unloading of content. MonoGame uses

the ContentManager class object to provide an easy-to-use interface to

load content at runtime. We will cover this in detail in the next chapter

when diving into asset management. For now, keep in mind that these

methods will handle the state-specific unloading and loading of content.

The other abstract method, HandleInput, will provide a method

for state-specific input handling. For this chapter, we will keep our

implementations simple. In Chapter 6, as mentioned earlier, we will deep

dive into abstracting the input handling.

The OnStateSwitched event and the SwitchState method provide both

the method to switch the state from another state and the event for the

main class to listen for. Any state class implementing this BaseGameState

class will be able to call the SwitchState method and pass in the new

state we wish to switch to. For example, pressing the Enter key in the

SplashScreen state will call SwitchState and specify that we want to now

use the Gameplay state. The Switch State method triggers an event that

our MainGame class will respond to by unloading the current state and

then loading the new state. At the next game loop iteration, the new state’s

Update and Draw methods will start being called.

Chapter 4 Planning Your Game Engine

62

The AddGameObject method is the state method to add objects to

the List collection of BaseGameObjects, which is used to keep track of

game objects we want to draw on the screen. In future chapters, we will

be using this method to add sprites, static images, and other objects to

this list.

Lastly, the Render method provides a single method to iterate

through all the game objects we want to render on the screen. This

method is called from the main Draw method in the MainGame class.

It takes all the game objects in other _gameObjects list and orders them

by zIndex before drawing them. A zIndex is a technique to order game

objects from farthest to closest. When MonoGame draws things to the

screen, every drawn object will overwrite objects that were drawn before

it. While this is desirable in the cases where objects closer to the viewer

must hide objects farther away, the opposite is not something we want to

do. For example, clouds should be drawn in front of the sun, not behind.

So when we create game objects, we must draw them in order and that’s

what we use the zIndex for. Why “z”? Because in 2D games we use an

(X, Y) coordinate system where the X axis is horizontal and the Y axis is

vertical. In 3D space, there is a third axis called Z, so we are essentially

representing depth using a zIndex. Note that if every game object is at

zIndex = 0, then our base state class cannot guarantee that everything

will be drawn in the correct order.

�Creating the Scaler and Window Management
Now that we have looked at our basic state management starting code,

ahead of actually rendering anything on the screen, we need to handle

scaling and supporting both windowed and full-screen modes.

Chapter 4 Planning Your Game Engine

63

�Window Scaling

The idea behind window scaling is for your audience to enjoy the game as

you intended regardless of the resolution. Take Figure 4-5. The window is

currently set to a width of 640 and height of 480 pixels, while the texture

has a width and height of 512 pixels. Given these dimensions and as shown

in Figure 4-7, it consumes almost the entire screen.

Common in games for the last two decades is the choice of resolution,

so let us retry this same rendering at a resolution of 1024x768. Figure 4-8

depicts this.

Figure 4-7.  Unscaled 640x480 window with a 512x512 texture

Chapter 4 Planning Your Game Engine

64

As clearly shown, the visual experience for the higher resolution

consumer of your game is significantly different.

Fortunately, MonoGame offers a very easy way to ensure this

experience inconsistency is resolved. The approach assumes you design

around a target resolution such as 1080p (1920x1080) if you are targeting

PC or home consoles. Once the resolution has been decided, all of your

assets should be produced with this resolution in mind. Images such as

splash or background images should be this resolution or higher. Asset

creation and management will be covered in more detail in the next

chapter; however, keeping with this simple rule will help you as you start

making your content.

Figure 4-8.  Unscaled 1024x768 window with a 512x512 texture

Chapter 4 Planning Your Game Engine

65

After the target resolution has been decided, we will add a simple scale

for both width and height relative to the target resolution. For instance,

in the two examples, let us use 640x480 as the target resolution and keep

the user resolution set to 1024x768. After implementing our scaler, see

Figure 4-9. Notice outside of being larger (as expected), the experience is

identical to the 640x480 screenshot in Figure 4-9.

Now let us dive into the code that drove this change. First, we need to

define some new variables in our MainGame class:

private RenderTarget2D _renderTarget;

private Rectangle _renderScaleRectangle;

Figure 4-9.  Scaled 1024x768 window with a 512x512 texture

Chapter 4 Planning Your Game Engine

66

private const int DESIGNED_RESOLUTION_WIDTH = 640;

private const int DESIGNED_RESOLUTION_HEIGHT = 480;

private const float DESIGNED_RESOLUTION_ASPECT_RATIO =

DESIGNED_RESOLUTION_WIDTH / (float)DESIGNED_RESOLUTION_HEIGHT;

The RenderTarget2D will hold the designed resolution target, while

the _renderScaleRectangle variable will hold the scale rectangle. The

DESIGNED* variables hold the designed for resolution; feel free to

experiment with these values after adding this code.

After defining the new variables, we will need to initialize the

RenderTarget and Rectangle variables to be used in our render loop in

the Initialize method we had previously defined. In addition, we need to

define a new method to create the rectangle in the following code:

protected override void Initialize()

{

 �_ren�derTarget = new RenderTarget2D(graphics.GraphicsDevice,

DESIGNED_RESOLUTION_WIDTH, DESIGNED_RESOLUTION_HEIGHT,

false,

 �SurfaceFormat.Color, DepthFormat.None, 0,

RenderTargetUsage.DiscardContents);

 _renderScaleRectangle = GetScaleRectangle();

 base.Initialize();

}

private Rectangle GetScaleRectangle()

{

 var variance = 0.5;

 �var actualAspectRatio = Window.ClientBounds.Width / (float)

Window.ClientBounds.Height;

 Rectangle scaleRectangle;

Chapter 4 Planning Your Game Engine

67

 if (actualAspectRatio <= DESIGNED_RESOLUTION_ASPECT_RATIO)

 {

 �var presentHeight = (int)(Window.ClientBounds.Width /

DESIGNED_RESOLUTION_ASPECT_RATIO + variance);

 �var barHeight = (Window.ClientBounds.Height -

presentHeight) / 2;

 �scaleRectangle = new Rectangle(0, barHeight, Window.

ClientBounds.Width, presentHeight);

 }

 else

 {

 �var presentWidth = (int)(Window.ClientBounds.Height *

DESIGNED_RESOLUTION_ASPECT_RATIO + variance);

 �var barWidth = (Window.ClientBounds.Width -

presentWidth) / 2;

 �scaleRectangle = new Rectangle(barWidth, 0,

presentWidth, Window.ClientBounds.Height);

 }

 return scaleRectangle;

}

The GetScaleRectangle provides black bars akin to the scalers on your

television screen based on the actual resolution vs. the design resolution.

If the image being rendered to the screen is not the same size as the actual

screen, the television will add black bars either horizontally or vertically

to fill in the missing space. This method starts by calculating the ratio

between the game window’s width and height. If that ratio is lower than

the designed aspect ratio, which is our desired ratio, then we need to add

black bars at the top and bottom of the screen to compensate. To do so, we

create a scale rectangle that goes from the (0, barHeight) coordinate and

Chapter 4 Planning Your Game Engine

68

is as wide as the game window and as high as it needs to be so the whole

rectangle fits onto the screen. Here, barHeight is half of the padding that

is needed. Figure 4-10 shows our scale rectangle if it was displayed on the

game window.

Lastly, we modified the Draw method once more to render to the

render target and then render the back buffer like so:

protected override void Draw(GameTime gameTime)

{

 // Render to the Render Target

 GraphicsDevice.SetRenderTarget(_renderTarget);

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 _currentGameState.Render(spriteBatch);

 spriteBatch.End();

Figure 4-10.  Finding a scale rectangle that fits the game window

Chapter 4 Planning Your Game Engine

69

 // Now render the scaled content

 graphics.GraphicsDevice.SetRenderTarget(null);

 �grap�hics.GraphicsDevice.Clear(ClearOptions.Target, Color.

Black, 1.0f, 0);

 �spri�teBatch.Begin(SpriteSortMode.Immediate, BlendState.

Opaque);

 �spri�teBatch.Draw(_renderTarget, _renderScaleRectangle,

Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

A few things are happening here. First, we are setting a render target

on our graphics device. This _renderTarget variable is created in the

constructor like this:

_ren�derTarget = new RenderTarget2D(graphics.GraphicsDevice,

DESIGNED_RESOLUTION_WIDTH,

 �DESIGNED_RESOLUTION_HEIGHT, false,

 �SurfaceFormat.Color, DepthFormat.None, 0,

 �RenderTargetUsage.DiscardContents);

A render target is a graphical buffer used to draw things on until we are

ready to send it to the screen. While we draw on the render target, nothing

will happen on the screen until we decide to draw that render target.

Looking at the parameters, it sets the desired game viewport resolution,

the area we want to draw it. It also sets the mipmap flag to false, the

background color to black (because SurfaceFormat.Color is equal to zero),

Chapter 4 Planning Your Game Engine

70

and specifies that we are not using any depth stencil buffer and that our

preferredMultiSampleCount is zero (this is used when doing antialiasing),

and whatever we draw into our render target will not be preserved.

Then the graphics device is cleared with the blue cornflower color,

which causes the screen to be painted with that same color. We are now

ready for the current game state to do its thing and draw things! We are

using a spriteBatch for this, which is created in the LoadContent method:

spriteBatch = new SpriteBatch(GraphicsDevice);

We briefly explained the sprite batch in Chapter 3. It is an abstraction

that we will use to draw our game primitives to the screen. It is mostly used

for our sprites, meaning our game textures, but it can also handle other 2D

primitives like lines and rectangles. It is called a sprite batch because we

will add many sprites and primitives into a single batch that will be sent

to the graphics card in on single call by MonoGame. It is more efficient to

build a single batch during the Draw phase of the game loop than multiple

batches, although there are a few reasons why a game developer may want

to build many batches in a single drawing phase. To create a new batch in

our engine, we use the spriteBatch.Begin method. Then we call the Render

method on the current game state and close out the sprite batch by calling

spriteBatch.End.

Now that we have rendered a single frame to our render target, we are

ready to draw it to the screen, which we do by setting the graphics devices’

render target to null. We start by clearing the screen to a black color;

then, we perform one more sprite batch phase, where we draw the render

target into the scale rectangle we calculated earlier. Because the screen is

initially cleared black and the render target was cleared to the cornflower

blue color, if the designed resolution and the game window resolutions

do not match, we will see black bars on the sides. We then end the sprite

batch.

Chapter 4 Planning Your Game Engine

71

Adding this support early on in our engine design helps begin testing

the engine across multiple resolutions and form factors such as a laptop

screen vs. desktop monitor. Now that we have our window scaling, let us

add in full-screen support to our window.

�Full-Screen Support

Fortunately, in MonoGame, adding support for full screen is extremely

easy. Enabling full-screen support is just one line. The following code

shows how to have full screen enabled by setting graphics.IsFullScreen to

true:

public MainGame()

{

 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = 1024;

 graphics.PreferredBackBufferHeight = 768;

 graphics.IsFullScreen = true;

 Content.RootDirectory = "Content";

}

�Event System
The last major development in this chapter is adding the initial work

on the event system. The idea behind this pattern is to have a single call

and object or class listening to that particular event will do what it is

programmed. This pattern will allow us over the course of the book adding

all of the events to make a complete game.

Chapter 4 Planning Your Game Engine

72

For the scope of this chapter, we will add a single event, one to

trigger the game to quit. To keep things strongly typed, we will define an

enumeration like so:

public enum Events

{

 GAME_QUIT

}

Then in BaseGameState class, we have added a new EventHandler

and method:

public event EventHandler<Events> OnEventNotification;

prot�ected void NotifyEvent(Events eventType, object

argument = null)

{

 OnEventNotification?.Invoke(this, eventType);

 foreach (var gameObject in _gameObjects)

 {

 gameObject.OnNotify(eventType);

 }

}

The idea behind this is we can notify the MainGame, who is listening

to event notifications already, as well as any GameObjects that exist within

the scope of the current game state by calling the OnNotify method that

they all inherit and can override from the BaseGameObject base class:

public virtual void OnNotify(Events eventType) { }

Chapter 4 Planning Your Game Engine

73

The MainGame class will need to hook into the OnEventNotification

event. Since we have already defined the SwitchGameState method, we

will just need to add the event and define the implementation like so:

private void SwitchGameState(BaseGameState gameState)

{

 _currentGameState?.UnloadContent(Content);

 _currentGameState = gameState;

 _currentGameState.LoadContent(Content);

 �_currentGameState.OnStateSwitched += CurrentGameState_

OnStateSwitched;

 �_currentGameState.OnEventNotification += _currentGameState_

OnEventNotification;

}

priv�ate void _currentGameState_OnEventNotification(object

sender, Enum.Events e)

{

 switch (e)

 {

 case Events.GAME_QUIT:

 Exit();

 break;

 }

}

With most events not needing to notify the MainGame class, this will

be one of the few if any events you will need to handle specifically.

Chapter 4 Planning Your Game Engine

74

The last change we need to do is handle pressing the Enter button on

the GameplayState class to trigger this event. For this, we will use code

that will be explained in Chapter 6 when we discuss the different ways

to capture player input. In the meantime, the following code checks if a

gamepad’s back button is pressed or if the keyboard’s Enter key is pressed,

in which case it fires the GAME_QUIT event:

public override void HandleInput()

{

 �if (�GamePad.GetState(PlayerIndex.One).Buttons.Back ==

ButtonState.Pressed ||

 Keyboard.GetState().IsKeyDown(Keys.Enter))

 {

 NotifyEvent(Events.GAME_QUIT);

 }

}

�Summary
In this chapter, you learned about game engine design and state

management and implemented the initial architecture for the engine that

will drive the project going forward.

In the next chapter, we will dive into the Asset Pipeline providing sprite

loading to liven up our newly created engine.

Chapter 4 Planning Your Game Engine

75© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_5

CHAPTER 5

Asset Pipeline
Now that we have a firm understanding of the game engine architecture to

be reviewed in this book, it is time to focus on the next major component

of our engine: assets. As briefly discussed in Chapter 3, MonoGame

provides an easy-to-use and expandable interface to accessing assets. Over

the course of this chapter, we will

•	 Learn how the MonoGame Asset Pipeline works

•	 Learn how to use the MonoGame Asset Tool

•	 Integrate the Asset Pipeline into our engine

•	 Add a player sprite to the game

�MonoGame Asset Pipeline
For those with XNA experience, the Asset Pipeline will be very familiar to

you as MonoGame builds upon the XNA Asset Pipeline. The major change

is that XNA required the assets to be compressed and packed at build time.

This caused a major issue for larger projects where the build and testing

times were considerable. Thankfully, MonoGame switched this to split the

building of the Asset Pipeline and building of your code by providing the

MonoGame Pipeline Tool (to be discussed in the next section).

https://doi.org/10.1007/978-1-4842-6309-9_5#DOI

76

In addition, MonoGame continues to provide all of the benefits that

XNA's pipeline offered:

	 1.	 Extensibility to support custom file formats

	 2.	 Built-in support for XML, video, music, sound, and

image

	 3.	 Image compression optimizations for each platform

(DXTC, for instance, on PCs)

	 4.	 Loading system utilizing C#'s generics

The pipeline as of this writing supports asset optimizations and

targeting for

	 1.	 PCs (Windows, Linux, MacOS X)

	 2.	 Consoles (Xbox 360, Xbox One, Switch, PS Vita, PSP,

PS4)

	 3.	 Mobile (iOS and Android)

	 4.	 Raspberry Pi

�ContentManager Class
At the core of the Asset Pipeline inside our engine that we will be

continuing to evolve throughout this book is the ContentManager class.

This class will provide the main interface to both load and retrieve content

of various types such as sound, graphics, and levels. At a high level, the

following methods are the main methods to provide this functionality. As

a reminder, the source code for this class and all examples found in this

book are available at www.apress.com/ISBN.

Chapter 5 Asset Pipeline

http://www.apress.com/ISBN

77

�T LoadLocalized<T>(string assetName)

The LoadLocalized method as the name implies takes the assetName

parameter and then builds the localized assetName in a loop like so:

string localizedAssetName = assetName + "." + cultureName

where cultureName is derived from both the CultureInfo.CurrentCulture.

Name and CultureInfo.CurrentCulture.TwoLetterISOLanguageName. For

example, the former would return “en-US” and the latter would return “en”.

For localized fonts, text graphics and audio files using the LoadLocalized

should be used instead of Load.

I should note, if no localized assets are found, MonoGame

automatically falls back to the Load method.

�T Load<T>(string assetName)

The Load method takes a type of T and internally calls the ReadAsset

method. Unfortunately, at this time there are no constraints on the type of

T; therefore, I should caution the types passed in. Upon successful reading

of the asset, the object is added to the internal loadedAssets dictionary

based on the assetName (it is used as the key). Not commonly known, if

the type of T and the assetName match a preexisting key/value pair, the

call to ReadAsset is avoided and the object is simply returned.

�void Unload()

The Unload method as the name implies calls the dispose method on all

of the disposable assets that were previously loaded. In addition, both

the loadedAssets Dictionary and disposableAlerts List collection are also

cleared.

In the Game class that we have and will utilize throughout this book,

the ContentManager class is accessible via the Content property.

Chapter 5 Asset Pipeline

78

�MonoGame Pipeline Tool
Key to the pipeline is the MonoGame Pipeline Tool (depicted in Figure 5-1).

This tool provides a clear separation of concerns between the code for your

MonoGame project and your assets. This separation provides an easy-to-

use tool for artists, audio engineers, and software engineers collaborating on

larger projects. Checking in the compiled content file and assets to source

control is an easy way to develop a project following the agile process.

For those curious, the pipeline tool as of the 3.10 release supports

MacOS X and Linux, whereas prior to that release the tool was for Windows

only. The same functionality exists on all three platforms with no known

differences as of this writing.

Figure 5-1.  MonoGame Pipeline Tool

Chapter 5 Asset Pipeline

79

�Integrate the Asset Pipeline into the Engine
Now that we have reviewed MonoGame's built-in Asset pipeline

functionality, let us implement a proper way to handle asset loading and

unloading in our engine.

You may recall in previous examples we simply referenced the

ContentManager inside the LoadContent and UnloadContent methods in

our Game States. This has the benefit of following a singleton pattern, but

also doesn't provide any way to handle global assets. The reason being,

when calling Unload on the ContentManager, all assets are unloaded. In

a game, you more than likely have common assets such as fonts, sounds,

and graphics that you wouldn't want to have to reload on every game state.

You might be wondering why the ContentManager doesn't provide a way

to unload certain objects – this has been discussed and requested as a

feature in a future version.

To work around this limitation in the current version of MonoGame,

the widely accepted solution is to simply pass in the main ContentManager

and create a local copy within each Game State. For the scope of this

chapter, that is the solution we will apply.

Now let us dive into the enhancements to our engine!

�BaseGameState
You may recall, the abstract BaseGameState class is the primary class

powering all of our game engine's states to derive from. For the scope of

the chapter, we will be making several changes to support the new content

loading.

The first change is to add a constant variable for the fallback texture

(to be discussed in the next section):

private const string FallbackTexture = "Empty";

Chapter 5 Asset Pipeline

80

The second change is to add a private variable to hold the

ContentManager class:

private ContentManager _contentManager;

The third change is to add a new method to initialize the private

ContentManager variable:

public void Initialize(ContentManager contentManager)

{

 _contentManager = contentManager;

}

The fourth change is to swap the abstract UnloadContent method

in favor of an implemented method that calls our new private

ContentManager's Unload method:

public void UnloadContent()

{

 _contentManager.Unload();

}

The last change is to add a wrapper around the loading of textures

along with the fallback to our fallback texture in case of a missing texture

asset:

protected Texture2D LoadTexture(string textureName)

{

 var texture = _contentManager.Load<Texture2D>(textureName);

 �return texture ?? _contentManager.Load<Texture2D>

(FallbackTexture);

}

Chapter 5 Asset Pipeline

81

As noted in the ContentManager class deep dive, this approach to

wrapping the texture loading avoids accidentally passing an incompatible

type of T to the Load<T> method of the ContentManager and thereby

causing an exception to be thrown.

With these changes in place, we can now shift focus to the next class

changes.

�MainGame
With the majority of changes occurring in the BaseGameState, there are a

few changes required to the MainGame class.

The first change is to update the designed resolution to be set to

1280x720 (720p):

private const int DESIGNED_RESOLUTION_WIDTH = 1280;

private const int DESIGNED_RESOLUTION_HEIGHT = 720;

The reason for this change from the previously used resolution of

1024x768 is a true splash screen asset being loaded in the next section.

The next change is to adjust the SwitchGameState method to support

the new Initialize method and not pass in the ContentManager to the

LoadContent method:

private void SwitchGameState(BaseGameState gameState)

{

 _currentGameState?.UnloadContent();

 _currentGameState = gameState;

 _currentGameState.Initialize(Content);

 _currentGameState.LoadContent();

Chapter 5 Asset Pipeline

82

 �_cur�rentGameState.OnStateSwitched += CurrentGameState_

OnStateSwitched;

 �_cur�rentGameState.OnEventNotification += _currentGameState_

OnEventNotification;

}

With these changes, the engine now provides a clear method to load a

texture and proper clearing of content as game states change. The changes

and new assets to complete this work are discussed in the next section. In

future chapters, we will expand this functionality to include audio, fonts,

and XML files.

�Add a Player Sprite to the Game
Now that the engine has been updated to support texture loading, we will

only need to make a few small adjustments to our game code. Remember,

you can access the source code by going to www.apress.com/ISBN.

As in previous chapters, there are three components in the chapter-05

directories:

	 1.	 assets

	 2.	 start

	 3.	 end

The assets folder contains both the Adobe Photoshop (PSD) and PNG

files for the new splash screen, the sample texture, and the new fighter

sprite. These files have been provided for use in this chapter and for future

use in other projects.

The start folder contains the code prior to any changes made in this

chapter for you to follow along. Conversely, the end folder contains the

completed code if you wish to simply refer back to the chapter.

Chapter 5 Asset Pipeline

http://www.apress.com/ISBN

83

�Reviewing the New Assets
To demonstrate the new texture loading functionality, three new assets

have been added to the solution.

The first is a true splash screen image as opposed to simply using the

land texture used previously. This splash screen was rendered to 1280x720

(depicted in Figure 5-2).

This image will act as the image in our SplashState class.

The second asset is an empty graphic to be utilized if a particular

texture asset is not found or an error occurs during load (depicted in

Figure 5-3).

Figure 5-2.  Splash screen asset

Chapter 5 Asset Pipeline

84

This approach will make it easy to see quickly if an asset fails to load.

In your future projects, I strongly suggest either using this graphic or

something not used anywhere else in your project to call out that an error

occurred when testing.

The last asset is our fighter plane sprite depicted in Figure 5-4.

This will be used as our player sprite in future chapters and, as

you might have seen, contains transparency which MonoGame will

automatically pick up during the Asset Pipeline.

Figure 5-4.  Player sprite

Figure 5-3.  Fallback texture

Chapter 5 Asset Pipeline

85

�Adding the New Assets to Our Content
To add these new assets, double-click Content.mgcb from within Visual

Studio as we have done previously. If the file opens as an XML file like that

in Figure 5-5, follow the following steps.

Step 1 is to right-click the Content.mgcb like so in Figure 5-6 and click

Open With….

Figure 5-5.  Content.mgcb opened incorrectly as an XML file

Figure 5-6.  Visual Studio Context Menu on Content.mgcb

Chapter 5 Asset Pipeline

86

Once the window is opened, you will be presented with a dialog. Your

view might include other options not listed; the option you are looking for

is MonoGame Pipeline Tool as highlighted in Figure 5-7.

Once selected, click Set as Default (to avoid having this occur again)

and then click OK. After clicking OK, the MonoGame Pipeline Tool will

open.

When adding content like in previous chapters, be sure when

prompted to select “Add a link to the file” instead of “Copy the file to the

directory” as shown in Figure 5-8.

Figure 5-7.  Visual Studio Open With dialog

Chapter 5 Asset Pipeline

87

By clicking the “Add a link to the file” option, we will avoid having

duplicate content locations. When working on a multiperson team or

simply wanting one source of truth, this process avoids unnecessary churn

forgetting to update multiple locations.

After adding the Empty, Fighter, and Splash assets, be sure to click

Build ➤ Build, or hit the F6 key as noted in Figure 5-9.

Figure 5-8.  MonoGame Pipeline Tool Add File dialog

Chapter 5 Asset Pipeline

88

After building the content package, you should see the same message

as in Figure 5-10.

Figure 5-9.  MonoGame Pipeline Tool Build Menu

Figure 5-10.  MonoGame Pipeline Tool showing the build completes

Chapter 5 Asset Pipeline

89

�Game Code Changes
With the changes to our engine completed in the previous section, there

are only a handful of changes required to change in our game code.

�SplashState

The SplashState class as you might recall is the state that launches when

our game launches. In future chapters, we will expand the functionality to

include transition effects and music.

For the scope of this chapter, there are three changes required. If the

following code is not clear, please refer back to Chapter 4 or follow along

with the included complete source code for this chapter.

The first change is the removal of the UnloadContent method with

the engine handling the unloading of content automatically inside the

BaseGameState class. This removal will simplify and reduce the duplicated

code as we continue to add more game states (following the don’t repeat

yourself mantra).

The second change is in the LoadContent method. Previously, we

were using the MonoGame ContentManager class directly to load a

texture. As reviewed earlier in this chapter, the LoadTexture method

provides an abstraction between MonoGame and our engine. There are

several reasons for this, but a few include better handling of changes to

MonoGame (i.e., if the syntax changes for how to load a texture, it can

be handled in one location vs. all throughout your code) in addition to

extensibility within your own code.

With the changes made to the engine, we can now simply call

LoadTexture like so:

public override void LoadContent()

{

 AddGameObject(new SplashImage(LoadTexture("splash")));

}

Chapter 5 Asset Pipeline

90

The last change is in the HandleInput method. Previously, this method

looked for any key press. Keeping with the theme of making the Splash

State a true splash screen, the method now looks only for the Enter key

being pressed. The code behind the new method:

public override void HandleInput()

{

 var state = Keyboard.GetState();

 if (state.IsKeyDown(Keys.Enter))

 {

 SwitchState(new GameplayState());

 }

}

�GameplayState

The GameplayState class as you might recall is the state that will hold our

main gameplay as we progress through the chapters.

For the scope of this chapter, four changes are required.

The first change is the addition of declaring our textures as constant

variables to avoid magic strings in our code:

private const string PlayerFighter = "fighter";

private const string BackgroundTexture = "Barren";

In future chapters, we will convert these constants to utilizing JSON

files to create more flexibility and avoid having to hard-code textures.

The second change, like in the SplashState class, is the removal of the

UnloadContent method since it is being handled inside the base class.

The third change to be made is the loading of both our sample ground

texture and the fighter sprite we reviewed in the previous section. We can

achieve this functionality like so:

Chapter 5 Asset Pipeline

91

public override void LoadContent()

{

 AddGameObject(new SplashImage(LoadTexture(BackgroundTexture)));

 AddGameObject(new PlayerSprite(LoadTexture(PlayerFighter)));

}

The last change is to switch the keyboard input to only listen for the

Escape key being hit like so:

public override void HandleInput()

{

 var state = Keyboard.GetState();

 if (state.IsKeyDown(Keys.Escape))

 {

 NotifyEvent(Events.GAME_QUIT);

 }

}

In the next chapter, we will overhaul this to not be tied specifically

to just keyboard input; however, for now we are mapped to only the

keyboard.

�Running the Application
Now that the code changes have been made, simply running the

application should show the splash screen as depicted in Figure 5-11.

Chapter 5 Asset Pipeline

92

After hitting Enter, you should be presented with the ground texture

and our player's fighter sprite as shown in Figure 5-12.

Figure 5-11.  Chapter 5 example showing the splash screen

Chapter 5 Asset Pipeline

93

To exit, tap the Escape key on your keyboard or click the X to close the

window.

�Summary
In this chapter, you learned about the MonoGame Asset Pipeline. We

also dove into integrating the Asset Pipeline into our engine to support

textures and creating an approach that we will use in the coming chapters

to quickly add audio and video support. Lastly, we demonstrated how to

use our new functionality to load a splash image in addition to our player

sprite into our evolving game engine.

In the next chapter, we will dive into the handling of input in our game

engine by adding support for touch, keyboard, mouse, and controller types

of input.

Figure 5-12.  Chapter 5 example showing the player sprite overlaid
on top of the barren sprite

Chapter 5 Asset Pipeline

95© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_6

CHAPTER 6

Input
It wouldn’t be a video game without the ability for players to manipulate

the state of the game in some way. We are now ready to look into taking

inputs from three different sources, namely, a keyboard, a mouse, or a

gamepad, and mapping that input to actions that will change the state of

the game, like moving the player around the screen and shooting bullets.

When we are done with this chapter, you will have a game that looks like

Figure 6-1. We promise the bullets look better when they move.

Figure 6-1.  Final result

https://doi.org/10.1007/978-1-4842-6309-9_6#DOI

96

In this chapter, you will

•	 Implement a scrolling background

•	 Learn how to manipulate the player sprite using the

keyboard

•	 Build a generic input engine

•	 Learn how to use other input sources using MonoGame

�Discussing the Various Input Mechanisms
MonoGame supports almost all of the user input mechanisms used by

players worldwide. Whether you are a PC gamer using a keyboard and a

mouse, a console player using a gamepad, or someone who likes to play

on touch-enabled devices such as smartphones, MonoGame has you

covered out of the box. When a player presses a button on their keyboard

or gamepad, MonoGame keeps track of that particular input device’s state.

Our game simply needs to query that state regularly to react to what the

player is trying to accomplish.

To follow along, open up the chapter-06 solution cloned from

https://github.com/Apress/monogame-mastery. The chapter-06

directory contains two solutions: start and end. Since we are at the start

of this chapter, let’s open up the start solution.

�Keyboard State
We briefly discussed keyboard input at the end of Chapter 5. Our two

game state classes, SplashState and GameplayState, both implement a

HandleInput() function that is continuously called by the MainGame class.

The purpose of this function is to monitor our input devices and react to

Chapter 6 Input

https://github.com/Apress/monogame-mastery

97

what the player is doing. Let’s review the part of the GameplayState class

that is of interest to us at the moment. We have hidden some of the code

for brevity, but the chapter-06 end solution will have all the code.

using Microsoft.Xna.Framework.Input;

public class GameplayState : BaseGameState

{

 public override void HandleInput()

 {

 var state = Keyboard.GetState();

 if (state.IsKeyDown(Keys.Escape))

 {

 NotifyEvent(Events.GAME_QUIT);

 }

}

Keyboard support in MonoGame is straightforward. Most keys are

either pressed down or released, with a few exceptions to this rule for keys

that toggle on and off, like Num Lock and Caps Lock. In the preceding

code, we start by asking the Keyboard class for its current state. Then, we

ask that state for information that is pertinent for our game. Right now,

we only want to give the player a way to quit the game using the Escape

key. Is the Escape key pressed at the moment? This is what the state

IsKeyDown(Keys.Escape) is asking. If so, we fire the GAME_QUIT event

and the MainGame class will respond by telling our program to exit.

What are the keys we can monitor? There are too many to efficiently list

in the book. However, we can use Visual Studio 2019 to inspect the available

options using IntelliSense or by inspecting the MonoGame library metadata.

Delete the Escape word from Keys.Escape and press Ctrl+Enter to

trigger IntelliSense to pop up. You should see something like the image in

Figure 6-2, and scrolling through the options should give you an indication

of the wide variety of keys that can be monitored.

Chapter 6 Input

98

Another way to see options is to inspect the MonoGame library

metadata directly. We prefer this approach when exploring what

functionality a library exposes to us. Let’s go explore what’s in Microsoft.

Xna.Framework.Input.

On the Solution Explorer panel, expand the References list by clicking

the arrow to its left. Figure 6-3 shows us that MonoGame.Framework is a

reference that we added to our project.

Figure 6-2.  IntelliSense options for the Keys enum

Figure 6-3.  List of references used in our game

Chapter 6 Input

99

We can now inspect it by double-clicking the MonoGame.Framework

reference. This will open the Object Browser in a new tab in Visual Studio.

