
http://www.it-ebooks.info/

LibGDX Game Development
Essentials

Make the most of game development features
powered by LibGDX and create a side-scrolling
action game, Thrust Copter

Juwal Bose

BIRMINGHAM - MUMBAI

LibGDX Game Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1181214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-929-0

www.packtpub.com

www.packtpub.com

Credits

Author
Juwal Bose

Reviewers
Pavel Czempin

Lévêque Michel

Sudarshan Shetty

Tom Wojciechowski

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Meeta Rajani

Content Development Editor
Anila Vincent

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editors
Roshni Banerjee

Gladson Monteiro

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Production Coordinators
Komal Ramchandani

Sushma Redkar

Cover Work
Komal Ramchandani

About the Author

Juwal Bose is a game developer, game designer, and technology consultant from
the incredibly beautiful state of Kerala in India. He is an active figure in social media
and game development SIGs, and he never misses a chance to speak at technical
conferences and BarCamps. He conducts technical workshops for engineering
students at professional colleges as part of open source initiatives. Juwal is the
Director at Csharks Games and Solutions Pvt. Ltd., where he manages research
and development, training, and pipeline integration.

He has been developing games since 2004 using different technologies, such as
ActionScript, Objective-C, Java, Unity, LibGDX, Cocos2D, OpenFL, Unity, and
Starling. His team has created more than 400 games to date, and many of the job
management games are listed at the top of leading portals worldwide. He was
involved in the development of more than 20 LibGDX games, primarily for the
Android platform.

Juwal writes game development tutorials for GameDevTuts+ and manages the
blog of Csharks. His isometric tutorial for GameDevTuts+ was well received
and is considered a thorough guide for developing tile-based isometric games.
This is his second book and he aims to keep writing and sharing his 10 years of
game development experience through more books. His first book, Starling Game
Development Essentials, Packt Publishing, was on another exceptional cross-platform
game development framework—Starling.

Juwal is a voracious reader and likes to travel. His future plans also include
writing fiction.

Acknowledgments

I would like to thank my parents and my wife, Dr. Nidhina Haridas, for inspiring
me to aim higher and try harder. My heartfelt thanks go to Eldhose P. Mathew, CEO
of Csharks, for allowing me to devote my professional time to work on this book.
I would also thank Anila Vincent, Meeta Rajani, and Madhunikita Chindarkar for
supporting me and all the other team members at Packt Publishing for giving me
this opportunity. A special thanks to Suryakumar for those brainstorming sessions
and Kenney for the open source art.

This book would not have been possible without the expertise of the technical
reviewers Tomasz Wojciechowski, Lévêque Michel, Pavel Czempin, and Sudarshan
Shetty. Thank you guys.

I would also like to express my deep gratitude to Mario Zechner, without whom
such an incredible game framework would not have existed. Mario, you rock.
Long live LibGDX!

About the Reviewers

Pavel Czempin is currently completing school in Germany and plans to study at a
university. He has also joined a program to complete some of the advanced courses
of computer science. There, among other things, he learned programming in Java.
In his free time, he works on programming projects and is interested in developing
computer games.

You can find some of his projects on his GitHub page at https://github.com/
Valep42.

I thank my father for encouraging me to review this book.

Lévêque Michel has a Bachelor's degree in Information Technology, and he
worked in Java development for 7 years. He is currently working on a LibGDX
point-and-click game as a core programmer.

I would like to thank the author of this book and the team at Packt
Publishing for giving me the opportunity to review this great book.

https://github.com/Valep42
https://github.com/Valep42

Sudarshan Shetty is a cofounder of Neurolinx Software Technologies along
with his wife, Anuradha. He completed his engineering from IIT (BHU) and IIT
Bombay. He worked as a sound recordist before getting into programming. He
has also worked on Wall Street, developing trading applications. In his free time,
he experiments with organic farming and loves to play the guitar with his kids,
Shameen and Shamika. To find out more about him, check out his LinkedIn profile
at http://in.linkedin.com/pub/sudarshan-shetty/12/756/.

Tom Wojciechowski is an independent Java developer currently working on a
cross-platform multiplayer mobile game (www.asidik.com/blobrun). He holds a
Bachelor's degree in Mathematics and Physics, and he has been a core developer for
the popular and award-winning LibGDX, a cross-platform Java game development
framework.

His current projects and blog can be found at www.asidik.com.

http://in.linkedin.com/pub/sudarshan-shetty/12/756/
www.asidik.com/blobrun
www.asidik.com

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Wiring Up	 7

Getting started	 8
Setting up the Java development environment	 8
Installing Eclipse	 11

Setting up the Android development environment	 12
Installing the ADT plugin and linking the Android SDK with Eclipse	 12
Installing the LibGDX support plugins	 14
Setting up GWT	 14
Installing the RoboVM plugin	 14
Installing the Gradle plugin	 14

The LibGDX Gradle combo	 15
Using the Gradle setup application	 16

A Hello World project	 17
Importing Gradle projects to Eclipse	 18
Running the project	 20

Exploring the project	 24
Displaying the Hello World text	 25
Running demos	 26

Running tests	 27
The alternate LibGDX setup	 29

Summary	 30
Chapter 2: Let There Be Graphics!	 31

The ThrustCopter game	 31
A LibGDX app's life cycle	 33

Creating the Thrust Copter project	 33
Planning art assets	 34
The game scene	 35
Populating the game scene	 36

Table of Contents

[ii]

Displaying the graphics	 38
The final game scene	 40

Adding the plane animation	 42
Moving the plane 	 44

The code so far	 45
Texture packing	 47

The revised code	 50
Handling multiple screen sizes and aspect ratios	 51

Summary	 53
Chapter 3: Thou Shall Not Pass!	 55

Piloting our plane	 55
Navigating using touch input	 57

Dealing with other input methods	 60
Polling keyboard keys	 60
Accessing accelerometer data	 60
Event handling for inputs	 61
Using the InputAdapter class	 61

Adding the different game states	 63
Adding the pillar rocks	 67
Adding meteor rocks	 71

Making the game easier	 74
Playing with audio	 74

Adding sound effects	 75
Summary	 76

Chapter 4: Bring in the Extras!	 77
Refactoring time	 77

Creating a ThrustCopterScene class	 78
Creating our Game class instance	 79

Time for pickups	 83
Using a pickup class	 83

Adding pickup logic	 84
Displaying text	 87

Hiero – the BitmapFont creator tool	 88
Special effects with particles	 90

Pooling particle effects	 93
Summary	 93

Chapter 5: Scene 2 – the Menu	 95
Introducing Scene2D	 95

The stage for actors	 96
Actors and their actions	 96

Widgets	 98

Table of Contents

[iii]

Adding a loading scene	 100
Investigating the LoadingScreen class	 101

Adding the menu scene	 102
Creating scalable skins using the 9-patch tool	 107

Handling the Android back button	 109
Summary	 110

Chapter 6: Physics with Box2D	 111
The incredible world of Box2D	 111
LibGDX with Box2D	 113

Creating a Box2D world	 114
Drawing the Box2D world	 114
Simulating the Box2D world	 116

Fixing the time step	 116
Box2D rigid bodies	 117

Interactions in the Box2D world	 118
Linking the Box2D and game worlds	 119
Detecting collisions	 119

Box2D version of Thrust Copter	 120
Creating and placing objects	 121
Creating obstacles	 123
Drawing the scene	 125

Handling collisions	 126
Ignoring collisions with shield	 128
Collision for pickups	 129

Summary	 130
Chapter 7: The Amazing World of 3D	 131

Introducing the third dimension	 132
Creating 3D content	 132

The PerspectiveCamera class	 133
Converting 3D files to G3DB	 134
Playing with primitives	 134

Rendering the ModelInstance classes	 135
Loading 3D models	 137

Interacting with 3D objects	 138
3D frustum culling in LibGDX	 140

3D particles with Flame	 141
Using bullet physics	 143

Creating the bullet world	 144
Adding rigid bodies	 145
Collision detection	 146
Adding shadows	 146

Summary	 147

Table of Contents

[iv]

Chapter 8: Saving Our Data	 149
Persisting game preferences	 149

Saving and loading sound preferences	 150
Implementing a local leaderboard	 151

Filesystems and access permissions	 151
Reading and writing files	 152
The leaderboard	 153
Saving and displaying scores	 154

Tile-based level design	 156
Using Tiled	 156

Loading TMX levels	 158
Summary	 160

Chapter 9: Finishing Our Android Game	 161
Using Google's offerings	 161

Interfacing platform-specific code	 162
Implementing Google Analytics tracking	 163
Adding tracker configuration files	 165
Adding Google Mobile Ads	 166

Leaderboards and achievements using Google Play services	 169
Linking BaseGameUtils	 170

Wiring with code	 171
Famous third-party alternatives	 175

Flurry for analytics	 175
Ads from InMobi	 176
Swarm – the all-in-one package	 176

Creating icons	 176
Summary	 177

Chapter 10: Time to Publish	 179
Publishing the Android version	 179

Preparing the store listing	 180
Preparing to release the APK	 181

Publishing the desktop version	 182
Publishing the Web version	 183
Publishing the iOS version	 184

First steps at the developer portal	 184
Preparing the iOS project	 185
Testing the build on a device	 185
Creating the IPA	 186

Table of Contents

[v]

Some useful resources and links	 187
Overlap2D	 187

Working with Overlap2D	 189
Summary	 190

Index	 191

Preface
Game development is one of the coolest things to do right now, be it as a hobby or as
a full-fledged career option. With the arrival of smartphones, tablets, and other smart
devices, games are leading all the app stores worldwide in terms of the number of
downloads and revenue. Games have opened up revenue streams worth millions
of dollars for not only game companies, but also for indies and single developers.
App stores support self-publishing and they are very indie-friendly, which means
anyone capable of creating a game can go ahead and publish their game and reap
the benefits. This book will help you with just that.

Developing a game is not an easy task, but with the right tools at our disposal
it becomes easier to develop a new game. Depending on the type of game, the
platform, and prior knowledge of the developer, there are different types of tools
that can be used. This book explores LibGDX, a Java-based game development
framework that is primarily used to develop 2D Android games. However, LibGDX
is also capable of deploying to Windows, Mac, Linux, iOS, Blackberry, and HTML5.
Unity, Starling, Cocos2D, Phaser, and OpenFL are some of the alternatives that you
need to be aware of.

LibGDX (http://libgdx.badlogicgames.com) is an open source, Java-based
game development framework. It provides a setup for rapid prototyping and
faster iterations, with the capability to develop and debug on our desktop. It is the
brainchild of Mario Zechner, the author of Beginning Android Games. The team of
LibGDX now has 15 people (https://github.com/orgs/libgdx/people). LibGDX
is the undisputed leader when it comes to creating Android 2D games that are
performant and universal.

http://libgdx.badlogicgames.com
https://github.com/orgs/libgdx/people

Preface

[2]

This book aims to help you get started with game development using LibGDX.
In this book, you will create a simple game that is similar to Flappy Bird and learn
about the different aspects of game development. This book is bundled with the
complete source code of the working game Thrust Copter, along with other sample
code relevant to individual chapters. This book will help you to learn about game
development, UI creation, and data persistence. Once the game is ready, a chapter
is dedicated to convert it to a physics-based game using Box2D. Another chapter
introduces basic 3D concepts, tile maps, and other tools of the trade. The final
chapters detail how to integrate various third-party features and how to publish
the game on various platforms.

The book does not try to teach you everything, but makes you ready to explore
LibGDX further and encourages you to explore the source code on your own.
I would appreciate it if you would support LibGDX once you are aware of its
tremendous potential (http://www.patreon.com/libgdx). Once you are done
with this book, I would urge you to read LibGDX Cross-platform Game Development
Cookbook and Learning LibGDX Game Development, both by Packt Publishing, to take
your knowledge to the next level.

What this book covers
Chapter 1, Wiring Up, explains how to set up the LibGDX development environment.
We will install Eclipse, Android SDK, and LibGDX via Gradle, which helps us to run
our Hello World project.

Chapter 2, Let There Be Graphics!, explains how to add game graphics and discusses
the Texture, TextureRegion, Sprite, and Animation classes. Texture packing and
SpriteBatch are also introduced in this chapter.

Chapter 3, Thou Shall Not Pass!, explains how to add game controls for the player to
interact with the game and discusses how to add sound effects and music loop.

Chapter 4, Bring in the Extras!, explores how to add additional game play elements,
such as pickups, GUI, and effects. Bitmap fonts and particle effects are added and
their respective tools are also explained in this chapter.

Chapter 5, Scene 2 – the Menu, introduces Scene2D and explains the creation of the
menu scene along with a loading scene. In this chapter, you will learn about Stage,
Actor, and Nine Patch images. This chapter also deals with how to handle Android
back button.

http://www.patreon.com/libgdx

Preface

[3]

Chapter 6, Physics with Box2D, explains how to convert the completed game logic to
one that uses physics simulation with the help of Box2D. In this chapter, you will
learn about the basics of Box2D and use it to create an alternate implementation of
the Thrust Copter game.

Chapter 7, The Amazing World of 3D, explores the 3D capabilities of LibGDX. With the
use of sample code, we will render 3D primitives, import models, and animate them.
We will also discuss 3D particle effects and 3D bullet physics in brief.

Chapter 8, Saving Our Data, discusses the methods of file access that will help you to
preserve persistent data. We will implement a local leaderboard system with this
new knowledge. The TMX tile map is also introduced in this chapter.