From there, we can start exploring. Expand MonoGame.Framework and

Microsoft.Xna.Framework.Input, and then click Keys. You should see

something like shown in Figure 6-4.

Figure 6-4.  All the keys pressed that MonoGame can monitor

Chapter 6 Input

100

You can now inspect all the values that are part of that Keys enum.

What you can see as well is everything that MonoGame offers us for all our

input needs.

�Mouse State
Our game will not immediately support using a mouse during gameplay,

but we might need to use a mouse to point and click around menus. Most

video games use menus to let the player configure the sound or graphics or

to offer the player to resume the game or quit.

Normally, the mouse cursor is hidden from the viewport while

the game is running. This can be changed by adding this line to the

MainGame’s Initialize() function:

this.IsMouseVisible = true;

However, even when the mouse cursor is hidden, the mouse state can

still be used to monitor how a player is using their mouse. We can look at

the state of the left, middle, and right buttons. We can also monitor the X

and Y coordinates of the mouse and changes in the scroll wheel since the

game started, which could be useful for implementing a camera zoom

functionality.

If we wanted to let the player shoot bullets when pressing the left

mouse button, we’d use this code:

var mouseState = Mouse.GetState();

if (mouseState.LeftButton == ButtonState.Pressed)

{

 // Perform shooting action!

}

Chapter 6 Input

101

Accessing the X and Y coordinates of the mouse is done using the

following:

var mouseState = Mouse.GetState();

var x = mouseState.Position.X;

var y = mouseState.Position.Y;

Note that this will give you an X and Y coordinate based on the (0, 0)

origin of the viewport, located at the top left of the game view window, just

below the title bar.

�Gamepad State
The gamepad is an incredibly useful gaming device. Not only is it the

main device used on gaming consoles in living rooms across the world,

but players also sometimes elect to use it on their computer. Monitoring

the state of a gamepad is no more difficult than what we’ve learned

so far. There are a few buttons that can be pressed and the left or right

thumbstick state is represented using a 2D vector with X and Y values that

are between -1 and 1, where the value zero for both coordinates indicates

that the thumbstick is completely at rest, perfectly centered.

Thumbsticks also have a deadzone, which is a small area around its

center that does not register any movement (Figure 6-5). This deadzone

solves two problems. First, players resting their thumbs on a thumbstick

can still cause it to move or jitter but they do not intend to cause their

characters on the screen to move around. The deadzone ensures that this

jitter remains unnoticed by the game. Second, gamepads wear out over

time and thumbstick’s centers can be slightly off from the (0, 0) position.

The deadzone in this case prevents the game from noticing any movement.

Without it, a player’s character would move even when no one is touching

the thumbstick.

Chapter 6 Input

102

To move the player using the thumbstick, you would need two things:

•	 The player speed

•	 The X and Y values from the thumbstick

When the thumbstick is pushed all the way to the left, we would

register an X value of -1 and a Y value of 0. If the thumbstick was instead

halfway to the left, the X value would be 0.5 instead.

The code to monitor thumbstick input would look like this:

var gamepadState = GamePad.GetState(PlayerIndex.One);

var newPlayerPosition = new Point(

 �oldPlayerPosition.X + (gamepadState.ThumbSticks.Left.X *

playerSpeed),

 �oldPlayerPosition.Y + (gamepadState.ThumbSticks.Left.Y *

playerSpeed)

);

So, if the left thumbstick was completely to the left, the X should be -1

and the Y should be 0, thus moving the character by reducing its old position

by the playerSpeed value and without changing its Y position at all.

Figure 6-5.  The thumbstick’s X and Y values in the (x, y) format

Chapter 6 Input

103

We also need to specify for which gamepad we want to get the state.

Most video game consoles allow for up to four players. In this example, we

were interested in what player 1 was up to.

Now that we’ve looked at how various inputs work in MonoGame,

we are ready to add some code of our own! Our game will let the player

manipulate an aircraft using the arrow keys on the keyboard and shoot

down enemies using the spacebar. But before we get to this, we need one

more element in our game: a scrolling background.

�Scrolling Background
We all know how side scrollers work. Games like Super Mario Bros, where

the character can only move sideways to the left or to the right and the

background “scrolls” as the character, always located in the middle of the

screen, “moves” around. In fact, the character is fixed in place. It is the

background that moves and provides the illusion of movement.

How do the game developers achieve this illusion? They do it by

moving background blocks on the screen and keeping the character in

the center.

The game is filled with background blocks that overfill the viewport.

When the player wants to move the character to the right, we instead take

all the background blocks and move them toward the left. If there was no

background block out of view, we would notice a gap created on the right

edge of the screen. But since we have a background block in that area,

it immediately moves in to fill in that gap. As the player keeps moving

the character to the right, the leftmost background block is eventually

completely offscreen. At that moment, the game will update the position of

that block, so it becomes located at the right of the viewport, ready to scroll

into view. Moving the character to the left would instead trigger the reverse

process. Figures 6-6 and 6-7 show that process as it happens.

Chapter 6 Input

104

Figure 6-7.  Our character appears to be moving to the right

Figure 6-6.  Background blocks overfill the viewport, represented with
a dotted line

Chapter 6 Input

105

Our game will work in a similar way, since we need to provide the

illusion that our fighter jet is moving forward, in the up direction, we will

instead work on making the background move downward.

Our first step is to fill up the viewport with our background terrain tile

and to add an extra row of tiles just above the viewport, so they are ready

to scroll down into view (Figure 6-8). Our background texture has been

designed to provide seamless continuity when tiled on all sides. As the

game runs and the _position.Y value increases and moves away from the

origin, the tiles will move downward, causing the tiles that were offscreen

at the beginning are scrolling into view (Figure 6-9). Eventually, the top tile

row will be fully visible at the top of the viewport and the background will

reset to its original Y position; the scrolling will then resume and create the

illusion of an infinite terrain (Figure 6-10).

Figure 6-8.  Our tiled background. Blanks are left between the tiles to
illustrate how it looks like a grid. In the game, the tiles will touch each
other, and no space will be left behind

Chapter 6 Input

106

Figure 6-9.  The background appears to scroll down

Figure 6-10.  The end of our scrolling system

Chapter 6 Input

107

Let’s create a new class called TerrainBackground and let it inherit

BaseGameObject. Just like other base game objects, it should be instantiated

with an existing texture and a position, which we set at (0, 0), with the goal of

moving this position down along the Y axis to make it scroll.

public class TerrainBackground : BaseGameObject

{

 private float SCROLLING_SPEED = 2.0f;

 public TerrainBackground(Texture2D texture)

 {

 _texture = texture;

 _position = new Vector2(0, 0);

 }

}

Remember that _texture and _position are protected variables on the

BaseGameObject parent class, which means that they are available to us

inside the TerrainBackground code and in this case we are initializing

_texture to the incoming parameter and making sure _position is set at the

origin coordinates of (0, 0).

Drawing the background will be a little more complicated than what

the BaseGameObject’s Render() method does. Instead of simply drawing

the object’s texture at a single position, we must fill the viewport with the

texture and also draw a row of terrain above the screen. To do so, we’ll use

a different version of the SpritBatch.Draw function that the base class uses.

For reference, this is what the base class’s rendering function looks like:

public virtual void Render(SpriteBatch spriteBatch)

{

 spriteBatch.Draw(_texture, _position, Color.White);

}

Chapter 6 Input

108

The draw function has many overloads and accepts many different

kinds of parameters. Here it limits itself to drawing a specific texture at a

specific position that we specified when instantiating our game object. The

Color.White parameter is a color mask that doesn’t really concern us at the

moment, except that a White mask indicates to MonoGame to render the

texture as is.

However, we are going to use a different overloaded Draw function:

spri�teBatch.Draw(_texture, destinationRectangle,

sourceRectangle, Color.White);

We tell the sprite batch here to draw a certain rectangle of our

texture to a certain rectangle of the viewport using a white color mask.

Specifying the source rectangle is useful when a source texture contains

many sprites on the same texture, which is usually the case for games

with sprite animations where all animation frames of a game object, like

a character bobbing up and down as it stands idle, are arranged in a grid

in a single file.

When we specify a destination rectangle of a different size than the

source rectangle, MonoGame will stretch or compress the image to fit.

However, in our case, both rectangles will be the same size and we will use

the entire terrain texture.

Our source and destination rectangles are thus defined like this:

var �sourceRectangle = new Rectangle(0, 0, _texture.Width, _

texture.Height);

var �destinationRectangle = new Rectangle(x, y, _texture.Width,

_texture.Height);

spri�teBatch.Draw(_texture, destinationRectangle,

sourceRectangle, Color.White);

As you can see, it has the same width and height as our game object

texture and is positioned at an x and y coordinates that mark the location

of each terrain block on our grid, computed on the Y axis from -_texture.

Chapter 6 Input

109

Height to the height of the viewport and from 0 to the width of the viewport

for the X axis. The reason we start at -_texture.Height on the Y axis is to

create that extra row of terrain that will scroll down into view.

Let’s fill our texture blocks:

public override void Render(SpriteBatch spriteBatch)

{

 var viewport = spriteBatch.GraphicsDevice.Viewport;

 �var sourceRectangle = new Rectangle(0, 0, _texture.Width,

_texture.Height);

 for (int nbVertical = -1;

 nbVertical < viewport.Height / _texture.Height + 1;

 nbVertical++)

 {

 �var �y = (int) _position.Y + nbVertical *

_texture.Height;

 for (int nbHorizontal = 0;

 �nbHorizontal < viewport.Width / _texture.Width + 1;

 nbHorizontal++)

 {

 �var �x = (int) _position.X + nbHorizontal *

_texture.Width;

 �var �destRectangle = new Rectangle(x, y,

_texture.Width, _texture.Height);

 �spri�teBatch.Draw(_texture, destRectangle,

sourceRectangle, Color.White);

 }

 }

 �_pos��ition.Y = (int)(_position.Y + SCROLLING_SPEED) %

_texture.Height;

}

Chapter 6 Input

110

We loop over the Y axis first and compute the y position of all our

texture blocks. We know how many vertical blocks to draw by dividing

the height of the viewport by the height of our texture. The outer loop

is designed to go from -1 to the total number of blocks needed to

accommodate the extra row we need to draw offscreen. Multiplying that

number by the height of the texture, we get the exact Y coordinate where

a row of texture blocks needs to be drawn. But there’s a twist… we add the

game object’s _position.Y value to the total. That position is initialized to 0,

but as the game runs, it will increase and that will cause all the rows to be

drawn lower every pass through the Render() function.

Now that we know the Y coordinate of our row, we need to find the

X coordinate. Similarly, we know how many texture blocks are needed

by dividing the viewport width by the texture width. The inner for loop

is designed to go from 0 to the total number of blocks needed to fill the

screen. We then multiply that number by the texture width and add the

game object’s _position.X (which will always be zero at the moment, but

we never know if that will change in the future) and we get each block’s X

coordinate.

Armed with the x and y coordinates, we can now compute our

rectangles and fill the screen with blocks. When all this is done, we

increment _position.Y by SCROLLING_SPEED, which will cause the

background to shift down on the screen on the next rendering pass. But

here is another twist… There is no need to scroll down more than one

texture’s width. When we reach that point, we use the modulo operator

to reset the _position.Y value, causing the animation to restart from the

beginning.

Okay, we got a lot done and now we are ready to replace our old

terrain game object with an actual TerrainBackground object. Open up the

GameplayState class, and replace this line in the LoadContent() method

AddGameObject(new SplashImage(LoadTexture(BackgroundTexture)));

Chapter 6 Input

111

with this line

AddGameObject(new TerrainBackground(LoadTexture(Background

Texture)));

This will use our new TerrainBackground class and it will automatically

scroll forever.

Finally, we need to position our fighter at the bottom of this screen,

right in the middle. Change the part of LoadContent() that deals with

adding our fighter game object with the following code:

_playerSprite = new PlayerSprite(LoadTexture(PlayerFighter));

var playerXPos = _viewportWidth / 2 - _playerSprite.Width / 2;

var playerYPos = _viewportHeight - _playerSprite.Height - 30;

_playerSprite.Position = new Vector2(playerXPos, playerYPos);

This code as is will not compile because we have not yet modified the

BaseGameState class to keep a reference to the viewport dimensions used

earlier. Instead, replace the _viewportWidth and _viewportHeight by 1280

and 720, respectively, or look at the code supplied at the end of the chapter

for the complete solution.

We have now located the fighter 30 pixels above the bottom of the

viewport, right in the middle of the screen, and we are finally ready to start

working on our generic input manager.

�Creating a Generic Input Manager
The goal of our input manager is to handle our player’s inputs as much as

possible in a set of classes that can be reused in other games with minimal

changes to make them work out of the box. We chose a pattern where the

game takes in inputs from the keyboard, the mouse, or gamepads and

transforms the input into commands that the game can compute. Each

Chapter 6 Input

112

of our game state classes, like the GameplayState class, will only handle

incoming commands instead of dealing with the input directly. See

Figure 6-11.

For example, pressing the left arrow key on the keyboard during

gameplay will generate a PlayerMoveLeft command that the game state

will consume and cause the player sprite to move to the left.

Without knowing which commands are used by our game or which

game state is currently in effect, the game engine will be able to correctly

transform, or map, a player input into a game command. The idea is that

each game state, like SplashState or the GameplayState, will provide the

InputManager class in our engine with a specific Mapper class that knows

how to map inputs to commands that the current state cares about.

It is worth noting at this point that we are not following the popular

Command pattern. We simply chose the name “Command” to indicate

a class that can be thought of as a command from the player to perform

some action based on the user input.

Figure 6-11.  Our game will extend the game engine’s
BaseInputMapper and BaseInputCommand classes and provide the
extensions to the input manager

Chapter 6 Input

113

The BaseInputCommand is an empty class, but it is used as a return

type by the input manager and the BaseInputCommand classes. We will

extend one mapper class and one command class per game state. Let’s

look at the GameplayInputCommand class:

public class GameplayInputCommand : BaseInputCommand

{

 public class GameExit : GameplayInputCommand { }

 public class PlayerMoveLeft : GameplayInputCommand { }

 public class PlayerMoveRight : GameplayInputCommand { }

 public class PlayerShoots : GameplayInputCommand { }

}

What we see here are a few inner classes that all inherit from

GamePlayInputCommand that we’ll use just like we use enums, with

the main difference that we can constrain command types to our game

states. The main benefit to this approach is that it’ll be easier to reason

about which commands belong to which game state. As we add more

game states, like menus, option screens, minigames, and so on, it will be

important to have an easy way to keep things organized. But first things

first, take a look at the GamePlayInputMapper:

public class GameplayInputMapper : BaseInputMapper

{

 �public override IEnumerable<BaseInputCommand>

GetKeyboardState(KeyboardState state)

 {

 var commands = new List<GameplayInputCommand>();

 if (state.IsKeyDown(Keys.Escape))

 {

 commands.Add(new GameplayInputCommand.GameExit());

 }

Chapter 6 Input

114

 if (state.IsKeyDown(Keys.Left))

 {

 �commands.Add(new GameplayInputCommand.

PlayerMoveLeft());

 }

 if (state.IsKeyDown(Keys.Right))

 {

 �commands.Add(new GameplayInputCommand.

PlayerMoveRight());

 }

 if (state.IsKeyDown(Keys.Space))

 {

 �commands.Add(new GameplayInputCommand.

PlayerShoots());

 }

 return commands;

 }

}

The preceding mapper is where we take user input from MonoGame,

and for each input that we care about, we create a command that we add

to a list. When the gameplay state class receives these commands, it will be

able to execute on each one and manipulate the game state accordingly.

We now need to inject our mapper and commands into the input

manager. Let’s start by adding a reference to the input manager in the

BaseGameState class

protected InputManager InputManager {get; set;}

Chapter 6 Input

115

and initialize it in the constructor (here is where we get the viewport

dimensions that we discussed higher up):

protected abstract void SetInputManager();

publ�ic void Initialize(ContentManager contentMng, int

viewportWidth, int viewportHeight)

{

 _contentManager = contentMng;

 _viewportHeight = viewportHeight;

 _viewportWidth = viewportWidth;

 SetInputManager();

}

Here the intention is for our game state classes that inherit this base

class to implement the SetInputManager() function. The GameplayState

class does it like this:

protected override void SetInputManager()

{

 InputManager = new InputManager(new GameplayInputMapper());

}

We can see now how the GameplayState class creates a custom-made

input manager that will use our own input mapper, which happens to

return gameplay commands that we can respond to. The SplashState class

also creates its own input manager and has its own set of commands it

responds to, which is the GameSelect command that triggers when the

player presses the Enter key.

Chapter 6 Input

116

All we have left to do now is to respond to our game commands. Let’s

rewrite the GameplayState class’s HandleInput() function.

public override void HandleInput()

{

 InputManager.GetCommands(cmd =>

 {

 if (cmd is GameplayInputCommand.GameExit)

 {

 NotifyEvent(Events.GAME_QUIT);

 }

 if (cmd is GameplayInputCommand.PlayerMoveLeft)

 {

 _playerSprite.MoveLeft();

 }

 if (cmd is GameplayInputCommand.PlayerMoveRight)

 {

 _playerSprite.MoveRight();

 }

 });

}

Try it out! You should see a scrolling background and have the ability

to move the fighter to the left and to the right… even offscreen! Wait, this is

not supposed to happen. We need to keep our player within the viewport!

Let’s add a function to block the player from going offscreen:

private void KeepPlayerInBounds()

{

 if (_playerSprite.Position.X < 0)

 {

Chapter 6 Input

117

 �_playerSprite.Position = new Vector2(0, _playerSprite.

Position.Y);

 }

 �if (_playerSprite.Position.X > _viewportWidth -

_playerSprite.Width)

 {

 �_playerSprite.Position = new Vector2(_viewportWidth -

_playerSprite.Width, �_playerSprite.Position.Y);

 }

 if (_playerSprite.Position.Y < 0)

 {

 �_playerSprite.Position = new Vector2(_playerSprite.

Position.X, 0);

 }

 �if (_playerSprite.Position.Y > _viewportHeight -

_playerSprite.Height)

 {

 �_playerSprite.Position = new Vector2(_playerSprite.

Position.X, _viewportHeight - _playerSprite.Height);

 �

 }

}

Here we check the position of the player object and reset it if it ever

gets out of bounds. If the player moves too far to the left, its Position.X will

become lower than zero, so we just readjust it to zero. If it moves too far

to the right, the sprite will start going offscreen when its Position.X value

becomes bigger than the width of the viewport minus the width of the

Chapter 6 Input

118

sprite. In that case we reset that position as well. We also spend some time

making sure the player cannot go up or down beyond the screen because

we envision that we may want to start moving the aircraft up and down

when we start adding enemies to the game.

Now let’s call our function after the player moves:

_playerSprite.MoveLeft();

KeepPlayerInBounds();

and

_playerSprite.MoveRight();

KeepPlayerInBounds();

�Shooting Bullets
You may have noticed in the commands we looked at so far that there was a

PlayerShoots command. Indeed, our fighter would not be very interesting if

it was only able to move left and right. So, let’s shoot some bullets!

We have added a bullet sprite to the game pipeline. You can find it

here: https://github.com/Apress/monogame-mastery/blob/master/

chapter-06/assets/png/bullet.png.

Follow the steps described in previous chapters to add the bullet to the

game pipeline and create a new BulletSprite class with a function allowing

the bullet to move up to the top of the screen.

public class BulletSprite : BaseGameObject

{

 private const float BULLET_SPEED = 10.0f;

 public BulletSprite(Texture2D texture)

 {

 _texture = texture;

 }

Chapter 6 Input

https://github.com/Apress/monogame-mastery/blob/master/chapter-06/assets/png/bullet.png
https://github.com/Apress/monogame-mastery/blob/master/chapter-06/assets/png/bullet.png

119

 public void MoveUp()

 {

 �Posi�tion = new Vector2(Position.X, Position.Y -

BULLET_SPEED);

 }

}

Now we need to prepare the bullet objects and shoot them when

the player hits the space bar. We are going to update the LoadContent()

function in the GameplayState class to load the texture, but we won’t

create the game object immediately. Instead, we’ll add them to the game

only when the player shoots them.

private const string BulletTexture = "bullet";

private Texture2D _bulletTexture;

private List<BulletSprite> _bulletList;

public override void LoadContent()

{

 // The rest of the code is omitted for brevity

 _bulletTexture = LoadTexture(BulletTexture);

 _bulletList = new List<BulletSprite>();

}

We are adding a list of bullets here for the purpose of tracking all the

bullets that are going to fill the screen. We’ll want eventually to see if a

single bullet has hit an enemy so we need a way to inspect all our bullets

in an easy way. The list fits that purpose. When bullets are created, we will

add them to the list of game objects (so they get rendered by the game

engine) and to our list of bullets.

Chapter 6 Input

120

We also need to track the game time because we don’t want the player

to be able to hold the spacebar down and fire an infinite stream of bullets.

We want the game to be a little bit difficult and an easy way to do this is to

slow down the rate of bullets to say… 5 per second? Here is how it’s going

to work: when the player shoots a volley of bullets, we’ll note that the

player is currently shooting and remember the current game time. If the

player shoots again by keeping the spacebar down or by hitting it again too

quickly, we will prevent the player from shooting if there was 0.2 seconds

that elapsed since the last successful firing of bullets. So, let’s update the

code to keep track of the game time:

private bool _isShooting;

private TimeSpan _lastShotAt;

public override void HandleInput(GameTime gameTime)

{

 // ...

 if (cmd is GameplayInputCommand.PlayerShoots)

 {

 Shoot(gameTime);

 }

}

private void Shoot(GameTime gameTime)

{

 if (!_isShooting)

 {

 CreateBullets();

 _isShooting = true;

 _lastShotAt = gameTime.TotalGameTime;

 }

}

Chapter 6 Input

121

private void CreateBullets()

{

 var bulletSpriteLeft = new BulletSprite(_bulletTexture);

 var bulletSpriteRight = new BulletSprite(_bulletTexture);

 // �Position bullets around the fighter's nose when they get

 // fired

 var bulletY = _playerSprite.Position.Y + 30;

 �var �bulletLeftX = _playerSprite.Position.X +

_playerSprite.Width / 2 - 40;

 �var �bulletRightX = _playerSprite.Position.X +

_playerSprite.Width / 2 + 10;

 �bulletSpriteLeft.Position = new Vector2(bulletLeftX, bulletY);

 �bull�etSpriteRight.Position = new Vector2(bulletRightX,

bulletY);

 _bulletList.Add(bulletSpriteLeft);

 _bulletList.Add(bulletSpriteRight);

 AddGameObject(bulletSpriteLeft);

 AddGameObject(bulletSpriteRight);

}

Now we need to make our bullets move up on their own. We’ll do that

by adding an Update() function that will get called from the main game

loop. Let’s add it in our base class first:

public abstract class BaseGameState

{

 public virtual void Update(GameTime gameTime) { }

}

Chapter 6 Input

122

Add this line to the MainGame’s Update() function to call our current

state class’s Update() function:

_currentGameState.Update(gameTime);

Finally, let’s implement the Update() function in our GameplayState

class to make all the bullets in our bullet list move up:

public override void Update(GameTime gameTime)

{

 foreach (var bullet in _bulletList)

 {

 bullet.MoveUp();

 }

 // �Can't shoot more than every 0.2 seconds. If it's been

 // �longer, allow shooting again

 if (_lastShotAt != null &&

 �game�Time.TotalGameTime - _lastShotAt >

TimeSpan.FromSeconds(0.2))

 {

 _isShooting = false;

 }

}

Writing games is a lot of fun, but eventually there are a lot of tedious

details that need to be taken care of. The code we have looked at here

creates a lot of bullets that fly up the screen. The only problem is that

once the bullets are offscreen, they are still being tracked and their

position keeps moving up. Those bullets take up a little bit of memory,

and even though computers are fast, iterating through our list of bullets

dozens of times per second to update their position will eventually start

Chapter 6 Input

123

slowing down the game. To prevent that from happening, we need to

clean up bullets from the game after they have disappeared from the

screen. After moving our bullets up, let’s clean them up, in the same

Update() function:

// Get rid of bullets that have gone out of view

var newBulletList = new List<BulletSprite>();

foreach (var bullet in _bulletList)

{

 var bulletStillOnScreen = bullet.Position.Y > -30;

 if (bulletStillOnScreen)

 {

 newBulletList.Add(bullet);

 }

 else

 {

 RemoveGameObject(bullet);

 }

}

 _bulletList = newBulletList;

�Summary
We did a lot of work in this chapter and our game is starting to look like

a real game! We added a scrolling background after investigating how

other games do the same thing. We also added a using input manager

that is generic and reusable by simply creating lists of game commands

and mapping user input to those commands. We also got a small glimpse

of memory management and how we need to keep the game running

smoothly.

Chapter 6 Input

124

Find the final version of the game code for this chapter here: https://

github.com/Apress/monogame-mastery/tree/master/chapter-06/end.

Feel free to experiment. In the next chapter, we will add a music

background track and sound effects when the player shoots bullets and

when bullets hit enemies. Oh, that probably means we’ll start adding

enemies to our game too!

Chapter 6 Input

https://github.com/Apress/monogame-mastery/tree/master/chapter-06/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-06/end

125© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_7

CHAPTER 7

Audio
A game without audio is like a salad without any dressing. It is still edible,

but it will not be very enjoyable. In just the same way, while our game

would be playable without music and sound effects, it will be hard for

players to get immersed into it and be emotionally involved. Think of all

the epic boss fights that exist in most video games. Besides the amazing

boss mechanics, they all had a soundtrack that fired up the fight or flight

instincts of the player.

Music in a game exists to create emotions and set the tone of a

particular level or scenario, just like in movies, while sound effects are

there to add a bit of realism to the game without being overbearing.

In this chapter, you will

•	 Refactor the engine to make it more reusable

•	 Create a sound manager and add it to the engine

•	 Add tracks and sound effect to the sound manager

•	 Trigger sound effects via game events

�Refactoring the Engine
When we started out writing the code for this game, we were not too

focused on making the engine code easy to reuse in future projects. While

there has been a separation of concern and we clearly discussed which

part of the code would be part of the engine code and which part would be

https://doi.org/10.1007/978-1-4842-6309-9_7#DOI

126

game specific, our files have all been collocated and mingled together. If

we wanted to take the engine code from the beginning of this chapter and

reuse it in another project, we would have to pick and choose which files

need to be copied into the new project and that process isn’t ideal.

The best-case scenario would be to have all our engine logic

completely separated into a library we can import in other projects.

Our game engine is not complete yet so we can delay this step a little

longer until we are done writing its code. One thing we can do right now,

however, is to start organizing the engine logic to separate it further from

our game code.

Let’s take a look at Figure 7-1 and the current organization of our

code. The code we will look at and modify in this chapter is located here

for those who would like to follow along: https://github.com/Apress/

monogame-mastery/tree/master/chapter-07/start.

Chapter 7 Audio

https://github.com/Apress/monogame-mastery/tree/master/chapter-07/start
https://github.com/Apress/monogame-mastery/tree/master/chapter-07/start

127

So far most of our engine code has been base classes that game code

can inherit and implement. However, this changed when we added the

input manager in Chapter 6. As we prepare to add a sound manager, we

need to think about how we can reorganize the code. One of our issues

Figure 7-1.  Code organization at the beginning of this chapter

Chapter 7 Audio

128

is that MainGame.cs contains very generic logic that could be part of the

game engine if it were not for these lines of code:

protected override void LoadContent()

{

 �// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 SwitchGameState(new SplashState());

}

Everything in this file references engine code or MonoGame code,

except for the LoadContent() function, which needs to know which

GameState class it needs to run first. One problem is that it is currently

hardwired to start the SplashState, which is very much a game-specific

module. If you were creating another game using the same engine,

chances are the SplashState would be very different.

One tenet of good software design is to have low coupling and high

cohesion between code modules. There are many things that can increase

coupling between classes and files. For example, in Figure 7-2 we have an

object A accessing directly the internal variables of another object B that

would instantly create a dependency of the calling object A on how the

internal class B is implementing, making it harder in the future to change

class B without causing issues in class A.

Chapter 7 Audio

129

There will always be coupling between modules, but the goal should

be to reduce the coupling between modules that belong to different

areas of concern. There are fewer problems with game engine code being

coupled to itself than if it was coupled to the game directly. This is where

cohesion comes into the picture. Code with high cohesion within its

modules and low coupling to other modules will be easier to maintain and

reuse.

Let’s make MainGame more generic. Instead of hard-coding our

first GameState class to start with in the LoadContent() method, we

will provide the class with this information via a constructor parameter.

Similarly, instead of having constants within the class for the width, height,

and aspect ratios of the screen resolution, we’ll pass in the desired width

height to the class and calculate the aspect ratio inside the constructor.

private int _DesignedResolutinWidth;

private int _DesignedResolutionHeight;

private float _designedResolutionAspectRatio;

private BaseGameState _firstGameState;

Figure 7-2.  Objects of class A depend on internal details of class B

Chapter 7 Audio

130

public MainGame(int width, int height, BaseGameState

firstGameState)

{

 Content.RootDirectory = "Content";

 graphics = new GraphicsDeviceManager(this)

 {

 PreferredBackBufferWidth = width,

 PreferredBackBufferHeight = height,

 IsFullScreen = false

 };

 _firstGameState = firstGameState;

 _DesignedResolutinWidth = width;

 _DesignedResolutionHeight = height;

 _designedResolutionAspectRatio = width / (float)height;

}

Now LoadContent() can use the _firstGameState variable and start the

game in that state when executed:

protected override void LoadContent()

{

 �// Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 SwitchGameState(_firstGameState);

}

With these changes, our MainGame.cs file now only references engine

code and MonoGame code and is ready to be moved into the engine!

The responsibility to set the resolution and initial state of the game

has been moved to Program.cs file, so we can set the WIDTH and HEIGHT

Chapter 7 Audio

131

values here and create our MainGame instance with those constants and

an instance of the SplashState class:

private const int WIDTH = 1280;

private const int HEIGHT = 720;

static void Main()

{

 us�ing (var game = new MainGame(WIDTH, HEIGHT, new

SplashState()))

 game.Run();

}

�Code Organization
There are different schools of thought when organizing code. There are

a lot of projects that follow established patterns like Model/View/View-

Model (MVVM) or Model/View/Controller (MVC) and group all the

controllers in a directory called “controllers,” models in a directory called

“models,” and so on. This increases the ease of finding code in the project.

If a programmer is looking for a specific View, they will simply have to

navigate to the View directory and look there.

Another school of thought is to organize the code by feature, with

every code file related to a feature, like audio or input, to be located within

the same directory. This is the school of thought we will use here as we

reorganize the code. All audio, input, game state, and game object code

will be colocated together. At the same time, game-specific code will be

organized by which game state it belongs to. Our command mappers,

game events, and game commands will all be colocated by game state.

In Figure 7-3, we see that the engine code has been moved to an

Engine directory, while game-specific code has been organized by game

state. We are now ready to add audio to our game in the SoundManager.cs

file, located in the Sound directory of the engine.

Chapter 7 Audio

132

Figure 7-3.  The resulting code tree after our reorganization

Chapter 7 Audio

133

�Audio
MonoGame provides us with a simple and cross-platform API that

supports mp3, ogg, and wav file formats out of the box in the content

pipeline tool. We added a few more assets in the assets directory of

Chapter 7. Here are the wav files for the background soundtrack that game

will play:

•	 FutureAmbient _1.wav

•	 FutureAmbient _2.wav

•	 FutureAmbient _3.wav

•	 FutureAmbient _4.wav

We also added a bullet sound effect we will use when the player is

shooting and an empty wav file to use when the engine cannot load a

sound file:

•	 bullet.wav

•	 empty.wav

Open up the Content Pipeline Tool and add all six .wav files to the list

of assets, as seen in Figure 7-4. We decided to rename the bullet and empty

sounds in the pipeline to bulletSound and emptySound to make it easier to

differentiate from the images of the same name.

Chapter 7 Audio

134

Make sure the sounds for our new wav files use the Wav Importer

and are set up as Sound Effects. In the properties box at the bottom

of the pipeline tool, set the Importer to “Wav Importer – MonoGame”

using the drop-down selection, and set the Processor to “Sound Effect –

MonoGame” in the same way. The pipeline tool also offers importers

for mp3 and ogg files, but be careful around using mp3 files since it is a

proprietary format and if your game is popular you might be asked to

pay royalties. The pipeline tool also offers a Sound processor, but we will

discuss shortly why we chose not to use it for our background music.

Figure 7-4.  Adding sounds to the pipeline tool

Chapter 7 Audio

135

�Playing a Soundtrack
Unless we are creating a game scene without any background music

for the effect that it has on the player, we will want to have some kind

of soundtrack. We could compose our own soundtrack, we could hire a

composer to create some tracks for us, we could buy songs that already

exists, or we could find royalty-free music that we can legally use and

redistribute. Should you decide to use music or sounds with a Creative

Commons (CC) license, please double check what rights you have since

there are a few variations available to creators. This last option is appealing

in our case since we are building a simple game for demonstration

purposes. However, one downside to doing that is that we risk having

the same music as another game and that would be embarrassing. We

recommend a visit to the Free Music Archive on the Internet, located here:

www.freemusicarchive.org/.

We have already selected some .wav files that we want to use in our

game, however, and placed them in this chapter’s assets\music directory.

There are two ways to play background music using MonoGame: the

MediaPlayer or using sound effects. The media player was added as a way

for Xbox players to add their own background music to a game as they

played, and it works great for that purpose. It evens streams the song from

the disk as it plays it instead of loading the entire file in memory. To use

the media player, we would need to add our tracks to the content pipeline

tool and select a Sound processor. The class itself is very straightforward to

use. Adding this function in the Base game state classes would let the game

load a song:

using Microsoft.Xna.Framework.Media;

protected Song LoadContent(string songName)

{

 return _contentManager.Load<Song>(songName);

}

Chapter 7 Audio

http://www.freemusicarchive.org/

136

And we could then play the song like this in our game state classes:

var song = LoadSong("SomeSoundtrack");

MediaPlayer.Play(song);

The media player allows game developers to queue songs, play the

next or previous song, pause and resume songs, and adjust the volume.

It behaves just like… a media player!

Unfortunately, however, the media player suffers from one major

downside: it adds a slight, almost half-second silence between songs,

which eliminates the possibility to loop over short song samples to create

a seemingly endless track. To alleviate this, we could craft a very long song

that would eventually loop. The slight silence would still be noticeable, but

it would not happen very often, which makes it less of a problem. Still, it

would make our game feel less polished.

Our game will be using short sound samples that we will loop over.

We have four such samples in our assets directory and they can be mixed

together in any order. When added to the content pipeline tool, they must

use a SoundEffect processor, like in Figure 7-4.

Let’s add a method in our BaseGameState class to allow us to load

those samples:

protected SoundEffect LoadSound(string soundName)

{

 return _contentManager.Load<SoundEffect>(soundName);

}

The return sound effect can then be used like this in the game states:

var sound = LoadSound("someSoundEffect");

sound.CreateInstance();

sound.Play();

The sound will then be audible during the game. But it will not repeat,

which is what we want for sound effects, like shooting bullets, but not for

Chapter 7 Audio

137

our backing tracks. Notice as well that we are calling CreateInstance()

on the loaded sound effect objects, which returns a SoundEffectInstance

object that gives use more control over the sound. A SoundEffect object

can be played and that is pretty much it, but a SoundEffectInstance object

can be played, paused, resumed, and looped. We could also change the

volume, panning, and pitch of a sound effect as it plays.

To loop over our sound sample, we just need to set the IsLooped

property to true:

sound.IsLooped = true;

sound.Play();

 and will play forever until it is stopped with

sound.Stop();

However, we do not want to keep playing the same audio sample

repeatedly, which would make our game a bit monotonic. We would like

instead to rotate over our samples and play the next one whenever the

current one stops playing. Thankfully, the SoundEffectInstance class offers

us the ability to monitor the state of a sample by reading the State property

of its objects, which can have three different values: Paused, Playing, or

Stopped.

Our strategy to rotate over song samples can now take shape. When

we initialize a game state, we will load our soundtrack samples and add

reference them in a List<SoundEffectInstance>. When the Update()

method is called by the MainGame class, we will start playing the first

sample if no music is currently playing. Otherwise, if the current track is

stopped, we will move to the next track and start playing it. This process

will repeat throughout the duration of our current game state.

We also need to keep in mind that we are creating a game engine, so

the responsibility to keep track of our samples and play them should be in

the engine itself. This is very basic functionality for a game and we would

very much like to reuse that code in our future projects.

Chapter 7 Audio

138

Let’s create a SoundManager class in the Engine\Sound directory:

public class SoundManager

{

 private int _soundtrackIndex = -1;

 private List<SoundEffectInstance> _soundtracks =

 new List<SoundEffectInstance>();

 public void SetSoundtrack(List<SoundEffectInstance> tracks)

 {

 _soundtracks = tracks;

 _soundtrackIndex = _soundtracks.Count - 1;

 }

 public void PlaySoundtrack()

 {

 var nbTracks = _soundtracks.Count;

 if (nbTracks <= 0)

 {

 return;

 }

 var currentTrack = _soundtracks[_soundtrackIndex];

 �var �nextTrack = _soundtracks[(_soundtrackIndex + 1) %

nbTracks];

 if (currentTrack.State == SoundState.Stopped)

 {

 nextTrack.Play();

 _soundtrackIndex++;

 if (_soundtrackIndex >= _soundtracks.Count)

 {

 _soundtrackIndex = 0;

 }

Chapter 7 Audio

139

 }

 }

}

When we instantiate the sound manager, we need to give it a list of

tracks that it will rotate over. It then sets the _soundtrackIndex to the last

item in the list because when we tell it to play our tracks it will first move

forward in the list and that would cause it to loop back over to the first

SoundEffectInstance of our list.

Calling PlaySoundTrack() is where the magic happens. First, if there

are not tracks in our playlist, then there is nothing to do and the method

exists. Otherwise, we look at the current track and find our next track in the

list. If the current track is stopped, we play the next track and increment

our index. Finally, if the index has moved off the list, we reset it to the first

element.

Now we can modify our GamePlayState class to use the sound

manager. First in the BaseGameClass, add the following protected variable

so all our game state classes have access to the sound manager:

protected SoundManager _soundManager = new SoundManager();

Then, in the LoadContent() method, add the following lines at the end:

var track1 = LoadSound("FutureAmbient_1").CreateInstance();

var track2 = LoadSound("FutureAmbient_2").CreateInstance();

_soundManager.SetSoundtrack(new List<SoundEffectInstance>() {

track1, track2 });

Since all our game states will try to loop on the music playlist, we

should ideally handle the call to the sound manager to loop to the next

song in the BaseGameState class every time the Update() function is

called. But there is a catch… The Update() function in the base class

is virtual, which means that it is only the Update() function in the

child classes like GameplayState that gets called. We could add a base.

Chapter 7 Audio

140

Update(gameTime) line in all our child state classes, but that defeats the

purpose of having an engine and it is bad design as well. Our child classes

would need to be aware that they need to call the base class’s method

of the same name if they want the music to keep playing. Child classes

should not know that sort of implementation details, so we need a different

strategy. Instead, we create a new abstract method on BaseGameState that

will be called by Update():

public abstract void UpdateGameState(GameTime gameTime);

public void Update(GameTime gameTime)

{

 UpdateGameState(gameTime);

 _soundManager.PlaySoundtrack();

}

Update is still called constantly by MainGame.cs. It now also interacts

with the sound manager to keep that background music playing, and it

asks each child class like GameplayState and SplashState to implement

their own UpdateGameState functions so they have a chance to update the

game state as time goes on.

Another neat feature of this design is that each game state class can

have their own soundtracks and their own rotation over the loops. If we

decide to add a boss battle, it would be a new game state and you can bet

that its soundtrack would be… epic!

�Sound Effects
Now that we have some music playing in the background, it is time to add

sound effects when our fighter shoots bullets.

Sound effects have the same copyright restrictions that soundtracks

have, so we also need to be careful to either find sound recordings that are

we are free to use or record our own. In this case, we decided to download

a bullet sound from http://freesound.org, a website that specializes in…

Chapter 7 Audio

http://freesound.org

141

well, free sounds. The bullet wav file that we added to the pipeline tool

higher up uses the Creative Commons 0 license, which allows us

to do whatever we want with the sound. We have also edited the sound a

little to shorten it. You can do this sort of thing using Audacity

(www.audacityteam.org/), a free open source audio editor.

Back in our project, since we already have a sound manager, we are

going to update it to handle sound effects by firing game events that it

can respond to. When a game state is loaded up, it will have to load all

the sounds that will be needed into a sound bank and associate each

sound with an event type. The game state will then listen for game events

and forward them to the sound manager, who will be able to respond by

playing the appropriate sound sample. We are going to need some game

events to respond to, so let’s start here.

We already have an enum called Events that we could use. The game

already uses it and fires a GAME_QUIT event when the player presses the

ESC key, but there is one problem with it. If we add another element to this

enum called PLAYER_SHOOTS, then the enum becomes game specific

and cannot be used in an engine because our next game might not involve

a player shooting anything. It could be a chess game for all we know. So, if

this enum cannot be used in an engine, then our sound manager, which

is part of the engine, is not allowed to use it. Once again, we have some

refactoring to do!

In the engine, add a BaseGameStateEvent class in the Engine\States

directory:

public class BaseGameStateEvent

{

 public class GameQuit : BaseGameStateEvent { }

}

This will be the base class for all our game state events and we are

going to follow the same pattern we used for our Input Commands, where

all the public classes explicitly belong to a game state as part of their type.

Chapter 7 Audio

http://www.audacityteam.org/

142

Here the only common event we can think of that will be part of every

future game we create is the event that will let someone quit the game.

We can now get rid of the old Events enum and update these lines of

HandleInput() function in GameplayState

if (cmd is GameplayInputCommand.GameExit)

{

 NotifyEvent(Events.GAME_QUIT);

}

with this

if (cmd is GameplayInputCommand.GameExit)

{

 NotifyEvent(new BaseGameStateEvent.GameQuit());

}

and change the NotifyEvent() method and all the methods that it calls to

take our new BaseGameStateEvent as a parameter instead of the Events

enum.

Now we are ready to update our sound manager. Open up the

SoundManager class and add the following code to it. First, we’ll need a

dictionary to map event types to sound effects:

private Dictionary<Type, SoundEffect> _soundBank = new

Dictionary<Type, SoundEffect>();

We also need a method to allow a game state to load up sounds into

the sound bank:

public void RegisterSound(BaseGameStateEvent gameEvent,

SoundEffect sound)

{

 _soundBank.Add(gameEvent.GetType(), sound);

}

Chapter 7 Audio

143

Finally, we are going to a method to allow a game state to trigger a

sound to be played, based on a game event:

public void OnNotify(BaseGameStateEvent gameEvent)

{

 if (_soundBank.ContainsKey(gameEvent.GetType()))

 {

 var sound = _soundBank[gameEvent.GetType()];

 sound.Play();

 }

}

Now let’s create a couple of events for our GameplayState. Create a

new class in the States\Gameplay directory called GamePlayEvents:

public class GameplayEvents : BaseGameStateEvent

{

 public class PlayerShoots : GameplayEvents { }

}

And update the GameplayState class to fire up this event when

the player presses the spacebar to shoot bullets. In the Shoot() private

method, inside the block of code that creates the bullet game objects, call

NotifyEvent():

if (!_isShooting)

{

 CreateBullets();

 _isShooting = true;

 _lastShotAt = gameTime.TotalGameTime;

 NotifyEvent(new GameplayEvents.PlayerShoots());

}

Chapter 7 Audio

144

Update NotifyEvent to call the sound manager:

protected void NotifyEvent(BaseGameStateEvent gameEvent)

{

 OnEventNotification?.Invoke(this, gameEvent);

 foreach (var gameObject in _gameObjects)

 {

 gameObject.OnNotify(gameEvent);

 }

 _soundManager.OnNotify(gameEvent);

}

Finally, update the gameplay state’s LoadContent() method to load the

bullet sound effect and add it to the sound bank:

public override void LoadContent()

{

 // Code omitted for brevity

 var bulletSound = LoadSound("bulletSound");

 �_soundManager.RegisterSound(new GameplayEvents.

PlayerShoots(), bulletSound);

}

Notice that we are not calling CreateInstance() on this sound effect

after loading it because we do not really need to pause or stop the sound

effects at this time.

Chapter 7 Audio

145

�Summary
And there we have it. There is a looping soundtrack in our game that is

unique to each game state and each soundtrack can be composed of

many sound samples ordered at the desire of the game developer. We also

added a sound manager to our game engine and hooked up sound effects

to game events. Finally, we reorganized quite a bit of code and refactored

logic that didn’t make as much sense as it did when we began, which is a

fact of life for software developers.

The final version of the code for this chapter can be found here:

https://github.com/Apress/monogame-mastery/tree/master/

chapter-07/end.

In the next chapter, we will add particle effects to the game. Our fighter

jet will be able to shoot missiles that leave a trail behind them.

Chapter 7 Audio

https://github.com/Apress/monogame-mastery/tree/master/chapter-07/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-07/end

147© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_8

CHAPTER 8

Particles
You would be hard pressed to find a game without particles these days.

Even simple 2D games like ours now use particles to embellish the visual

effects seen on the screen – anything from a torch flickering in a hallway

to a water fountain in the middle of a stunning garden. A developer could

even create a flock of birds or a school of fish using such systems, with each

particle being a bird or fish.

The idea behind particle engines is to generate hundreds or even

thousands of particle game objects that have certain attributes like color,

opacity, or scale and have these attributes change over the lifetime of

the particle. Most often, a single particle will only live for a few seconds

and slowly fade out of view as its opacity diminishes to the point where

it is completely transparent and invisible. Every time the game’s update

function is called, a few dozen particles are created at a certain location on

the screen and are given a direction to fly toward at a certain velocity. Just

like other particle attributes, that direction can change over time, taking

the particle toward an ever-evolving path. For example, firework sparks

would be pulled down by gravity, even when they are shot out from the

center of the explosion toward the sky.

Look at Figure 8-1. Particles are emitted from the bright white center of

the fire in a circular fashion before being slowly taken by an upward force.

Each particle is a semitranslucent circle that starts white and becomes

https://doi.org/10.1007/978-1-4842-6309-9_8#DOI

148

yellow and then red as it moves away from the center. Particles also have

varying sizes, and the further up they go, the more transparent they

become.1

In this chapter, you will

•	 Learn about particles

•	 Experiment with an online particle system editor

•	 Build a particle system for our game

•	 Add missiles with a smoke trail to the game

1�Image source: https://en.wikipedia.org/wiki/Particle_system#/media/
File:Particle_sys_fire.jpg

Figure 8-1.  Fire using particles

Chapter 8 Particles

https://en.wikipedia.org/wiki/Particle_system#/media/File:Particle_sys_fire.jpg
https://en.wikipedia.org/wiki/Particle_system#/media/File:Particle_sys_fire.jpg

149

�Anatomy of a Particle
What is a particle? It is a game object that will be rendered by our game

engine, just like our player sprite or the scrolling background. It has a

location on the screen and a texture. However, a single particle does not

make a huge impact on the visual aspect of the game. Its power comes

from the concentration and blending of particles on the screen. A particle

will always be moving according to the principles set by its emitter. In

Figure 8-2, we can see a particle being emitted with a direction and

velocity, while being subjected to a gravitational force, which is not always

pointing down. The dotted line represents the particle’s trajectory over

its lifespan and how the particle fades over time. This single particle p is

represented as it ages through ages 1 to 4. It is also worth noting that the

size of the particle increases as well, and it seems to be accelerating.

Figure 8-2.  The changes of a particle as it ages

Chapter 8 Particles

150

As the particle ages, its new position is calculated by adding the

direction vector to the gravity vector and multiplying the result by the

current particle velocity. This will result in a vector that, when added to

the particle’s current position, will give us the next location of the particle.

Then, the current velocity of the particle is increased by multiplying it by

an acceleration value, which we will discuss further down.

�Learning with an Online Particle Editor
Sometimes the best way to learn is to experiment. There are a few online

particle editors on the Internet that can help us understand what we will

need to work into our game. The interesting thing about editors is that they

are all slightly different in the way they generate particles. Figure 8-3 shows

us an online editor with many different parameters and sliders used to

manipulate particle attributes.

Chapter 8 Particles

151

The first attribute we can modify under the “particles” section is the

number of particles we want in our system. The more particles we have,

the more concentrated they will be, and we eventually start losing the

individual particles and only see a big blob of light that changes color. Let’s

Figure 8-3.  A WebGL online particle editor (https://
webglsamples.org/particleeditor/particleeditor.html)

Chapter 8 Particles

https://webglsamples.org/particleeditor/particleeditor.html
https://webglsamples.org/particleeditor/particleeditor.html

152

look at a few of the other important attributes that we’ll implement in our

engine later:

•	 Lifetime: It is important to codify how long we want our

particles to live so old particles can disappear for the

screen and make way for new ones.

•	 Start size: The starting size of the particle when it is

created. The size will change later as the particle ages.

•	 End size: The final size of the particle.

•	 Position range for X, Y, and Z axis: The position of the

particles when they are created.

•	 Velocity for X, Y, and Z axis: The initial speed of the

particles.

•	 Acceleration for X, Y, and Z axis: How the particles

accelerate along all three axes. With a value of 0,

particles should maintain their initial velocity.

•	 Opacity: As particles age, they can fade or become

more opaque.

Some of the attributes in this editor are ranges with a minimum

and a maximum value. When a particle is emitted and comes to life, it

will be given a random value within the defined range. That little bit of

randomness helps create something that looks more natural.

Try to tweak all those parameters and make this particle system look

like a flame.

�Different Shapes of Particle Emitters
The online particle editor that we looked at did not have an option to

change the shape that the particles create. Instead, it generates particle on

the floor plane around its origin and lets the particles be taken by upward

Chapter 8 Particles

153

and side forces. If we wanted to generate fireworks or a ring of fire, we

would need something else. The particle system that we will build will take

into consideration different shapes when creating particles.

�Adding a Particle System to Our Game
The first use of a particle system in our game will be to generate a trail of

smoke at the end of missiles that the player can shoot. Figure 8-4 shows us

what this will look like.

In future chapters, we will use our particle system to add sparks when

an enemy is hit and explosions when various aircrafts, including our own

player, get destroyed. Since explosions, sparks, and trails of smoke all take

various kinds of shapes, we need to build something that can handle all

those scenarios.

One thing we need to be aware of when building a particle system is

that the sheer amount of game objects that can be added to the game very

quickly can be enough to cause performance issues. To mitigate potential

Figure 8-4.  Player shooting a missile

Chapter 8 Particles

154

issues, we will limit the number of particles that will be emitted. Then, as

particles reach their maximum lifespan or as they disappear offscreen,

we will not destroy them. Instead, we will deactivate them to prevent

them from being rendered and add them to a list of deactivated particles.

When new particles are needed by the emitter, it will be able to reuse

existing, deactivated particles and reactivate them with new reinitialized

parameters. This avoids the extra cost of creating objects within the game.

Let’s start by taking a look at what classes we will add to our game

engine to support generating thousands of game objects that each has

their own rules for moving around the screen.

�Particle
We cannot have a particle system without particles! This is going to be

a simple class that limits itself to holding a few of the parameters we

examined earlier and it also has the responsibility of updating itself every

time the game calls the Update() method. Here are the attributes the

particle class keeps track of:

•	 Lifespan: A particle has a lifespan, which will be an

integer and increase by one every time the Update()

function is called. Since MonoGame calls Update()

60 times per seconds, we can easily calculate how long

we want particles to last for. For example, if we wanted

a particle to last 3 seconds, we would set its lifespan

to 180.

•	 Direction: A particle has an initial direction that was

set by the emitter. As it ages, it will tend to move in

that direction, but will also be influenced by its gravity,

velocity, and acceleration.

Chapter 8 Particles

155

•	 Velocity: This attribute is the initial speed at which the

particle is “thrown” out of the emitter. This velocity

will change over time. At each update, this value will

change by multiplying the current velocity to the

acceleration attribute.

•	 Gravity: Gravity is an external force that changes the

direction of the particle over time. If this force was

pointing downward, then it would act as the real-life

gravity that we are used to. But in particle systems,

gravity can point in any direction and can be used to

cause particles to float up toward the sky, or to simulate

a wind draft when gravity suddenly goes sideways.

•	 Acceleration: This represents the acceleration of

the particle as it ages. Because it is multiplied to the

velocity at each update to compute a new velocity, a

value between 0 and 1 will cause the velocity to become

smaller over time, causing the particle to slow down as

it ages. A value greater than 1 will cause the particle to

pick up speed throughout its life.

•	 Rotation: Even though we will write some code to track

a rotation value, we will not use rotation at this time in

our game. We are adding it here because we may need

it in future chapters and the cost of implementing it

is low. Normally, a particle’s sprite can rotate as the

particle ages and this value is used to represent the

current particle rotational angle.

•	 Age: The age of the particle, in number of frames.

We increment this number every time the Update()

method is called. When working with MonoGame, this

method is called 60 times per second.

Chapter 8 Particles

156

•	 Position: The current position of our particle in the

game. It determines where the particle will be drawn

on the screen.

•	 Opacity: Is our particle transparent, opaque, or

somewhere in between? This attribute is a value

between 0 and 1, with 0 indicating that the particle

is fully transparent, while a value of 1 means that our

particle should be drawn completely opaque.

•	 OpacityFadingRate: Like acceleration, this attribute

determines how quickly the opacity will change as the

particle ages. A value between 0 and 1 will cause the

opacity to slowly diminish over time, because it will

be multiplied to the current opacity value. Similarly, a

value above 1 will cause the opacity to increase at each

update.

•	 Scale: Particles can grow or shrink over time and

this attribute is used to track the current scale of the

particle. We will use this to scale down our game

texture to fit our needs. There is no plan in this chapter

to change the scale as the particle ages.

Let’s take a look at our particle class:

public class Particle

{

 public Vector2 Position { get; private set; }

 public float Scale { get; private set; }

 public float Opacity { get; private set; }

 private int _lifespan;

 private int _age;

 private Vector2 _direction;

Chapter 8 Particles

157

 private Vector2 _gravity;

 private float _velocity;

 private float _acceleration;

 private float _rotation;

 private float _opacityFadingRate;

 public Particle() { }

 �publ�ic void Activate(int lifespan, Vector2 position,

Vector2 direction,

 Vector2 gravity,

 float velocity, float acceleration,

 �float scale, float rotation, float opacity,

 float opacityFadingRate)

 {

 _lifespan = lifespan;

 _direction = direction;

 _velocity = velocity;

 _gravity = gravity;

 _acceleration = acceleration;

 _rotation = rotation;

 _opacityFadingRate = opacityFadingRate;

 _age = 0;

 Position = position;

 Opacity = opacity;

 Scale = scale;

 }

Chapter 8 Particles

158

 // Returns false if it went past its lifespan

 public bool Update(GameTime gameTime)

 {

 _velocity *= _acceleration;

 _direction += _gravity;

 var positionDelta = _direction * _velocity;

 Position += positionDelta;

 Opacity *= _opacityFadingRate;

 // Returns true if particle can stay alive

 _age++;

 return _age < _lifespan;

 }

}

Of all our attributes, Position, Opacity, and Scale are set as properties

with public getters because the Emitter will be responsible for drawing

them and it will need to access these values.

The Update() method is called 60 times per second and will, at every

call, update the position, opacity, and age of the particle. First, the velocity

is multiplied by the acceleration, either slowing down or speeding up the

particle. Then, as seen in Figure 8-5, a new direction vector of the particle,

d’, is calculated by adding the gravity vector g to the current direction

vector d. d’ becomes the new direction for this particle. Given enough time

passes, the direction will eventually match gravity and point in the same

direction.

Chapter 8 Particles

159

When multiplied by the velocity, the new direction vector grows and

gives us the new particle position once added to the particle’s current

position. Right after this, we tweak the opacity by multiplying it with the

opacityFadingRate, and finally, we increase the age of the particle.

The Update() method will return true if the particle should stay alive

because it hasn’t reached its maximum lifespan yet. Once it returns false,

it will be a signal for the emitter to deactivate it and stop drawing it on the

screen.

�EmitterParticleState
The responsibility of this class is to store all the initial parameters needed

by the emitter to create a new particle. While the particle class itself keeps

track of most of the same attributes as the change, the EmitterParticleState

class is used to store the original values needed to create each new particle.

What is also interesting here is that this class allows for a certain variation

in the values it stores. Lifespan, for example, has a min and max value,

and some attributes like velocity and opacity have associated deviation

attributes that will be used to generate values later.

Figure 8-5.  Adding vectors d and g together creates a new vector d’.

Chapter 8 Particles

160

The attributes this class tracks are

•	 MinLifeSpan

•	 MaxLifeSpan

•	 Velocity

•	 VelocityDeviation

•	 Acceleration

•	 Gravity

•	 Opacity

•	 OpacityDeviation

•	 OpacityFadingRate

•	 Rotation

•	 RotationDeviation

•	 Scale

•	 ScaleDeviation

Each of these attributes is made available to users of the class via

abstract property getters that must be overridden by child classes.

It also has a few utility functions used to generate the initial values that

are needed when creating a particle. Because we want our particles to be

slightly different from each other, we add a randomness element whenever

a value is generated. For example, a new lifespan for a new particle will be

random and fall in between the min and max values defined earlier. In the

same way, the initial velocity of a particle will be random, but between the

velocity minus half the deviation, and the velocity plus half the deviation:

particle velocity = random�(�velocity – deviation / 2,

velocity + deviation / 2)

Chapter 8 Particles

161

The result of doing this is the generated particles that fly out

of the emitter at slightly different speeds, resulting in a particle

engine that appears slightly more natural. Here is the code, with a

RandomNumberGenerator class included for a few helper functions:

public class RandomNumberGenerator

{

 private Random _rnd;

 public RandomNumberGenerator()

 {

 _rnd = new Random();

 }

 public int NextRandom() => _rnd.Next();

 public int NextRandom(int max) => _rnd.Next(max);

 �public int NextRandom(int min, int max) => _rnd.Next(min, max);

 �publ�ic float NextRandom(float max) =>

(float)_rnd.NextDouble() * max;

 �publ�ic float NextRandom(float min, float max) =>

((float)_rnd.NextDouble() * (max - min)) + min;

}

public abstract class EmitterParticleState

{

 �private RandomNumberGenerator _rnd = new

RandomNumberGenerator();

 public abstract int MinLifespan { get; }

 public abstract int MaxLifespan { get; }

 public abstract float Velocity { get; }

 public abstract float VelocityDeviation { get; }

Chapter 8 Particles

162

 public abstract float Acceleration { get; }

 public abstract Vector2 Gravity { get; }

 public abstract float Opacity { get; }

 public abstract float OpacityDeviation { get; }

 public abstract float OpacityFadingRate { get; }

 public abstract float Rotation { get; }

 public abstract float RotationDeviation { get; }

 public abstract float Scale { get; }

 public abstract float ScaleDeviation { get; }

 public int GenerateLifespan()

 {

 return _rnd.NextRandom(MinLifespan, MaxLifespan);

 }

 public float GenerateVelocity()

 {

 return GenerateFloat(Velocity, VelocityDeviation);

 }

 public float GenerateOpacity()

 {

 return GenerateFloat(Opacity, OpacityDeviation);

 }

 public float GenerateRotation()

 {

 return GenerateFloat(Rotation, RotationDeviation);

 }

Chapter 8 Particles

163

 public float GenerateScale()

 {

 return GenerateFloat(Scale, ScaleDeviation);

 }

 �protected float GenerateFloat(float startN, float deviation)

 {

 var halfDeviation = deviation / 2.0f;

 �return _rnd.NextRandom(startN - halfDeviation, startN +

halfDeviation);

 }

}

�IEmitterType
Emitters can come in multiple shapes. Do we want our particles to fly out in

the shape of a ring or a cone, or maybe even a square? We need a way for our

emitters to know where to position the initial particles and what direction

they should start going to. Figure 8-6 illustrates a few types of emitters.

Figure 8-6.  Two different emitter shapes

Chapter 8 Particles

164

This IEmitterType interface is simple and provides two functions to get

a particle position and a particle direction.

public interface IEmitterType

{

 Vector2 GetParticleDirection();

 Vector2 GetParticlePosition(Vector2 emitterPosition);

}

GetParticlePosition() will compute a new particle’s position depending

on the position of the emitter itself. We want new particles to be generated

close to their emitters.

�ConeEmitterType
Our game will create a smoke trail so our game engine will provide us with

an emitter that generates particles in the shape of a cone. The cone will

implement the IEmitterType interface and will have two new attributes:

a direction and a spread, indicating how wide the cone is. Whenever a

particle is generated, the code will position it at the same location as the

emitter’s center and its direction will be randomly generated but will fit

within the spread of the cone.

public class ConeEmitterType : IEmitterType

{

 public Vector2 Direction { get; private set; }

 public float Spread { get; private set; }

 �private RandomNumberGenerator _rnd = new

RandomNumberGenerator();

 public ConeEmitterType(Vector2 direction, float spread)

 {

 Direction = direction;

Chapter 8 Particles

165

 Spread = spread;

 }

 public Vector2 GetParticleDirection()

 {

 if (Direction == null)

 {

 return new Vector2(0, 0);

 }

 �var angle = (float) Math.Atan2(Direction.Y, Direction.X);

 �var �newAngle = _rnd.NextRandom(angle - Spread / 2.0f,

angle + Spread / 2.0f);

 var particleDirection =

 �new �Vector2((float)Math.Cos(newAngle),

(float)Math.Sin(newAngle));

 particleDirection.Normalize();

 return particleDirection;

 }

 public Vector2 GetParticlePosition(Vector2 emitterPosition)

 {

 var x = emitterPosition.X;

 var y = emitterPosition.Y;

 return new Vector2(x, y);

 }

}

Let’s take a deeper look at the GetParticleDirection() function. First, if

the direction of the emitter, provided to the constructor, is null, then the

direction of the particle will be (0, 0), causing it to not move. Otherwise,

Chapter 8 Particles

166

we calculate the angle of the emitter’s direction and create a new angle for

the particle within the provided spread. Armed with the new angle, we can

calculate an X and Y coordinate for a particle direction vector that we then

normalize, which is an operation that changes the length of the vector to

1.0. This is useful because that direction will eventually be multiplied by a

particle’s velocity and we do not want the direction vector to influence how

fast the particle moves.

�Emitter
Finally, we have the emitter itself, the central piece of this whole operation.

The emitter’s responsibility is to emit particles, give them their initial sets

of parameters, render them on the screen, and keep track of active and

inactive particles.

The emitter in our engine is a game object, meaning it has a position

and a texture, which will be used to draw the particles. Every single particle

emitted by this class will share the same texture and its position will be

relative to the emitter’s position. An emitter’s position can change over

time as well, like when a player carries a torch into a dark room. As such,

all the particles’ initial location should move along with the emitter.

public class Emitter : BaseGameObject

{

 �priv�ate LinkedList<Particle> _activeParticles = new

LinkedList<Particle>();

 priv�ate LinkedList<Particle> _inactiveParticles = new

LinkedList<Particle>();

 private EmitterParticleState _emitterParticleState;

 private IEmitterType _emitterType;

 private int _nbParticleEmittedPerUpdate = 0;

 private int _maxNbParticle = 0;

Chapter 8 Particles

167

 �public Emitter(�Texture2D texture, Vector2 position,

EmitterParticleState particleState,

 �IEmitterType emitterType, int

nbParticleEmittedPerUpdate, int

maxParticles)

 {

 _emitterParticleState = particleState;

 _emitterType = emitterType;

 _texture = texture;

 �_nbParticleEmittedPerUpdate = nbParticleEmittedPerUpdate;

 _maxNbParticle = maxParticles;

 Position = position;

 }

 �// The rest of the class is omitted while we discuss the

�// constructor

}

In the preceding code, we initialize an emitter with a texture, a

position, an emitter particle state, a type, the number of particles to

generate each Update() call, and the maximum number of particles this

emitter is allowed to have active at any time. Our active and inactive

particles will be tracked within two linked lists, initially empty. Linked lists

are well suited for this. When active particles die due to age, they need to

be removed from the active list and be added to the inactive list. Removing

any element from a linked list is instantaneous, which helps our engine

perform better.