Chapter 9, Finishing Our Android Game, adds analytics tracking, Google Ads, Google
Play services, leaderboard, and achievements to the game.

Chapter 10, Time to Publish, explains how to publish the game to different platforms
and app stores. Overlap2D, a great visual scene designer for LibGDX is also
introduced in this chapter.

What you need for this book
LibGDX is a cross-platform game development framework. For development, you will
need a computer running either Windows, Linux (for example, Ubuntu), or Mac OS X.

Additionally, you will need to download the LibGDX framework. The Integrated
Development Environment (IDE) used in this book is Eclipse. You can download the
Eclipse IDE from http://www.eclipse.org/.

To develop games for the Android platform, you need the official Android Software
Development Kit (SDK) that can be downloaded from http://developer.android.
com/sdk/index.html.

Who this book is for
If you are a Java developer who wants to learn LibGDX and create great games, this
book is for you. Even if you have already worked with LibGDX, I am sure there are
sections in this book that can add to your expertise. If you do not know Java but have
experience with any other object-oriented language and have created games with
them, then I would urge you to try this book as you will be able to learn Java easily.
Experience of using Eclipse will also be very useful.

http://www.eclipse.org/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"On a Windows machine, you may need to set the value of the environment variable
JAVA_HOME to the installation path of the JDK after installation."

A block of code is set as follows:

SpriteBatch batch;
Texture img;
create ();
render();

Any command-line input or output is written as follows:

C:\Users\admin>java -version

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the Windows Start button, right-click on Computer, select Properties, and click on
Control Panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/9290OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/9290OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9290OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Wiring Up
In this chapter, we will lay the ground work to facilitate our plan of creating a game
like Flappy Bird for multiple platforms, including Android, iOS, PC, and the Web.
You might wish to jump right in and start designing the game, but that is not the
case with LibGDX. There are lots of things to be done before we could start to code.
This chapter deals with the setting up of LibGDX for a cross-platform project. This is
done on a development environment configured for Android development. We will
cover the following topics:

•	 Installing Java Development Kit (JDK)
•	 Installing Eclipse for Java
•	 Installing Android SDK
•	 Installing Google Web Toolkit (GWT) SDK
•	 Installing all relevant Eclipse plugins, such as Gradle, Android Development

Tool (ADT), Google App Engine (GAE), GWT, and RoboVM
•	 Using the LibGDX Gradle setup app to create our first LibGDX project
•	 Exploring LibGDX demos and tests

Wiring Up

[8]

Getting started
Hope I didn't scare you with all those abbreviations. The majority of what we
will do in this chapter will only need to be done once, as it is required to set up
your development environment. Once it is done, we can forget about it and focus
on creating wonderful games. I will be using a Mac-based development setup
throughout this book, but the process is similar for Windows as well. The added
benefit that Mac provides is the ability to deploy to iOS as well. In the first part,
we will set up a Java development environment that will be very simple for all our
Java developers. This can be accomplished by setting up Eclipse, IntelliJ, or NetBeans
IDEs, but we will be focusing on Eclipse throughout this book. This does not mean
that this way is superior to the others but we've used it just because Eclipse is the
most widely used Java IDE and the majority of our potential readers should have
worked with Eclipse one way or another.

If you need to use another IDE, please check the LibGDX
wiki page at http://libgdx.badlogicgames.com/
documentation.html#gettingstarted.

Setting up the Java development environment
Our first step will be to install the Java Development Kit (JDK) if the development
PC does not have it. For all of the tools, applications, and SDKs that we will use,
there are different versions for Windows and Mac. Your browser will automatically
take you to the relevant download in most cases, but be sure to double check that
you are indeed downloading the right version. Also, there are different versions for
32-bit and 64-bit processors; make sure that you download the right one for your
development PC.

You can download the latest version of JDK from Oracle's site at http://www.
oracle.com/technetwork/java/javase/downloads/index.html.

http://libgdx.badlogicgames.com/documentation.html#gettingstarted
http://libgdx.badlogicgames.com/documentation.html#gettingstarted
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[9]

At the time of writing this book, the latest version is JDK 8u5 and the following
screenshot shows how the different versions are listed:

Once you download the relevant file, go ahead and install it on your machine.
Now, your machine is ready to be used for Java-based application development.

Wiring Up

[10]

On a Windows machine, you may need to set the value of the environment variable
JAVA_HOME to the installation path of the JDK after installation. We can check this
by running the following command in the command prompt:

C:\Users\admin>java -version

If the system displays the version details as follows, then Java is installed correctly:

java version "1.7.0_25"

Java(TM) SE Runtime Environment (build 1.7.0_25-b17)

Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

Otherwise, we need to set up the Java environment variable. To find the correct
path, go to C:\Program Files (x86)\Java\. You should see a folder with the jdk
extension in its name. The complete path should be similar to the following one:

C:\Program Files (x86)\Java\jdk1.8.0_05

Follow the given steps on a 64-bit Windows machine with 32-bit Java installed to
set the environment variable:

1.	 Click on the Windows Start button, right-click on Computer, select
Properties, and open control panel system window.

2.	 Click on Advanced system settings on the left-hand side of the Control
Panel window to open the System Properties window.

3.	 Next, click on the Environment Variables… button and click on the New...
button at the top that corresponds to User variables for <USERNAME>.
A window with the title New User Variable will appear.

4.	 Now, fill in the two text fields. Use JAVA_HOME in the Variable name field
and the JDK path you found out earlier in the Variable value field.

Chapter 1

[11]

Installing Eclipse
Next, we will need to install our IDE of choice: Eclipse. The latest version of Eclipse
can be found at http://www.eclipse.org/downloads/. We need to select Eclipse
for Java developers from the multitudes of flavors in which it is available. At the time
of writing, the latest Eclipse build is Luna, as shown in the following screenshot:

Once you have downloaded the relevant IDE, go ahead and install it on your
machine. Now, we are all set to write and compile the Java code. It's time to set
up the Android development environment.

http://www.eclipse.org/downloads/

Wiring Up

[12]

Setting up the Android development
environment
To use our Eclipse IDE for Android development, we need to install two things:
the Android SDK and the Android ADT plugin. Android SDK can be downloaded
as a compressed archive from http://developer.android.com/sdk/index.html.
It will be listed under GET THE SDK FOR AN EXISTING IDE. The archive can
be extracted to a location on your hard drive which needs to be linked from within
Eclipse. The following screenshot shows the download page where you can see a link
to download Eclipse ADT, which is a complete package for Android development.
If you are setting up Eclipse for the first time, then downloading Eclipse ADT is the
way to go; however, in this chapter, we are assuming that Eclipse is already installed.

Installing the ADT plugin and linking the
Android SDK with Eclipse
The ADT plugin connects with our Android SDK and keeps it up to date. It also has
the SDK Manager and Android Virtual Devices that are used to emulate Android
devices. We need to fire up Eclipse so that we can install the plugin. For those who
are not aware of the process of installing plugins in Eclipse, the following screenshot
will help. We need to select Install New Software... from the Help section.

http://developer.android.com/sdk/index.html

Chapter 1

[13]

In the new window that pops up, enter the URL https://dl-ssl.google.com/
android/eclipse/ in the section that says type or select a site and press Enter. We
need to select all available items and proceed with the installation. Once the plugin
is successfully installed, we need to restart Eclipse. After restarting, Eclipse will ask
you for the Android SDK location; you can also set it up by navigating to Window
| Preferences | Android. Once the Android SDK location is set, the SDK Manager
will check our installation to find missing items. It will prompt you to download the
latest Android SDK platform and Android platform tools. Check out the selected
items in the Download dialog box. We need to have the recommended Android
build tools and SDK platform. It is safe to not alter the recommended setting and
allow the downloader of Eclipse to download all the required files. The following
screenshot shows the update in progress:

Now we are all set to develop Android applications.

Wiring Up

[14]

Installing the LibGDX support plugins
LibGDX uses GWT plugin to publish HTML5/JavaScript, which is the web platform.
GWT includes the GWT SDK and Google App Engine. The other support plugins
that we need are RoboVM and Gradle.

RoboVM is used to compile the LibGDX project on the iOS platform. Gradle is a
dependency management and build system that wires our LibGDX game together.

Setting up GWT
From within Eclipse, launch the Install New Software... window, input the
following link, and install the GWT plugin:

https://dl.google.com/eclipse/plugin/4.4

The last part of the link is actually the Eclipse version and the preceding link is for
Version 4.4.x. Select the checkboxes to install Google Plugin for Eclipse, Google
App Engine SDK, and Google Web Toolkit SDK. Once the plugin is installed,
we need to restart Eclipse.

Installing the RoboVM plugin
iOS development is only possible if we are using a Mac machine for development.
We will also need Xcode, the Mac IDE for support. RoboVM is the brainchild
of Niklas Therning, a Swedish developer and co-founder of Trillian Mobile AB.
RoboVM is used to make Java work on iOS via a Java to Objective-C bridge.
RoboVM is open source and stable. Let's all take a few minutes to appreciate this
wonderful effort by learning more about RoboVM (http://www.robovm.com/).

Mac users can go ahead and install the RoboVM plugin from http://download.
robovm.org/eclipse/. After restarting, we are now all set to deploy our games
on the Apple iOS platform as well.

Installing the Gradle plugin
Gradle is a dependency management system and is an easy way to pull in third-
party libraries into your project without having to store the libraries in your source
tree. Instead, the dependency management system relies on a file in your source
tree that specifies the names and versions of the libraries you need to be including
in your application.

https://dl.google.com/eclipse/plugin/4.4
http://www.robovm.com/

Chapter 1

[15]

Adding, removing, and changing the version of a third-party library is as easy as
changing a few lines in that configuration file. The dependency management system
will pull in the libraries you specified from a central repository and store them in a
directory outside of your project.

If you want to read more about Gradle and get to know how it benefits
the LibGDX setup, visit https://github.com/libgdx/libgdx/
wiki/Improving-workflow-with-Gradle.

Gradle also has a build system that helps with building and packaging your
application, without being tied to a specific IDE. This is especially useful if you use
a build or continuous integration server, where IDEs aren't readily available. Instead,
the build server can call the build system, providing it with a build configuration so
it knows how to build your application for different platforms. More information can
be found at http://www.gradle.org/.

At this point, we are very comfortable adding new plugins to Eclipse. Fire up
the new software window to add the Gradle plugin from the link http://dist.
springsource.com/release/TOOLS/gradle. After installation, restart Eclipse
and that's the end of our setup.

The LibGDX Gradle combo
I know that you are wondering how we reached the end of our setup without
installing anything related to LibGDX but everything else out there. The LibGDX
installation will be handled by Gradle automatically, and we will be using a helper
application to create all the dependencies and the project structure. Such a LibGDX
Gradle combo requires an Internet connection while creating the project, as Gradle
needs to load all the necessary dependencies, files, and libraries on the fly while
setting up the project for the first time. Personally, I am not a fan of this as I come
from a country where a good Internet connection is still a luxury. For those of
you who are in a similar situation, the alternative way will be to download all
dependencies and wire them all up as required. This is a complicated task
although we used to do it during the initial days of LibGDX.

Let's start creating our first Gradle-based LibGDX project. We will be following the
steps explained in the LibGDX wiki page, which can be found at https://github.
com/libgdx/libgdx/wiki/Project-Setup-Gradle.

https://github.com/libgdx/libgdx/wiki/Improving-workflow-with-Gradle
https://github.com/libgdx/libgdx/wiki/Improving-workflow-with-Gradle
http://www.gradle.org/
http://dist.springsource.com/release/TOOLS/gradle
http://dist.springsource.com/release/TOOLS/gradle
https://github.com/libgdx/libgdx/wiki/Project-Setup-Gradle
https://github.com/libgdx/libgdx/wiki/Project-Setup-Gradle

Wiring Up

[16]

Using the Gradle setup application
We need to use a Java application with the Gradle setup to create Gradle-based
LibGDX projects. This setup file can be found at http://libgdx.badlogicgames.
com/download.html.

A direct link to the setup application is http://bitly.
com/1i3C7i3.

The setup application has to be stored for easy access, as we will need it when
we create new LibGDX projects. The purpose of the application is to create all
platform-specific Eclipse projects, such as desktop, Android, iOS, and JavaScript
applications. It also links with all the necessary dependency libraries and the latest
version of LibGDX. The following screenshot shows the Gradle project structure
that clearly explains how the different projects are created under the relevant folders:

http://libgdx.badlogicgames.com/download.html
http://libgdx.badlogicgames.com/download.html
http://bitly.com/1i3C7i3
http://bitly.com/1i3C7i3

Chapter 1

[17]

A Hello World project
Let's launch the gdx-setup.jar Gradle setup application. The following screenshot
shows how I have populated the options for our Hello World project:

Wiring Up

[18]

We need to specify a name for our project, which is Hello World in this case. Then, we
need to specify a package name for our project. In my case, I am using my company's
package name but you can use any unique package name. It's time to specify our main
class name; take care that there are no spaces in between. While setting the destination
project, make a new folder within your Eclipse Workspace folder so that there are
no possible conflicts between Gradle files and Eclipse workspace metadata files. In
this case, I have specified FirstGradleProject. Link the Android SDK and select
the version of LibGDX that you will use.

In the Sub Projects section, we need to select the platforms that we want the
project to target. Note that we will need a Mac to compile an iOS build.