Emitting a single particle happens like this:

private void EmitNewParticle(Particle particle)

{

 var lifespan = _emitterParticleState.GenerateLifespan();

 var velocity = _emitterParticleState.GenerateVelocity();

 var scale = _emitterParticleState.GenerateScale();

Chapter 8 Particles

168

 var rotation = _emitterParticleState.GenerateRotation();

 var opacity = _emitterParticleState.GenerateOpacity();

 var gravity = _emitterParticleState.Gravity;

 var acceleration = _emitterParticleState.Acceleration;

 �var opacityFadingRate = _emitterParticleState.

OpacityFadingRate;

 var direction = _emitterType.GetParticleDirection();

 var position = _emitterType.GetParticlePosition(_position);

 �particle.Activate(�lifespan, position, direction, gravity,

velocity, acceleration, scale,

 rotation, opacity, opacityFadingRate);

 _activeParticles.AddLast(particle);

}

Given a particle object that was newly instantiated and is currently

inactive or active, this function will reset its attributes, activate it, and add

it to the list of active particles. Every call to the _emitterParticleState here

is to generate new attribute values that are within ranges defined in the

particle state object given earlier to the emitter. Then we ask the emitter

type for a particle position and a direction. We take all those parameters

and use them to reset a particle. Then, once activated and added to the

active list, this particle will be drawn on the screen and its Update()

method will be called to allow it to age and change over time.

The EmitNewParticle() method is called for each particle we want

to emit. Each time the Update() method is called, we want to emit _

nbParticleEmittedPerUpdate number of particles. First, we look at the list

of inactive particles to see if we have any inactive particles we can reuse.

If we have enough, then we simply call EmitNewParticle() for each one of

those. If we do not have enough, then we create enough new particles to fill

the gap and emit those as well, all while making sure we never end up with

Chapter 8 Particles

169

more active particles than allowed by _maxNbParticle. The main benefit

of pooling our particle objects like this is to avoid the overhead of creating

new instances of potentially thousands of particle game objects 60 times

per second, which can slow down the game. Here, once our objects are

created, they are reused and we avoid that extra computational cost.

Here is the code that handles this logic:

private void EmitParticles()

{

 // Make sure we're not at max particles

 if (_activeParticles.Count >= _maxNbParticle)

 {

 return;

 }

 �var �maxAmountThatCanBeCreated = _maxNbParticle -

_activeParticles.Count;

 �var �neededParticles = Math.Min(maxAmountThatCanBeCreated,

_nbParticleEmittedPerUpdate);

 // Reuse inactive particles first before creating new ones

 v�ar nbToReuse = Math.Min(_inactiveParticles.Count,

neededParticles);

 var nbToCreate = neededParticles - nbToReuse;

 for(var i = 0; i < nbToReuse; i++)

 {

 var particleNode = _inactiveParticles.First;

 EmitNewParticle(particleNode.Value);

 _inactiveParticles.Remove(particleNode);

 }

Chapter 8 Particles

170

 for(var i = 0; i < nbToCreate; i++)

 {

 EmitNewParticle(new Particle());

 }

}

We start by calculating how many particles we can create. Of that

number, we compute how many will come from the list of inactive particles

and how many need to be created. For each inactive particle we are

reemitting, we pluck it out of the list and use it in the EmitNewParticle()

call. For each new particle we need to create, we instantiate them and use

them in the same call.

We now need to call Update() on all these particles and we are going to

do that in the emitter’s own Update() method:

public void Update(GameTime gameTime)

{

 EmitParticles();

 var particleNode = _activeParticles.First;

 while (particleNode != null)

 {

 var nextNode = particleNode.Next;

 var stillAlive = particleNode.Value.Update(gameTime);

 if (!stillAlive)

 {

 _activeParticles.Remove(particleNode);

 _inactiveParticles.AddLast(particleNode.Value);

 }

 particleNode = nextNode;

 }

}

Chapter 8 Particles

171

We immediately start by emitting particles. Then, we iterate over all

our active particles and call Update() on each one of them. As mentioned

when discussing the Particle class, Update() returns false if the particle has

aged past its maximum age. When this happens, we remove it from the list

of active particles and add it to the inactive particles list.

Finally, we can now render each active particle:

public override void Render(SpriteBatch spriteBatch)

{

 �var �sourceRectangle = new Rectangle(0, 0, _texture.Width,

_texture.Height);

 foreach (var particle in _activeParticles)

 {

 �spriteBatch.Draw�(�_texture, particle.Position,

sourceRectangle,

 �Color.White * particle.Opacity, 0.0f,

new Vector2(0, 0),

 �particle.Scale, SpriteEffects.None,

zIndex);

 }

}

Render() will iterate over each active particle and call one of the

overloaded Draw() functions on the spriteBatch that allows us to change

the scale and opacity of the particle.

This concludes the part of our particle system that we added to our

game engine. We are now ready to create our smoke trail particle emitter

and add it to the game!

Chapter 8 Particles

172

�Adding a Missile and Smoke Trail to Our
Game
You can find all the code for this chapter at https://github.com/Apress/

monogame-mastery/tree/master/chapter-08/end and all the game assets

here: https://github.com/Apress/monogame-mastery/tree/master/

chapter-08/assets. We added two new textures: one for our smoke trail

and one for a missile. We also added a new sound effect for the missile.

The first step in adding a new kind of particle system to the game,

especially one that is meant to move quickly offscreen as the missile

shoots up rapidly, is to have a way to experiment with the smoke trail and

observe it without it going offscreen too rapidly. Thankfully, we already

have a mechanism to do this and build our new MissileSprite game object

without having to care about bullets and fighter jets and our scrolling

background.

The game is built by taking players from one game state to another.

First, the player is shown the Splash game state, and when they press the

Enter key, they get moved to the Gameplay state. What if we had a Dev

game state where we can put objects on the screen and not have them

move at all? This game state would be a sandbox we can play in while we

build our game objects.

�Creating a Dev Game State to Play With
Let’s create a new folder called Dev within the States directory and add a

DevInputCommand, a DevInputMapper, and a DevState.

Chapter 8 Particles

https://github.com/Apress/monogame-mastery/tree/master/chapter-08/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-08/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-08/assets
https://github.com/Apress/monogame-mastery/tree/master/chapter-08/assets

173

This game state would require some input, as we want to be able to exit

the state and we want to make sure the missile works well when we fire it.

Here are the commands we care about:

public class DevInputCommand : BaseInputCommand

{

 public class DevQuit : DevInputCommand { }

 public class DevShoot : DevInputCommand { }

}

As in the real game, pressing the ESC key will exit the game, and

pressing the spacebar will cause a missile to shoot up when we want to test

that functionality:

public class DevInputMapper : BaseInputMapper

{

 �public override IEnumerable<BaseInputCommand>

GetKeyboardState(KeyboardState state)

 {

 var commands = new List<DevInputCommand>();

 if (state.IsKeyDown(Keys.Escape))

 {

 commands.Add(new DevInputCommand.DevQuit());

 }

 if (state.IsKeyDown(Keys.Space))

 {

 commands.Add(new DevInputCommand.DevShoot());

 }

 return commands;

 }

}

Chapter 8 Particles

174

Let’s now add our new textures to the content pipeline. We’ll need two

new textures, located in the chapter’s asset folder in chapter-08\assets\png

named Cloud001 and Missile05. Add these textures to the content pipeline

and call them, respectively, Cloud and Missile. Our DevState will use the

Cloud texture immediately and will eventually use the Missile texture as well.

We can now create our smoke trail particle emitter, which we simply

called an exhaust. Take the following code and put it in a file called

Exhaust.cs, located in a new folder called Particles:

public class ExhaustParticleState : EmitterParticleState

{

 �public override int MinLifespan => 60; �// equivalent to 1

// second

 public override int MaxLifespan => 90;

 public override float Velocity => 4.0f;

 public override float VelocityDeviation => 1.0f;

 public override float Acceleration => 0.8f;

 public override Vector2 Gravity => new Vector2(0, 0);

 public override float Opacity => 0.4f;

 public override float OpacityDeviation => 0.1f;

 public override float OpacityFadingRate => 0.86f;

 public override float Rotation => 0.0f;

 public override float RotationDeviation => 0.0f;

 public override float Scale => 0.1f;

 public override float ScaleDeviation => 0.05f;

}

public class ExhaustEmitter : Emitter

{

 private const int NbParticles = 10;

 private const int MaxParticles = 1000;

 �private static Vector2 Direction = new Vector2(0.0f, 1.0f);

 private const float Spread = 1.5f;

Chapter 8 Particles

175

 public ExhaustEmitter(Texture2D texture, Vector2 position) :

 base(texture, position, new ExhaustParticleState(),

 �new ConeEmitterType(Direction, Spread),

NbParticles, MaxParticles)

 { }

}

This file contains two classes: an ExhaustParticleState to track all our

smoke particles’ initial state and an ExhaustEmitter class, which is an

emitter but also specifies how many particles to emit at every update, the

maximum number of particles that we want active, the emitter’s downward

direction, and that we want to use the ConeEmitterType we added earlier.

Finally, let’s add our DevState class, which will be used as a sandbox

so that we can work on our game objects without having to deal with the

entire game at the same time. The DevState, added do the States\Dev

folder, looks like this:

public class DevState : BaseGameState

{

 private const string ExhaustTexture = "Cloud";

 private ExhaustEmitter _exhaustEmitter;

 public override void LoadContent()

 {

 var �exhaustPosition = new Vector2(_viewportWidth / 2,

_viewportHeight / 2);

 �_exhaustEmitter = new ExhaustEmitter(LoadTexture

(ExhaustTexture), exhaustPosition);

 AddGameObject(_exhaustEmitter);

 }

Chapter 8 Particles

176

 public override void HandleInput(GameTime gameTime)

 {

 InputManager.GetCommands(cmd =>

 {

 if (cmd is DevInputCommand.DevQuit)

 {

 NotifyEvent(new BaseGameStateEvent.GameQuit());

 }

 });

 }

 public override void UpdateGameState(GameTime gameTime)

 {

 _exhaustEmitter.Update(gameTime);

 }

 protected override void SetInputManager()

 {

 InputManager = new InputManager(new DevInputMapper());

 }

}

This should start looking familiar. LoadContent() creates an exhaust

emitter and puts it in the middle of the viewport and sets its texture to

the Cloud texture. HandleInput() takes care of the DevQuit command by

exiting the game. UpdateGameState() calls the emitter’s Update() method

and SetInputManager() connects our DevInputMapper class to the state’s

input manager.

Chapter 8 Particles

177

Now we need to get the game to start with our DevState instead of the

SplashState. Modify the Program.cs Main method to use the DevState as its

initial state:

static void Main()

{

 �using (�var game = new MainGame(WIDTH, HEIGHT, new

DevState()))

 game.Run();

}

Run the program and you should see something like Figure 8-7, with a

lot of smoke particles being generated very rapidly in the shape of a cone.

Figure 8-7.  Smoke!

Chapter 8 Particles

178

So smoke is being generated, but we don’t know yet what that looks

like as it moves. Update the Update() method of the DevState class to do

move the emitter up over time and destroy it when it goes too far offscreen:

public override void UpdateGameState(GameTime gameTime)

{

 _exhaustEmitter.Position =

 �new Vector2(�_exhaustEmitter.Position.X,

_exhaustEmitter.Position.Y - 3f);

 _exhaustEmitter.Update(gameTime);

 if (_exhaustEmitter.Position.Y < -200)

 {

 RemoveGameObject(_exhaustEmitter);

 }

}

Run the game again and we should see the smoke trail moving up. Feel

free to tweak the ExhaustParticleState attributes or the ExhaustEmitter’s

number of particles to see how that affects the smoke trail. Finding a

suitable set of parameters is tedious work where we change attributes and

must run our game every time to visualize the results. No wonder there are

particle engine editors out there to help! Once you are happy with what

your exhaust looks like on the screen, it’s time to add a missile!

This Missile will be a composite game object. It has a missile texture

(the Missile texture we added to the content pipeline earlier) and the

exhaustEmitter as well. That’s two game objects in one, which makes sense

since the two are tightly tied together. Create a new MissileSprite.cs to the

Objects folder and use the following code:

public class MissileSprite : BaseGameObject

{

 private const float StartSpeed = 0.5f;

 private const float Acceleration = 0.15f;

Chapter 8 Particles

179

 private float _speed = StartSpeed;

 // Keep track of scaled-down texture size

 private int _missileHeight;

 private int _missileWidth;

 // Missiles are attached to their own particle emitter

 private ExhaustEmitter _exhaustEmitter;

 public override Vector2 Position

 {

 set

 {

 _position = value;

 _exhaustEmitter.Position =

 �new Vector2(_position.X + 18, _position.Y +

_missileHeight - 10);

 }

 }

 �public MissileSprite(Texture2D missleTexture, Texture2D

exhaustTexture)

 {

 _texture = missleTexture;

 �_exh�austEmitter = new ExhaustEmitter(exhaustTexture,

_position);

 �var �ratio = (float) _texture.Height /

(float) _texture.Width;

 _missileWidth = 50;

 _missileHeight = (int) (_missileWidth * ratio);

 }

Chapter 8 Particles

180

 public void Update(GameTime gameTime)

 {

 _exhaustEmitter.Update(gameTime);

 �Position = new Vector2(Position.X, Position.Y - _speed);

 _speed = _speed + Acceleration;

 }

 public override void Render(SpriteBatch spriteBatch)

 {

 �// Need to scale down the sprite. The original texture

// is very big

 var destRectangle =

 �new Rectangle((int) Position.X, (int) Position.Y,

_missileWidth, _missileHeight);

 spriteBatch.Draw(_texture, destRectangle, Color.White);

 _exhaustEmitter.Render(spriteBatch);

 }

}

The main difference between this game object and others like the

player sprite is that we added an exhaust emitter game object within the

MissileSprite. When creating a missile, we must supply two textures: the

missile texture and the smoke texture for the emitter. What’s more, whenever

the missile’s position changes, we must update the emitter’s position as well,

which we take care of within the Position property setter function. Every

call to the MissileSprite’s Update() method also calls the emitter’s Update()

method, and similarly, every call to Render() will call the emitter’s Render()

function in addition to drawing the missile texture on the screen.

The original missile texture is very big and must be scaled down

before drawing it. A width of 50 pixels seems reasonable to use here so

we need to calculate the desired height of the missile, so it maintains the

same width/height ration as the original texture size, which is done in the

Chapter 8 Particles

181

class constructor. When drawing the missile, we use a SpriteBatch draw

function where we get to specify the source rectangle of the texture and the

destination rectangle on the screen. If the two rectangles are not the same

size, MonoGame will take care of scaling the source rectangle to the size of

the destination rectangle, like illustrated in Figure 8-8.

Let’s add an instance of the MissileSprite object to our DevState and

see how it goes! For fun, let’s also add the player sprite and play a bit with

the objects in our sandbox. Change the DevState class to look like this:

public class DevState : BaseGameState

{

 private const string ExhaustTexture = "Cloud";

 private const string MissileTexture = "Missile";

Figure 8-8.  Scaling down our missile texture

Chapter 8 Particles

182

 private const string PlayerFighter = "fighter";

 private ExhaustEmitter _exhaustEmitter;

 private MissileSprite _missile;

 private PlayerSprite _player;

 public override void LoadContent()

 {

 �var �exhaustPosition = new Vector2(_viewportWidth / 2,

_viewportHeight / 2);

 �_exh�austEmitter = new ExhaustEmitter(LoadTexture(

ExhaustTexture), exhaustPosition);

 AddGameObject(_exhaustEmitter);

 _player = new PlayerSprite(LoadTexture(PlayerFighter));

 _player.Position = new Vector2(500, 500);

 AddGameObject(_player);

 }

 public override void HandleInput(GameTime gameTime)

 {

 InputManager.GetCommands(cmd =>

 {

 if (cmd is DevInputCommand.DevQuit)

 {

 NotifyEvent(new BaseGameStateEvent.GameQuit());

 }

 if (cmd is DevInputCommand.DevShoot)

 {

 _missile =

 new MissileSprite(LoadTexture(MissileTexture),

 �LoadTexture(Exhaust

Texture));

Chapter 8 Particles

183

 �_missile.Position = new Vector2(_player.

Position.X, _player.Position.Y - 25);

 AddGameObject(_missile);

 }

 });

 }

 public override void UpdateGameState(GameTime gameTime)

 {

 _exhaustEmitter.Position =

 new Vector2(�_exhaustEmitter.Position.X,

_exhaustEmitter.Position.Y - 3f);

 _exhaustEmitter.Update(gameTime);

 if (_missile != null)

 {

 _missile.Update(gameTime);

 if (_missile.Position.Y < -100)

 {

 RemoveGameObject(_missile);

 }

 }

 if (_exhaustEmitter.Position.Y < -200)

 {

 RemoveGameObject(_exhaustEmitter);

 }

 }

 protected override void SetInputManager()

 {

 InputManager = new InputManager(new DevInputMapper());

 }

}

Chapter 8 Particles

184

We are monitoring the DevShoot command and adding a missile to

the game whenever it is triggered. Immediately, the missile shoots up with

some smoke trailing behind, so we can easily see the result of our work

and if we are happy with it. This is not perfect game code, however. The

Update() method is called 60 times per second, and even though we press

the spacebar only once, it remains pressed for a few of those frames and

multiple missiles are thus created, but all of them are stored in the same

_missile private variable, causing some visual artifacts. Also, the missile

isn’t centered on the player sprite, as we can see in Figure 8-9. But let’s not

waste any effort solving this here, in the sandbox. We will devote our time

fixing these issues in the real game.

�Adding the Missile Game Object to Our Game
To get started adding the missiles to our game, we first need to revert

Program.cs to load up the GameplayState class upon startup.

Figure 8-9.  Adding game objects to our sandbox, with interesting
visual artifacts

Chapter 8 Particles

185

static void Main()

{

 using (�var game = new MainGame(WIDTH, HEIGHT, new

SplashState()))

 game.Run();

}

We want our missiles to fire only once per second, as the player presses

the spacebar, while bullets are being shot at the same time. This is to

prevent the player from firing too many missiles. We also need to add a

sound effect for the missile. Open the content pipeline and follow the same

steps we used in the previous chapter for the bullet sound effects. Add

the assets\sounds\missile wav file and call it missileSound. Make sure to

use the Wav Importer and the Sound Effect processor. Save and build the

content pipeline before returning to the code.

In the GameplayState class, add these private variables:

private const string ExhaustTexture = "Cloud";

private const string MissileTexture = "Missile";

private Texture2D _missileTexture;

private bool _isShootingMissile;

private TimeSpan _lastMissileShotAt;

private List<MissileSprite> _missileList;

We will follow the same pattern we used for shooting bullets. When we

fire a missile, the _isShootingMissile Boolean variable will be set to true to

prevent us from firing any more missiles. Every second, that variable will

be set to false so we can fire them again. We will also keep track of missiles

on the screen using _missileList, so we can update and render them.

Now update LoadContent() to load the missile texture and the missile

sound effect, which needs to be added to the sound bank of our sound

manager.

Chapter 8 Particles

186

_missileTexture = LoadTexture(MissileTexture);

_exhaustTexture = LoadTexture(ExhaustTexture);

_missileList = new List<MissileSprite>();

var missileSound = LoadSound("missileSound");

_soundManager.RegisterSound(

 �new GameplayEvents.PlayerShootsMissile(), missileSound,

0.4f, -0.2f, 0.0f

);

We need to add a new GameplayEvent so the sound manager knows

to play the missile sound effect whenever we shoot a missile. Update the

GameplayEvents class so it looks like this:

public class GameplayEvents : BaseGameStateEvent

{

 public class PlayerShootsBullets : GameplayEvents { }

 public class PlayerShootsMissile : GameplayEvents { }

}

The Shoot() method is called whenever the player presses the

spacebar. Add the following code to it. It should look very similar to the

code we used to shoot bullets:

if (!_isShootingMissile)

{

 CreateMissile();

 _isShootingMissile = true;

 _lastMissileShotAt = gameTime.TotalGameTime;

 NotifyEvent(new GameplayEvents.PlayerShootsMissile());

}

Chapter 8 Particles

187

The CreateMissile() function is new and should look like this, creating,

positioning, and adding missiles to the list of game objects:

private void CreateMissile()

{

 �var �missileSprite = new MissileSprite(_missileTexture,

_exhaustTexture);

 missileSprite.Position =

 �new Vector2(_playerSprite.Position.X + 33,

_playerSprite.Position.Y - 25);

 _missileList.Add(missileSprite);

 AddGameObject(missileSprite);

}

Just like bullets, as missiles go offscreen, they need to be removed

from the list of game objects. We already have code to clean up bullets

in the UpdateGameState() function, and cleaning missiles will look very

similar. Instead of duplicating that code for missiles, we now have the

opportunity to create a new method that will clean bullets and missiles.

Take the cleaning code from UpdateGameState(), parametrize it so any

BaseGameObject can be cleaned up, and move that logic to a new method

called CleanObjects:

private List<T> CleanObjects<T>(List<T> objectList) where T :

BaseGameObject

{

 List<T> listOfItemsToKeep = new List<T>();

 foreach(T item in objectList)

 {

 var stillOnScreen = item.Position.Y > -50;

Chapter 8 Particles

188

 if (stillOnScreen)

 {

 listOfItemsToKeep.Add(item);

 }

 else

 {

 RemoveGameObject(item);

 }

 }

 return listOfItemsToKeep;

}

We can now update UpdateGameState() to move missiles on the

screen by calling their Update() method, make sure we cannot fire them

more than once per second, and clean them up after they are off the

screen:

public override void UpdateGameState(GameTime gameTime)

{

 foreach (var bullet in _bulletList)

 {

 bullet.MoveUp();

 }

 foreach (var missile in _missileList)

 {

 missile.Update(gameTime);

 }

 // Can't shoot bullets more than every 0.2 second

 if (_lastBulletShotAt != null &&

 �gameTime.TotalGameTime - _lastBulletShotAt > TimeSpan.

FromSeconds(0.2))

Chapter 8 Particles

189

 {

 _isShootingBullets = false;

 }

 // Can't shoot missiles more than every 1 second

 if (_lastMissileShotAt != null &&

 �gameTime.TotalGameTime - _lastMissileShotAt > TimeSpan.

FromSeconds(1.0))

 {

 _isShootingMissile = false;

 }

 �// �Get rid of bullets and missiles that have gone out of view

 _bulletList = CleanObjects(_bulletList);

 _missileList = CleanObjects(_missileList);

}

With those modifications done, you can launch the game and see that

the player can shoot bullets and missiles at the same time!

�Summary
You can spend a lot of time tweaking particle engines and emitter

parameters to achieve desired effects. In this chapter, we developed our

own particle engine to generate a trail of smoke behind missiles being

fired by our player. The effect adds a little sophistication to the game, but

it could be better. For example, using linear transformations to update

parameters like opacity or velocity over time could be made better by using

tween curves, where an attribute’s value over time follows a curve instead

of a straight line. Other improvements would be to implement particle

rotation and scale over time, having particles change color, using multiple

Chapter 8 Particles

190

textures for different particles, or even having particle textures morph over

time via an animation as they age.

Adding the particle engine was a lot of work, but seeing that smoke

trail behind our missiles is very neat and adds a bit of realism to our game.

We also got to experience our engine and how it made it simple to create

a sandbox that we, the developers, can use to experiment and build new

game objects that once created can easily be added to the gameplay state.

In the next chapter, we will work on collision detections. What could

collide together in our game? Our bullets and… enemies!

Chapter 8 Particles

191© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_9

CHAPTER 9

Collision Detection
Think of a video game without collision detection in some shape or form.

It’s difficult! Collision detection is ubiquitous and part of many aspects

that make up a game. Is the player standing on a platform or should they

be falling? How can we prevent the player from stepping beyond the edge

of the world map? Did the player get hit by a swirling hammer? Were we

successful in picking up the shiny coins? All those things are decided by

collision detection. This is what we will explore in this chapter. How can

we detect if two objects collided with each other, and what should be done

when those collisions happen? One other interesting use case for collision

detection is to detect what game object a player clicked using the mouse or

their finger.

If you think about it, we already implemented a naïve form of collision

detection in the game when we checked each update if the player runs out

of bounds. We are essentially detecting a collision with the edges of the

screen and preventing the player sprite from progressing further.

We have spent some time refactoring our code for this chapter and

we will not detail all of those changes here. Some modifications were

made as we identified areas of the program with duplicated logic, or

the need to change our particle Emitter class to allow it to stop emitting

particles without removing the emitter from the game objects, so as to

allow existing particles to fade off instead of being abruptly removed

from the screen. As always, you can download the code we started with

here: https://github.com/Apress/monogame-mastery/tree/master/

chapter-09/start. The final code, including the collision detection

https://doi.org/10.1007/978-1-4842-6309-9_9#DOI
https://github.com/Apress/monogame-mastery/tree/master/chapter-09/start
https://github.com/Apress/monogame-mastery/tree/master/chapter-09/start

192

logic, is here: https://github.com/Apress/monogame-mastery/tree/

master/chapter-09/end. All changes we made will be present in the end

project.

Figure 9-1 gives us a glimpse of what our game will look like at the end

of this chapter.

Now let’s get started! In this chapter, you will

•	 Review a few collision detection algorithms used today

in video games

•	 Add enemy choppers to the game, giving the player

something to shoot at

•	 Add a collision detector to the engine and destroy some

enemies

Figure 9-1.  The final results

Chapter 9 Collision Detection

https://github.com/Apress/monogame-mastery/tree/master/chapter-09/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-09/end

193

�Techniques
Collision detection is such a vast topic that entire books have been written

about it. We will explore the basic concepts about it and a few algorithms

before settling with how we are going use it in our game.

Whether two things collide is entirely based on the concept of

bounding boxes which are a simpler way to represent game objects for the

purpose of calculating if they collide with each other. Visually, humans

can easily see if two objects came into contact. However, computers have

a harder time at this so we must help them. Bounding boxes are named

this way because they most often represent the outermost bounds of the

object and are usually rectangles in two dimensions, or boxes in three

dimensions. Look at Figure 9-2. On the left, we see our player sprite and

an enemy helicopter. Do they collide? How would you write an algorithm

to detect that they do? On the right side of the image, you see the same

object, with their bounding boxes drawn. This way of representing objects

makes it much easier and faster to detect that two objects intersect. It may

not be perfect, but it works well enough for most purposes where perfect

accuracy isn’t a requirement.

Chapter 9 Collision Detection

194

We have a slight problem here. Although we can now detect collisions

between objects by looking if their bounding boxes intersect, we might

detect collisions that are not really happening, like in the previous image.

There are a few ways to mitigate that. First, rectangles do not have a

monopoly here. We could as well have a bounding sphere or circle if our

game object fits that shape better. Second, as we will implement later

in this chapter, we can also have multiple bounding boxes, as seen in

Figure 9-3. Using more than one box to define the contour of our game

objects makes it easier to fit the shape that we want to match, but it does

add a bit of extra work because it is one extra box we need to check for

each game object on the screen.

Figure 9-2.  Is our fighter sprite colliding with the chopper? Yes, it is!

Chapter 9 Collision Detection

195

Any object that can collide with another object must have a bounding

box of some sort, or some bounds of a different shape like a sphere or cone.

If we have hundreds or thousands of objects in the game, like spark particles

that fall to the floor and are not allowed to go through the floor, which

algorithm should we use to handle all those collisions? Let’s review a few.

�AABB (Axis Aligned Bounding Box)
So far, the bounding boxes we have looked at have all been aligned on

the X and Y axis, with their sides completely horizontal and vertical.

Computing two aligned axis bounding boxes is straightforward: given box

A and box B, their (x, y) position, and their (width, height) dimensions, the

two boxes intersect if

Figure 9-3.  Is our fighter sprite colliding with the chopper? Not this
time.

Chapter 9 Collision Detection

196

•	 A.x <= B.x + B.width and

•	 A.x + A.width >= B.x and

•	 A.y <= B.y + B.height and

•	 A.y + A.height >= b.height

See Figure 9-4 for a visual representation of these four conditions.

�OBB (Oriented Bounding Box)
Oriented bounding boxes are like the aligned axis boxes earlier, but they

can be rotated as the game object rotates, making the calculation to detect

collisions a bit more complicated. Given two bounding boxes A and B, for

Figure 9-4.  Two intersecting boxes

Chapter 9 Collision Detection

197

each axis, which are X and Y in a two-dimensional game, project all the

corners of the bounding box A to that axis and only keep the smallest and

largest points. Now do the same for bounding box B. Look at Figure 9-5 for

an example of projecting the bounding box corners to the X axis.

Now the calculation is similar to AABB.

If the following is true for all axes, then we have a collision if

•	 A-min <= B-max

•	 B-min <= A-max

Figure 9-5.  Oriented bounding boxes intersecting

Chapter 9 Collision Detection

198

�Spheres
Should you choose to use spheres, or circles in a 2D game, then you might

need to calculate if your sphere intersects with other spheres or rectangles.

In Figure 9-6, the middle circle is intersecting with the other circle and the

rectangle. Two circles or spheres collide when the distance between their

center is smaller than the sum of their radii. In Figure 9-6, the two circles

collide because d2 is smaller than r1 + r2.

When looking if a rectangle collides with a circle, calculate the distance

between the center of the circle and the closest point of the rectangle,

which may not be one of the corners. If any of them is smaller than the

circle’s radius, we have a collision. In Figure 9-6, this is represented by the

fact that d1 is smaller than r1.

Figure 9-6.  Circle intersecting with another circle and a rectangle

Chapter 9 Collision Detection

199

�Uniform Grids
So far, our strategy has been to collect all the objects on the screen and see

which objects collide with which objects. This might be fine if we only have

a few objects to look at, but as the number of objects grows, the number of

calculations also grows exponentially. For example, with 100 objects on the

screen, we will perform at most 1002 collision detections. Since we run this

at every Update() method call, this means we need to be able to do this 60

times per second, or our game risks slowing down.

To help reduce the number of checks that we do each frame, a few

algorithms have been designed to arrange our objects in a spatial data

structure, so we know which objects are near each other. Then, we only

need to check for collisions between neighboring objects, saving us a lot

for compute time. The only downside to these next few algorithms is that

arranging objects in the data structures takes time, but hopefully not as

much as it would to run a brute-force collision detection algorithm.

With that said, let’s start with uniform grids, which are a 2D array in

which each cell is initially empty and has a width and a height. The grid

cells, if we ever bothered to draw them on the screen, should fill up the

viewport. Then, we take all our game objects and figure out which cells

they overlap. For each one of those cells, we add a link to the game object.

When all the game objects have been processed, we go through each cell

and see which ones link to more than one object. When that happens,

we perform collision detection on the linked objects to see the bounding

boxes or spheres intersect. See Figure 9-7 for an example.

How wide and tall each cell depends entirely on the game developer.

Since the goal is to minimize the number of calculations we ultimately

must perform, having more cells will reduce the possibility that they have

more than one object linked in them. However, it may cause the same

objects to be linked in many cells. On the other hand, if the cells are too

big, we are back at square one if all the game objects end up in the same

cell and we have to brute force our way through collision detection. As you

Chapter 9 Collision Detection

200

can see in Figure 9-7, collision detection for the two circles will happen six

times because that many cells link to the two objects. Since we only need

to perform collision detection once, the programmer will need to make

sure to only perform this action once per game object pairs.

�Quadtrees
Quadtrees are a variation on uniform grids, but instead of using a 2D array

as a data structure to link game objects together, we use a tree where each

node has either zero or four children. When instantiating a new quadtree,

we pass in as a parameter the size of our viewport and the maximum

number of game objects that a node can store. The tree will initially create

its root node, which covers the entire screen, and we then can add our

game objects to the tree, one by one. Objects are added to the root node

until we reach the maximum number of objects per node, at which point

Figure 9-7.  Imagining our objects if they were drawn on a
uniform grid

Chapter 9 Collision Detection

201

the quadtree will subdivide itself and create four children empty nodes

and move all game objects in the root nodes to the children nodes, based

on where they belong. If a game object overlaps two nodes, it is then

stored in the parent node. The process then repeats until all objects have

been processed. As each node is created, it knows precisely what parts of

the screen it covers by keeping track of its top-left corner coordinates, its

width, and its height.

Figure 9-8 provides an example of a quadtree that has a maximum

node capacity of one, meaning that the nodes will subdivide into four

whenever there are two or more objects in them. First, the square is put

into the root node. Then the circle is added, which means the root node

has two objects and must subdivide itself into four other children nodes.

The square is moved to the node that represents the top-left quadrant. The

circle, however, overlaps two quadrants, so it will remain in the root node.

Finally, the small rectangle is added to the first quadrant, which causes it to

split into four. The bigger rectangle remains in its node because it overlaps

the children nodes, while the smaller rectangle is put into the fourth child

quadrant.

Chapter 9 Collision Detection

202

To perform collision detection, we loop over our game objects and ask

the quadtree for all objects that belong in the same node or in children

nodes. We then perform collision detection between those objects only.

Figure 9-8.  A quadtree with a maximum node capacity of one

Chapter 9 Collision Detection

203

�Other Techniques
There are many other techniques out there used both to perform collision

detection and to optimize the performance of all these calculations. We

discussed a few of them in this section, but we encourage you to explore

this world of possibilities to find what suits your needs. From the different

kinds of tree structures to 3D algorithms and rendering-based approaches,

there are many tools at our disposal.

�Adding Enemies to Our Game
Before we implement collision detection in our game, we need things to

collide with. And because we are implementing a vertical shooter game,

most collisions are going to be between bullets and enemies. So, we need

enemies!

We added two new images to the assets\png directory:

•	 One image with a few different colored helicopters:

chopper-44x99.png

•	 A new explosion texture that we will use for a new

particle emitter when enemies (or the player) die:

explosion.png

Add the two new images to the content pipeline tool and name the

helicopter image in the tool to chopper.png. Save and build the content

pipeline.

We can now create our new chopper enemy game object and use the

first helicopter texture from that chopper image. Although there are many

different choppers in the image, including two different kinds of blades, we

will use only the first yellow helicopter and add the blurry blades and make

them rotate over time. To do so, we will use the version of the SpriteBatch

Render method that allows us to pick a specific region of the source image

Chapter 9 Collision Detection

204

that we want to render to the screen. This way, we can select the yellow

chopper and the blurry blades and render the two on top of each other on

the screen.

Let’s create the ChopperSprite class into a new file in the Objects

directory:

public class ChopperSprite : BaseGameObject

{

 // Which chopper do we want from the texture

 private const int ChopperStartX = 0;

 private const int ChopperStartY = 0;

 private const int ChopperWidth = 44;

 private const int ChopperHeight = 98;

 // Where are the blades on the texture

 private const int BladesStartX = 133;

 private const int BladesStartY = 98;

 private const int BladesWidth = 94;

 private const int BladesHeight = 94;

 // Rotation center of the blades

 private const float BladesCenterX = 47.5f;

 private const float BladesCenterY = 47.5f;

 // Positioning of the blades on the chopper

 private const int ChopperBladePosX = ChopperWidth / 2;

 private const int ChopperBladePosY = 34;

 private int _life = 40;

 public ChopperSprite(Texture2D texture)

 {

 _texture = texture;

 }

Chapter 9 Collision Detection

205

 public override void OnNotify(BaseGameStateEvent gameEvent)

 {

 switch (gameEvent)

 {

 case GameplayEvents.ChopperHitBy m:

 JustHit(m.HitBy);

 �SendEvent(new GameplayEvents.EnemyLostLife

(_life));

 break;

 }

 }

 private void JustHit(IGameObjectWithDamage o)

 {

 _hitAt = 0;

 _life -= o.Damage;

 }

}

There is a lot going on here. We are keeping track of the position of our

desired chopper from the texture, the position of the blurry blades, where

we want the blades to be positioned on top of the chopper, and the center

position of the blades when we rotate them. We are also keeping track of

life points on the chopper. As it gets hit by bullets and missiles, its life total

will drop until it reaches zero, at which point it will get removed from the

game and replaced by an explosion particle emitter. Each chopper object

will react to a new ChopperHitBy gameplay event that tells it a game

object that implements the IGameObjectWithDamage interface just hit it.

The interface, seen in the code below, offers a Damage property that the

chopper will use to reduce its life total. After being hit, the chopper will

send out a notification that its own state has changed, which will let the

GameplayState class react to the chopper’s death by removing it from the

game and replacing it with an explosion particle emitter.

Chapter 9 Collision Detection

206

public interface IGameObjectWithDamage

{

 int Damage { get; }

}

We now need to be able to render our chopper on the screen, but

we have a small problem… The helicopters in the texture are all facing

upward, but if our enemies are going to come down into the viewport and

attacking our player, they should be facing down. We need to rotate them

around.

�Rotating Our Chopper
Rotation is not a complicated thing to do, as MonoGame supports this out

of the box. But we need to know where the rotation center is. If we don’t

specify it, MonoGame will assume that the rotation center is the same as

the origin of the texture, which means the (0, 0) coordinates. Figure 9-9

shows an example of what the rendering would look like if we rotated the

chopper 180 degrees without changing the rotation center. We can see the

original chopper, facing up, and the rotated chopper. This isn’t a big deal in

and of itself, but we’ll need to add spinning blades on this rotated enemy

and rotating the helicopter around the (0, 0) origin makes it hard to figure

out where to position the blades texture. Instead, what we want to do is

rotate the chopper around a better rotation center, which could be exactly

where the blades need to go.

Chapter 9 Collision Detection

207

We can start working on our Render method:

public override void Render(SpriteBatch spriteBatch)

{

 var chopperRect =

 �new Rectangle(ChopperStartX, ChopperStartY,

ChopperWidth, ChopperHeight);

 var chopperDestRect =

 �new Rectangle(_position.ToPoint(), new

Point(ChopperWidth, ChopperHeight));

 var color = Color.White;

 �spri�teBatch.Draw(�_texture, chopperDestRect, chopperRect,

color, MathHelper.Pi,

 �new Vector2(ChopperBladePosX,

ChopperBladePosY), SpriteEffects.None, 0f);

}

Figure 9-9.  Rotating our helicopter 180 degrees around its (0, 0)
origin

Chapter 9 Collision Detection

208

The preceding code calculates the source rectangle of our yellow

helicopter body on the original image and the destination rectangle on

the screen where we want the chopper to be drawn. We then draw the

enemy and rotate it 180 degrees by using the angle in radians as the fifth

parameter to spriteBatch.Draw. 180 degrees in radian is PI, so we use

MonoGame’s MathHelper.Pi property here.

�Spinning Blades
Let’s add some spinning blades. First, we need to specify the speed at

which the blades spin, in radians. We will use that number to increment

the rotation angle of the blades every time the Render() method is called.

private const float BladeSpeed = 0.2f;

private float _angle = 0.0f;

Now we need to add the spinning blade to the chopper. Add the

following code to the Render() method:

var �bladesRect = new Rectangle(BladesStartX, BladesStartY,

BladesWidth, BladesHeight);

var �bladesDestRect = new Rectangle(_position.ToPoint(), new

Point(BladesWidth, BladesHeight));

spri�teBatch.Draw(�_texture, bladesDestRect, bladesRect, Color.

White, _angle,

 �new Vector2(BladesCenterX, BladesCenterY),

SpriteEffects.None, 0f);

_angle += BladeSpeed;

The preceding code is similar to what we did to render the rotated

chopper, except that we provide the _angle variable to the Draw() method

and increment the angle by the BladeSpeed constant at every frame.

Chapter 9 Collision Detection

209

�Making the Choppers Move
To make our chopper move across the screen, we will provide them with

a path via a constructor parameter, which is a list of frame numbers and

direction vectors. The sprites will make their way into the screen from

the left or the right side of the viewport, and after a certain number of

frames, they will change their direction and move down diagonally. To

implement this, let’s add a speed variable to our object and add that

path to the constructor. Then, when the Update() method is called, we

will calculate the age of the game object in number of frames elapsed

since it was created and compare that age with the path the chopper

must take, and change the chopper direction accordingly. First, we need

some class variables:

private const float Speed = 4.0f;

private Vector2 _direction = new Vector2(0, 0);

private int _age = 0;

private List<(int, Vector2)> _path;

The _path variable stores tuples of the type (int, Vector2), which

represent the frame number and associated direction.

Change the constructor to take in a path:

public ChopperSprite(Texture2D texture, List<(int, Vector2)>

path)

{

 _texture = texture;

 _path = path;

}

Chapter 9 Collision Detection

210

And add an Update method that can be called by our

GameplayState class:

public void Update()

{

 �// Choppers follow a path where the direction changes at a

// certain frame,

 // which is tracked by the chopper's age

 foreach(var p in _path)

 {

 int pAge = p.Item1;

 Vector2 pDirection = p.Item2;

 if (_age > pAge)

 {

 _direction = pDirection;

 }

 }

 Position = Position + (_direction * Speed);

 _age++;

}

Feel free to experiment with this new game object in the DevState

class, our sandbox state class that we created in the previous chapter, to get

a feel for how the chopper can move across the screen! Give them a path

and make sure to call Update on them.

To generate the choppers from the left and right side of the screen,

we create a ChopperGenerator class responsible for creating the

ChopperSprite game objects and setting them offscreen on the left or right.

In the following code, the generator is instantiated with the helicopter

texture, the number of choppers to generate, and a handler that the game

state class will use to receive a notification that a chopper was created, so

Chapter 9 Collision Detection

211

it can have a chance to update its list of enemies and add the objects to the

active game object list. When GenerateChoppers() is called, the generator

will create a chopper every 500 milliseconds, alternating between

positioning it on the left or on the right of the screen. It will also create a

path for the chopper and assign it.

public class ChopperGenerator

{

 private bool _generateLeft = true;

 private Vector2 _leftVector = new Vector2(-1, 0);

 private Vector2 _downLeftVector = new Vector2(-1, 1);

 private Vector2 _rightVector = new Vector2(1, 0);

 private Vector2 _downRightVector = new Vector2(1, 1);

 private Texture2D _texture;

 private System.Timers.Timer _timer;

 private Action<ChopperSprite> _chopperHandler;

 private int _maxChoppers = 0;

 private int _choppersGenerated = 0;

 private bool _generating = false;

 �public ChopperGenerator(Texture2D texture, int nbChoppers,

Action<ChopperSprite> handler)

 {

 _texture = texture;

 _chopperHandler = handler;

 _downLeftVector.Normalize();

 _downRightVector.Normalize();

 _maxChoppers = nbChoppers;

Chapter 9 Collision Detection

212

 _timer = new System.Timers.Timer(500);

 _timer.Elapsed += _timer_Elapsed;

 }

 public void GenerateChoppers()

 {

 if (_generating)

 {

 return;

 }

 _choppersGenerated = 0;

 _timer.Start();

 }

 public void StopGenerating()

 {

 _timer.Stop();

 _generating = false;

 }

 �priv�ate void _timer_Elapsed(object sender,

System.Timers.ElapsedEventArgs e)

 {

 List<(int, Vector2)> path;

 if (_generateLeft)

 {

 path = new List<(int, Vector2)>

 {

 (0, _rightVector),

 (2 * 60, _downRightVector),

 };

Chapter 9 Collision Detection

213

 var chopper = new ChopperSprite(_texture, path);

 chopper.Position = new Vector2(-200, 100);

 _chopperHandler(chopper);

 }

 else

 {

 path = new List<(int, Vector2)>

 {

 (0, _leftVector),

 (2 * 60, _downLeftVector),

 };

 var chopper = new ChopperSprite(_texture, path);

 chopper.Position = new Vector2(1500, 100);

 _chopperHandler(chopper);

 }

 _generateLeft = !_generateLeft;

 _choppersGenerated++;

 if (_choppersGenerated == _maxChoppers)

 {

 StopGenerating();

 }

 }

}

In our GameplayState class, let’s add the choppers to an enemy list and

get them to start moving. We can also add a new explosion particle emitter

while we are there, which we will look at in the next section. For now,

however, we can look at how we are handling it here. There were some

Chapter 9 Collision Detection

214

changes made to the particle emitter class that we will not go over in here

to allow the game state class to stop an emitter without destroying it:

public class GameplayState : BaseGameState

{

 // ...

 private const string ChopperTexture = "Chopper";

 private const string ExplosionTexture = "explosion";

 �private const int MaxExplosionAge = 600; �// 10 seconds at

// 60 frames per

// second = 600

 �// Emit particles for 1.2 seconds and let them fade out for

// 10 seconds

 private const int ExplosionActiveLength = 75;

 private Texture2D _chopperTexture;

 �priv�ate List<ExplosionEmitter> _explosionList = new

List<ExplosionEmitter>();

 �priv�ate List<ChopperSprite> _enemyList = new

List<ChopperSprite>();

 public override void LoadContent()

 {

 _explosionTexture = LoadTexture(ExplosionTexture);

 _chopperTexture = LoadTexture(ChopperTexture);

 �_chopperGenerator = new ChopperGenerator(_

chopperTexture, 4, AddChopper);

 _chopperGenerator.GenerateChoppers();

 }

 public override void UpdateGameState(GameTime gameTime)

 {

 // ...

 foreach (var chopper in _enemyList)

Chapter 9 Collision Detection

215

 {

 chopper.Update();

 }

 _enemyList = CleanObjects(_enemyList);

 }

 private void AddChopper(ChopperSprite chopper)

 {

 �chop�per.OnObjectChanged +=

_chopperSprite_OnObjectChanged;

 _enemyList.Add(chopper);

 AddGameObject(chopper);

 }

 private void AddExplosion(Vector2 position)

 {

 �var �explosion = new ExplosionEmitter(_explosionTexture,

position);

 AddGameObject(explosion);

 _explosionList.Add(explosion);

 }

 private void UpdateExplosions(GameTime gameTime)

 {

 foreach (var explosion in _explosionList)

 {

 explosion.Update(gameTime);

 if (explosion.Age > ExplosionActiveLength)

 {

 explosion.Deactivate();

 }

Chapter 9 Collision Detection

216

 if (explosion.Age > MaxExplosionAge)

 {

 RemoveGameObject(explosion);

 }

 }

 }

}

Note that in the AddChopper() method, we are registering to an event

that has been added to the BaseGameObject. Individual game objects, like

the ChopperSprite, can trigger this event when their internal state changes.

We will be using this event further below, when we handle enemies losing

all their life total.

We are also keeping track of all the explosions added to the game and

updating them so the particles can be emitted. Once an explosion reaches

a certain age, it stops emitting particles, which causes the existing ones

to fade away for a while, until the emitter reaches its maximum age and is

removed from the game.

�Adding an Explosion Particle Engine
Now that we can add enemies to our game, enemies that we can shoot

and destroy, we’ll need a new particle emitter so we can have at least some

rudimentary explosion when enemies (or the player) die.

Explosions are not cone shaped. Instead, particles should be generated

within a circle and grow over time. To achieve this, we need a new emitter

type that does not have a direction and will generate particles within a

given radius. Add this class to the Engine\Particles\EmitterTypes directory:

public class CircleEmitterType : IEmitterType

{

 public float Radius { get; private set; }

Chapter 9 Collision Detection

217

 �private RandomNumberGenerator _rnd = new

RandomNumberGenerator();

 public CircleEmitterType(float radius)

 {

 Radius = radius;

 }

 public Vector2 GetParticleDirection()

 {

 return new Vector2(0f, 0f);

 }

 public Vector2 GetParticlePosition(Vector2 emitterPosition)

 {

 var newAngle = _rnd.NextRandom(0, 2 * MathHelper.Pi);

 var positionVector = new Vector2(

 �(float)Math.Cos(newAngle),

(float)Math.Sin(newAngle));

 positionVector.Normalize();

 var distance = _rnd.NextRandom(0, Radius);

 var position = positionVector * distance;

 var x = emitterPosition.X + position.X;

 var y = emitterPosition.Y + position.Y;

 return new Vector2(x, y);

 }

}

Chapter 9 Collision Detection

218

Then, in our games Particles\ directory, add an Explosion.cs file and

add the following code to it:

public class ExplosionParticleState : EmitterParticleState

{

 public override int MinLifespan => 180; �// equivalent to 3

// seconds

 public override int MaxLifespan => 240;

 public override float Velocity => 2.0f;

 public override float VelocityDeviation => 0.0f;

 public override float Acceleration => 0.999f;

 public override Vector2 Gravity => new Vector2(0, 1);

 public override float Opacity => 0.4f;

 public override float OpacityDeviation => 0.1f;

 public override float OpacityFadingRate => 0.92f;

 public override float Rotation => 0.0f;

 public override float RotationDeviation => 0.0f;

 public override float Scale => 0.5f;

 public override float ScaleDeviation => 0.1f;

}

public class ExplosionEmitter : Emitter

{

 private const int NbParticles = 2;

 private const int MaxParticles = 200;

Chapter 9 Collision Detection

219

 private const float Radius = 50f;

 �public ExplosionEmitter(Texture2D texture, Vector2

position) :

 �base(texture, position, new ExplosionParticleState(),

new CircleEmitterType(Radius),

 NbParticles, MaxParticles) { }

}

We added a gravity direction to our particles so the cloud of

explosion textures drifts slightly toward the bottom to create the illusion

of movement. You can add an instance of the ExplosionEmitter into

the DevState and see how it performs on its own. In the game, when an

enemy dies, we will remove the chopper game object from the list of active

game objects and replace it with an explosion emitter. That will generate

particles for a few seconds before stopping.

�Adding Collision Detection
We are now ready to add logic to our game to detect the following

collisions:

•	 Are any bullets hitting an enemy?

•	 Are any missiles hitting an enemy?

•	 Is any enemy colliding with the player sprite?

Given that our game does not have a huge number of objects at any

given time, maybe dozens of bullets, a few enemies, and eventually their

own projectiles, we can afford to use the brute-force method of performing

collision detection on every pair of objects in the game. We can be smart

about it, however, because we know that bullets will never intersect with

each other. We also do not really care if missiles hit bullets. We already

Chapter 9 Collision Detection

220

maintain a list of bullets and a list of missiles in our GameplayState class. It

would be trivial to reuse those lists and add a new enemy list and perform

collision detection between two lists of game objects: one list of passive

objects, like bullets, and a list of active objects that will be notified when

they get hit.

�Bounding Boxes
To perform collision detection between game objects, we need bounding

boxes, and MonoGame provides out-of-the-box support for bounding

boxes via the BoundingBox class in the Microsoft.Xna.Framework

namespace. That class gives us a few utility functions like merging two

bounding boxes into one, creating bounding boxes out of spheres, and

computing if two bounding boxes intersect with each other, which would

result in a collision. Unfortunately for our 2D game, the MonoGame

BoundingBox class uses three-dimensional vectors, which means its main

use is for 3D games. Although it would be possible to use the class in a 2D

game, the idea of remembering to set everything on the z=0 plane to get rid

of the third dimension is not very appealing. This is why we will build our

own 2D BoundingBox class for our game.

Add the following class in Engine\Objects:

public class BoundingBox

{

 public Vector2 Position { get; set; }

 public float Width { get; set; }

 public float Height { get; set; }

 public Rectangle Rectangle

 {

 get

Chapter 9 Collision Detection

221

 {

 �return new Rectangle((int)Position.X, (int)

Position.Y, (int)Width, (int)Height);

 }

 }

 �public BoundingBox(Vector2 position, float width,

float height)

 {

 Position = position;

 Width = width;

 Height = height;

 }

 public bool CollidesWith(BoundingBox otherBB)

 {

 if (Position.X < otherBB.Position.X + otherBB.Width &&

 Position.X + Width > otherBB.Position.X &&

 Position.Y < otherBB.Position.Y + otherBB.Height &&

 Position.Y + Height > otherBB.Position.Y)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

}

Our BoundingBox class is built using a position on the screen, a width,

and a height. We also provide a utility Rectangle property that converts our

box into a rectangle, which we will use later to visualize our boxes on the

Chapter 9 Collision Detection

222

screen. This is useful when we need to debug why our bounding boxes do

not appear to be at the right place. Finally, the class offers a utility function

that returns true when it intersects with another bounding box.

We now need to update our game objects to add bounding boxes. If

you remember Figure 9-3 earlier in the chapter, we were describing using

one box for the chopper and two boxes for the player sprite. We’ll also

need to add a bounding box to our bullets and missiles. Since a few game

objects require the use of bounding boxes, it makes sense to add that

functionality in the base class. Open up BaseGameObject and add the

following code:

protected List<BoundingBox> _boundingBoxes = new

List<BoundingBox>();

public List<BoundingBox> BoundingBoxes

{

 get

 {

 return _boundingBoxes;

 }

}

public virtual Vector2 Position

{

 get { return _position; }

 set

 {

 var deltaX = value.X - _position.X;

 var deltaY = value.Y - _position.Y;

 _position = value;

Chapter 9 Collision Detection

223

 foreach(var bb in _boundingBoxes)

 {

 �bb.Position = new Vector2(bb.Position.X + deltaX,

bb.Position.Y + deltaY);

 }

 }

}

public void AddBoundingBox(BoundingBox bb)

{

 _boundingBoxes.Add(bb);

}

public void RenderBoundingBoxes(SpriteBatch spriteBatch)

{

 if (_boundingBoxTexture == null)

 {

 CreateBoundingBoxTexture(spriteBatch.GraphicsDevice);

 }

 foreach (var bb in _boundingBoxes)

 {

 �spriteBatch.Draw(_boundingBoxTexture, bb.Rectangle,

Color.Red);

 }

}

Our game objects can now add bounding boxes to a list, tracked by the

base class. That list will be available to our game state classes to perform

collision detection. We also updated the Position property so that when it

changes, we also change the position of the bounding box on the screen.

Finally, we can also render the boxes on the screen, very simply as big red

rectangles, making it easy for developers to see immediately if their boxes

are at the right position and follow the objects as they move.

Chapter 9 Collision Detection

224

Let’s see what adding bounding boxes looks like for our chopper

game object:

private int BBPosX = -16;

private int BBPosY = -63;

private int BBWidth = 34;

private int BBHeight = 98;

public ChopperSprite(Texture2D texture, List<(int, Vector2)>

path)

{

 _texture = texture;

 _path = path;

 AddBoundingBox(new Engine.Objects.BoundingBox(

 new Vector2(BBPosX, BBPosY), BBWidth, BBHeight));

}

That’s it! Adding a bounding box to an object is as easy as calling

AddBoundingBox for each box we want to add. The BaseGameObject will

take care of the rest.

You may notice that the BBPosX and BBPosY variables are negative,

which means the bounding box is off the screen. That is because initially,

the chopper’s position is at (0, 0) and we then rotate it 180 degrees around

its origin, causing the sprite to be rotated offscreen. Instead of writing

rotation code to similarly rotate the bounding box to the same position, we

took the liberty of modifying the box’s position directly in the variables.

Our player, bullet, and missile game objects have similar logic, but

you may wonder how we came up with the bounding boxes values. We

can easily figure out the position, width, and height of a bounding box by

opening the texture in a graphical tool like Photoshop or even Paint that

gives us pixel coordinates as we hover the mouse over the loaded image.

Except for the missile texture, which is scaled down at rendering time, our

bounding boxes can be fetched using those tools directly.

Chapter 9 Collision Detection

225

public class BulletSprite : BaseGameObject ,

IGameObjectWithDamage

{

 private const int BBPosX = 9;

 private const int BBPosY = 4;

 private const int BBWidth = 10;

 private const int BBHeight = 22;

 public int Damage => 10;

 public BulletSprite(Texture2D texture)

 {

 _texture = texture;

 AddBoundingBox(

 �new Engine.Objects.BoundingBox(new Vector2

(BBPosX, BBPosY), BBWidth, BBHeight));

 }

}

Notice that the bullet class now implements the

IGameObjectWithDamage interface, so it must have a Damage property,

which returns 10. The missile class further below will also have this

interface, but its damage is slightly higher at 25.

public class PlayerSprite : BaseGameObject

{

 private const int BB1PosX = 29;

 private const int BB1PosY = 2;

 private const int BB1Width = 57;

 private const int BB1Height = 147;

 private const int BB2PosX = 2;

 private const int BB2PosY = 77;

 private const int BB2Width = 111;

Chapter 9 Collision Detection

226

 private const int BB2Height = 37;

 public PlayerSprite(Texture2D texture)

 {

 _texture = texture;

 AddBoundingBox(

 �new Engine.Objects.BoundingBox(new Vector2(BB1PosX,

BB1PosY), BB1Width, BB1Height));

 AddBoundingBox(

 �new Engine.Objects.BoundingBox(new Vector2(BB2PosX,

BB2PosY), BB2Width, BB2Height));

 }

}

public class MissileSprite : BaseGameObject ,

IGameObjectWithDamage

{

 private int _missileHeight;

 private int _missileWidth;

 public int Damage => 25;

 �public MissileSprite(Texture2D missleTexture, Texture2D

exhaustTexture)

 {

 _texture = missleTexture;

 �_exh�austEmitter = new ExhaustEmitter(exhaustTexture,

_position);

 �var ratio = �(float) _texture.Height /

(float) _texture.Width;

 _missileWidth = 50;

 _missileHeight = (int) (_missileWidth * ratio);

Chapter 9 Collision Detection

227

 �// Note that the missile is scaled down! So its

// bounding box must be scaled down as well

 var bbRatio = (float) _missileWidth / _texture.Width;

 var bbOriginalPositionX = 352;

 var bbOriginalPositionY = 7;

 var bbOriginalWidth = 150;

 var bbOriginalHeight = 500;

 var bbPositionX = bbOriginalPositionX * bbRatio;

 var bbPositionY = bbOriginalPositionY * bbRatio;

 var bbWidth = bbOriginalWidth * bbRatio;

 var bbHeight = bbOriginalHeight * bbRatio;

 AddBoundingBox(

 �new Engine.Objects.BoundingBox(new

Vector2(bbPositionX, bbPositionY), bbWidth,

bbHeight));

 }

}

It is worth spending a few moments on the missile bounding boxes.

The original missile texture is much larger than how we want them

drawn and is scaled down at rendering time. To compute its rendering

box, we fetch the position, width, and height from the original image and

multiplied those values by the scaling ratio to get new values that fit the

scaled-down missile texture.

To visualize the bounding boxes, we can add a _debug variable to

BaseGameState that defaults to false:

protected bool _debug = false;

Chapter 9 Collision Detection

228

and use it in the rendering code:

public void Render(SpriteBatch spriteBatch)

{

 �foreach (var gameObject in _gameObjects.OrderBy(a =>

a.zIndex))

 {

 gameObject.Render(spriteBatch);

 if (_debug)

 {

 gameObject.RenderBoundingBoxes(spriteBatch);

 }

 }

}

This will cause the game engine to draw the bounding boxes on top1

of the game objects each frame if the _debug flag is turned on, as seen in

Figure 9-10, where we can see that all bounding boxes are positioned and

scaled properly.

1�We updated the code in Chapter 10 to draw the bounding boxes underneath the
game objects instead as this makes things easier to visualize.

Chapter 9 Collision Detection

229

�AABB Collision Detection
We are now ready to detect collisions. Since we are going to do

AABB-style collision detection, add a class in Engine\Objects called

AABBCollisionDetector:

public class AABBCollisionDetector<P, A>

 where P : BaseGameObject

 where A : BaseGameObject

{

 private List<P> _passiveObjects;

 public AABBCollisionDetector(List<P> passiveObjects)

 {

 _passiveObjects = passiveObjects;

 }

Figure 9-10.  Drawing the bounding boxes on top of game objects for
debug purposes

Chapter 9 Collision Detection

230

 �public void DetectCollisions(A activeObject, Action<P, A>

collisionHandler)

 {

 foreach(var passiveObject in _passiveObjects)

 {

 if (DetectCollision(passiveObject, activeObject))

 {

 collisionHandler(passiveObject, activeObject);

 }

 }

 }

 �public void DetectCollisions(List<A> activeObjects,

Action<P, A> collisionHandler)

 {

 foreach(var passiveObject in _passiveObjects)

 {

 foreach(var activeObject in activeObjects)

 {

 �if (DetectCollision(passiveObject,

activeObject))

 {

 �collisionHandler(passiveObject,

activeObject);

 }

 }

 }

 }

 �private bool DetectCollision(P passiveObject, A

activeObject)

 {

 foreach(var passiveBB in passiveObject.BoundingBoxes)

Chapter 9 Collision Detection

231

 {

 foreach(var activeBB in activeObject.BoundingBoxes)

 {

 if (passiveBB.CollidesWith(activeBB))

 {

 return true;

 }

 }

 }

 return false;

 }

}

This class is instantiated with a list of passive objects, like bullets, that

we will use later to check for collisions with a single active object or a list

of active objects, by using the two overloaded DetectCollisions() methods.

Both methods will iterate over each passive object and active object and

check for collisions using the AABB algorithm we discussed higher in the

chapter. When a collision is detected, a collisionHandler handler function

is called and both colliding objects are passed in as parameters, giving an

opportunity to the caller to react to each collision.

In the GameplayState class, add the following code to the

UpdateGameState() method:

DetectCollisions();

And implement that DetectCollisions() method:

private void DetectCollisions()

{

 var bulletCollisionDetector =

 �new AABBCollisionDetector<BulletSprite,

ChopperSprite>(_bulletList);

Chapter 9 Collision Detection

232

 var missileCollisionDetector =

 �new AABBCollisionDetector<MissileSprite,

ChopperSprite>(_missileList);

 var playerCollisionDetector =

 �new AABBCollisionDetector<ChopperSprite,

PlayerSprite>(_enemyList);

 �bull�etCollisionDetector.DetectCollisions(

_enemyList, (bullet, chopper) =>

 {

 var hitEvent = new GameplayEvents.ChopperHitBy(bullet);

 chopper.OnNotify(hitEvent);

 _soundManager.OnNotify(hitEvent);

 bullet.Destroy();

 });

 �miss�ileCollisionDetector.DetectCollisions(_enemyList,

(missile, chopper) =>

 {

 �var hitEvent = new GameplayEvents.ChopperHitBy(missile);

 chopper.OnNotify(hitEvent);

 _soundManager.OnNotify(hitEvent);

 missile.Destroy();

 });

 �play�erCollisionDetector.DetectCollisions(_playerSprite,

(chopper, player) =>

 {

 KillPlayer();

 });

 }

Chapter 9 Collision Detection

233

First, we build three distinct collision detectors, one for each of the

scenarios we are interested in. Then, we call DetectCollisions() for each of

our scenarios:

•	 Bullets hitting choppers

•	 Missile hitting choppers

•	 Choppers hitting the player

We also pass in a lambda function as our handler to react to collisions.

When bullets or missiles hit choppers, we generate a new gameplay event

and notify the chopper, who will then update its own life total. We also

notify the sound manager in case we have a sound effect that needs to be

played. Finally, instead of removing the colliding bullet or missile from the

game, we mark it as destroyed. The CleanObject method was updated to

also clean up destroyed objects, so marked objects are removed at every

Update() call.

We also need to respond to the choppers’ life total changing. When

it reaches zero, we want to remove the chopper and replace it by an

explosion. We do this in the following method that we linked with the

chopper’s OnObjectChanged event:

private void _chopperSprite_OnObjectChanged(object sender,

BaseGameStateEvent e)

{

 var chopper = (ChopperSprite)sender;

 switch (e)

 {

 case GameplayEvents.EnemyLostLife ge:

 if (ge.CurrentLife <= 0)

 {

 �AddEx�plosion(new Vector2(chopper.Position.X -

40, chopper.Position.Y - 40));

 chopper.Destroy();

Chapter 9 Collision Detection

234

 }

 break;

 }

}

Here, we destroy the chopper if its life total is zero or less, meaning that

the CleanObjects() method will take care of removing it from the game the

next time it is called. We then call AddExplosion(), which will create a nice

little explosion on the screen exactly where the chopper used to be.