The Extensions section will link any of the standard LibGDX libraries or packages
available. It is always safe to select the options in this stage rather than hacking
into the project later on. For our Hello World app, we do not need any of these
extensions. Hit the Generate button and your LibGDX Gradle project structure
will be created.

Alternatively, we can create an Eclipse-specific project structure by clicking on
the Advanced button, enabling the Eclipse checkbox, and clicking on Save. If the
project is created this way, then we need to import it as a normal Eclipse project
by navigating to File | Import | General | Existing Projects to Workspace.
This process will need an active Internet connection to load the files needed by
the setup application.

Importing Gradle projects to Eclipse
It's time to import our projects into Eclipse by navigating to File | Import | Gradle
| Gradle Project. Browse the root folder, FirstGradleProject, and hit the Build
Model button. This step is very important, as you may not see your projects without
this. Gradle will download a few necessary files based on our project, and it will take
a while before you see your projects listed as shown in the following screenshot:

Chapter 1

[19]

Wiring Up

[20]

Go ahead and select all the projects and click on Finish to load them to Eclipse.
At this point Gradle will load all the dependencies as per our selection in the
setup application. This is where Gradle will actually load the LibGDX packages
and extensions. The following screenshot shows the process:

Running the project
Everything should be wired properly and all projects are good to go at this point.
One issue that may pop up is that the Android project may have a red cross
indicating that the proper Android SDK is missing. This happens all the time,
but the fix is straightforward. Right-click on the Android Project folder to select
its properties. Then, select the proper Android target version under the Android
section in the window that pops up. This will remove the error. Congratulations!
You can now run your projects. The following screenshot shows how to remove
the Android error:

Chapter 1

[21]

In order to run the desktop project, right-click on the Hello World desktop project,
select Run As, and click on Java Application. A popup may ask you to select the
application class and you should select DesktopLauncher to run the app. The
following window will pop up, which means we have successfully created and
run our first Gradle-based LibGDX application:

Wiring Up

[22]

Running the application on your Android device is also very easy. Connect your
Android device to the development PC via USB and make sure USB debugging
is enabled in the device's settings.

USB debugging can be enabled by navigating to Settings |
Developer options | USB debugging.

In order to see the connected device from within Eclipse, you need to enable the
Devices view. In Eclipse, go to Window | Show View | Other. Then, select Devices
from the Android section. A new tab showing the connected device will be added
to Eclipse. For Windows, we need to install the respective drivers for the connected
phone to show up, but on Mac the connected device would be automatically detected.

Once you see your device listed in the Devices view, right-click on the Hello
World-android project, select Run as, and click on Android Application. Eclipse
will prompt you to select how to launch the Android app. You can select to launch
on a device or on a Android Virtual Device (AVD) if you have set one up already.
Select to launch the application on the device and then the application should show
up on your Android device. Eclipse will show the LogCat view, which shows the
application status:

In order to run the iOS project, you need to be on a Mac and should have Xcode
Version 5 or above installed. Xcode can be downloaded free from the Mac App
Store. It provides the necessary frameworks and the iOS Simulator tool. Right-click
the Hello World-ios project, select Run As, and select iOS Simulator App.
You can select either of the simulator options, iPad or iPhone. This will start the
RoboVM cross compilation and would take some time for entire classes to be
compiled. Eventually, you will see the app running on the iOS Simulator.

Chapter 1

[23]

In some cases, you may run out of memory while RoboVM
works on the compiling. You may need to increase the memory
heap sizes for Eclipse in the eclipse.ini file, as follows:

-Xms512m

-Xmx2048m

Getting the HTML project to run is the trickiest part of them all. We need to follow
exactly what the LibGDX wiki tell us to do. Right-click on the Hello World-html
project, select Run As, and click on External Tools Configuration. Create a new
configuration by double-clicking the Program entry in the left sidebar. Give the
configuration a name, for example, GWT SuperDev. Set the location field to the
gradlew.bat (Windows) or gradlew (Linux, Mac) file. Set the working directory
to the root folder of your project and specify html:superDev as the argument.
Click on Apply and then click on Run.

Wait until you see the message The code server is ready in the console view.
After that, go to the URL http://localhost:8080/html. You can leave the server
running. If you change the code, simply click on the SuperDev Refresh button in
the browser. This will recompile your app and reload the site.

Check out this screenshot to see the app running on a browser:

http://localhost:8080/html

Wiring Up

[24]

Exploring the project
That was some heavy lifting; now we can take a break to explore the project in detail.
You are seeing an image in the bottom-left corner of the app window. Let's see how we
got this output. The core code logic will always be present in the project's src folder,
which is the Hello World-core src folder in our case. We can find the HelloWorld.
java main class inside the specified package; open it up. This class extends the
ApplicationAdapter class, which in turn implements the ApplicationListener
interface. These classes have a few methods that align with the Android application
life cycle methods: create, pause, resume, dispose, render, and resize.

The HelloWorld class is a very simple class with only two variables and two
overridden functions:

SpriteBatch batch;
Texture img;
create ();
render();

The SpriteBatch class is a class that facilitates the efficient drawing of images
on the screen. The create function, which will be called when the application is
launched, just creates a new SpriteBatch class and a Texture class named img
that loads a texture from the external asset badlogic.jpg. The render function
is called continuously and can be considered as our game loop. It clears the screen
and draws the texture onto screen at the coordinates (0,0). This means the origin
of the coordinate system in LibGDX is the bottom-left corner of the screen, as we
can see that the image is placed there. We will revisit the graphics package in the
next chapter.

The following code clears the screen before each draw call:

Gdx.gl.glClearColor(1, 0, 0, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

The next bit of code starts the batch drawing, draws the texture at the specified
coordinates, and closes the batch drawing:

batch.begin();
batch.draw(img, 0, 0);
batch.end();

Chapter 1

[25]

The only thing missing is the external image file, as we won't be able to find it
among the core project files. LibGDX follows the convention to store all asset files
within the assets folder in the Android project. Hence, we can find badlogic.jpg
within the assets folder in the Hello World-android project. The assets folder
is shared among all the other projects. All the other projects are simple wrapper
projects that have platform-specific code and data that will launch the code in the
core project. You can easily explore the projects on your own, but we will revisit
specific platforms in the final chapter.

Displaying the Hello World text
Let's alter the code to display our Hello World text thereby officially declaring the
start of our quest of mastering LibGDX. The easiest way to do this will be to draw
some text on the screen using the BitmapFont class. A bitmap font is created using an
external tool like Hiero (https://github.com/libgdx/libgdx/wiki/Hiero) where
a font is converted into a bitmap with all the letters in a fixed size along with a .fnt
file that stores the presentation data. To make things easier, let's use fonts from the
LibGDX test project. You can download verdana39.fnt and verdana39.png from
https://github.com/libgdx/libgdx/tree/master/tests/gdx-tests-android/
assets/data. As explained, we need to place these files in the assets folder within
the Hello World-android project.

Now, let's edit the code in HelloWorld.java in the core project to remove the
texture drawing and to add our text display. The code is as follows:

public class HelloWorld extends ApplicationAdapter
{
 SpriteBatch batch;
 BitmapFont font;

 @Override
 public void create ()
 {
 batch = new SpriteBatch();
 font = new BitmapFont(Gdx.files.internal("verdana39.fnt"),
 Gdx.files.internal("verdana39.png"), false);
 font.setColor(Color.RED);
 }

 @Override

https://github.com/libgdx/libgdx/wiki/Hiero
https://github.com/libgdx/libgdx/tree/master/tests/gdx-tests-android/assets/data
https://github.com/libgdx/libgdx/tree/master/tests/gdx-tests-android/assets/data

Wiring Up

[26]

 public void render ()
 {
 Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 batch.begin();
 font.draw(batch, "Hello World", 200, 200);
 batch.end();
 }
 @Override
 public void dispose()
 {
 batch.dispose();
 font.dispose();
 }
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The BitmapFont class requires the .fnt and .png file to create the font. In the
render function, we draw the Hello World text at the coordinates (200,200). I have
also added an overridden dispose function that releases the memory by destroying
the created instances. Congratulations! You have our shining Hello World text.

This method may not always be suitable to display text, as we may need to show
text in multiple sizes. In such cases, we will use the Freetype extension that enables
us to use a ttf font to create bitmap fonts of different sizes dynamically at runtime.
We will revisit fonts in detail in Chapter 4, Bring in the Extras!

Running demos
For the adventurous among you, this is the chance to dive deeper into LibGDX
by checking out the fully functional game demos. You can find the links for these
games at https://github.com/libgdx/libgdx/wiki/Running-Demos. The
most interesting one is the example project similar to Flappy Bird, The plane that
couldn't fly good. The link to this project is https://github.com/badlogic/
theplanethatcouldntflygood. In order to explore this project, we need to clone
the repository in Git or download it on our PC. Once downloaded, we can import
it to Eclipse as a Gradle project.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/libgdx/libgdx/wiki/Running-Demos
https://github.com/badlogic/theplanethatcouldntflygood
https://github.com/badlogic/theplanethatcouldntflygood

Chapter 1

[27]

The local.properties file may be missing from the downloaded
project's folder. Just copy the file from our FirstGradleProject
root folder. This file sets the Android SDK location in our PC.

This is a very simple project to get you started and can be used as a starter code for
your Flappy Bird game. The whole code is in the single file PlaneGame.java in the
core project.

Running tests
The LibGDX tests project is a treasure trove of goodies. There are numerous small tests
exploring the different features of LibGDX. These tests are the ideal way to get started
with LibGDX and they also let you learn new things in an easy way. Alternatively,
they act as a source of functional sample code that we can simply copy and paste for
our own use cases. The LibGDX wiki entry for running these tests advises us to use
Ant to set up these tests on our PC. The link is https://github.com/libgdx/libgdx/
wiki/Running-Tests. The tests can be found at https://github.com/libgdx/
libgdx/tree/master/tests/gdx-tests/src/com/badlogic/gdx/tests.

You can temporarily set up Ant after downloading it from http://ant.apache.
org/bindownload.cgi. Assuming that it is extracted to /Setups/apache-
ant-1.9.4, we can temporarily install ANT using the terminal on a Mac. In the
terminal, enter the following code:

export ANT_HOME=/Setups/apache-ant-1.9.4
export PATH=${PATH}:${ANT_HOME}/bin

In the terminal, navigate to the folder where LibGDX Git project is cloned. Run the
Ant command to fetch dependencies:

ant -f fetch.xml

https://github.com/libgdx/libgdx/wiki/Running-Tests
https://github.com/libgdx/libgdx/wiki/Running-Tests
https://github.com/libgdx/libgdx/tree/master/tests/gdx-tests/src/com/badlogic/gdx/tests
https://github.com/libgdx/libgdx/tree/master/tests/gdx-tests/src/com/badlogic/gdx/tests
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

Wiring Up

[28]

This will download all the LibGDX dependencies for all the projects. Later, we can
import all these projects into Eclipse by navigating to Import | Existing Projects
into Workspace. After importing the Demo and Tests projects, our Package Explorer
in Eclipse will look something like this:

Chapter 1

[29]

The test examples are contained in the gdx-tests project. This project only contains
the source code. To actually start the tests on the desktop, you have to run the
LwjglTestStarter class contained in the gdx-tests-lwjgl project. To run the
tests on Android, simply fire up the gdx-tests-android project in the emulator or
on a connected device! To run the tests in your browser, fire up the gdx-tests-gwt
project. For iOS, you can start the gdx-tests-robovm project. Play with them.

The alternate LibGDX setup
Previously, LibGDX had to be manually wired up and was a complicated process.
Later, the French developer Aurelien Ribon created a gdx-setup-ui tool that
automated this process. Aurelien Ribon is a rock star Java developer who
has released lots of goodies that can be accessed on his blog at http://www.
aurelienribon.com/blog/.

This non-Gradle-based system still works but is not recommended or supported at
present. The blog post with all the details of Version 3.0.0 can be found at http://
www.aurelienribon.com/blog/2012/09/libgdx-project-setup-v3-0-0/. The
gdx-setup-ui interface can be downloaded from https://github.com/libgdx/
libgdx-old-setup-ui.

The app will need an Internet connection to download the LibGDX files;
this screenshot shows it in action:

http://www.aurelienribon.com/blog/
http://www.aurelienribon.com/blog/
http://www.aurelienribon.com/blog/2012/09/libgdx-project-setup-v3-0-0/
http://www.aurelienribon.com/blog/2012/09/libgdx-project-setup-v3-0-0/
https://github.com/libgdx/libgdx-old-setup-ui
https://github.com/libgdx/libgdx-old-setup-ui

Wiring Up

[30]

Summary
This chapter explained a lot of theory that lays the solid foundation for all our
development. This chapter will serve as a reference to set up your development
environment if you move to a new workplace or get a new laptop. You learned
to set up Eclipse-based Android and Java development environments. We used
the gdx-setup tool to create a Gradle-based LibGDX project, which was successfully
imported to Eclipse with the help of associated support plugins. We explored the
project structure of a typical LibGDX cross-platform project.

We successfully executed the Hello World project on desktop, Android, iOS,
and the browser. Some minor editing of the code helped us display the text Hello
World using the BitmapFont class. It is very important to successfully import the
LibGDX Demo and Tests and we used Ant to get them running.

In the next chapter, we will start with the graphics package in LibGDX and get
started with our game.