Finally, the KillPlayer() function is implemented like this:

private async void KillPlayer()

{

 _playerDead = true;

 AddExplosion(_playerSprite.Position);

 RemoveGameObject(_playerSprite);

 await Task.Delay(TimeSpan.FromSeconds(2));

 ResetGame();

}

The player is marked as dead to prevent it from shooting bullets. An

explosion is positioned on top of the player sprite just before removing the

game object from the game. Then, we give the player two seconds to realize

what just happened and we reset the game so the level can start over.

Load up the chapter-9 end solution in Visual Studio and give it a try!

�Summary
In this chapter, we looked at a few different algorithms for performing

collision detection and how we can hook them into our gameplay code

and react to collisions. Enemies can get hit by bullets and missiles, lose life,

and eventually explode into a cloud of fire.

Chapter 9 Collision Detection

235

We have done a lot in this chapter, but unfortunately, we could not

look in detail at all the code that was added, like how the choppers briefly

change color when hit by bullets or how the game resets to reload the

level. We encourage you to investigate this on your own and we believe

that you currently have all the tools you need to implement this at home.

When developing a video game, the devil is in the details: we could spend

more time adding spark particles to choppers when they get hit. We could

use an OBB-style collision detection and rotate the choppers when they

move diagonally. We should probably add sound effects when bullets hit

choppers or when they explode. We are also at the point where we need to

add lives to the player so we can retry the level three times before we are

game over.

The thing is, however, that you now have all the tools you need to

implement those details. What is missing is the ability to add text to the

game and display the player’s remaining lives. We will get to that one in a

future chapter, but before that, we’d like to move on to another interesting

subject: animation!

Chapter 9 Collision Detection

237© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_10

CHAPTER 10

Animations and Text
Unless you are building a Tetris clone or a text-based game, like the classic

game Zork, you will need animations in your video game to make it feel

more fluid. Even the 1978 game Space Invaders had a very basic and crude

animation, where enemies provide the illusion of movement by switching

between two sprites every second or so: at one moment the aliens’ arms

are down and the next second the arms are up. Animations provide us with

the illusion of life.

Another topic that has been missing in our game so far is text. Every

single game has some form of text. Even when the gameplay has no text,

which is rare, games usually have some form of menu system where the

player can choose between items like “Start Game,” “Continue,” or “Quit.”

In the archetype that we are modeling our game after, players have a fixed

number of lives and can accumulate a score, where both are displayed on

the screen.

Figure 10-1 gives us an example of the text we will have in our game by

the end of the chapter.

https://doi.org/10.1007/978-1-4842-6309-9_10#DOI

238

In this chapter, you will

•	 Learn the basics of animations

•	 Add an animation to the fighter plane when it moves

•	 Add text to the game to display the player’s remaining

lives and add a Game Over overlay when the player

runs out of lives

�A Bit of Refactoring
The starting code for this chapter can be found here: https://github.

com/Apress/monogame-mastery/tree/master/chapter-10/start.

The first thing we did before writing new code for this chapter was to

reorganize the Content Pipeline. Having all the sounds and images located

in the same root folder was getting a little messy. We have four types

of assets: sprites, images, music, and sounds. We added a folder in the

Figure 10-1.  Text!

Chapter 10 Animations and Text

https://github.com/Apress/monogame-mastery/tree/master/chapter-10/start
https://github.com/Apress/monogame-mastery/tree/master/chapter-10/start

239

content manager for each one of these types and moved our assets to be in

the correct folders as seen in Figure 10-2.

You can ignore the Fonts and Animations folder for the moment since

these will be added later in the chapter. To perform these changes, we first

created actual directories on the hard disk within our Assets folder. See

Figure 10-3.

Figure 10-2.  Newly reorganized content pipeline

Chapter 10 Animations and Text

240

We then opened the content pipeline xml file located at Content\

Content.mgcb within Visual Studio to edit the XML file directly because

the Content Pipeline user interface does not provide us with a way to move

assets around. For each one of our assets, we updated the location of the

physical asset and where it resides in the content pipeline. For example,

this

#begin ../../assets /FutureAmbient_1.wav

/importer:WavImporter

/processor:SoundEffectProcessor

/processorParam:Quality=Best

/build:../../assets/FutureAmbient_1.wav;FutureAmbient_1.wav

was updated with the correct file paths and content location:

#begin ../../assets/music/FutureAmbient_1.wav

/importer:WavImporter

/processor:SoundEffectProcessor

Figure 10-3.  New physical organization of assets

Chapter 10 Animations and Text

241

/processorParam:Quality=Best

/build:../../assets/music/FutureAmbient_1.wav;Music/

FutureAmbient_1.wav

We did this for all our assets, opened up the content pipeline user

interface, and rebuilt our content pipeline to make sure we had no error.

Finally, we now had to update the game code to load our sounds, music,

and textures from their new location. For example:

public class GameplayState : BaseGameState

{

 private const string BackgroundTexture = "Sprites/Barren";

 �private const string PlayerFighter = "Sprites/Animations/

FighterSpriteSheet";

 private const string BulletTexture = "Sprites/bullet";

 private const string ExhaustTexture = "Sprites/Cloud";

 private const string MissileTexture = "Sprites/Missile";

 private const string ChopperTexture = "Sprites/Chopper";

 �private const string ExplosionTexture = "Sprites/

explosion";

 private const string TextFont = "Fonts/Lives";

 private const string GameOverFont = "Fonts/GameOver";

 private const string BulletSound = "Sounds/bulletSound";

 private const string MissileSound = "Sounds/missileSound";

 private const string Soundtrack1 = "Music/FutureAmbient_1";

 private const string Soundtrack2 = "Music/FutureAmbient_2";

}

Chapter 10 Animations and Text

242

�Animations
2D animations are straightforward and follow the same principles that

animators have used since the early twentieth century, where images

are displayed in succession and rapidly enough to cause the illusion of

movement. In two-dimensional games, programmers load multiple sprites

in memory and tell the game to display them in sequence, one at a time,

and control the speed of the animation by setting a frame count or time

limit for each sprite.

Look at Figure 10-4 for all the sprites needed for the death animation

of a skeleton character. By flipping through all those sprites, the skeleton

comes to life… only to die.

How fluid the animation looks depends on how many sprites are used

and how long the animation lasts. With fewer frames, a faster animation

is required to avoid any choppiness where the player can visibly notice

each frame. However, such an effect may be desired in some games where,

for example, the player character is idle and bobbing up and down. Just

like the Space Invaders aliens, that idle character could require only two

sprites: one for the bottom of the bob animation and one for the top.

�Sprite Sheets
If we were to include the dying skeleton from Figure 10-4 into our game

and animate it, would we have to add seven sprites to the content pipeline,

name them, and load them in our game? Thankfully no, as that would be a

lot of work, because this is just one animate, where the skeleton faces right.

Figure 10-4.  The death of a skeleton, one sprite at a time

Chapter 10 Animations and Text

243

A game could have skeletons facing left, up, and down, each with their

own animations, adding up to 28 sprites in total! Instead, game developers

use sprite sheets, which are just like our regular texture files, but with all

the required game animation sprites in the same file, with usually one row

per animation. A single sprite sheet covering all the animations required

for our skeleton could then have a row for each of the following:

•	 Idle facing left

•	 Idle facing right

•	 Idle facing up

•	 Idle facing down

•	 Walking left

•	 Walking right

•	 Walking up

•	 Walking down

•	 Dying while facing left

•	 Dying while facing right

•	 Dying while facing up

•	 Dying while facing down

An artist would create all those sprites and place them into the sprite

sheet file and provide the game developer with the dimensions of each

sprite. With that information, we can then compute the location of any

sprite within the sprite sheet. See Figure 10-5 for an example of a larger

sprite sheet containing multiple animations. In this case, each row has

one type of game character and multiple animations are on the same line.

This sprite sheet comes from the open game arts website located here:

https://opengameart.org/content/a-platformer-in-the-forest.

Chapter 10 Animations and Text

https://opengameart.org/content/a-platformer-in-the-forest

244

On that web page, we can see that the artist has written instructions for

finding the sprites needed for different animations.

�Texture Atlas
Texture atlases are similar to sprite sheets and we want to cover them

briefly here because the two are sometimes mixed up. The principle is the

same: build a single image file that contains multiple textures. The main

difference between a sprite sheet and an atlas is that the atlas is typically

not used for animations. Instead, it will contain textures needed for the

game in general. See Figure 10-6 for an example of an atlas. Figure 10-7

shows how the atlas is used to build up a world.

Figure 10-6.  A game atlas

Figure 10-5.  Large sprite sheet with sprites for many animations, for
many characters

Chapter 10 Animations and Text

245

�Animation Downsides
When I play combat-style video games like NieR:Automata, The Witcher 3,

or Monster Hunter: World, I prefer playing a quick and responsive combat

style. These games all offer the player a choice between slow and powerful

weapons, or quick and weaker weapons that hit for less damage than their

heavy counterparts, but hit more often, resulting in similar damage over

time. Every time I pick up a heavy weapon in those games and hit the

attack button, I have to watch a weapon swing animation that takes a long

time to complete. My character takes a step back, starts swinging their

weapon around them, and then commits with all their might to crashing

the weapon down on the target. Sometimes the animation takes a full three

seconds, which feels like an eternity, and I cannot do anything else during

that time.

Figure 10-7.  Using an atlas to build a world

Chapter 10 Animations and Text

246

Those long animations bring into light one of the downsides of the

technique. It can be hard to fluidly move out of an animation in a video

game because it is hard for designers to create different abilities and

movement types in a way where they can be mixed and matched. What if

halfway through a long sword swing, I decide to start running backward?

In real life that could be doable: let the sword momentum turn me around

while I bring the sword closer to my body and finally sheath it and start

running. However, in a video game, game designers will rarely account

for sudden change in movement, so players are forbidden from doing

anything of the sort. You cannot cancel a sword swing, the same way that

you cannot unsheathe a sword until it is fully sheathed. Doing so would

force the unsheathing animation to start from the start while halfway

through the sheathing animation, causing the sword to “jump” down in

one frame, breaking the illusion of movement.

It is much easier to design a game if animations are forced to go to

completion or if cancelling an animation to replace it with another does

not cause anything weird visually.

�State Machines
State machines are a useful way to manage, among other things,1 the

animations of game objects. We will not be using state machines in our

game, but we thought it would be nice to mention them as they are a

useful tool to help control and organize the complexity of managing the

many possible states of game objects. For example, while hanging off the

edge of a building in Assassin’s Creed, the player cannot just start walking.

First, they must either let go and fall or climb up the ledge and stand up

1�Another use of state machines would be managing what to do with player
commands. For example, pressing the down arrow could mean moving the
character downward or dropping an item, depending on which state the
character is in.

Chapter 10 Animations and Text

247

on the roof. We could add code like this in our gameplay state class and

micromanage the player game object:

if (cmd is GameplayInputCommand.MoveUp && !player.IsHanging &&

 !player.IsFalling && !player.IsDead)

{

 player.MoveUp();

}

Else if (cmd is GameplayInputCommand.MoveUp && player.IsHanging

&& !player.IsDead)

{

 player.Climb();

}

However, as the game grows, managing all the different ways a player

can move and interact with the world becomes complex and difficult to

reason about. This is where state machines can help. A state machine is a

collection of states that are connected to each other with directed edges.

If state A has an edge that goes toward state B, it means we can transition

from A to B. However, if state B does not have its own edge toward state A,

we cannot transition back.

If we look at our previous example of an Assassin’s Creed player

hanging on a ledge, we could see the graph of states and edges depicted

in Figure 10-8. That state machine has five different states and things start

with the player initially in the idle state. From there, the player can only

start walking, after which they can hang off a ledge or fall. When hanging,

they can climb up or fall.

Chapter 10 Animations and Text

248

Each state in our state machine has its own associated animation, so

when it comes time to draw out our animations, the gameplay state simply

has to ask the player game object to draw its current state’s animation

without having to care about the details of the game.

While we will not implement a state machine in our game, we thought

it could be worth bringing up the technique because it is widely used in

gaming. Should you decide to build a game using Unity one day, you will

have to use state machines and associate states to animations.

�Animation Engine
Any game object should only have a single active animation at a time, or

no active animation while displaying a regular nonmoving sprite, which

they can already do. Our strategy for implementing animations to our

engine will be to add two classes: AnimationFrame and Animation, and

let game objects manage their own animations. While it would be useful to

add a state machine to the engine, we will not need this extra complexity

for the simple animations found in vertical shooter games.

Figure 10-8.  A simple state machine

Chapter 10 Animations and Text

249

Let’s start with the simplest of the two classes: the AnimationFrame. Its

purpose is to hold information about each frame of an animation:

•	 Where its sprite is on a sprite sheet. We will use a

Rectangle to store this into the class to make it easier

when we later draw the sprite because the SpriteBatch.

Draw method requires Rectangles.

•	 How long should this frame last, in number of frames.

Some animation engines calculate the length of each animation frames

in seconds, which is useful when working with a framework that does not

guarantee a fixed number of frames per seconds. In our case, MonoGame

defaults to displaying 60 frames per second so we can easily reason about

our animations in terms of number of frames. It is important to note,

however, that this is just the default value. Some games run purposefully at

30 frames per second, in which case the animation frame lengths need to

be updated so they run as fast as the 60 frames per second games. In other

cases, slow gaming hardware could prevent MonoGame from operating at

its desired update speed. In that case, animations that are measured using

time instead of frames will keep operating at the same speed and may skip

animation frames, while animations like ours that are using a frame count

will appear to be slower.

Create an AnimationFrame class in the Engine\Objects\Animations

directory:

public class AnimationFrame

{

 public Rectangle SourceRectangle { get; private set; }

 public int Lifespan { get; private set; }

Chapter 10 Animations and Text

250

 �public AnimationFrame(Rectangle sourceRectangle, int

lifespan)

 {

 SourceRectangle = sourceRectangle;

 Lifespan = lifespan;

 }

}

Now, let’s start working on our Animation class, which is a little more

complex. It will hold a list of animation frames and be able to tell our game

which animation sprite needs to be drawn at any time given the age of

the animation. It must also know whether an animation is looping or not.

For example, and idle character bobbing up and down will use a looping

animation, while a character climbing up a ledge will not use a looping

animation. Finally, we should be able to reset an animation and bring it

back to frame number 1, and the ability to create a reversed copy of an

animation can be a neat utility.

Create an Animation class in the Engine\Objects\Animations

directory, with the following class variables:

public class Animation

{

 �priv�ate List<AnimationFrame> _frames = new

List<AnimationFrame>();

 private int _animationAge = 0;

 private int _lifespan = -1;

 private bool _isLoop = false;

}

Chapter 10 Animations and Text

251

Here we have the _frames list of animation frames, the age of the

animation, and whether the animation is a loop. We also have _lifespan,

which will be used to hold the total length of the animation, in number of

frames. It is calculated like this:

public int Lifespan {

 get

 {

 if (_lifespan < 0)

 {

 _lifespan = 0;

 foreach (var frame in _frames)

 {

 _lifespan += frame.Lifespan;

 }

 }

 return _lifespan;

 }

}

This property takes the sum of all the animation frames’ lifespans and

caches it in _lifespan before returning it. We can cache that value because

once an animation is created, it will never change.

Getting the current frame of the animation is the core of this class. The

algorithm works this way:

We will iterate through the frames of the animation and add their age

into an accumulator variable. As we visit each frame, if the current age of

the animation is smaller than the accumulator plus the current frame’s

lifespan, then we have found our current frame and return it. Otherwise,

increment the accumulator by the current frame’s lifespan and move on

to the next frame. If, after iterating through all our frame, we still have not

found our current frame, we will simply return the last one.

Chapter 10 Animations and Text

252

Figure 10-9 shows us a simple example of an animation with four

frames, each one lasting 20 frames. If our animation’s age is currently 35,

then to compute our current frame we need to go through our algorithm.

•	 Frame 1: Accumulator = 0, so our animation age of 35 is

not smaller than accumulator + 20. Next!

•	 Frame 2: Accumulator is now 20, which means that the

animation age of 35 is smaller than accumulator + 20.

We found our frame! Return frame number 2.

The code that implements this algorithm is as follows:

public AnimationFrame CurrentFrame

{

 get

 {

 AnimationFrame currentFrame = null;

 var framesLifespan = 0;

 foreach (var frame in _frames)

Figure 10-9.  Computing an animation’s current frame based on the
animation age

Chapter 10 Animations and Text

253

 {

 �if (�framesLifespan + frame.Lifespan >=

_animationAge)

 {

 currentFrame = frame;

 break;

 }

 else

 {

 framesLifespan += frame.Lifespan;

 }

 }

 if (currentFrame == null)

 {

 currentFrame = _frames.LastOrDefault();

 }

 return currentFrame;

 }

}

When creating an instance of the Animation class, we want to indicate

whether this is a looping animation:

public Animation(bool looping)

{

 _isLoop = looping;

}

Chapter 10 Animations and Text

254

Then, our game objects, which will soon use our new animation class,

can add frames to the animation one by one using the AddFrame method,

by specifying the rectangle on the sprite sheet that corresponds to the

frame that is being added, and the lifespan of the frame:

public void AddFrame(Rectangle sourceRectangle, int lifespan)

{

 _frames.Add(new AnimationFrame(sourceRectangle, lifespan));

}

Finally, we need to increment the age of the animation at each update.

We also need to be able to reset the animation by setting its age back to

zero.

public void Update(GameTime gametime)

{

 _animationAge++;

 if (_isLoop && _animationAge > Lifespan)

 {

 _animationAge = 0;

 }

}

public void Reset()

{

 _animationAge = 0;

}

Notice that in the case of a looping animation, when we increment the

age during the Update method, we reset the age if the animation age is

longer than its total lifespan, causing to start over.

Chapter 10 Animations and Text

255

Finally, we will add our utility function to reverse an animation, which

returns a new animation with a reversed list of frames. This will be useful

later.

public Animation ReverseAnimation

{

 get

 {

 var newAnimation = new Animation(_isLoop);

 for (int i = _frames.Count - 1; i >= 0; i--)

 {

 �newAnimation.AddFrame(_frames[i].SourceRectangle,

_frames[i].Lifespan);

 }

 return newAnimation;

 }

}

�Animating Our Fighter Plane
We are now ready to add animations to the game and we think the fighter

plane could use some polishing when it moves left or right. In real life,

when a fighter jet moves sideways, it starts by tilting toward that direction,

causing it to move that way. It would look interesting for our player

sprite to tilt in the same manner while it moves around the bottom of the

screen, so we created a sprite sheet with a few tilting increments in both

directions. Figure 10-10 shows the sprite sheet that we created. However,

instead of creating two rows for the left and right animations, they are all

on the same row.

Chapter 10 Animations and Text

256

The sprite sheet is in the assets\png directory on the disk. Open up

the Content Pipeline tool and add an Animations folder inside the Sprites

folder. Inside the Animations folder, add a link to our fighter sprite sheet

and call it FighterSpriteSheet.png. Save and build the content pipeline.

Open the PlayerSprite class in Visual Studio and add the following

private variables:

private Animation _turnLeftAnimation = new Animation(false);

private Animation _turnRightAnimation = new Animation(false);

private Animation _leftToCenterAnimation = new Animation(false);

private Animation _rightToCenterAnimation = new Animation(false);

private const int AnimationSpeed = 3;

private const int AnimationCellWidth = 116;

private const int AnimationCellHeight= 152;

private Animation _currentAnimation;

private Rectangle _idleRectangle;

private bool _movingLeft = false;

private bool _movingRight = false;

Here we are adding a few animations to the game object. Our fighter

jet tilts to the left or tilts to the right. It can also come back to center when

the player stops moving. We are also defining a few values that we will

use later. The tilting animation has a speed of 3, which we will use as the

Figure 10-10.  All the frames of our moving fighter plane

Chapter 10 Animations and Text

257

lifespan of each animation frame later. This is extremely fast! However,

anything slower felt too choppy, so we opted for a fast animation instead of

an animation with more intermediate frames.

Our private variables also track the height and width of each animation

sprite on the sprite sheet. Finally, we track which animation is currently

being played, which sprite is the idle sprite in the sprite sheet, and if the

player is currently moving left or right. Let’s now create our animations. Go

to the PlayerSprite constructor and add the following code:

_idl�eRectangle = new Rectangle(348, 0, AnimationCellWidth,

AnimationCellHeight);

_tur�nLeftAnimation.AddFrame(new Rectangle(348, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nLeftAnimation.AddFrame(new Rectangle(232, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nLeftAnimation.AddFrame(new Rectangle(116, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nLeftAnimation.AddFrame(new Rectangle(0, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nRightAnimation.AddFrame(new Rectangle(348, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nRightAnimation.AddFrame(new Rectangle(464, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_tur�nRightAnimation.AddFrame(new Rectangle(580, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

Chapter 10 Animations and Text

258

_tur��nRightAnimation.AddFrame(new Rectangle(696, 0,

AnimationCellWidth, AnimationCellHeight),

 AnimationSpeed);

_leftToCenterAnimation = _turnLeftAnimation.ReverseAnimation;

_rightToCenterAnimation = _turnRightAnimation.ReverseAnimation;

The preceding code sets the idle rectangle, representing the fighter

plane in its idle state, which is the fourth sprite in our sprite sheet. The

coordinates in the rectangle correspond to exactly the location of the

sprite on the sprite sheet. We then create the _turnLeftAnimation by

adding first four sprites in the sprite sheet. This is followed by creating the

_turnRightAnimation, which adds the last four sprites in the sprite sheet.

Finally, to create the animations to return the plane to its idle position,

we simply reverse the two animations that we created. We now have a total

of four animations for our fighter jet. Let’s use them!

Our PlayerSprite object already has a MoveLeft() and MoveRight()

methods to change the position of the plane in the game. We will reuse

those methods to also change the current animation of the object. We

will also add a StopMoving() method to be able to play the appropriate

reversed animation.

public void StopMoving()

{

 if (_movingLeft)

 {

 _currentAnimation = _leftToCenterAnimation;

 _movingLeft = false;

 }

 if (_movingRight)

 {

 _currentAnimation = _rightToCenterAnimation;

Chapter 10 Animations and Text

259

 _movingRight = false;

 }

}

public void MoveLeft()

{

 _movingLeft = true;

 _movingRight = false;

 _currentAnimation = _turnLeftAnimation;

 _leftToCenterAnimation.Reset();

 _turnRightAnimation.Reset();

 Position = new Vector2(Position.X - PlayerSpeed, Position.Y);

}

public void MoveRight()

{

 _movingRight = true;

 _movingLeft = false;

 _currentAnimation = _turnRightAnimation;

 _rightToCenterAnimation.Reset();

 _turnLeftAnimation.Reset();

 Position = new Vector2(Position.X + PlayerSpeed, Position.Y);

}

A few things are happening in MoveRight(). First, we set the _

movingRight and _movingLeft Boolean variables accordingly so our object

knows it is currently moving right. Then, we set the _currentAnimation

to the _turnRightAnimation. Since we know we are not using the other

animations at the moment, we reset them so they can be reused later.

Finally, we update the position of the object on the screen. The MoveLeft()

method works in a similar way.

Chapter 10 Animations and Text

260

The StopMoving() method, however, needs to know which way

the plane was turning so it can bring it back to center. If it was moving

left, then we use the _leftToCenterAnimation. Otherwise, we use the

_rightToCenterAnimation. Finally, since we are not moving anymore, we

reset both movement Boolean variables.

This is quite a bit of state tracking, but it is still manageable. However,

if we started adding more functionality to our fighter game object, like

moving vertically, we may have to think about using a state machine

instead.

Only a few things are left for our new fighter plane to be usable. We

need an Update() method so we can increase the age of the current

animation, and we also need to find the current animation’s frame so we

can draw it. Or, if there is no current animation because the player stopped

moving, we draw the idle sprite.

public void Update(GameTime gametime)

{

 if (_currentAnimation != null)

 {

 _currentAnimation.Update(gametime);

 }

}

public override void Render(SpriteBatch spriteBatch)

{

 var destinationRectangle =

 new Rectangle((int)_position.X, (int)_position.Y,

 AnimationCellWidth, AnimationCellHeight);

 var sourceRectangle = _idleRectangle;

 if (_currentAnimation != null)

 {

 var currentFrame = _currentAnimation.CurrentFrame;

 if (currentFrame != null)

Chapter 10 Animations and Text

261

 {

 sourceRectangle = currentFrame.SourceRectangle;

 }

 }

 �spriteBatch.Draw(_texture, destinationRectangle,

sourceRectangle, Color.White);

}

And there we have it. You can play with this new FighterSprite class in

the DevState class and see how it performs when turning left and right.

The GameplayState class was modified to take into account a new

GameplayInputCommand:

public class PlayerStopsMoving : GameplayInputCommand { }

This command is issued when the player is not pressing the left or right

arrow keys in our input mapper, which was modified to this effect:

if (state.IsKeyDown(Keys.Right))

{

 commands.Add(new GameplayInputCommand.PlayerMoveRight());

}

else if (state.IsKeyDown(Keys.Left))

{

 commands.Add(new GameplayInputCommand.PlayerMoveLeft());

}

else

{

 commands.Add(new GameplayInputCommand.PlayerStopsMoving());

}

Chapter 10 Animations and Text

262

With that in place, the HandleInput() method in the GameplayState

class can monitor for this command and react appropriately:

if (cmd is GameplayInputCommand.PlayerStopsMoving &&

!_playerDead)

{

 _playerSprite.StopMoving();

}

Finally, the GameplayState’s UpdateGameState() method must call the

Update() method on the PlayerSprite class. This is done with this simple

call:

_playerSprite.Update(gameTime);

�Text
Text is a major part of games everywhere. It is used for different purposes,

like displaying the player score, a letter received by a player in an MMO,

or a menu on the screen to let the player change their graphic settings. We

will use text in our game to tell the player how many lives they have left

and give them a Game Over screen when they run out of lives.

�Fonts
To display text on the screen, you need sprites. Thankfully, we do not

have to create our own sprite atlases that comprise all the font characters

we need for our game. MonoGame takes care of this for us by rasterizing

fonts that we already have on our computers. If you can use a particular

font while editing text in a Word document, then that font is available for

MonoGame, which will be happy to create font sprites for you.

Chapter 10 Animations and Text

263

�Adding Fonts to the Content Pipeline
Creating font sprites for our game is fairly straightforward. We will use the

Content Pipeline tool to add our game fonts, but we will need one extra

step in order to correctly build our fonts. Open the Content Pipeline Tool

and add a Fonts folder under Contents. As shown in Figure 10-11, in the

Fonts folder, create two new items and select the SpriteFont Description

option. Call each item GameOver and Lives. The reason we need two

different fonts is that the game over text will be bigger than the live text, so

we need to rasterize the two fonts independently into two different sprite

fonts. Note that another sprite font option exists in the content pipeline for

localized text. This is used when games are sold internationally, and text

needs to change depending on the region of the world where the player

lives. We will not cover this scenario in this chapter.

Figure 10-11.  Adding SpriteFonts to the content pipeline

Chapter 10 Animations and Text

264

Save the content pipeline, but do not yet close the window. We have

just created two files in our game solution, located in Content\Fonts\

called GameOver.spritefont and Lives.spritefont. Open both files in Visual

Studio. As you can see, both files are also XML files and can be edited. In

the Lives.spritefont, notice how the font is set to Arial on line 14:

 <FontName>Arial</FontName>

Feel free to experiment with different fonts, but we decided to use the

default font for the moment. However, we need to change the font size to

14 by changing this line in the file:

 <Size>14</Size>

Save the file and open GameOver.spritefont and change the font size in

that file to 50, and then save and close both files. You can now run a build

in the content pipeline tool.

�Fonts As Game Objects
We will treat text as game objects because like other game objects, they

are drawn on the screen and have a position. Let’s add a new class to our

engine in the Engine\Objects directory called BaseTextObject:

public class BaseTextObject : BaseGameObject

{

 protected SpriteFont _font;

 public string Text { get; set; }

 public override void Render(SpriteBatch spriteBatch)

 {

 �spri�teBatch.DrawString(_font, Text, _position,

Color.White);

 }

}

Chapter 10 Animations and Text

265

This class inherits from BaseGameObject, giving it all functionality of

a GameObject, but we will ignore the _texture private variable in the base

class. Instead, we will keep track of the sprite font used by each text object,

and we provide a default rendering method that uses a new SpriteBatch

method called DrawString(), which is used to draw text using a sprite font,

a string, and a position.

Let’s add our two text objects to our game. Add two classes in the

Objects\Text directory – GameOverText and LivesText:

public class GameOverText : BaseTextObject

{

 public GameOverText(SpriteFont font)

 {

 _font = font;

 Text = "Game Over";

 }

}

public class LivesText : BaseTextObject

{

 private int _nbLives = -1;

 public int NbLives {

 get

 {

 return _nbLives;

 }

 set

 {

 _nbLives = value;

 Text = $"Lives: {_nbLives}";

 }

 }

Chapter 10 Animations and Text

266

 public LivesText(SpriteFont font)

 {

 _font = font;

 }

}

The GameOverText class is very straightforward and holds the “Game

Over” text.

The LivesText class, on the other hand, has the extra responsibility

of updating its text based on the number of remaining lives of the player.

When the player loses a life, the GameplayState will set the NbLives

property, which will cause the text being displayed to be updated.

�Tracking Lives
Let’s now track our player’s lives. When the game starts, our player will

have three lives. Add these private variables to the GameplayState class:

private const int StartingPlayerLives = 3;

private int _playerLives = StartingPlayerLives;

private const string TextFont = "Fonts/Lives";

private const string GameOverFont = "Fonts/GameOver";

private LivesText _livesText;

Here, we store our starting amount of lives, our sprite font locations,

and an instance of the LivesText class, which is instantiated in the

LoadContent() method:

_livesText = new LivesText(LoadFont(TextFont));

_livesText.NbLives = StartingPlayerLives;

_livesText.Position = new Vector2(10.0f, 690.0f);

AddGameObject(_livesText);

Chapter 10 Animations and Text

267

The preceding code uses a new LoadFont() function that was added to

the BaseGameState class, which uses the content manager’s Load function

for SpriteFont classes:

protected SpriteFont LoadFont(string fontName)

{

 return _contentManager.Load<SpriteFont>(fontName);

}

With those elements in play and our LivesText text object being

drawn, we are ready to lower the amount of lives whenever the KillPlayer()

method is called:

_playerLives -= 1;

_livesText.NbLives = _playerLives;

if (_playerLives > 0)

{

 ResetGame();

}

else

{

 GameOver();

}

That code reduces _playerLives by one and updates the number

of lives on the _livesText object. If that number is above zero, we reset

the game. Otherwise, we call the GameOver() method, which we will

implement shortly.

�Game Over
We could just display a big “Game Over” text in the middle of the screen

when the player runs out of lives, but that is a little bit boring so we will add

an extra touch and also darken the screen a little to truly bring home the

Chapter 10 Animations and Text

268

point that the game is indeed over. First, let’s implement the GameOver()

method. Start by adding this private variable to the GameplayState class to

track whether we are game over or not:

private bool _gameOver = false;

Then add the GameOver() method:

private void GameOver()

{

 var font = LoadFont(GameOverFont);

 var gameOverText = new GameOverText(font);

 var textPositionOnScreen = new Vector2(460, 300);

 gameOverText.Position = textPositionOnScreen;

 AddGameObject(gameOverText);

 _gameOver = true;

}

Similarly to how we add the LivesText object to the game, we load

the GameOver font and instantiate a GameOverText object that is then

positioned in the center of the screen before being added to the active

game objects. Finally, we set the _gameOver variable to true, which will

enable us to darken the screen.

The chosen strategy to darken the screen a bit is to draw a big

rectangle that fills the viewport using a black color and a 30% transparency

setting. To do this, we will override the BaseGameState’s Render()

method and draw our game objects ourselves, after which we’ll draw the

semitransparent dark rectangle to achieve our desired effect if we are game

over. First, change the BaseGameState’s Render() method to be virtual so it

can be overridden:

public virtual void Render(SpriteBatch spriteBatch)

Chapter 10 Animations and Text

269

Then add the following code to the GameplayState class:

public override void Render(SpriteBatch spriteBatch)

{

 base.Render(spriteBatch);

 if (_gameOver)

 {

 // Draw black rectangle at 30% transparency

 �var screenBoxTexture = GetScreenBoxTexture(spriteBatch.

GraphicsDevice);

 �var viewportRectangle = new Rectangle(0, 0,

_viewportWidth, _viewportHeight);

 �spriteBatch.Draw(screenBoxTexture, viewportRectangle,

Color.Black * 0.3f);

 }

}

private Texture2D GetScreenBoxTexture(GraphicsDevice

graphicsDevice)

{

 if (_screenBoxTexture == null)

 {

 _screenBoxTexture = new Texture2D(graphicsDevice, 1, 1);

 �_screenBoxTexture.SetData<Color>(new Color[] { Color.

White });

 }

 return _screenBoxTexture;

}

The GameplayState’s Render() method starts by calling the base class

method that we are overriding. That takes care of drawing all the active

game objects to the screen. Then, if we are game over, we create a blank

Chapter 10 Animations and Text

270

texture that we cache for future use. The texture is white but it is quickly

changed to a semitransparent black in the spriteBatch.Draw() function by

multiplying the Color.Black value by 0.3.

Now, when the player loses three lives, the screen darkens, the game

over text is displayed, and the game is allowed to keep running, without a

fighter jet, until the player presses the escape key to exit the game.

�Summary
In this chapter, we introduce our readers to how MonoGame handles text,

enabling the display of information on the screen and opening up future

possibilities like having a pause screen and menu screens. We also tackled

2D animations and how to add them to our game while taking some time

to learn about state machines.

We believe that at this point in the book, you have all the tools that you

need to start creating games. But as you may have noticed in this journey,

some aspects of game programing are tedious. We also do not have a

complete game right now. What is missing at this point is a proper level to

play through.

In the next chapter, we will look at external game tools that can help

speed up game design. We will also work on a level to play through and

create a level editor to enable us to create future levels.

Chapter 10 Animations and Text

271© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_11

CHAPTER 11

Level Design
At this point in the book, you have all the tools that you need to start

creating your own 2D games. But as you may have noticed in this journey,

some aspects of game programming are tedious and the devil is in the

details. Despite all our efforts so far, we still do not have a complete game,

let alone a complete level to play through. All we have in the game is a

player who has three attempts to destroy four helicopter enemies and then

the background just keeps scrolling until the player quits the game. There

is no challenge and no rewarding feeling.

In this chapter, you will

–– Design your own game level

–– Load a game level into the game

–– Add turrets as a new and very difficult enemy to

deal with

Figure 11-1 is what you can expect the game to look like by the time we

are done working through this chapter.

https://doi.org/10.1007/978-1-4842-6309-9_11#DOI

272

As usual, you can find the code for the end of the chapter at https://

github.com/Apress/monogame-mastery/tree/master/chapter-11/end

and all the assets used in the game here: https://github.com/Apress/

monogame-mastery/tree/master/chapter-11/assets.

�Level Editors
Level editors are one of the most powerful tools for game design. With

them, you can take the ideas that we implemented, the game mechanics

and our game objects, and arrange them out on a level in a way that creates

a challenge for the player and make the game fun to play.

You may have heard of what we think is the most popular level editor

in the world right now: Super Mario Maker, which allows players around

the world to design and build Super Mario levels that they can then upload

on the Internet for other players to try.

Figure 11-1.  Our end game

Chapter 11 Level Design

https://github.com/Apress/monogame-mastery/tree/master/chapter-11/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-11/end
https://github.com/Apress/monogame-mastery/tree/master/chapter-11/assets
https://github.com/Apress/monogame-mastery/tree/master/chapter-11/assets

273

In the early 1990s, one of the most popular games at the time was

id Software’s Doom, a classic first-person shooter that really made the

whole genre mainstream. Shortly after its release, a Doom level editor was

made available for download and thousands of Doom enthusiasts started

creating their own levels, then playing through them.

Those editors were sophisticated. They provided users with a graphical

user interface to build levels. With the Doom level editor, we spent hours

connecting lines together to form walls and assigning properties to each

wall to give it a texture or to mark doors. With Mario Maker, the player

arranges game objects on a 2D level and can visually see what they are

building as work. In the end, the game looks exactly like what the user sees

in the editor. This requires a new level of effort that includes building a

separate application (or an application within the game) to let users place

down game objects in a what-you-see-is-what-you-get kind of way.

Our game, however, is not very complex. To design our levels, we can

lay out enemies and obstacles in a grid-like pattern in a text document.

While not as visual as the Doom level editor, we can still arrange things to

make it easy to mentally visualize the player running through our design.

�What Is a Level?
If we think about the kind of game we are building, it is a collection of

background tiles placed on a grid with choppers being generated at certain

times. We will later add turrets to the game, and they will be placed on

the background tiles so organizing our level as a long vertical grid with

the player starting at the bottom makes sense. When the game starts,

it will read the first row of the grid, the one at the bottom, interpret it,

and position things into play. It will then read the next row above it and

position more things on the screen, and so on and so forth until it runs out

of rows to read, at which point the player will have completed the level.

Look at this snippet of the level that we designed for the game

in Figure 11-2. Imagine that the player sprite is in the middle at the

Chapter 11 Level Design

274

bottom of the image and slowly moves upward. Each row of the grid

has eleven elements: ten game object elements, followed by one last

symbol that represents a global event. The full level text file can be found

here: https://github.com/Apress/monogame-mastery/blob/master/

chapter-11/end/Levels/LevelData/Level1.txt.

Our grid has rows of ten elements which represent game objects

positioned on the screen. There is also an eleventh element at the end of

each row to represent game-wide events like generating enemies. Look at

the following legend for the meaning of each element:

–– 0: Nothing is going on here. Do not add anything to the

game in this area of the grid.

–– 1: Add a turret in this location on the screen.

–– _: This level row does not trigger any game event.

–– gN: A “g” followed by a number will trigger the

generation of N number of enemy choppers whenever

this row gets evaluated by the game.

Figure 11-2.  A snippet of a level, codified into text

Chapter 11 Level Design

https://github.com/Apress/monogame-mastery/blob/master/chapter-11/end/Levels/LevelData/Level1.txt
https://github.com/Apress/monogame-mastery/blob/master/chapter-11/end/Levels/LevelData/Level1.txt

275

–– s: Indicates the start of the level, allowing the game to

later wish good luck to the player.

–– e: Indicates the end of the level, allowing the game to

later congratulate the player.

As each game level row is evaluated, the viewport will be divided

into ten even grid sections. When the game evaluates that a turret needs

to be placed, it will be placed just off the top of the screen in its proper

horizontal location on the grid so it can slowly scroll down into play.

How fast should we execute each row? That is entirely up to the game

designer, but we opted for a two-second reading speed. Our current level,

as designed, has a total of 48 lines, so running through the entire level

would take 96 seconds, which feels about right for the total length of play

time required for this type of game.

This file can be edited at any time by the game designer. The number of

choppers generated can be changed, or when they are generated can also

be modified by replacing “gN” element with “_” to remove the generation

of choppers at this row of the level. Similarly, “_” can be replaced by

“gN” elements to add the generation of choppers. Moving turrets around

is also easy by changing “0”s to “1”s on our grid. Whenever the game is

recompiled and run, the newly edited level will be played by the game.

�Level Events
As we read the level rows from the level text file, we will generate level

events that any game state object can register for. We will have one event for

each kind of situation described in the last section. Let’s start adding some

code! Create a Levels directory in the project and add a LevelEvents.cs file

with the following code:

Chapter 11 Level Design

276

public class LevelEvents : BaseGameStateEvent

{

 public class GenerateEnemies : LevelEvents

 {

 public int NbEnemies { get; private set; }

 public GenerateEnemies(int nbEnemies)

 {

 NbEnemies = nbEnemies;

 }

 }

 public class GenerateTurret : LevelEvents

 {

 public float XPosition { get; private set; }

 public GenerateTurret(float xPosition)

 {

 XPosition = xPosition;

 }

 }

 public class StartLevel : LevelEvents { }

 public class EndLevel : LevelEvents { }

 public class NoRowEvent : LevelEvents { }

}

These events will be triggered by the Level class further down as it

interprets each element of each row in our level grid. These events will

allow us to generate any number of enemy choppers or to position turrets

at a specific X coordinate above the viewport.

Chapter 11 Level Design

277

�Level Readers, Levels, and Our Gameplay State
We need the ability to read our level text files, but before we do this, we

should create our first level. You can either copy the level.txt file at the

URL we specified earlier or create a new one for your own needs. Either

way, put it in Levels\LevelData\Level1.txt and make sure it is added to the

project in Visual Studio. Then, open the file’s properties in Visual Studio

and make sure the Build Action is set to Embedded Resource, as shown in

Figure 11-3.

Having our levels as an embedded resource is nice because the

internal representation of our levels will not be directly available to users,

who could go and edit the files themselves and potentially ruin the game

by overwriting the original files with something that will either break the

game or destroy the design of each level. By embedding the files, the levels

become resources that are located into the executable file directly and

much harder to access.

We can now add a LevelReader class responsible for loading the file

and transforming it into a level grid. Add the class in the Levels directory:

public class LevelReader

{

 private int _viewportWidth;

Figure 11-3.  Level1.txt is an embedded resource.

Chapter 11 Level Design

278

 private const int NB_ROWS = 11;

 private const int NB_TILE_ROWS = 10;

 public LevelReader(int viewportWidth)

 {

 _viewportWidth = viewportWidth;

 }

}

We instantiate the class with a viewportWidth parameter that will

be used later to transform a grid number into an X coordinate that

corresponds to where the row element should be on the screen. We also

have two constants that show that our grids have eleven elements, ten of

which are meant for tiling game objects on the screen.

To transform each row element to a game event, we will use this

function:

private BaseGameStateEvent ToEvent(int elementNumber, string

input)

{

 switch (input)

 {

 case "0":

 return new BaseGameStateEvent.Nothing();

 case "_":

 return new LevelEvents.NoRowEvent();

 case "1":

 �var xPosition = elementNumber * _viewportWidth /

NB_TILE_ROWS;

 return new LevelEvents.GenerateTurret(xPosition);

 case "s":

 return new LevelEvents.StartLevel();

Chapter 11 Level Design

279

 case "e":

 return new LevelEvents.EndLevel();

 case string g when g.StartsWith("g"):

 var nb = int.Parse(g.Substring(1));

 return new LevelEvents.GenerateEnemies(nb);

 default:

 return new BaseGameStateEvent.Nothing();

 }

}

The function takes the string that represents a single row element

and the position of that element on the row. If it’s a “0” or “_”, we return

the corresponding event to indicate that nothing is happening. The main

reason to use two separate events here is to differentiate with nothing to

add to the screen and a global event that can be used to cancel a previous

global event. For example, the “s” start level event is cancelled when the

next NoRowEvent is triggered. If our character is a “1”, then we calculate

the X coordinate of the current row element and pass it to the event. If

our character is a “s” or an “e”, then we trigger the StartLevel or EndLevel

events. Finally, when the string starts with a “g”, we read the rest of the string

and convert it to an integer, which tells us how many choppers to create.

The next function will be responsible for iterating through each row

and extracting all those level events from it. It will take a level string and

split it by commas, then iterate over each element, and convert it to an

event before returning a list of events for the entire row:

private List<BaseGameStateEvent> ToEventRow(string rowString)

{

 var elements = rowString.Split(',');

 var newRow = new List<BaseGameStateEvent>();

Chapter 11 Level Design

280

 for (int i = 0; i < NB_ROWS; i++)

 {

 newRow.Add(ToEvent(i, elements[i]));

 }

 return newRow;

}

Finally, we will add a public function that will load any level by its

number by locating the embedded text file from within the assembly,

reading it into memory and transforming it to a grid of level events.

public List<List<BaseGameStateEvent>> LoadLevel(int nb)

{

 var assembly = Assembly.GetExecutingAssembly();

 var assemblyName = assembly.FullName.Split(',')[0];

 �var fileName = $"{assemblyName}.Levels.LevelData.Level{nb}.

txt";

 var stream = assembly.GetManifestResourceStream(fileName);

 var reader = new StreamReader(stream);

 var levelString = reader.ReadToEnd();

 �var �rows = levelString.Split(Environment.NewLine.

ToCharArray(), StringSplitOptions.RemoveEmptyEntries);

 var convertedRows = from r in rows

 select ToEventRow(r);

 return convertedRows.Reverse().ToList();

}

Chapter 11 Level Design

281

Since the text file is read in memory top to bottom and we want to

execute the level in the opposite direction, we reverse the list at the end so

the events can be played out in the correct order.

We can now read level text files and convert them to a grid of level

events. All that remains to be implemented now is the Level class, which

will take in a level event grid and read each row of events every two

seconds for our gameplay state. Create a Level class in the same directory

we put our LevelReader and LevelEvents classes:

public class Level

{

 private LevelReader _levelReader;

 private List<List<BaseGameStateEvent>> _currentLevel;

 private int _currentLevelNumber;

 private int _currentLevelRow;

 private TimeSpan _startGameTime;

 �priv�ate readonly TimeSpan TickTimeSpan = new TimeSpan(0,

0, 2);

 �publ�ic event EventHandler<LevelEvents.GenerateEnemies>

OnGenerateEnemies;

 �publ�ic event EventHandler<LevelEvents.GenerateTurret>

OnGenerateTurret;

 �publ�ic event EventHandler<LevelEvents.StartLevel>

OnLevelStart;

 public event EventHandler<LevelEvents.EndLevel> OnLevelEnd;

 �publ�ic event EventHandler<LevelEvents.NoRowEvent>

OnLevelNoRowEvent;

Chapter 11 Level Design

282

 public Level(LevelReader reader)

 {

 _levelReader = reader;

 _currentLevelNumber = 1;

 _currentLevelRow = 0;

 �_cur�rentLevel = _levelReader.LoadLevel(

_currentLevelNumber);

 }

}

The Level class has access to a level reader, which is passed in as a

parameter via the constructor, which sets the initial current level number

to 1 and the current level row to 0 and then uses the reader to load level 1.

Most importantly, the constant TickTimeSpan is set to a time span of two

seconds, which will be used further down to determine how long to wait

until we can read the next row of level events.

The class also offers some utility functions, like resetting the level when

the player dies or loading the next level for us:

public void LoadNextLevel()

{

 _currentLevelNumber++;

 �_cur�rentLevel = _levelReader.LoadLevel(

_currentLevelNumber);

}

public void Reset()

{

 _currentLevelRow = 0;

}

Chapter 11 Level Design

283

Finally, the core method of the following class reads the level events

of the current level row if two full seconds have passed. For each event, it

triggers a .Net event that the gameplay state class will have registered to:

public void GenerateLevelEvents(GameTime gameTime)

{

 // Only generate events every 2 seconds

 if (_startGameTime == null)

 {

 _startGameTime = gameTime.TotalGameTime;

 }

 // Nothing to do until tick time

 if (gameTime.TotalGameTime - _startGameTime < TickTimeSpan)

 {

 return;

 }

 _startGameTime = gameTime.TotalGameTime;

 foreach (var e in _currentLevel[_currentLevelRow])

 {

 switch (e)

 {

 case LevelEvents.GenerateEnemies g:

 OnGenerateEnemies?.Invoke(this, g);

 break;

 case LevelEvents.GenerateTurret g:

 OnGenerateTurret?.Invoke(this, g);

 break;

 case LevelEvents.StartLevel s:

 OnLevelStart?.Invoke(this, s);

 break;

Chapter 11 Level Design

284

 case LevelEvents.EndLevel s:

 OnLevelEnd?.Invoke(this, s);

 break;

 case LevelEvents.NoRowEvent n:

 OnLevelNoRowEvent?.Invoke(this, n);

 break;

 }

 }

 _currentLevelRow++;

}

We are now ready to load our first level, although we will not handle

turrets just yet. Open the GameplayState class and add a private variable

for our level:

private Level _level;

Then update the LoadContent() method to create the level:

var levelReader = new LevelReader(_viewportWidth);

_level = new Level(levelReader);

_level.OnGenerateEnemies += _level_OnGenerateEnemies;

_level.OnGenerateTurret += _level_OnGenerateTurret;

_level.OnLevelStart += _level_OnLevelStart;

_level.OnLevelEnd += _level_OnLevelEnd;

_level.OnLevelNoRowEvent += _level_OnLevelNoRowEvent;

Let’s now create each event handler that we used to register for the

game events. We will leave most of them empty for the time being so

we can focus on the proper execution of our levels. The only event we

can handle is the one that generates enemies because we already have a

chopper generator object, although we did need to refactor it so the same

generator instance can be reused for different number of enemies.

Chapter 11 Level Design

285

private void _level_OnLevelStart(object sender,

LevelEvents.StartLevel e)

{

 // Left intentionally blank for now

}

private void _level_OnLevelEnd(object sender,

LevelEvents.EndLevel e)

{

 // Left intentionally blank for now

}

private void _level_OnLevelNoRowEvent(object sender,

LevelEvents.NoRowEvent e)

{

 // Left intentionally blank for now

}

private void _level_OnGenerateTurret(object sender,

LevelEvents.GenerateTurret e)

{

 // left intentionally blank for now

}

private void _level_OnGenerateEnemies(object sender,

LevelEvents.GenerateEnemies e)

{

 _chopperGenerator.GenerateChoppers(e.NbEnemies);

}

We will not cover the changes needed to update the chopper generator

here. Feel free to look up the updated class in our GitHub repository or try

to refactor it and see if you can match the way we called it earlier.

Chapter 11 Level Design

286

So that levels are run properly, we need to generate events at every

update. Add this line to the UpdateGameState() method:

_level.GenerateLevelEvents(gameTime);

When the player dies, we need to reset the level so they can get a

second or third chance at clearing it. Update the ResetGame() method and

add this line at the bottom:

_level.Reset();

Run the game and see if it can read the level correctly and generate the

number of chopper enemies you set on each level row!

�Adding Turrets
Our game is not too challenging at the moment. Chopper enemies are

generated and fly through the screen, but there are some safe spots in the

bottom corners of the screen where the player sprite will never be hit by

anything. To change this, we could add new chopper paths to the game, or

we could add turrets that shoot at the player, wherever the player happens

to be. This will eliminate any safe spot from the game but will introduce a

new problem. Since the turrets are going to scroll down at the same speed as

the background, they will eventually reach the bottom of the screen and be

horizontally level with the player and shoot bullets that the player will not be

able to avoid. To give the player a chance of surviving this situation, we must

let the player move up and down! This is a simple functionality to add and

only requires a few code changes. Let’s see if you can do it on your own!

We made two other changes to the code. The first was to move the

background scrolling speed out of the TerrainBackground class and into the

GameplayState class so it can be shared with our turrets further down. The

second change was to update the _onObjectChanged() event handler so it can

handle any kind of BaseGameObject instead of just ChopperSprite objects.

Chapter 11 Level Design

287

�Game Art and Origins
The game art for the new turrets has three sprites. A turret base (Tower.

png), a double cannon (MG2.png), and a bullet sprite (Bullet_MG.pgn).

These assets are in the Assets\png directory and just need to be added to

the content pipeline under a new folder called Sprites\Turrets. We have

kept their pipeline names the same.

The base and the cannon will need to be assembled on top of each

other, with the cannon rotating over the base as it tracks the player. Look

at Figure 11-4, which shows the cannon and the turret base sprites with

their origin and the X and Y axis drawn over them. The white circles,

located between the two gun barrels over its base, indicate the center of

rotation of the cannon sprite. This is important to note because although

the X coordinate of that center of rotation is exactly at half the width of

the texture, its Y coordinate is not and is set to 158 pixels. The center of

rotation is also called the origin of the image because all game objects

will rotate around their origin, a subject that we briefly approached when

making the helicopter blades spin in a previous chapter.

Figure 11-4.  The cannon part of the turret, with origin
and X and Y axis

Chapter 11 Level Design

288

Another important aspect of this cannon image is that unrotated, with

an angle of zero degrees, it points up instead of toward the right. Because

of this, it is important that we distinguish between the angle of our turret

and the actual direction it is pointing to. Game objects are rarely fixed and

will often rotate, so we should incorporate that into our BaseGameObject.

Open up the class and add the following code:

public class BaseGameObject

{

 protected float _angle;

 protected Vector2 _direction;

 �prot�ected Vector2 CalculateDirection(

float angleOffset = 0.0f)

 {

 �_dir�ection = new Vector2((float)Math.Cos(

_angle - angleOffset),

 �(float)Math.Sin(_angle - angleOffset));

 _direction.Normalize();

 return _direction;

 }

}

This will allow all our game objects to maintain an angle and direction

that can be updated based on the protected _angle variable. When needed,

a game object can use the angle and an offset to get a normalized vector

representing where the object is pointing. The offset defaults to zero,

in which case CalculateDirection() will return a vector aligned with the

X axis when the _angle variable is zero as well. However, as we’ll see in the

following, our turret cannon points up instead of right when its angle is

zero, so we’ll provide an offset to get an accurate direction.

Chapter 11 Level Design

289

Let’s create our TurretSprite class in the Objects\ directory and start by

looking at its initialization:

public class TurretSprite : BaseGameObject

{

 private Texture2D _baseTexture;

 private Texture2D _cannonTexture;

 private float _moveSpeed;

 // With an angle of zero, the turret points up

 // so track offset for calculations when tracking player

 private const float AngleOffset = MathHelper.Pi / 2;

 private const float Scale = 0.3f;

 private const float AngleSpeed = 0.02f;

 private const int BulletsPerShot = 3;

 private const float CannonCenterPosY = 158;

 private int _hitAt = 100;

 private int _life = 50;

 private Vector2 _baseCenterPosition;

 private Vector2 _cannonCenterPosition;

 private float _baseTextureWidth;

 private float _baseTextureHeight;

 private bool _isShootingBullets;

 private TimeSpan _lastBulletShotAt;

 private int _bulletsRemaining;

 private bool _attackMode;

 public bool Active { get; set; }

 �public event EventHandler<GameplayEvents.TurretShoots>

OnTurretShoots;

Chapter 11 Level Design

290

 �public TurretSprite(Texture2D baseTexture, Texture2D

cannonTexture, float moveSpeed)

 {

 _isShootingBullets = false;

 _moveSpeed = moveSpeed;

 _baseTexture = baseTexture;

 _cannonTexture = cannonTexture;

 _angle = MathHelper.Pi; // point down by default

 _bulletsRemaining = BulletsPerShot;

 _attackMode = false;

 Active = false;

 _direction = CalculateDirection(AngleOffset);

 _baseTextureWidth = _baseTexture.Width * Scale;

 _baseTextureHeight = _baseTexture.Height * Scale;

 �_bas�eCenterPosition = new Vector2(_baseTextureWidth /

2f, _baseTextureHeight / 2f);

 �_can�nonCenterPosition = new Vector2(_cannonTexture.

Width / 2f, CannonCenterPosY);

 �AddB�oundingBox(new Engine.Objects.BoundingBox(new

Vector2(0, 0),

 �_baseTexture.Width * Scale,

_baseTexture.Height * Scale));

 }

}

Let’s look at all those private variables one by one. First off, the turret

must keep track of two textures for its base and its cannon since it will be

responsible for handling both. Since this turret will be moving down at the

same speed as the background, we need to know how fast it needs to go

and we use the _moveSpeed variable for that.

Chapter 11 Level Design

291

Then we have a few constants to help shape the behavior of the

turret. The angle offset is the angle between the X axis and the direction

of the turret when _angle is equal to zero. We will use that to calculate

the _direction vector whenever the cannon spins. The turret sprite image

is also a little too big so we’ll shrink it by a factor of 0.3. AngleSpeed is

used to set how quickly the cannon can spin, and BulletsPerShots tells us

how many bullets the turret will shoot in a single volley. Once it locates

the player, it will stop moving and shoot three bullets. Because it stops

moving, it gives the player a chance to dodge the bullets and reposition

and ideally shoot the turret itself while it is busy shooting toward where

the player used to be.

Let’s talk angles now. The angle of the turret is set to MathHelper.

Pi to force it to point down initially. That angle is set in radians, so PI

represents a 180 degrees change, and since the initial image points up

by default, the change causes it to flip and point down. This is purely a

cosmetic thing. As the turret comes into view from the top of the screen,

we feel like it looks nicer if it points down. Given this initial _angle value

of 180 degrees, and given that pointing down in MonoGame means doing

a clockwise rotation of 90 degrees, we have a discrepancy of 90 degrees

between the object’s angle and direction. To compensate, we set the

AngleOffset constant to PI / 2, which is 90 degrees.

The _active Boolean variable is used to prevent the turret from

spinning or attacking, since it wouldn’t be very fun for turrets to attack

the player while offscreen. Also, like our chopper enemy game object, our

turrets can be attacked, so they have a certain amount of _life points. _hitAt

is similarly initialized at a high number, just like the choppers, and is used

in the Render() method to make the turret flash when hit.

Finally, we keep track of some coordinates and use _isShootingBullets,

_lastBulletShotAt, _bulletsRemaining, and _attackMode to govern how

quickly the turret is shooting, how many bullets remain in the current volley,

or if the turret should move or shoot. The way the turret shoots is similar to

how the gameplay state is controlling how often the player can shoot.

Chapter 11 Level Design

292

The TurretSprite constructor initializes all these private variables,

taking into account the fact that our image is scaled down. It also adds a

bounding box to the game object.

Every time our turret spins via these two utility functions, we

recalculate the direction of the cannon, always taking the AngleOffset into

consideration:

public void MoveLeft()

{

 _angle -= AngleSpeed;

 _direction = CalculateDirection(AngleOffset);

}

public void MoveRight()

{

 _angle += AngleSpeed;

 _direction = CalculateDirection(AngleOffset);

}

The only thing that will cause the cannon to rotate is the location of

the player on the screen, so let’s add an Update method to the TurretSprite

class that takes a current player location and the game time as parameters:

public void Update(GameTime gameTime, Vector2 currentPlayerCenter)

{

 // Move turret down

 �Position = Vector2.Add(_position, new Vector2(0,

_moveSpeed));

 // If turret is not active, it cannot spin or shoot

 if (!Active)

 {

 return;

 }

Chapter 11 Level Design

293

 // Can either attack and shoot 3 bullets or move. Not both

 if (_attackMode && _bulletsRemaining > 0)

 {

 Shoot(gameTime);

 }

 else

 {

 �var �centerOfCannon = Vector2.Add(_position,

_cannonCenterPosition * Scale);

 �var �playerVector = Vector2.Subtract(currentPlayerCenter,

centerOfCannon);

 playerVector.Normalize();

 �var �angleTurret = Math.Atan2(_direction.Y,

_direction.X);

 �var �anglePlayer = Math.Atan2(playerVector.Y,

playerVector.X);

 var angleDiff = angleTurret - anglePlayer;

 var tolerance = 0.1f;

 if (angleDiff > tolerance)

 {

 MoveLeft();

 }

 else if (angleDiff < -tolerance)

 {

 MoveRight();

 }

 �if (angleTurret >= anglePlayer - tolerance &&

angleTurret <= anglePlayer + tolerance)

 {

 _attackMode = true;

Chapter 11 Level Design

294

 Shoot(gameTime);

 }

 }

 if (_bulletsRemaining <= 0)

 {

 _attackMode = false;

 }

 // Prevent firing bullets too quickly

 if (_lastBulletShotAt != null &&

 �gameTime.TotalGameTime - _lastBulletShotAt >

TimeSpan.FromSeconds(0.3))

 {

 _isShootingBullets = false;

 }

 // Reload bullets every 2 seconds

 �if (gameTime.TotalGameTime - _lastBulletShotAt >

TimeSpan.FromSeconds(2))

 {

 _bulletsRemaining = BulletsPerShot;

 }

}

A lot is happening here so we’ll take some time to go through this step

by step. First, we move the turret downward to help with the illusion that the

player is flying upward. Whether the turret is inactive, shooting, or tracking

the player, it must also move down to the bottom of the screen. Then, if the

turret is inactive, we exit the method because we do not want to track or shoot

the player until the turret is activated. Following that, we have two branches:

the turret is shooting three bullets in a single direction, or it is spinning to get

a lock on the player’s center location. If the turret is in attack mode and has

remaining bullets to shoot, it keeps shooting. Otherwise, it spins.

Chapter 11 Level Design

295

When spinning, the turret must determine where the player is

in relation to itself. We pass in the player’s sprite center location as a

parameter to the Update() method, but before we can use it, we must

transform it. Look at Figure 11-5 for an example. Vectors a and b denote

the position of our turret and fighter jet objects on the screen. Because the

Update() method belongs to the TurretSprite class, we have access to the b

vector via the _position variable, and the player center position is passed

in as a parameter to the method, which gives us the a vector. We have also

been calculating the d vector, which is the direction of the turret, whenever

the _angle variable changes. However, to determine if the turret points

toward the player, we need to calculate the angle between the d vector and

the c vector, which we do not currently have. But there is a simple solution

to this.

Figure 11-5.  Vectors and angles. Does the turret point toward the
player?

Chapter 11 Level Design

296

If we subtract the vector b from both object positions, we are

essentially bringing the center of the turret back to the (0, 0) origin of the

game screen. Because we are subtracting that b vector from the fighter

plane position too, the plane will remain in the same location relative to
the turret. This gives us a new way to think about the objects, as seen in

Figure 11-6. Note that we are not actually moving the game objects on the

screen, just manipulating variables for calculation purposes. Another way

to think about this is that since a = b + c, then c = a – b. So, this is what these

two lines do:

var centerOfCannon = Vector2.Add(_position,

_cannonCenterPosition * Scale);

var playerVector = Vector2.Subtract(currentPlayerCenter,

centerOfCannon);

The first line finds the center point of the cannon using the position

of the object and the scaled-down center position of the cannon in the

texture image. Then we subtract the centerOfCannon vector from the

currentPlayerCenter and obtain our c vector.

Chapter 11 Level Design

297

Once we have the c vector, we can calculate its angle and the

angle of the turret direction vector and then compare them to each

other. If they fall within a certain tolerance area, we consider that the

turret points at the player. The main reason for this tolerance zone is

because as the turret spins, it may overshoot the player. Without any

tolerance, the algorithm would then cause the turret to backtrack and

overshoot the player again in the other direction, causing to change

direction and so on, and so forth. The turret on the screen would appear

blurry as it continuously spins up and down relentlessly. The tolerance

zone lets it sit still and provides a much better visual effect. If the angle

Figure 11-6.  The turret, located at the origin, points at the player
object.

Chapter 11 Level Design

298

difference between c and the direction of the turret falls within this

tolerance zone, the turret goes into attack mode and shoots.

Then, we check if the turret has any remaining bullets left. If it has

none, we turn off the attack mode to allow the turret to spin again. Finally,

we have two timing functions. The first one ensures that the turret cannot

shoot bullets quicker than three per second. That check is very similar to

how we prevent the player from shooting too fast in the GameplayState

class. Finally, we want to make sure the turret gives the player a two-

second break before it starts shooting again.

We now have to draw the turret on the screen, and because we are

drawing two sprites on top of each other and because we want the turret to

flash when shot, just like the helicopters, we will override the base class’s

Render() method:

public override void Render(SpriteBatch spriteBatch)

{

 �// If the turret was just hit and is flashing, Color should

 // alternate between OrangeRed and White

 var color = GetColor();

 var cannonPosX = _position.X + _baseCenterPosition.X;

 var cannonPosY = _position.Y + _baseCenterPosition.Y;

 var cannonPosition = new Vector2(cannonPosX, cannonPosY);

 �spri�teBatch.Draw(_baseTexture, _position,

_baseTexture.Bounds, color, 0, new Vector2(0, 0),

 Scale, SpriteEffects.None, 0f);

 �spri�teBatch.Draw(_cannonTexture, cannonPosition,

_cannonTexture.Bounds, Color.White,

 �_angle, _cannonCenterPosition, Scale,

SpriteEffects.None, 0f);

}

Chapter 11 Level Design

299

The Render() method starts by finding the center location of the

cannon. Then it draws the base of the turret without much fanfare. Finally,

it draws the cannon and it gets a little bit more complicated. That second

Draw() method is being used with a rotation angle, an origin vector,

and a scale. This is what happens underneath the covers. MonoGame

takes our texture and moves it so the (0, 0) origin is exactly where the

_cannonCenterPosition is. Then it rotates the texture around the origin

before moving it back to the cannonPosition.