Let There Be Graphics!
In this chapter, we will start creating our game. The most important part of any
game is graphics, that is, the visual representation. In this chapter, we will explore
the LibGDX graphics package and create the game scene of our Thrust Copter
game. We will explore the following topics:

•	 Creating Thrust Copter LibGDX project
•	 Learning about the LibGDX graphics package and the g2d package
•	 Adding relevant images to game scene
•	 Learning about Texture, TextureRegion, and Sprite classes
•	 Learning about TextureAtlas and TexturePacking
•	 Creating an animated Sprite instance
•	 Learning about SpriteBatch
•	 Implementing time-based animation and moving our plane

The ThrustCopter game
Creating a game has to start with proper planning. In game development circles,
there is something called a Game Design Doc (GDD) that details everything about
the game before we start developing it. In our case, we will need to start with a clear
idea of what we are going to implement. The name of our game is Thrust Copter and
the objective is to navigate a helicopter/plane across an infinite landscape. The game
is inspired by Flappy Bird mechanics but is a bit different in its gameplay.

Let There Be Graphics!

[32]

The plane is in a free fall due to gravity and will crash unless we control it. The
game world moves sidewise as in Flappy Bird. There will be terrain at the top and
bottom and obstacles on the way that the plane needs to avoid. The plane also needs
to collect pickups like fuel, shield and stars. The plane will be navigated using taps.
When we tap anywhere on screen, a thrust force is applied on the plane. The power
of the force will depend on the distance of the tap position from the plane. If the tap
position is closer to the plane, the force will be greater. The angle at which the thrust
force is applied will also depend on the tap position and plane's position. The thrust
force will always be applied away from the tap position, that is, the plane is forced to
move away from the tap position. So, we need to navigate the plane using multiple
taps at precise positions and fly it for as long as possible. We also need to make sure
that we pick up enough fuel to survive. There will be a star pickup for score and
shield pickup that makes us indestructible for a short time.

Hope the game's idea is interesting enough and the following screenshot shows
how the game will look:

Chapter 2

[33]

A LibGDX app's life cycle
A LibGDX application has a well-defined life cycle defining the various stages
of the game, such as creation, pause, resume, and dispose. By implementing the
ApplicationListener interface or extending the ApplicationAdapter class,
we can hook into these life cycle events. When the application launches, the create
method is called where we can add the initialization code. The resize method is
called when the game screen is resized. To perform rendering, the render method
is called 60 times per second, depending on the realizable Frames Per Second
(FPS). We add the game logic in this method. The pause method is called when
the application loses focus, for example, when a call comes through. In order to
get back to action, we have the resume method. When the application is destroyed,
the dispose method is called. We add the code to destroy created items and free the
memory using this method. More details can be found at http://bitiotic.com/
blog/2013/05/23/libgdx-and-android-application-lifecycle/.

Creating the Thrust Copter project
Let's recall what we discussed in Chapter 1, Wiring Up, to create a new LibGDX
project. Here is the list of things that you should do:

1.	 Fire up the gdx-setup application.
2.	 Provide relevant details, point to a new folder in workspace, and

generate a project.
3.	 Fire up Eclipse and navigate to the newly created project folder from

File | Import | Gradle | Gradle Project.
4.	 Select the folder and click on Build Model.
5.	 Once done, select the project and click on Import.

http://bitiotic.com/blog/2013/05/23/libgdx-and-android-application-lifecycle/
http://bitiotic.com/blog/2013/05/23/libgdx-and-android-application-lifecycle/

Let There Be Graphics!

[34]

In the following screenshot, you can see the settings I used to create the Thrust
Copter project:

Planning art assets
To create games, we will obviously need a lot of art. I expect you guys to be
programmers and not artists, which leads to the obvious problem of how to procure
art for our game. Unless you are the exceptionally rare blend of programmer plus
artist, you need to seek the help of an artist or need to look for free art assets. For
the purpose of this book, we will use free art available at http://opengameart.
org/users/kenney. For our purpose, we need the following art assets:

•	 Animated helicopter art
•	 Scrollable terrain art
•	 Sky backdrop art
•	 Fuel collectible art
•	 Star collectible art
•	 Shield collectible art
•	 Shield effect animation art

http://opengameart. org/users/kenney
http://opengameart. org/users/kenney

Chapter 2

[35]

•	 Tap indicator art
•	 Obstacle rocks
•	 Pillar art
•	 Fuel indicator art

We will need some more art for effects and Heads Up Display (HUD), but for the
time being we can start with the preceding list. You will find the necessary assets
in the chapter2.zip file provided along with this book. It also has the source files
for this chapter. We'll go through the source files once we finish the chapter.

The game scene
Let's create our game scene by placing all the relevant art. Fire up Eclipse and
open our project. The Thrust Copter-android project will have the assets folder.
We need to copy all our art images to this folder. We are using .png files as this is
the most efficient format that handles transparency with low file size. Remove the
badlogic.jpg image as we won't be using it anymore. It's time to add items to our
game scene, so go ahead and open up the ThrustCopter.java file in the Thrust
Copter-core project. Remove the draw calls from the render function and add two
new functions, updateScene() and drawScene(), as shown in the following code.
This can be used as a convention where the updateScene function applies the game
logic there by updating the properties of items in scene, whereas the drawScene
function draws everything on the screen.

At this point, you can create these functions and leave them empty. Also, it is
advisable to add the FPSLogger instance to our scene to measure the FPS. This
will help us optimize our code if we are not getting a solid 60 fps while running it
on mobile devices. Adding an FPSLogger instance is as easy as creating a variable
of that type and calling its log() function from within the render method. This is
shown in the following code:

public void render ()
{
 Gdx.gl.glClearColor(1, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 fpsLogger.log();
 updateScene();
 drawScene();
}

As we are into active development, we will require the help of
the LibGDX API documentation that can be found at http://
libgdx.badlogicgames.com/nightlies/docs/api/.

http://libgdx.badlogicgames.com/nightlies/docs/api/
http://libgdx.badlogicgames.com/nightlies/docs/api/

Let There Be Graphics!

[36]

The FPSLogger instance will print our FPS within the Eclipse console when we run
the application, as shown in the following screenshot:

Populating the game scene
The first step in populating a scene will be adding a Camera class, which acts as
a window to our game world. The Camera class makes it easier to navigate the
game world and most of the complicated matrix projection operations are handled
automatically. For our purpose, we need to add an OrthographicCamera class. This
particular kind of camera is to be used for 2D games where we need orthographic
projection. An orthographic projection lacks a vanishing point. All items placed will
have the same scale no matter how far or close they are to the camera. Let's create
the OrthographicCamera instance and set its window to 800 x 480. We also need to
add our first image, which can be the background sky image, to the scene. The code
to do so is as follows:

camera = new OrthographicCamera();

Chapter 2

[37]

camera.setToOrtho(false, 800, 480);
background = new Texture("background.png");

A camera can be set to any width or height and does not relate
to the pixel dimensions of the screen. A typical way to initialize
a camera will be as follows, where we take the window size and
create a camera that respects the aspect ratio:

float w = Gdx.graphics.getWidth();
float h = Gdx.graphics.getHeight();
cam = new OrthographicCamera(30, 30 * (h / w));

Now let's add some draw code in the drawScene function, as shown in the
following code:

private void drawScene()
{
 camera.update();
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 batch.draw(background, 0, 0);
 batch.end();
}

Please note that all the drawing has to take place within the begin and end
methods of the SpriteBatch instance, thereby facilitating optimized batching.
We can run the desktop project as a Java application to see the background
displayed in the window. As we will be developing and viewing the desktop
project, we need to set its window size as well. Update the DesktopLauncher.java
file within the Thrust Copter-desktop project as shown in the following code:

public static void main (String[] arg)
{
 LwjglApplicationConfiguration config = new
 LwjglApplicationConfiguration();
 config.width=800;
 config.height=480;
 new LwjglApplication(new ThrustCopter(), config);
}

Let There Be Graphics!

[38]

This will launch the desktop project in a 800 x 480 window, which is the size of our
art and the right aspect ratio. You can see the backdrop in the following screenshot:

So, we successfully added our first image as a Texture class. There are other ways
to populate the game scene, which we will explore now.

Displaying the graphics
Texture is how an image is uploaded to the Graphics Processing Unit (GPU), which
is later used by the OpenGL context to draw onto the screen. Usually textures are
drawn mapped to a rectangular geometry. Texture drawing is an expensive process
and any trick that can help make this faster should be employed. This is where the
SpriteBatch class comes in.

The SpriteBatch class can make texture drawing more efficient by collecting
all the positions where a specific texture is to be drawn and drawing it in one pass.
It batches geometry that we want to send to the GPU to draw. This is effective when
the same texture is being drawn at multiple positions. But if the texture changes then
it becomes ineffective. The solution is to pack all textures into one big texture and
use pieces from this big texture for drawing. This process is called texture packing
and we will discuss it later in this chapter.

Chapter 2

[39]

Another way of drawing graphics is using the TextureRegion class. The
TextureRegion class is a rectangular portion of a bigger texture, but can also be
used on single textures. We can alter our current project to draw a TextureRegion
class instead of a Texture class by making some simple changes. Create a
TextureRegion class named bgRegion from the background Texture with
the size of the image and alter the drawing call to draw it instead of the Texture
class, which is shown as follows:

background = new Texture("background.png");
backgroundRegion=new TextureRegion(background, 800, 480);

Here, 800 and 480 are the dimensions of the image that can also be acquired using
the getWidth and getHeight methods of Texture. Then, in the drawScene method,
include the following code:

batch.draw(bgRegion, 0, 0);

We will get the same output as before.

Another way of displaying graphics is by using a Sprite class. A Sprite class
combines Texture with its position and size data, which means we do not need to
specify where it should be drawn in the draw code. This makes using Sprite the
most convenient option in most cases. Let's alter our code to draw a Sprite class
instead of TextureRegion, which follows the same logic as described in the
previous code:

background = new Texture("background.png");
backgroundSprite=new Sprite(background);
backgroundSprite.setPosition(0,0);

In the drawScene method, we use the following line of code:

backgroundSprite.draw(batch);

Please note that we need to explicitly set the position information of the Sprite
class and we are using the Sprite.draw(batch) method instead of using the
batch.draw(graphic) method.

On checking, we can see that the background image does not need too much
flexibility and we can just use a Texture class to represent it. We will need the
obstacle items to be sprites as they will be moving based on the gameplay. The
terrain area on the top and bottom will also need to move and we will be using
TextureRegion for this, as we need to draw them multiple times to create the
seamless scrolling effect.

Let There Be Graphics!

[40]

The final game scene
Let's add the terrain area on the top and bottom as our next step. One important
performance tip will be to disable blending for the background texture. Blending
is the process of adding translucent pixel values when one texture is drawn over
another texture in the scene. So, we do not need any blending for the first texture,
which will be the case with the background texture. Once this texture is drawn,
we need to enable blending because we need other textures to be overlaid on top
of this one. Refer to the following code:

batch.begin();
batch.disableBlending();
batch.draw(background, 0, 0);
batch.enableBlending();
//other draw calls

To add the terrain area at the top and bottom, we can add the following code to
the create and render methods respectively:

terrainBelow=new TextureRegion(new Texture("groundGrass.png"));
terrainAbove=new TextureRegion(terrainBelow);
terrainAbove.flip(true, true);

In the drawScene method, add the following lines of code:

batch.draw(terrainBelow, terrainOffset, 0);
batch.draw(terrainBelow, terrainOffset + terrainBelow.
getRegionWidth(), 0);
batch.draw(terrainAbove, terrainOffset, 480 - terrainAbove.
getRegionHeight());
batch.draw(terrainAbove, terrainOffset + terrainAbove.
getRegionWidth(), 480 - terrainAbove.getRegionHeight());
batch.end();

The terrainAbove instance of the TextureRegion class is flipped in the x and y
axis so that it looks inverted and doesn't look like the terrainBelow instance along
its width when it scrolls. We draw both TextureRegion classes twice so that we
can create the illusion of seamless scrolling. The second region is drawn at the
point where the first region ends. It will be clear if you consider the value
of the terrainOffset instance to be zero in the previous draw code.

Chapter 2

[41]

This terrainOffset instance is a float value used to scroll the terrain. We will
be increasing or decreasing this value to make the terrain scroll right or left,
respectively. To check this, you can add the following code in updateScene and run
the desktop application:

private void updateScene()
{
 float deltaTime = Gdx.graphics.getDeltaTime();
 terrainOffset-=200*deltaTime;
}

This will make the terrain scroll left, and I am sure you can figure out how to make
it scroll right with a simple change in the code. Please remove the demo code once
you are satisfied with the result, as we will be implementing the scrolling based on
user input in the next chapter.

In this game, we are trying to move the items right to left in order
to give the feel of the plane flying from left to right. When the
scene has a lot of items, it becomes complicated to keep track of
and move all the items. The alternative is to place everything else
static except the plane and move the camera from left to right. This
is very easy, as there are only a few items to update per frame.

Another thing that we need to discuss is the value deltaTime. The previous code
would have worked the same way without this value, as follows:

private void updateScene()
{
 terrainOffset-=200;
}

This is frame-based animation, where the animation is directly controlled by the
frame rate or FPS. In an ideal case, we will get a stable FPS, but practically this might
not be the case. Frame rates tend to vary based on the speed of the device, heavy code
execution, or other processor load. This means that on a device with a better frame
rate, the animation will play better and faster, whereas on a slow device it will play
slower. This will break the gameplay experience. The solution to this is time-based
animation. The deltaTime value represents the time elapsed after the last frame was
drawn. On a fast device, this will be less and this value will be more on a slow device,
which essentially means that multiplying a value with this gives a result that is the
same on both devices.

Let There Be Graphics!

[42]

For example, in a device giving 60 fps, the deltaTime value will be 1/60, that is,
0.0167. On a slower device with 40 fps, it will be 1/40, that is, 0.025. For every frame,
this value multiplied by 200 is 3.34 and 5 respectively for fast and slow devices. So,
for 1 second, it will be 60 x 3.34 and 40 x 5 for these devices respectively, which is
approximately 200 (the original value) in both cases. So, the movement in 1 second is
200 on both devices. Did I lose you here? Just go through the math one more time and
you will get it. The important point here is that we need to use time-based animation
to get the same result on different devices. As we are targeting cross-platform devices,
this is a must. The following screenshot shows the terrains added to the backdrop:

Adding the plane animation
So far, we've only been dealing with still images or non-animated items. However,
our plane is an animated item that has three separate images. An animation is really
a series of still images shown one after the other quickly to make us believe that it is
a moving graphic. Based on the speed at which it is shown, our eyes feel the illusion
of continuous motion. Hence, we need to play these three images one after the other
to make the players feel that the propeller of the plane is actually rotating. For this,
we will use the 2D Animation class.

Plane animation can be created by providing the frame delay and relevant frames,
as shown in the following code:

plane = new Animation(0.05f, new TextureRegion(new Texture("planeRed1.
png")),

Chapter 2

[43]

new TextureRegion(new Texture("planeRed2.png")),
new TextureRegion(new Texture("planeRed3.png")),
new TextureRegion(new Texture("planeRed2.png")));
plane.setPlayMode(PlayMode.LOOP);

As the plane has a continuous looping animation, we can set PlayMode to LOOP.
To update the animation, we need to explicitly get new frames after the provided
frame delay is elapsed. For this purpose, we can initialize a variable named
planeAnimTime with a value of zero and add the deltaTime value to it in
the updateScene method, as shown in the following code:

float deltaTime = Gdx.graphics.getDeltaTime();
planeAnimTime+=deltaTime;

Then, in the drawScene method, we need to get the current frame of the animation
by providing the planeAnimTime value and draw it as follows:

batch.draw(plane.getKeyFrame(planeAnimTime), 350, 200);

The getKeyFrame method returns the current frame of the animation based on
the time that has passed. Now, we should see the animated plane in the middle
of our scene. We can alter the frame delay value to make the animation faster or
slower. Play around with it to create the correct feeling. Here is the plane added
to the scene, as shown in the following screenshot:

Let There Be Graphics!

[44]

Moving the plane
It is no fun having a plane standing still in the middle of the screen. Let's move
our plane by applying some gravity to it. We will need to create some new Vector2
variables to store the position and velocity of the plane and the value for gravity.
The code is as follows:

 Vector2 planeVelocity= new Vector2();
 Vector2 planePosition= new Vector2();
 Vector2 planeDefaultPosition= new Vector2();
 Vector2 gravity= new Vector2();

In the create method, let's call a new function resetScene(), which actually
does what the name says; it resets the scene to the initial state. This function can
be called once our plane crashes and we need to restart the game, as shown in
the following code:

private void resetScene()
{
 terrainOffset=0;
 planeAnimTime=0;
 planeVelocity.set(0, 0);
 gravity.set(0, -2);
 planeDefaultPosition.set(400-88/2, 240-73/2);
 planePosition.set(planeDefaultPosition.x,
 planeDefaultPosition.y);
}

The plane is placed in the center of the screen in the previous code, where the
dimensions of the plane's image are 88 x 73. In the updateScene method, let's
apply gravity to the plane using the following code:

planeVelocity.add(gravity);
planePosition.mulAdd(planeVelocity, deltaTime);

The Vector2 class has the method mulAdd, which multiplies a scalar value
with Vector2 and adds it to the other Vector2 class. In the previous code, the
mulAdd method sufficiently performs the time-based animation update that was
discussed earlier by multiplying it with deltaTime. The plane should be drawn
at planePosition in the drawScene method as shown in the following code:

batch.draw(plane.getKeyFrame(planeAnimTime), planePosition.x,
planePosition.y);

Chapter 2

[45]

Finally, our plane is now falling down due to gravity. If you want to move your
plane forward as well, then set planeVelocity in resetScene to values higher than
(0,0). Having fun yet? We will have to leave our falling plane for the time being; we
will revisit this in the next chapter where we will control the plane's motion using
touch inputs.

Feel free to explore the Vector2 class at http://libgdx.
badlogicgames.com/nightlies/docs/api/com/
badlogic/gdx/math/Vector2.html.

The code so far
Let's review the complete code at this stage:

public class ThrustCopter extends ApplicationAdapter
{
 SpriteBatch batch;
 FPSLogger fpsLogger;
 OrthographicCamera camera;
 Texture background;
 TextureRegion terrainBelow;
 TextureRegion terrainAbove;
 float terrainOffset;
 Animation plane;
 float planeAnimTime;
 Vector2 planeVelocity= new Vector2();
 Vector2 planePosition= new Vector2();
 Vector2 planeDefaultPosition= new Vector2();
 Vector2 gravity= new Vector2();
 private static final Vector2 damping= new Vector2(0.99f,0.99f);

 @Override
 public void create ()
 {
 fpsLogger=new FPSLogger();
 batch = new SpriteBatch();
 camera = new OrthographicCamera();
 camera.setToOrtho(false, 800, 480);
 background = new Texture("background.png");	
 terrainBelow=new TextureRegion(new
 Texture("groundGrass.png"));
 terrainAbove=new TextureRegion(terrainBelow);

http://libgdx.badlogicgames.com/nightlies/docs/api/com/badlogic/gdx/math/Vector2.html
http://libgdx.badlogicgames.com/nightlies/docs/api/com/badlogic/gdx/math/Vector2.html
http://libgdx.badlogicgames.com/nightlies/docs/api/com/badlogic/gdx/math/Vector2.html

Let There Be Graphics!

[46]

 terrainAbove.flip(true, true);

 plane = new Animation(0.05f, new TextureRegion(new
 Texture("planeRed1.png")),
 new TextureRegion(new Texture("planeRed2.png")),
 new TextureRegion(new Texture("planeRed3.png")),
 new TextureRegion(new Texture("planeRed2.png")));
 plane.setPlayMode(PlayMode.LOOP);

 resetScene();
 }

 @Override
 public void render ()
 {
 Gdx.gl.glClearColor(1, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 fpsLogger.log();
 updateScene();
 drawScene();
 }
 private void resetScene()
 {
 terrainOffset=0;
 planeAnimTime=0;
 planeVelocity.set(400, 0);
 gravity.set(0, -4);
 planeDefaultPosition.set(400-88/2, 240-73/2);
 planePosition.set(planeDefaultPosition.x,
 planeDefaultPosition.y);
 }
 private void updateScene()
 {
 float deltaTime = Gdx.graphics.getDeltaTime();
 planeAnimTime+=deltaTime;
 planeVelocity.scl(damping);
 planeVelocity.add(gravity);
 planePosition.mulAdd(planeVelocity, deltaTime);
 terrainOffset-=planePosition.x-planeDefaultPosition.x;
 planePosition.x=planeDefaultPosition.x;
 if(terrainOffset*-1>terrainBelow.getRegionWidth())
 {
 terrainOffset=0;
 }

Chapter 2

[47]

 if(terrainOffset>0)
 {
 terrainOffset=-terrainBelow.getRegionWidth();
 }
 }
 private void drawScene()
 {
 camera.update();
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 batch.disableBlending();
 batch.draw(background, 0, 0);
 batch.enableBlending();
 batch.draw(terrainBelow, terrainOffset, 0);
 batch.draw(terrainBelow, terrainOffset +
 terrainBelow.getRegionWidth(), 0);
 batch.draw(terrainAbove, terrainOffset, 480 -
 terrainAbove.getRegionHeight());
 batch.draw(terrainAbove, terrainOffset +
 terrainAbove.getRegionWidth(), 480 -
 terrainAbove.getRegionHeight());
 batch.draw(plane.getKeyFrame(planeAnimTime), planePosition.x,
 planePosition.y);
 batch.end();
 }
}

A new variable which is used is damping, which acts as a friction value to reduce
the velocity of the plane. In the updateScene function the value of terrainOffset
is checked to see if we need to reset the value. This makes sure that the illusion of
seamless terrain is maintained, else we will see the end of the terrain texture.

Texture packing
Earlier, you learned about SpriteBatch and how it improves performance
when you are drawing the same texture at multiple positions. When we are using
individual images as our art asset, we cannot get much advantage from sprite
batching. The solution is to draw all the images into one big image and use it as
a texture. This process is called texture packing.

Texture packing uses many algorithms that essentially perform concise
packing of rectangles. You can learn more about this topic at http://
clb.demon.fi/projects/even-more-rectangle-bin-packing.

http://clb.demon.fi/projects/even-more-rectangle-bin-packing
http://clb.demon.fi/projects/even-more-rectangle-bin-packing

Let There Be Graphics!

[48]

There is a TexturePacker class in the gdx-tools project that can be used via
command line to pack the images in a folder into texture pages, as shown in
the following code:

//*NIX (OS X/Linux)
java -cp gdx.jar:gdx-tools.jar
com.badlogic.gdx.tools.texturepacker.TexturePacker inputDir
outputDir packFileName

//WINDOWS
java -cp gdx.jar;gdx-tools.jar
com.badlogic.gdx.tools.texturepacker.TexturePacker inputDir
outputDir packFileName

Also, there are commercial products that can be used to create the
TextureAtlas pages that are the packed texture; one such tool is TexturePacker
from CodeAndWeb (http://www.codeandweb.com/texturepacker). Rock star Java
developer Aurelien Ribon has a free tool exclusively for LibGDX texture packing
called TexturePacker GUI, which is available at http://www.aurelienribon.com/
blog/2012/06/texturepacker-gui-v3-0-0/. We will use this tool as it is free and
easy to use. We will use this tool only once to pack the assets and it won't be required
during runtime.

To directly download the tool, visit https://code.
google.com/p/libgdx-texturepacker-gui/.

Texture packer outputs multiple pages of images and a text file with the packing
information that has the coordinates and other information that helps retrieve each
image. Multiple pages are created only if the images cannot be packed into a single
image based on the maximum resolution provided. While packing images, a few
things need to be taken care of:

•	 Place all images of a scene in the same folder
•	 Place all image frames of an animation in the same folder
•	 Name all images properly before packing
•	 Trim whitespaces in images before packing

We do not want Spritebatch rebinding textures unnecessarily; hence, all images
that can appear together need to be in one the TextureAtlas pack. If all images
cannot be packed into one TextureAtlas pack, then organize them intelligently so
that performance is not hit badly. Please note that the TexturePacker class within
LibGDX can be used to dynamically pack assets at runtime. Take a look at the
following screenshot for the interface of the commercial TexturePacker class:

http://www.codeandweb.com/texturepacker
http://www.aurelienribon.com/blog/2012/06/texturepacker-gui-v3-0-0/
http://www.aurelienribon.com/blog/2012/06/texturepacker-gui-v3-0-0/
https://code.google.com/p/libgdx-texturepacker-gui/
https://code.google.com/p/libgdx-texturepacker-gui/

Chapter 2

[49]

Here is the interface for the free texturepacker-gui-v3.2:

Let There Be Graphics!

[50]

We need to select the New Pack button and provide a name for the pack. Then, we
can set the input and output folders. The input folder should be the folder with all
our art assets. Then, click on the Pack'em All button to create the packed files. I
created ThrustCopter.pack using this tool and thrustcopterassets.txt using
the commercial tool—both of these will work. Each of these files has a .png file
with the same name.

The latest Mac systems running Java 1.8 64-bit might not be able to run
the free TexturePacker class due to some Java incompatibility.

Once we create our TextureAtlas pack, we do not need the individual images.
We can remove all of them and keep only the two TextureAtlas files. To load
the TextureAtlas pack, we need to execute either of the following code snippets
depending on which TextureAtlas we are using:

TextureAtlas atlas = new
TextureAtlas(Gdx.files.internal("ThrustCopter.pack"));

Or we can use the following code:

TextureAtlas atlas = new
TextureAtlas(Gdx.files.internal("thrustcopterassets.txt"));

Once the atlas instance is loaded, we can access TextureRegion with the
following code:

terrainBelow=atlas.findRegion("groundGrass");

Note that we have omitted the .png part in the file name. If you open up the
.pack file, you can see that the references are named without the .png extension.

The revised code
Now that we have a TextureAtlas class, we can change our code to use it in place
of the earlier code. We need to change the background texture to a TextureRegion
class as a TextureAtlas class will be providing regions. The following changes are
made in the create method:

//atlas = new TextureAtlas(Gdx.files.internal("ThrustCopter.pack"));
atlas = new TextureAtlas(Gdx.files.internal("thrustcopterassets.
txt"));
bgRegion = atlas.findRegion("background");
terrainBelow=atlas.findRegion("groundGrass");
terrainAbove=new TextureRegion(terrainBelow);

Chapter 2

[51]

terrainAbove.flip(true, true);

plane = new Animation(0.05f, atlas.findRegion("planeRed1"),
 atlas.findRegion("planeRed2"),
 atlas.findRegion("planeRed3"),
 atlas.findRegion("planeRed2"));
plane.setPlayMode(PlayMode.LOOP);

The rest of the code remains the same, as the only change is in the way we loaded
our graphics.