The rest of the TurretSprite code like GetColor(), OnNotify(), and

JustHit() are exactly the same as the ChopperSprite code, which we went

over in collision detection chapter.

�Turret Bullets
The last remaining item to have a fully functional turret is creating the

bullets, which will be more complex than the bullets the player can shoot.

This time, the turret bullets are a little bit more complex. Our fighter plane

bullets were easy to implement because they move straight up the screen

and have axis aligned bounding boxes for collision detection. The turret

bullets, on the other hand, will most of the time move diagonally and cannot

have axis aligned bounding boxes because that could cause collisions

between the bullet and the plane even if they do not touch each other.

We need to determine where we want the bullets to be initially located

on the screen, which is exactly behind the two barrels. We also want the

bullets to also be angled and going toward the same direction as the

turret. The turret is responsible for telling the gameplay state class, via the

TurretShoots event, to create the actual game objects and will supply the

angle and direction of the bullets to the state class. The Shoot() method is

implemented as follows:

public void Shoot(GameTime gameTime)

{

Chapter 11 Level Design

300

 if (!_isShootingBullets && _bulletsRemaining > 0)

 {

 �var centerOfCannon = Vector2.Add(_position,

_baseCenterPosition);

 �// Find perpendicular vectors to position bullets left

 // and right of the center of the cannon

 �var perpendicularClockwiseDirection = new Vector2(

_direction.Y, -_direction.X);

 �var perpendicularCounterClockwiseDirection = new

Vector2(-_direction.Y, _direction.X);

 var bullet1Pos =

 �Vector2.Add(centerOfCannon,

perpendicularClockwiseDirection * 10);

 var bullet2Pos =

 �Vector2.Add(centerOfCannon,

perpendicularCounterClockwiseDirection * 10);

 var bulletInfo =

 �new GameplayEvents.TurretShoots(bullet1Pos,

bullet2Pos, _angle, _direction);

 _bulletsRemaining--;

 _isShootingBullets = true;

 _lastBulletShotAt = gameTime.TotalGameTime;

 OnTurretShoots?.Invoke(this, bulletInfo);

 }

}

First, we check if the we are allowed to shoot another round of bullets.

The _isShootingBullets is set to true by the Update() method when we

Chapter 11 Level Design

301

first start shooting, but will not be false until 0.3 seconds have passed by.

We also need to have some bullets remaining. If those two conditions

are met, then we can start the bullet object creation process. We need to

find two vectors that are perpendicular to the turret’s current direction

and opposing each other, as seen in Figure 11-7. That will be the starting

position of the bullets b1 and b2. Once we have those two vectors, which

are normalized because they are calculated from the direction vector,

which is also normalized, we multiply them by 10. A normalized vector has

a length of one, so to be useful, that vector needs to be a bit longer here

and 10 seems to be just the right number to move the bullets away from the

center of the cannon and under the barrels.

Let’s add the TurretShoots game event to the GameplayEvents class:

public class TurretShoots : GameplayEvents

{

 public Vector2 Direction { get; private set; }

 public Vector2 Bullet1Position { get; private set; }

 public Vector2 Bullet2Position { get; private set; }

 public float Angle { get; private set; }

Figure 11-7.  The initial location of the two turret bullets b1 and b2

Chapter 11 Level Design

302

 public TurretShoots(Vector2 bullet1Pos, Vector2 bullet2Pos,

 float angle, Vector2 direction)

 {

 Direction = direction;

 Bullet1Position = bullet1Pos;

 Bullet2Position = bullet2Pos;

 Angle = angle;

 }

}

Now we need to change the GameplayClass so it does something with

that event. While we are in the class, let’s add the code needed to create

game turrets as well:

public class GameplayState : BaseGameState

{

 �private const string TurretTexture = "Sprites/Turrets/Tower";

 �private const string TurretMG2Texture = "Sprites/Turrets/MG2";

 �private const string TurretBulletTexture = "Sprites/Turrets/

Bullet_MG";

 �private List<TurretSprite> _turretList = new

List<TurretSprite>();

 �private List<TurretBulletSprite> _turretBulletList = new

List<TurretBulletSprite>();

 �private void _level_OnGenerateTurret(object sender,

LevelEvents.GenerateTurret e)

 {

 �var turret = new TurretSprite(LoadTexture(TurretTexture),

 �LoadTexture(TurretMG2

Texture),

 SCOLLING_SPEED);

Chapter 11 Level Design

303

 // Position the turret offscreen at the top

 turret.Position = new Vector2(e.XPosition, -100);

 turret.OnTurretShoots += _turret_OnTurretShoots;

 turret.OnObjectChanged += _onObjectChanged;

 AddGameObject(turret);

 _turretList.Add(turret);

 }

}

This code creates empty lists of turrets and turret bullets that we will

keep track of over time and implements the _level_OnGenerateTurret()

method that we left empty at the beginning of this chapter while working

on the level editor. Creating a turret is similar to creating other game

objects in that we generate a new instance of the game object and pass

our textures to it, along with the scrolling speed that is shared with the

TerrainBackground class. Then, we position the turret just offscreen at the

top and register for two events indicating that the turret is shooting bullets

or has been hit so we can handle its death. Then, we add the object to the

list of active game objects and to our turret list.

Let’s now implement the _turret_OnTurretShoots event handler:

private void _turret_OnTurretShoots(object sender,

GameplayEvents.TurretShoots e)

{

 var bullet1 =

 �new TurretBulletSprite(LoadTexture(TurretBulletTexture),

e.Direction, e.Angle);

 bullet1.Position = e.Bullet1Position;

 bullet1.zIndex = -10;

Chapter 11 Level Design

304

 var bullet2 =

 �new TurretBulletSprite(LoadTexture(TurretBulletTexture),

e.Direction, e.Angle);

 bullet2.Position = e.Bullet2Position;

 bullet2.zIndex = -10;

 AddGameObject(bullet1);

 AddGameObject(bullet2);

 _turretBulletList.Add(bullet1);

 _turretBulletList.Add(bullet2);

}

Here, we instantiate two TurretBulletSprite game objects using the info

that was given to us by the TurretSprite object via the TurretShoots event.

One notable thing that is new is the usage of the zIndex property of all our

game objects. If you remember from the earlier chapters of this book, the

zIndex represents the order in which we want to draw our objects. Since

we want to make sure the turret bullets are drawn underneath the turret so

they appear to fly out of the cannon barrels, we set a zIndex to -10, whereas

the Turret has the default zIndex of zero. This will cause our main drawing

function to draw the bullets first and then place the turret on top. We have

not used the zIndex until now because we have not had a need for it.

We are ready to add our turret bullets to the code base. Create a new

class called TurretBulletSprite in the Objects directory.

public class TurretBulletSprite : BaseGameObject

{

 private const float BULLET_SPEED = 18.0f;

 private Vector2 _bulletCenterPosition;

 public Segment CollisionSegment

 {

Chapter 11 Level Design

305

 get

 {

 var segment = _direction * _texture.Height;

 �return new Segment(_position, Vector2.Add(

_position, segment));

 }

 }

 �public TurretBulletSprite(Texture2D texture, Vector2

direction, float angle)

 {

 _texture = texture;

 _direction = direction;

 _direction.Normalize();

 �_bulletCenterPosition = new Vector2(_texture.Width / 2,

_texture.Height / 2);

 _angle = angle;

 }

 public void Update()

 {

 Position = Position + _direction * BULLET_SPEED;

 }

 public override void Render(SpriteBatch spriteBatch)

 {

 �spriteBatch.Draw(_texture, _position, _texture.Bounds,

Color.White, _angle,

 �_bulletCenterPosition, 1f,

SpriteEffects.None, 0f);

 }

}

Chapter 11 Level Design

306

There is not a lot of code here. The bullet is created with a texture, a

direction, and an angle that will not change over time. The constructor

normalizes the direction, just in case it is not normalized already, and then

it calculates the center point of the bullet texture so we can rotate it when

we draw it. The Update() method takes care of moving the bullet at high

speed across the screen and the Render() method draws the bullet.

What remains is the CollisionSegment property, which we will use for

detecting collisions with the player object.

�Collision Detection
Since we decided not to use our Axis Aligned Bounding Box (AABB)

collision detection algorithm, we had to use a different way to handle

collisions. We have a few algorithm choices to pick from: we could use an

Oriented Bounding Box (OBB) algorithm, a sphere/box collision strategy

or detect the intersection between a line and an axis aligned bounding

box. In the OBB algorithm, the oblique bounding boxes would be used by

bullets, since they are almost always at an angle, and we would need to

calculate the intersection of the bullets’ oblique bounding boxes with the

player sprite’s axis aligned boxes. On the other hand, if we represented

bullets as a small sphere near the center of the sprite, the collision

detection algorithm would be very simple and efficient to compute. In the

end, however, we decided to calculate the intersection between a segment

and the player, which is a little more complex and a little less efficient than

the sphere/AABB collision detection, but also a little more accurate.

So, what is a Segment? It is simply a line that has a starting location P1

and an end location P2 and is implemented like this:

public class Segment

{

 public Vector2 P1 { get; private set; }

 public Vector2 P2 { get; private set; }

Chapter 11 Level Design

307

 public Segment(Vector2 p1, Vector2 p2)

 {

 P1 = p1;

 P2 = p2;

 }

}

So, when the TurretBulletSprite calculates its CollisionSegment, it

multiplies the normalized _direction vector by the texture’s height. This

gives us a vector that is exactly as long as the bullet itself. Then, we create a

Segment that starts at the bullet’s position and ends at the texture heights,

going in the right _direction.

To detect collisions, we’ll implement a new

SegmentAABBCollisionDetector class that works similarly to the

AABBCollisionDetector, but works by finding if a segment intersects with

an aligned axis bounding box. The algorithm is simple and similar to the

AABB algorithm. If the starting point’s X value of the segment is within the

bounding box X values AND the point’s Y value is within the bounding box

Y values, then we have a collision. Then we do the same check for the point

at the end of the segment. Here is the code:

public class SegmentAABBCollisionDetector<A>

 where A : BaseGameObject

{

 private A _passiveObject;

 public SegmentAABBCollisionDetector(A passiveObject)

 {

 _passiveObject = passiveObject;

 }

Chapter 11 Level Design

308

 �public void DetectCollisions(Segment segment, Action<A>

collisionHandler)

 {

 if (DetectCollision(_passiveObject, segment))

 {

 collisionHandler(_passiveObject);

 }

 }

 �public void DetectCollisions(List<Segment> segments,

Action<A> collisionHandler)

 {

 foreach(var segment in segments)

 {

 if (DetectCollision(_passiveObject, segment))

 {

 collisionHandler(_passiveObject);

 }

 }

 }

 �private bool DetectCollision(A passiveObject, Segment

segment)

 {

 foreach(var activeBB in passiveObject.BoundingBoxes)

 {

 if (DetectCollision(segment.P1, activeBB) ||

 DetectCollision(segment.P2, activeBB))

 {

 return true;

 }

Chapter 11 Level Design

309

 else

 {

 return false;

 }

 }

 return false;

 }

 private bool DetectCollision(Vector2 p, BoundingBox bb)

 {

 if (p.X < bb.Position.X + bb.Width &&

 p.X > bb.Position.X &&

 p.Y < bb.Position.Y + bb.Height &&

 p.Y > bb.Position.Y)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

}

We can now put all of this together in the GameplayState class. Add

the following code to the DetectCollisions() class to add bullet and missile

collisions to the turret so the player can destroy them, which is a key

survival strategy:

var turretBulletCollisionDetector =

 �new SegmentAABBCollisionDetector<PlayerSprite>(

_playerSprite);

Chapter 11 Level Design

310

bulletCollisionDetector.DetectCollisions(_turretList, (bullet,

turret) =>

{

 var hitEvent = new GameplayEvents.ObjectHitBy(bullet);

 turret.OnNotify(hitEvent);

 _soundManager.OnNotify(hitEvent);

 bullet.Destroy();

});

missileCollisionDetector.DetectCollisions(_turretList,

(missile, turret) =>

{

 var hitEvent = new GameplayEvents.ObjectHitBy(missile);

 turret.OnNotify(hitEvent);

 _soundManager.OnNotify(hitEvent);

 missile.Destroy();

});

Then, in the same method, modify the if (!_playerDead) section to

add the turret bullet collisions with the player:

if (!_playerDead)

{

 var segments = new List<Segment>();

 foreach (var bullet in _turretBulletList)

 {

 segments.Add(bullet.CollisionSegment);

 }

 �turretBulletCollisionDetector.DetectCollisions(segments, _ =>

 {

 KillPlayer();

 });

Chapter 11 Level Design

311

 �playerCollisionDetector.DetectCollisions(_playerSprite,

(chopper, player) =>

 {

 KillPlayer();

 });

}

�Cleaning Up
Now that everything is hooked up, we need to perform our usual cleaning.

When turrets are destroyed, they must be removed from the game. When

turrets and turret bullets are offscreen (but not when they have just been

added to the game and are just above the screen), they must be removed.

We will not cover this task here, but you can see how we handled that in

this chapter’s end solution.

�Adding Text
The last thing we want to add is game text to wish the player some good

luck when they start the level and to congratulate them when they clear the

level. For this, we will reuse our GameOverText object since the font is just

the right size. To make this happen, we just need to add a new text game

object and implement the last three level events that we left empty at the

beginning of this chapter:

private GameOverText _levelStartEndText;

public override void LoadContent()

{

 �_levelStartEndText = new GameOverText(LoadFont(GameOverFont));

}

Chapter 11 Level Design

312

private void _level_OnLevelStart(object sender,

LevelEvents.StartLevel e)

{

 _levelStartEndText.Text = "Good luck, Player 1!";

 _levelStartEndText.Position = new Vector2(350, 300);

 AddGameObject(_levelStartEndText);

}

private void _level_OnLevelEnd(object sender, LevelEvents.

EndLevel e)

{

 _levelStartEndText.Text = "You escaped. Congrats!";

 _levelStartEndText.Position = new Vector2(300, 300);

 AddGameObject(_levelStartEndText);

}

private void _level_OnLevelNoRowEvent(object sender,

LevelEvents.NoRowEvent e)

{

 RemoveGameObject(_levelStartEndText);

}

This little bit of extra details really makes a nice difference to our game.

�Reviewing Our Level Design
Our game now has the ability to load a level text file and play through

it, but is our level challenging or fun to play? We would argue that it is

challenging. As designed, this level is almost impossible to beat because

the turrets are brutal and incredibly difficult to deal with. Also, very early in

the level we have four turrets on the screen at the same time and it is very

difficult to move beyond that point.

Chapter 11 Level Design

313

Thankfully, it is straightforward to fix this issue by editing Level1.txt

and changing the location of turrets to make the level easier.

As we played our own level after the turrets were added, we realized

that they added an element of surprise to the player, who then thinks that

things really get serious. The game is not joking around and will kill them

if they make just a single mistake. That element of surprise, combined with

seeing four turrets at the same time come into view, caused us to frown

and really focus. The game became fun!

Try to update the Level1.txt file to add or remove turrets, or change the

number of enemy choppers generated, or when they get generated, then

run the game and see how it plays through. If you keep dying, however,

but still want to see the level through the end, we added a _indestructible

variable in the BaseGameState. When set to true, the player will not die.

�Improving the Gameplay
As we were working on the code for this chapter, it became obvious that

there was a little bit of stuttering in the gameplay, with the sprites not

moving smoothly across the screen. There are many factors that can cause

a game to stutter. MonoGame tries to run as efficiently as possible, and by

default, it will call the Update() function 60 times per second. However,

certain things can cause the game to miss drawing a frame every now and

then. The usual culprit is the .Net garbage collector doing work removing

instances of objects from memory when they are not referenced anymore.

We do have some room for improvement here. For every Update() call,

we deactivate enemy objects that are off the screen and leave them

in memory. Eventually, the garbage collector will pick them up. The

improvements we could make here would involve having a pool of pre-

instantiated objects and recycle game objects the same way we have been

recycling our particle objects in Chapter 8.

Chapter 11 Level Design

314

However, in our case, the stuttering was occurring even when the

garbage collector was not working so the problem must be somewhere

else. The Update() and Draw() functions together must not take longer

than 1/60th of a second to run; otherwise, we will not be able to achieve

60 frames per second. In that case, MonoGame responds by setting a

GameTime.IsRunningSlowly flag to true to allow the developer to react.

It will also skip calling the Draw() function a few times to be able to call

Update() within the time frame can hopefully catch up. This would cause

the game to look jerky, but this is not our problem. While we could add

a counter in our GameplayState class that we increment at every call to

Render() and display the number of frames per seconds on the screen, we

are fairly confident that our game runs well below the time constraints.

Another factor that can cause stuttering is how MonoGame

synchronizes with the refresh rate of your monitor when it tries to draw

things to the screen because ultimately we cannot redraw the screen

more often than the monitor can handle. While this is a deeper topic

for the scope of this book, we have found that telling MonoGame not to

synchronize with the monitor resulted in a smoother experience.

We adjusted the Main() function in our Program class to tell

MonoGame to use a fixed time step by setting the game.IsFixedTimeStep

flag to true, which forces the game to run at a specific number of frames

per second. Because we still want to run the game at 60 frames per

seconds, we must tell MonoGame how long each frame takes, which is

1000 milliseconds divided by 60. Our Program’s Main() function now looks

like this:

static void Main()

{

 �using (var game = new MainGame(WIDTH, HEIGHT, new

SplashState()))

 {

 game.IsFixedTimeStep = true;

Chapter 11 Level Design

315

 �game.TargetElapsedTime = TimeSpan.

FromMilliseconds(1000.0f / 60);

 game.Run();

 }

}

Then, to turn off the synchronization with the monitor, we set the

graphics.SynchronizeWithVerticalRetrace flag to false in MainGame’s

Initialize() method:

 graphics.SynchronizeWithVerticalRetrace = false;

With those things in place, the game started running much smoother.

�Summary
In this chapter, we learned how to create a grid-like internal representation

of a level and how to load data from a text file into this grid. We also

implemented a Level class that can use this internal grid of level events

and cause actual game objects to be added to the screen. Finally, we added

turrets that can shoot the player, which has been the most difficult game

object to implement yet, involving rotations and vectors and a new way to

detect collisions between segments and axis aligned boxes. We did a lot of

work here and our game looks much better.

While this is the final chapter of the book, our journey into game

development is just getting started. Game development is really a

collection of techniques and algorithms that are stitched together to

form a game and there is a lot more to discover. For example, we used

zIndices to determine the drawing order of our objects, but there are

layering techniques out there, where anything that a player can collide

with is drawn at a lower layer, while the player and enemies are drawn at a

Chapter 11 Level Design

316

higher layer. We have also barely scratched the surface of particle engines.

We did not add the ability to have our textures morph as they age! And

what about path detection and AI agents to allow our game objects to act

independently from the gameplay state?

There is a lot more to learn, but this book gives you a good foundation

and a good starting point to build games with MonoGame. So what will

you add to our game? Here are just a few possibilities that you could

tackle next:

•	 More background elements like rivers and bridges, or

city landscapes.

•	 A wider variety of enemies.

•	 Boss fights!

•	 Adding different weapons to the players.

•	 When enemies die, they could generate consumable

game objects that give the player some kind of boost if

they pick them up, like power ups.

We look forward to playing the game that you will build in the future!

Chapter 11 Level Design

317© Jarred Capellman, Louis Salin 2020
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9

Index
A
Aligned axis bounding box

(AABB), 195, 196, 307
Animations

downsides, 246, 247
engine

AddFrame method, 254
algorithm, 252
AnimationFrame

class, 249
classes, 249
class variables, 250
computing option, 252
looping, 253
ReverseAnimation, 255
source code, 252, 253

fighter plane
frames, 256
GameplayInput

Command, 261
PlayerSprite class, 256, 257
StopMoving()

method, 258, 259
Update() method, 260

sprite sheets, 243–245
state machines, 246–248

text
content pipeline tool, 263
fonts, 262
game objects, 264–266
game over, 267–270
tracking lives, 266, 267

texture atlases, 244, 245
two-dimensional games, 242

Architecture
desktop template, 44–46
execution order, 49
game class, 38, 39
MainGame.cs file, 45–49
pipeline app, 35–38
rendered pixels,

solution/project, 40–43
Artificial intelligence (AI), 53
Asset pipeline, 75

agile process, 78
asset loading/unloading, 79
asset optimizations/

targeting, 76
BaseGameState class, 79–81
benefits, 76
ContentManager class, 76, 77
MainGame class, 81

https://doi.org/10.1007/978-1-4842-6309-9#DOI

318

player sprite
application, 91–93
build menu, 88
Content.mgcb, 85
content package, 88
dialog window, 86
directories, 82
fallback texture, 84
file dialog, 87
game code, 89–91
player sprite, 84
splash screen asset, 83

Audio, 125
code organization, 131, 132
pipeline tool, 134
refactoring engine

case scenario, 126
code organization, 125, 127
internal details, 129
LoadContent()

method, 128–130
SplashState class, 131

sound effects, 140–144
BaseGameStateEvent, 141
game event, 143
GamePlayEvents, 143
HandleInput() function, 142
LoadContent() method, 144
NotifyEvent()

method, 142, 143
soundtrack

BaseGameState class, 136
CC license, 135

CreateInstance() method, 137
IsLooped() method, 137
LoadContent() method, 139
MediaPlayer, 135
PlaySoundTrack(), 139
SoundManager class, 138
Update() method, 140

wav files, 133
Axis Aligned Bounding Box

(AABB), 299, 306

B
BaseGameState class, 79–81, 111,

114, 139, 267
Blender, 31

C
Collision detection, 191

AABBCollisionDetector
DetectCollisions()

method, 231, 232
KillPlayer() function, 234
OnObjectChanged

event, 233
scenarios, 233
source code, 229–231
UpdateGameState()

method, 231
aligned axis bounding

box, 195, 196
bounding boxes

BaseGameObject, 222–224
BaseGameState, 227

Asset pipeline (cont.)

Index

319

chopper game object, 224
debug purposes, 229
engineobjects, 220, 221
PlayerSprite, 225–227

bullets and enemies
assetspng directory, 203
chopper move

across, 209–216
ChopperSprite class, 204
explosion particle

engine, 216–219
GameplayState class, 205
rotation, 206–208
spinning blades, 208

oriented bounding
boxes, 196, 197

quadtrees, 200–202
results, 192
spheres/rectangles, 198
techniques, 203

binding boxes, 193
fighter sprite colliding, 195
player sprite/enemy

helicopter, 193, 194
turrets, 306–311
uniform grid, 199, 200

ContentManager class, 76, 77, 80,
81, 89

D
Development environment

graphics tools, 31, 32
Linux, 27, 28

macOS, 22–27
platform, 18
source control, 29, 30
tools, 17
Visual Studio extensions, 32–34
Windows (see Windows/

Visual Studio)

E, F
EmitterParticleState class, 159–163
Event system, 71–74
Event trigger system, 53

G, H
Game engines design

architecture, 51, 52
event system, 71–74
project type, 58
scaler/window

management, 62–71
state management, 59–62
SwitchState method, 61

artificial intelligence, 53
event trigger system, 53
graphical rendering, 53
physics, 54
player input, 52
sound rendering, 54
state management

comparison, 57
gameplay, 57
splash screen, 55

Index

320

stardew valley menu, 56
traditional game, 54–57

GameplayState class, 59, 74, 90
Generic input manager

BaseGameState class, 114
BaseInputCommand, 113
functions, 118
game engine, 112
GamePlayInputMapper, 113
HandleInput() function, 116
KeepPlayerInBounds(), 116
SetInputManager() function, 115
shooting bullets

BulletSprite class, 118
LoadContent() function, 119
source code, 120–122
Update() function, 121–123

Gimp, 31, 32
GitHub, 29
Graphics rendering, 53

I, J, K
Initialize() method, 39, 100, 315
Input

final result, 95
generic input manager (see

Generic input manager)
mechanisms (see Mechanisms

input)
side scrollers

background blocks, 103
infinite terrain, 106

LoadContent() method, 110
meaning, 103
overloaded draw

function, 108
process, 103, 104
rendering function, 107
source/destination

rectangles, 108
TerrainBackground, 107
texture blocks, 109
tiled background, 105

L
Level design

editors, 272, 273
events, 275, 276
Gameplay state

embedded resource, 277
event handler, 284
events, 280
game event, 278
GenerateLevelEvents, 283, 284
LevelReader/LevelEvents

classes, 277, 281
LoadContent() method, 284
ResetGame() method, 286
StartLevel/EndLevel

events, 279
UpdateGameState()

method, 286
utility functions, 282

level, 273–275
overview, 271

Game engines design (cont.)

Index

321

review, 312
turrets (see Turrets)
Update() and Draw() functions,

314–316
Linux development, 27, 28
LoadContent method, 39, 47, 80,

81, 89, 90, 110, 139, 144,
266, 284

LoadLocalized method, 77

M, N
macOS development

environment, 22
confirmation, 26
extensions selection, 23, 24
file selection window, 24, 25
MonoGame templates, 27
welcome screen, 22

MainGame.cs file, 45–49
Mechanisms input

gamepad state, 101–103
keyboard state

IntelliSense options, 98
monitor, 97, 99
references, 98
source code, 96, 97

mouse, 100
thumbstick, 102

Missile game object
CleanObjects, 187
commands, 173
CreateMissile() function, 187
DevState class, 175, 181, 183

Exhaust.cs, 174, 175
GameplayEvents class, 186
GameplayState class, 184, 185
LoadContent(), 185
MissileSprite.cs, 178–180
particles, 177
Program.cs, 177
scaling down, 181
Shoot() method, 186
states directory, 172
UpdateGameState()

method, 188
Update() method, 178
visual artifacts, 184

MonoGame
code samples, 15
considerations, 5
cross-platform, 4
elements, 1
engines, 6
features, 5
game development, 2
game types, 7
horizontal shooters, 9, 10
meaning, 4
organization, 14, 15
puzzle games, 12, 13
reader assumptions, 3
role playing, 11, 12
royalty-free game, 2
seasoned developers, 5
side scrollers, 10, 11
strategy games, 13, 14
vertical shooter, 7, 8

Index

322

O
Online particle editors, 150–153
Oriented bounding

box (OBB), 196, 197, 306

P, Q
Particle system

anatomy, 149, 150
attributes, 154–156
ConeEmitterType, 164–166
direction vector, 158
emitter

EmitNewParticle()
method, 168, 169

initial location, 166
meaning, 166
source code, 167
spriteBatch, 171
Update() method, 170

EmitterParticleState
class, 159–163

fire, 147, 148
IEmitterType interface, 164, 165
meaning, 147
missile/smoke trail game, 172

dev game state, 172–184
missile game

object, 184–189
online editors, 150–153
particle class, 156–158
player shooting, 153

RandomNumberGenerator
class, 161

shapes, 153
Update() method, 154

Pipeline app, 35–38

R
Reorganizing bit

content pipeline, 239, 241
file paths/content location, 240
physical organization, 240
source code, 238

S
SplashState class, 83, 89, 115, 131

T
TortoiseGit, 29, 30
Turrets

BaseGameObject, 304–306
BaseGameState class, 302
collision detection

algorithm, 306–311
game art/origins

AngleOffset, 292
BaseGameObject, 288
CalculateDirection(), 288
content pipeline, 287
player object, 296, 297
Render() method, 291, 298

Index

323

sprites, 287
TurretSprite class, 292–294
Update() method, 295
vectors and angles, 295

GameplayEvents class, 301
initial location, 301
meaning, 286
Shoot() method, 299
TerrainBackground class, 303
text, 311

U
Unload method, 77, 80

V
Visual Studio extensions

IntelliCode, 34
live help/code, 32, 33
spell checker extension, 33

W, X, Y, Z
WebGL online particle editor, 151
Window scaling

draw method, 68
full screen, 71
game window, 67, 68
LoadContent method, 70
rendering screen, 63, 64
renderTarget variable, 69
source code, 66, 67
target resolution, 65
variables, 65
welcome screen, 63

Windows/Visual Studio
installation, 19
license agreement, 20
MonoGame templates, 21
project templates, 21
setup, 18
template installation, 20

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Who This Book Is For?
	What This Book Is Not
	Reader Assumptions
	What Is MonoGame
	MonoGame Compared to Engines
	Game Types Best Suited for MonoGame
	Vertical Shooters
	Horizontal Shooters
	Side Scrollers
	Role Playing
	Puzzle
	Strategy

	Organization of This Book
	Code Samples
	Summary

	Chapter 2: Configuring the Dev Environment
	Development Environment Configuration
	Platform Agnostic
	Set Up Your Windows Development Environment
	Set Up Your macOS Development Environment
	Set Up Your Linux Development Environment

	Additional Tooling
	Tools
	Source Control Tools
	GitHub (Windows, macOS, Linux)
	TortoiseGit (Windows Only)

	Graphics Tools
	Blender (Windows, macOS, Linux)
	Gimp (Windows, macOS, Linux)

	Visual Studio Extensions
	Live Share (2019 and Code)
	Visual Studio Spell Checker (2019)
	Visual Studio IntelliCode (2019 and Code)

	Summary

	Chapter 3: MonoGame Architecture
	MonoGame Architecture
	Pipeline App
	Game Class

	Your First Rendered Pixels
	Creating the Solution and Project
	Diving into the Project
	Diving into MainGame.cs
	Execution Order

	Summary

	Chapter 4: Planning Your Game Engine
	Game Engine Design
	Player Input
	Artificial Intelligence (AI)
	Event Triggers
	Graphical Rendering
	Sound Rendering
	Physics
	State Management

	Implementing the Architecture of the Engine
	Creating the Project
	Creating the State Classes
	Creating the Scaler and Window Management
	Window Scaling
	Full-Screen Support

	Event System

	Summary

	Chapter 5: Asset Pipeline
	MonoGame Asset Pipeline
	ContentManager Class
	T LoadLocalized<T>(string assetName)
	T Load<T>(string assetName)
	void Unload()

	MonoGame Pipeline Tool

	Integrate the Asset Pipeline into the Engine
	BaseGameState
	MainGame

	Add a Player Sprite to the Game
	Reviewing the New Assets
	Adding the New Assets to Our Content
	Game Code Changes
	SplashState
	GameplayState

	Running the Application

	Summary

	Chapter 6: Input
	Discussing the Various Input Mechanisms
	Keyboard State
	Mouse State
	Gamepad State

	Scrolling Background
	Creating a Generic Input Manager
	Shooting Bullets

	Summary

	Chapter 7: Audio
	Refactoring the Engine
	Code Organization

	Audio
	Playing a Soundtrack
	Sound Effects

	Summary

	Chapter 8: Particles
	Anatomy of a Particle
	Learning with an Online Particle Editor
	Different Shapes of Particle Emitters

	Adding a Particle System to Our Game
	Particle
	EmitterParticleState
	IEmitterType
	ConeEmitterType
	Emitter

	Adding a Missile and Smoke Trail to Our Game
	Creating a Dev Game State to Play With
	Adding the Missile Game Object to Our Game

	Summary

	Chapter 9: Collision Detection
	Techniques
	AABB (Axis Aligned Bounding Box)
	OBB (Oriented Bounding Box)
	Spheres
	Uniform Grids
	Quadtrees
	Other Techniques

	Adding Enemies to Our Game
	Rotating Our Chopper
	Spinning Blades
	Making the Choppers Move
	Adding an Explosion Particle Engine

	Adding Collision Detection
	Bounding Boxes
	AABB Collision Detection

	Summary

	Chapter 10: Animations and Text
	A Bit of Refactoring
	Animations
	Sprite Sheets
	Texture Atlas
	Animation Downsides
	State Machines
	Animation Engine

	Animating Our Fighter Plane
	Text
	Fonts
	Adding Fonts to the Content Pipeline
	Fonts As Game Objects
	Tracking Lives
	Game Over

	Summary

	Chapter 11: Level Design
	Level Editors
	What Is a Level?
	Level Events
	Level Readers, Levels, and Our Gameplay State

	Adding Turrets
	Game Art and Origins
	Turret Bullets
	Collision Detection
	Cleaning Up
	Adding Text

	Reviewing Our Level Design
	Improving the Gameplay
	Summary

	Index