Handling multiple screen sizes and
aspect ratios
You must be excited to run the game on your Android or iOS device. Go ahead and
try it, as we have already discussed how to do that in Chapter 1, Wiring Up. At this
point, your game will fit the screen of the device you have connected to. Such a
solution is not ideal as the aspect ratio of the game might actually be different and
stretching to fit the device's screen might distort the art and spoil the experience.
In order to handle multiple screens, LibGDX provides something called Viewports.
We can assign camera with viewport as per our discretion. We will be designing
our game for a virtual viewport, which is 800 x 480 in our case because our art is
made for that resolution. The different viewports are as follows:

•	 StretchViewport: This will stretch the virtual viewport to fit the screen. The
aspect ratio can be anything depending on the device, and scaling is possible.

•	 FitViewport: This will fit the virtual viewport within the screen with black
bars that fill the additional area. The aspect ratio will remain the same as
our virtual viewport and there is no distortion.

•	 FillViewport: This is similar to FitViewport but there won't be any
black bars, as it will always fill the screen with the fixed aspect ratio. This
means some part of the game will get cut off or fall outside the screen.

•	 ScreenViewport: This will always match the window size without any
scaling or black bars. However, this is not advisable because it gives
unnecessary advantage to devices with a larger screen.

More details can be found at https://github.com/libgdx/libgdx/wiki/
Viewports.

Let's add a FitViewport class to our game. To do so, we need to declare a
Viewport variable first, as shown in the following code:

Viewport viewport;

https://github.com/libgdx/libgdx/wiki/Viewports
https://github.com/libgdx/libgdx/wiki/Viewports

Let There Be Graphics!

[52]

Then edit the following code:

camera = new OrthographicCamera();
//camera.setToOrtho(false, 800, 480);
camera.position.set(400,240,0);
viewport = new FitViewport(800, 480, camera);

Whenever the window is resized, we need to update the viewport so that it can
recalculate. So, add one more method, as shown in the following code:

@Override
public void resize (int width, int height)
{
 viewport.update(width, height);
}

In order to see this code in action, you can run the desktop application and drag the
corner of the window to resize it, as shown in the following screenshot:

Chapter 2

[53]

It is time to review the source code provided. In the upcoming chapters, the graphics
addition code might not be explained, as everything is similar to how we set it up in
this chapter.

Summary
We have come to the end of an interesting chapter. We created the Thrust Copter
LibGDX project and added graphics to the game scene. We discussed Texture,
TextureRegion, and Sprite. You also learned that sprite batching increases
performance and speeds up rendering. We used the FPSLogger instance to log
our game's FPS. Finally, we created our plane animation and moved our plane
across the screen.

Once we learned about texture packing, we created TextureAtlas to replace all
our art. We now know how to use a Viewport class to support multiple screens
without distorting our game's graphics. Finally, we successfully executed our game
on our Android and iOS devices as per the instructions from Chapter 1, Wiring Up.

In the next chapter, we will try to take the touch input from the user to control our
plane and we will also add some sound effects.

Thou Shall Not Pass!
Currently, we have our animated plane moving across a seamlessly scrolling sky
backdrop. There is no fun in seeing our plane crash-land each time we run the game.
In this chapter, we will add player input to control the plane so the player could try
to keep the plane from crashing. To make things more interesting, we will add some
sound effects and a music loop. The name of the chapter also points to the fact that
we will add many obstacles that the plane will need to dodge in order to avoid a
crash. We will explore the following in this chapter:

•	 Polling various user input
•	 Adding mouse and touch-based user control
•	 Learning about input processors
•	 Adding obstacles for our plane to dodge
•	 Adding game logic to control our plane and other aspects of the gameplay
•	 Learning about game controllers
•	 Implementing sound effects and looping background music

The source files for this chapter can be found in chapter3.zip provided along with
the book. You can open it up as a reference while you proceed through this chapter.

Piloting our plane
Our idea is to let the user control the plane. There are different input methods that
can be used to control the plane, such as the following:

•	 Mouse input
•	 Keyboard input
•	 Touch or tap input

Thou Shall Not Pass!

[56]

•	 Gestures
•	 Tilt or accelerometer input
•	 Game controller input

The first two are exclusive to desktop computers, whereas the next two are exclusive
to handheld devices such as mobiles and tablets. In some new generation laptops, we
can find the touch input enabled as well. The last input method is exclusive to micro
consoles that are Android-based gaming consoles with a dedicated game controller
unit, for example, OUYA. I will try to familiarize you with all of these input methods
as you will definitely need most of these for your future game development ventures.
Most of these inputs can be detected in two ways: polling and event handling. Polling
is the method in which we constantly check the status of a particular input. This is
easier but not very fast or accurate when it comes to tracking the sequence of input.
In such cases, we can use event handling, which provides very precise details about
the input. We will need a listener that will keep on looking for any input and report
it to us to take the necessary action.

Note that you need to update LibGDX often because it gets updated
frequently; the people behind it are very active. While writing this
chapter, LibGDX got updated to 1.3.0. Updating existing projects is
very easy as all you will need to do is edit two files. Find and open the
build.gradle file in the root of your project.
Edit the following line to reflect the latest LibGDX version:

gdxVersion = "1.3.0"

Now select all the associated projects in Eclipse and right-click on them
and navigate to Gradle | Refresh All. This will make Gradle get all
the associated files and wire them up. Also, the pom.xml file will have
the version tag for com.badlogicgames.gdx, which can be edited to
use the most recent LibGDX. Refer to the following code:

<version>1.3.1-SNAPSHOT</version>

For the Thrust Copter project, we will use touch input through which we will move
our plane away from the point of touch; that is, if we touch on the left-hand side of
the plane, it will move to the right.

Chapter 3

[57]

Navigating using touch input
First, let's try to implement our touch control based on the more simpler input-polling
technique. First we need to check whether there has been a tap, which can be detected
using the Gdx.input.justTouched()method. We will create a new variable called
touchPosition, which is a Vector3 instance to store the point of touch. The following
code shows how to get the x and y coordinates of the touch point:

touchPosition.set(Gdx.input.getX(),Gdx.input.getY(),0);

This sets the x and y coordinates of touchPosition with the screen coordinates of
the point where the touch has occurred. These coordinates will be based on the screen
resolution, and as our camera has a different but fixed resolution set, we will need to
convert the coordinates to the camera's coordinates. This is done by the following:

camera.unproject(touchPosition);

The unproject method only accepts Vector3 values for which we had created
touchPosition as the Vector3 instance. While assigning values, we had set the z
value as 0. Now we have the coordinates based on our camera's resolution which
we need to compare with the plane's current position to determine the angle and
force to be applied. Let me first show you the code that is added to the top of the
updateScene method, which is as follows:

if(Gdx.input.justTouched())
{
 touchPosition.set(Gdx.input.getX(),Gdx.input.getY(),0);
 camera.unproject(touchPosition);
 tmpVector.set(planePosition.x,planePosition.y);
 tmpVector.sub(touchPosition.x, touchPosition.y).nor();
 planeVelocity.mulAdd(tmpVector,
 TOUCH_IMPULSE-MathUtils.clamp(Vector2.dst(touchPosition.x,
 touchPosition.y, planePosition.x, planePosition.y), 0,
 TOUCH_IMPULSE));
 tapDrawTime=TAP_DRAW_TIME_MAX;
}
tapDrawTime-=deltaTime;

Thou Shall Not Pass!

[58]

We are using a few new variables, which are as follows:

Vector3 touchPosition=new Vector3();
Vector2 tmpVector=new Vector2();
private static final int TOUCH_IMPULSE=500;
TextureRegion tapIndicator;
float tapDrawTime;
private static final float TAP_DRAW_TIME_MAX=1.0f;

The tapDrawTime variable is used to track whether we need to draw an indicator
that would show where the last tap occurred. We set this variable to TAP_DRAW_
TIME_MAX, as shown in the second-to-last line of the updateScene method in the
preceding code. We will be deducting deltaTime from this in each frame and will
only draw it on screen when tapDrawTime is greater than 0. In drawScene, this is
done using the following code:

if(tapDrawTime>0)
{
 batch.draw(tapIndicator, touchPosition.x-29.5f,
 touchPosition.y-29.5f);
 //29.5 is half width/height of the image
}

In the preceding code, the value of the tapIndicator variable is as follows:

tapIndicator = atlas.findRegion("tap2");

A Vector2 instance value pointing from Vector2 A to Vector2 B can be found
by subtracting A from B. As we need the Vector2 instance to point from
touchPosition to planePosition, we will subtract touchPosition from
planePosition. We just need the direction vector, which has to be a unit vector;
hence, we will normalize it using the nor()method. The lines that will do this are
given in the following code:

tmpVector.set(planePosition.x,planePosition.y);
tmpVector.sub(touchPosition.x, touchPosition.y).nor();

The next line is a complicated mix of a lot of operations. We are first finding out
the distance between the plane and our touch point. Then, we clamp the resulting
value so that it always stays within our set minimum and maximum values:

MathUtils.clamp(Vector2.dst(touchPosition.x, touchPosition.y,
planePosition.x, planePosition.y), 0, TOUCH_IMPULSE)

Chapter 3

[59]

As per our game logic, the farther you touch, the lesser should be the force
applied on the plane. Hence, we need to subtract the resulting value from the
maximum value, which is TOUCH_IMPULSE. Once the value of the force is obtained,
we will multiply it with the unit vector we found previously and add it to the
planeVelocity variable, thereby affecting the plane's motion. Run the game
and tap/click anywhere to control the movement of the plane. The game output
can be seen in the following screenshot:

Tap below the plane to make it move up, above to make it move down, and
similarly on the sides as well. You can even make your plane move backward at
this point by tapping in the front. The interesting thing is that LibGDX has mapped
our mouse input to touch input. LibGDX considers mouse input as a special case of
touch input where there is only one touch pointer. This makes testing very easy as
we can quickly test the desktop project for major changes.

Be aware that a mouse provides a precise input, whereas your fingers
are not very precise. A finger tip covers a much bigger area than a
mouse pointer and sometimes this might be a problem. Also, the
majority of the touchscreens can take multitouch input, which means
there can be more than one touch happening at the same time.

Thou Shall Not Pass!

[60]

Dealing with other input methods
Now that you have something to play with, let's explore the other input options and
how LibGDX deals with them. The mouse input is essentially the same as the touch
input when it comes to tracking position. However, in order to get the state of the
mouse buttons, we will need to use other methods as given in the following code:

boolean leftPressed =
 Gdx.input.isButtonPressed(Input.Buttons.LEFT);
boolean rightPressed =
 Gdx.input.isButtonPressed(Input.Buttons.RIGHT);
boolean middlePressed =
 Gdx.input.isButtonPressed(Input.Buttons.MIDDLE);

Polling keyboard keys
The Gdx.input package also provides a very convenient method to get the states
of keyboard keys as well:

boolean isSpacePressed = Gdx.input.isKeyPressed(Keys.SPACE);

We could also use a keyboard to control our plane, where the arrow keys provide
the force instead of the tap for a PC game. We will explore how specific phases of
a key event can also be detected using event handling later in this chapter.

Accessing accelerometer data
Most handheld devices such as mobiles and tablets have an accelerometer that can
report the motion and orientation of the device. It is always safe to first look for the
availability of accelerometer in the device in the context of Android's fragmentation.
This can be polled using Gdx.input.isPeripheralAvailable(Peripheral.
Accelerometer). Using LibGDX, the orientation of a device can be easily polled
using the following code:

int orientation = Gdx.input.getRotation();

This will return the difference or orientation from the native orientation of the
device, which is usually portrait for mobiles and landscape for tablets. Getting
accelerometer values along the three axes is also straightforward in LibGDX:

float accelX = Gdx.input.getAccelerometerX();
float accelY = Gdx.input.getAccelerometerY();
float accelZ = Gdx.input.getAccelerometerZ();

Chapter 3

[61]

We can use accelX and accelY values to set the position of our plane. This is
something you can try by yourselves as an exercise. In such a case, we can to
disable other forces, such as gravity, and use the accelerometer alone to set the
plane's position directly.

Event handling for inputs
An alternative to polling input is to use event handling to pick up precise
and detailed data related to input. We need to implement an interface called
InputProcessor that has methods to deal with touch, mouse, and keys. There
are methods named keyDown(), keyUp(), and keyTyped() that can be used to
execute specific code when this event occurs. These methods will get the key code
of the key that has spawned the event. Similarly, touchDown(), touchUp(), and
touchDragged() methods can be used to track touch events. These methods are
valid for mouse input as well with the addition of mouseMoved() and scrolled().

If we implement the InputProcessor interface with a new class named
MyInputTracker, then we can create its instance and set it as our InputProcessor
interface using the following code:

MyInputTracker inputProcessor = new MyInputTracker();
Gdx.input.setInputProcessor(inputProcessor);

Alternatively, you can use the game scene class itself to implement the
InputProcessor interface, in which case we can simply set it using the
following code:

Gdx.input.setInputProcessor(this);

Using the InputAdapter class
Alternatively, we can use the InputAdapter class that already implements
the InputProcessor interface. Our class needs to just extend the InputAdapter
class and implement the required methods only. The difference here is that we
do not need to implement all the unwanted methods as in the earlier method.
Alternatively, the following code also works:

InputAdapter inputAdapter= new InputAdapter ()
{
 public boolean touchDown (int x, int y, int pointer, int button)
 {
 // add your touch down code
 return true; // return true to indicate the event was handled

Thou Shall Not Pass!

[62]

 }

 public boolean touchUp (int x, int y, int pointer, int button)
 {
 // add your touch up code
 return true; // return true to indicate the event was handled
 }
};
Gdx.input.setInputProcessor(inputAdapter);

I will encourage you to change the code to use InputAdapter to get the same
result. Make sure you extend InputAdapter as we need to make use of various
local variables from our game scene while processing the touch input.

Capturing gestures
Gestures are an intuitive way of providing input that is possible using touchscreens.
Some famous examples of a gesture are the swipe and pinch zoom. LibGDX provides
a class named GestureDetector that implements InputProcessor to help detect
gestures. We need to implement an interface named GestureListener and use it
as a parameter to create a GestureDetector object:

Gdx.input.setInputProcessor(new GestureDetector(new
CustomGestureListener()));

The GestureDetector class helps us to detect the following gestures:

•	 touchDown

•	 longPress

•	 tap

•	 pan

•	 panStop

•	 fling

•	 zoom

•	 pinch

Fling can be used to detect swipe gestures.

Chapter 3

[63]

Game controllers controller
Android-based micro consoles have come out in numbers, but picking a winner from
among them is still impossible. Some interesting consoles are OUYA, GameStick,
GamePop, MOJO, and nVidia's Shield. These devices have external game controllers
that are used as input devices. These controllers might have different features such
as buttons, axes, hat switches, sliders, accelerometers, touchpads, and so on.

LibGDX has a controllers extension class that can be used to detect input from these
game controllers. As there can be multiple controllers attached to a console, we will
need to poll them and assign an instance using Controllers.getControllers().
Once we have a controller instance, we can poll the different input as shown in the
following code:

boolean buttonPressed = controller.getButton(buttonCode);
float axisValue = controller.getAxis(axisCode);

Alternatively, for event-based tracking, we can implement the ControllerListener
interface or extend the ControllerAdapter class, which is similar to how we
implement event-based input handling.

OUYA is the most talked about micro console out there and LibGDX already
supports it. We can detect an OUYA device using the following code:

if(Ouya.runningOnOuya)
{
 // Your code!
}

More details on how to develop games for OUYA can be found at https://devs.
ouya.tv/developers/docs/libGDX.

Adding the different game states
As our plane can now be controlled via user input, we can add the obstacles that
would make the game fun and challenging. There are three obstacles we need to
avoid that include the terrain's top and bottom, triangular land portions, and meteor
rocks of different sizes. If the plane hits any of these, the game is over. In order to
implement the game over state, we can follow the game development standards
and try to implement game states.

https://devs.ouya.tv/developers/docs/libGDX
https://devs.ouya.tv/developers/docs/libGDX

Thou Shall Not Pass!

[64]

A game is essentially defined as a loop where the program switches between
different game states based on the game logic and user input. At any point of time,
the game can be in one of these predefined game states. For our game, we need to
use only three game states, which are INIT, ACTION, and GAME_OVER. The INIT state
is when the game starts and we initialize all the variables as per the initial conditions.
The ACTION state is when the game is running and the GAME_OVER state is when
the plane has crashed.

For our purposes, we can use enums for the implementation of our game state.
Add the following to the game class:

static enum GameState
{
 INIT, ACTION, GAME_OVER
}

Then, initialize the game state in INIT, as follows:

GameState gameState = GameState.INIT;

While in the INIT state, we need to skip the logic in the updateScene method but
render an indicator that lets the player know that he or she needs to tap to start the
game play. The changes are as follows:

private void updateScene()
{
 if(Gdx.input.justTouched())
 {
 if(gameState == GameState.INIT)
 {
 gameState = GameState.ACTION;
 return;
 }
 if(gameState == GameState.GAME_OVER)
 {
 gameState = GameState.INIT;
 resetScene();
 return;
 }
 touchPosition.set(Gdx.input.getX(),Gdx.input.getY(),0);
 camera.unproject(touchPosition);
 tmpVector.set(planePosition.x,planePosition.y);
 tmpVector.sub(touchPosition.x, touchPosition.y).nor();

Chapter 3

[65]

 planeVelocity.mulAdd(tmpVector,
 TOUCH_IMPULSE-MathUtils.clamp(Vector2.dst(touchPosition.x,
 touchPosition.y, planePosition.x, planePosition.y), 0,
 TOUCH_IMPULSE));
 tapDrawTime=TAP_DRAW_TIME_MAX;
 }
 if(gameState == GameState.INIT || gameState ==
 GameState.GAME_OVER)
 {
 return;
 }
 float deltaTime = Gdx.graphics.getDeltaTime();
}

We skip the execution of game logic when the game state is either the INIT or
GAME_OVER state. In the drawScene method, we need to add the code to draw
the tap1 graphic, which is as follows:

if(gameState == GameState.INIT)
{
 batch.draw(tap1, planePosition.x, planePosition.y-80);
}

Run the game to see the screen stay motionless with the tap indicator. The game
will start only when the player taps the screen:

Thou Shall Not Pass!

[66]

The top and bottom terrain are already placed, but the collision logic is not yet
implemented. Let's fix that now. We just need to check whether the plane overlaps
these terrains significantly; to do this, we can simply check whether the vertical
position of the plane is below the ground level or above the top terrain level.
Towards the end of updateScene, we need to add the following code:

if(planePosition.y < terrainBelow.getRegionHeight() - 35 ||
 planePosition.y + 73 > 480 - terrainBelow.getRegionHeight() +
35)
{
 if(gameState != GameState.GAME_OVER)
 {
 gameState = GameState.GAME_OVER;
 }
}

All we are doing is setting up the game state to GAME_OVER when the overlap
occurs. We will draw a gameOver graphic to indicate the game over state in
the drawScene method:

if(gameState == GameState.GAME_OVER)
{
 batch.draw(gameOver, 400-206, 240-80);
}

Run the game to check whether you are getting the game over display:

Chapter 3

[67]

Adding the pillar rocks
Now it's time to add the main obstacle, which is the vertical pillar-like triangular
rocks. Dodging them is going to be very hard. One thing we need to avoid first is
our plane moving backward. So let us add a constant velocity so that the scene
always scrolls from right to left, thereby making the plane always move forward.
To do this, we need to create a new variable called scrollVelocity and set its
value in the resetScene method, as follows:

scrollVelocity.set(4, 0);

Then, in the updateScene method, we add it to planeVelocity, just below the
line where we would add gravity:

planeVelocity.add(scrollVelocity);

You can run the game to see the scene scrolling which in turn makes the game
more lively. To add the pillar rocks, we need to create and store positions to draw
the rocks. These position values are Vector2 variables where the x value will denote
their x position and y value will denote whether the pillar is pointing up or down.
We can set the y value to 1 to indicate an upward pillar whereas a value of -1 to
indicate a downward pillar. In order to store these values, we need to create a
typed array pillars using the following code:

Array<Vector2> pillars = new Array<Vector2>();

We add a new function named addPillar to add a new pillar to the array,
as follows:

private void addPillar()
{
 Vector2 pillarPosition=new Vector2();
 if(pillars.size==0)
 {
 pillarPosition.x=(float) (800 + Math.random()*600);
 }
 else
 {
 pillarPosition.x=lastPillarPosition.x+(float) (600 +
 Math.random()*600);
 }
 if(MathUtils.randomBoolean())
 {
 pillarPosition.y=1;
 }
 else

Thou Shall Not Pass!

[68]

 {
 pillarPosition.y=-1;//upside down
 }
 lastPillarPosition=pillarPosition;
 pillars.add(pillarPosition);
}

Instead of Math.random, we can also use MathUtils.Random.

We store a reference to the last pillar's position to the lastPillarPosition variable.
This enables us to check whether this particular pillar has reached the middle of the
screen to add another pillar. In the updateScene method, we also move all the
pillar positions in the same way we move the terrains using the following code:

for(Vector2 vec: pillars)
{
 vec.x-=deltaPosition;
 if(vec.x+pillarUp.getRegionWidth()<-10)
 {
 pillars.removeValue(vec, false);
 }
}
if(lastPillarPosition.x<400)
{
 addPillar();
}

In the preceding code, the value of deltaPosition is as follows:

deltaPosition=planePosition.x-planeDefaultPosition.x;

As you can see, we remove the pillars that go out of our screen as well. In order to
draw these pillars, we add the following code to the drawScene method, just below
the line where we enable blending:

for(Vector2 vec: pillars)
{
 if(vec.y==1)
 {
 batch.draw(pillarUp, vec.x, 0);
 }
 else
 {

Chapter 3

[69]

 batch.draw(pillarDown, vec.x,
 480-pillarDown.getRegionHeight());
 }
}

Here, pillarUp and pillarDown are the respective texture regions. Run the code
to see the moving pillar obstacles:

Collision with the pillars
It's time to add collision with the pillars. We need to specifically check the overlap
between the plane and pillars to determine the collision. We will use two rectangles
to store the bounding box of the plane and the obstacle pillar, as follows:

Rectangle planeRect=new Rectangle();
Rectangle obstacleRect=new Rectangle();

Now in updateScene, we set the values for these rectangles and look for any
overlap, as detailed in the following code:

planeRect.set(planePosition.x + 16, planePosition.y, 50, 73);
for(Vector2 vec: pillars)
{
 vec.x-=deltaPosition;
 if(vec.x+pillarUp.getRegionWidth()<-10)
 {

Thou Shall Not Pass!

[70]

 pillars.removeValue(vec, false);
 }
 if(vec.y==1)
 {
 obstacleRect.set(vec.x + 10, 0, pillarUp.getRegionWidth()-20,
 pillarUp.getRegionHeight()-10);
 }
 else
 {
 obstacleRect.set(vec.x + 10,
 480-pillarDown.getRegionHeight()+10,
 pillarUp.getRegionWidth()-20, pillarUp.getRegionHeight());
 }
 if(planeRect.overlaps(obstacleRect))
 {
 if(gameState != GameState.GAME_OVER)
 {
 gameState = GameState.GAME_OVER;
 }
 }
}

We are using the convenient overlaps method of the Rectangle class to detect
collision. If you run the game now, you will see how hard it is to dodge each pillar.
It will take timely and skilled tapping to pass each pillar. The game can be seen in
the following screenshot:

Chapter 3

[71]

Adding meteor rocks
Our final obstacle is meteor rocks. The difference between these and the pillar rocks
is that these have their own velocity and move across the screen, hence the name.
We will use the same approach to implement meteor rocks, but we do not need an
array as there will only be one meteor rock on screen at a time. We will add a few
new variables for this purpose:

Array<TextureAtlas.AtlasRegion> meteorTextures = new
Array<TextureAtlas.AtlasRegion>();
TextureRegion selectedMeteorTexture;
boolean meteorInScene;
private static final int METEOR_SPEED=60;
Vector2 meteorPosition= new Vector2();
Vector2 meteorVelocity= new Vector2();
float nextMeteorIn;

We need to store the six different meteor textures in an array and use one of those
randomly for the current meteor. We use a countdown to release meteors using the
nextMeteorIn instance. In the create method, we will add all the meteor textures:

meteorTextures.add(atlas.findRegion("meteorBrown_med1"));
meteorTextures.add(atlas.findRegion("meteorBrown_med2"));
meteorTextures.add(atlas.findRegion("meteorBrown_small1"));
meteorTextures.add(atlas.findRegion("meteorBrown_small2"));
meteorTextures.add(atlas.findRegion("meteorBrown_tiny1"));
meteorTextures.add(atlas.findRegion("meteorBrown_tiny2"));

In resetScene, we need to set the initial values for these variables, as follows:

meteorInScene=false;
nextMeteorIn=(float)Math.random()*5;

In updateScene, we add the following code to set the position of the meteor if it is
present in the scene and reduce the countdown to launch the next meteor when the
countdown hits 0:

if(meteorInScene)
{
 meteorPosition.mulAdd(meteorVelocity, deltaTime);
 meteorPosition.x-=deltaPosition;
 if(meteorPosition.x<-10)
 {
 meteorInScene=false;
 }

Thou Shall Not Pass!

[72]

}
nextMeteorIn-=deltaTime;
if(nextMeteorIn<=0)
{
 launchMeteor();
}

The meteor is launched using a new function named launchMeteor, as follows:

private void launchMeteor()
{
 nextMeteorIn=1.5f+(float)Math.random()*5;
 if(meteorInScene)
 {
 return;
 }
 meteorInScene=true;
 int id= (int)(Math.random()*meteorTextures.size);
 selectedMeteorTexture=meteorTextures.get(id);
 meteorPosition.x=810;
 meteorPosition.y=(float) (80+Math.random()*320);
 Vector2 destination=new Vector2();
 destination.x=-10;
 destination.y=(float) (80+Math.random()*320);
 destination.sub(meteorPosition).nor();
 meteorVelocity.mulAdd(destination, METEOR_SPEED);
}

We find a random texture from meteorTextures and set it to the
selectedMeteorTexture variable. We set the initial position of the meteor just
out of the right edge of screen. We find a unit vector toward the left extreme and
multiply it with the METEOR_SPEED value to set its velocity. In the drawScene
method, we do the following to draw the meteor:

if(meteorInScene)
{
 batch.draw(selectedMeteorTexture,meteorPosition.x,
 meteorPosition.y);
}

Collision with the meteor rock
We have our meteor rocks rushing across the screen, but they are not yet colliding
with our plane. Let's fix that now. This is the same as what we did for collision with
the pillars. The following code goes in the updateScene method:

Chapter 3

[73]

if(meteorInScene)
{
 obstacleRect.set(meteorPosition.x + 2, meteorPosition.y + 2,
 selectedMeteorTexture.getRegionWidth()-4,
 selectedMeteorTexture.getRegionHeight()-4);
 if(planeRect.overlaps(obstacleRect))
 {
 if(gameState != GameState.GAME_OVER)
 {
 gameState = GameState.GAME_OVER;
 }
 }
}

Now you should see the meteor crashing our plane upon collision, as shown in the
following screenshot:

Thou Shall Not Pass!

[74]

Making the game easier
Yes, our game is very hard to play now and that is something we should fix! But, we
had it planned along the lines of the Flappy Bird game, which is again very hard and
frustrating to play. How can we make the game easier? We can play with the values
of the variables, thereby making the game play easier. I will leave it to you to figure
it out. We can give a warning to the player that a meteor is coming, which lets him or
her anticipate if an obstacle is approaching. This can be in the form of an audio SFX,
which we will add in the next section. Another easy thing to do is to move our plane
to the left thereby giving more time to take evasive measures and letting us see the
obstacles much earlier. This can be seen in the following screenshot:

This is done by changing the planeDefaultPosition.x value.

Playing with audio
It's time to add life to the game with some background music and sound effects.
For our game, we will use royalty free music from http://opengameart.org/
content/journey. The Music instance is streamed from the disk rather than loading
it onto the RAM. Dealing with long music files is a heavy process, and it is highly
recommended that you do not use more than one Music object at a time. First we
need to place the music file in the assets folder of our Android project. Once done,
we can load the music and play it in the following manner:

Music music;

http://opengameart.org/content/journey
http://opengameart.org/content/journey

Chapter 3

[75]

Then, in the create method, we make the following changes:

music =
Gdx.audio.newMusic(Gdx.files.internal("sounds/journey.mp3"));
music.setLooping(true);
music.play();

This will set the music in loop and start playing it. The Music class has methods to
poll its status and pause or stop it:

music.stop();
music.pause();

music.isPlaying();
music.isLooping();

Adding sound effects
Let's add a few sound effects to our game. We need sound for tapping and crashing
and an indicator sound when a new meteor is launched. LibGDX supports MP3, OGG,
and WAV files for audio where OGG is not supported on iOS. Adding and playing sounds
is straightforward as music, but the difference here is that it gets loaded into the RAM
rather than streamed from the disk. We can create a Sound object as follows:

Sound tapSound;

Then, in the create method, we can load the sound as follows:

tapSound =
Gdx.audio.newSound(Gdx.files.internal("sounds/pop.ogg"));

Later, it can be played whenever needed using following code:

tapSound.play();

We will create three Sound objects named tapSound, crashSound, spawnSound as
required. We will play tapSound when we detect a tap within the updateScene
method. The spawnSound instance will be played in the launchMeteor function
and crashSound will be played whenever we change the game state to GAME_OVER.
Make sure to dispose off the Music and Sound objects when removing the scene:

@Override
public void dispose ()
{
 tapSound.dispose();
 crashSound.dispose();

Thou Shall Not Pass!

[76]

 spawnSound.dispose();
 music.dispose();
 batch.dispose();
 pillars.clear();
 atlas.dispose();
 meteorTextures.clear();
}

Summary
We have come to the end of another interesting chapter. The core game play is
completely implemented except for the pickups collection logic. We learned to deal
with the various kinds of input and implemented tap-based navigation for the plane.
We added various obstacles to the game, which were the pillars and meteor rocks.
The process of adding collisions with the terrain and obstacles were also implemented.
Different game states were added to facilitate effective game play. Also, sounds
and music bought the game to a much more polished level.

In the next chapter, we will play with some particle effects and add the game UI.
We will also collect the different pickups and implement their logic as well.

Bring in the Extras!
The core game play mechanics of Thrust Copter are now complete. We can move
on to implement the necessary visual additions and some game logic to add depth
to our game play. We will add the GUI and implement pickup logic. We will also
discuss few new tools that will help us in creating bitmap fonts and particle effects.
We will explore the following topics in this chapter:

•	 Refactoring our code and project structure to use the Game and
ScreenAdapter classes

•	 Learning to use the AssetManager class
•	 Implementing pickups such as stars and shield
•	 Adding particle effects
•	 Implementing scoring and adding it as part of GUI
•	 Implementing a fuel meter based on fuel pickup
•	 Using tools to create bitmap fonts and font generation
•	 Using the LibGDX particle designer tool

The source files for this chapter can be found in chapter4.zip provided along with
the book. You can keep it open as reference while you proceed through the chapter.

Refactoring time
Time to get our hands dirty and refactor our code to implement the standard project
structure followed in LibGDX projects. When working on a complicated project
we will have multiple scenes which are essentially different classes for menu,
game, game over, level up, and so on. There are many common functionalities
that need to be available for all those scenes. Also, many variables can be reused
across all of these scenes as well, for example, the TextureAtlas instance, the
OrthographicCamera instance, values for screen size, and so on.

Bring in the Extras!

[78]

We didn't do it this way earlier as we needed to begin in the easiest possible way.
Now that we are all accustomed with LibGDX development, we should start
following the standards. The main class where the execution begins, which in our
case is com.csharks.thrustcopter.ThrustCopter, should never be any scene.
This class needs to extend the LibGDX Game class that has the inherent functionality
to set screens. Every scene, such as menu, game, and game over needs to extend the
ScreenAdapter class that implements the Screen interface.

Creating a ThrustCopterScene class
Let's start refactoring by first renaming our main class to ThrustCopterScene. Right-
click on the ThrustCopter.java file in Eclipse inside the Thrust Copter-core project.
Click on Refactor and select Rename. Enter the new name ThrustCopterScene,
deselect the Update references checkbox, and click on Finish. We do not want the
references to the old name to change, as we will be creating another class of that
name to act as our landing class, as shown in the following screenshot:

Edit the ThrustCopterScene class to extend ScreenAdapter instead of
ApplicationListener, as shown in the following code:

public class ThrustCopterScene extends ScreenAdapter

The ScreenAdapter class does not have a create method, so we will change it
to our constructor after removing @Override:

public ThrustCopterScene()
{
…
}

Chapter 4

[79]

One more minor edit and we are set with this class. The render method receives
a float value as delta that needs to be added to the code:

public void render (float delta)
{
…
}

Now, we have the ThrustCopterScene class that implements the Screen interface
that can be set as active screen using the Game class's setScene method.

Creating our Game class instance
Eclipse will show a few red cross marks, which means that the original
ThrustCopter class that many other classes are referring to is missing. Let's fix
that by creating a new class with the name ThrustCopter, but this time extending
the Game class that actually implements ApplicationListener. Within the Thrust
Copter-core project, right-click on the com.csharks.thrustcopter package to
select the Class option under New. Name the class ThrustCopter, select com.
badlogic.gdx.Game as the super class, and click on Finish. This is shown in the
following screenshot. Once this class is created, the red cross marks will go but the
game is not wired yet.

Bring in the Extras!

[80]

This new class just has a constructor (if you opted for it) and an overridden create
method. Add a new line of code to set the screen to a new ThrustCopterScene
instance:

public void create()
{
 setScreen(new ThrustCopterScene());
}

Run the desktop game and voila! We have our game back, but this time in a much
more standard and extendable manner.

More refactoring
We can easily move some of the objects from our Screen class to our Game
class object so that those can be reused across all screens. We will move the
TextureAtlas, SpriteBatch, FPSLogger, and OrthographicCamera instances
and a few other values to the ThrustCopter class from the ThrustCopterScene
class. We will pass the reference to the ThrustCopter instance to all the scenes
via their constructors while using the setScene method. Check out the following
updated code for ThrustCopter:

public static final int screenWidth=800;
public static final int screenHeight=480;

public ThrustCopter()
{
 fpsLogger=new FPSLogger();
 camera = new OrthographicCamera();
 camera.position.set(screenWidth/2,screenHeight/2,0);
 viewport = new FitViewport(screenWidth, screenHeight, camera);
}
@Override
public void create()
{
 batch=new SpriteBatch();
 atlas = new
 TextureAtlas(Gdx.files.internal("thrustcopterassets.txt"));
 setScreen(new ThrustCopterScene(this));
}
@Override
public void render()
{
 fpsLogger.log();

Chapter 4

[81]

 super.render();
}
@Override
public void resize (int width, int height)
{
 viewport.update(width, height);
}
@Override
public void dispose ()
{
 batch.dispose();
 atlas.dispose();
}

We will need to make necessary changes in the ThrustCopterScene class by
removing the FPSLogger and Viewport instances completely and referencing
instances of classes such as SpriteBatch, Camera, and so on:

ThrustCopter game;

public ThrustCopterScene(ThrustCopter thrustCopter)
{
 game=thrustCopter;
 batch=game.batch;
 camera=game.camera;
 atlas=game.atlas;
}

We can remove the resize method and clean up the dispose method as batch and
atlas are disposed elsewhere. From now on, we will be creating common reusable
objects in the ThrustCopter class as public variables that can be accessed in the
ScreenAdapter objects via the passed reference.

Using AssetManager
The AssetManager class is the class that can help us to efficiently manage our assets.
It can load all kinds of files, such as Texture, BitmapFont, TextureAtlas, Music,
Sound, ParticleEffect, and so on. It can also help manage context loss on Android
devices. Let's create a public AssetManager object in the ThrustCopter class that
will be available to all Screen instances:

AssetManager manager = new AssetManager();

Bring in the Extras!

[82]

Loading an asset via AssetManager is straightforward, as shown in the following code:

manager.load("Texture.png", Texture.class);
manager.load("Font.fnt", BitmapFont.class);
manager.load("Music.ogg", Music.class);

Assets are loaded asynchronously; hence, we will need to complete the loading
before we move on with our code. To do this, we need to call the finishLoading
method, as shown in the following code:

manager.finishLoading();

Once the assets are loaded, we get access our assets at any time, as shown in the
following code

Texture tex = manager.get("Texture.png", Texture.class);
BitmapFont font = manager.get("Font.fnt", BitmapFont.class);

The AssetManager class also has an unload method to dispose of specific assets
that are of no further use. Let's use it to load our TextureAtlas, Music and Sound
files. Let's change the create method of ThrustCopter to load everything, and I
believe you will do the necessary changes in the ThrustCopterScene class to get
them from game.manager:

public void create()
{
 manager.load("gameover.png", Texture.class);
 manager.load("sounds/journey.mp3", Music.class);
 manager.load("sounds/pop.ogg", Sound.class);
 manager.load("sounds/crash.ogg", Sound.class);
 manager.load("sounds/alarm.ogg", Sound.class);
 manager.load("thrustcopterassets.txt", TextureAtlas.class);
 manager.finishLoading();

 batch=new SpriteBatch();
 atlas=manager.get("thrustcopterassets.txt", TextureAtlas.class);

 setScreen(new ThrustCopterScene(this));
}

Chapter 4

[83]

Time for pickups
There is no fun in the game without any collectibles. For ThrustCopter, we have
three different collectibles that are as follows:

•	 The star collectible that adds to the score.
•	 The fuel collectible that is needed to refill our plane's fuel.
•	 The shield collectible that when collected makes our plane invincible for a

short time. We will start the game with shield enabled.

Collectibles can be released randomly as game progresses, but fuel and shield need
to be time-based. Shield has to be a rare collectible that comes after a longer time.
The fuel collectible needs to be released based on the time the plane's fuel takes to
completely deplete. We will need to release at least two fuel pickups in that time,
thereby giving the player a fair chance of survival—once the fuel is depleted, the
game is over. While releasing collectibles, we need to make sure that we should be
able to collect them. They should not fall inside the pillars or the terrains.

Using a pickup class
Up until now, we were not really using much of Java's OOP methodology, so let's go
ahead and create a new Pickup class that will represent all our pickups. The code is
as follows:

public class Pickup
{

 public static final int STAR =1;
 public static final int SHIELD =2;
 public static final int FUEL =3;
 TextureRegion pickupTexture;
 Vector2 pickupPosition = new Vector2();
 int pickupType;
 int pickupValue;
 Sound pickupSound;

 public Pickup(int type, AssetManager manager)
 {
 TextureAtlas atlas=manager.get("thrustcopterassets.txt",
 TextureAtlas.class);
 pickupType=type;
 switch(pickupType){

Bring in the Extras!

[84]

 case STAR:
 pickupTexture=atlas.findRegion("star_pickup");
 pickupValue=5;
 pickupSound = manager.get("sounds/star.ogg", Sound.class);
 break;
 case SHIELD:
 pickupTexture=atlas.findRegion("shield_pickup");
 pickupValue=15;
 pickupSound = manager.get("sounds/shield.ogg", Sound.class);
 break;
 case FUEL:
 pickupTexture=atlas.findRegion("fuel_pickup");
 pickupValue=100;
 pickupSound = manager.get("sounds/fuel.ogg", Sound.class);
 break;
 }
 }
}

The class sets the necessary variables in its constructor based on the parameter type
passed in.

Adding pickup logic
As we have three different pickups to be released in a timely manner, we will need
countdown variables to track their timing as we did with the meteor rocks. We can
use a Vector3 variable such as pickupTiming, which has three variables (x, y, and
z) to reduce the clutter. Each value in x, y, and z will track the pickup release timing
for star, fuel, and shield, respectively. The code is provided here, but I am not going
to go through the movement, drawing, and collision of pickups because it is the
same as the others explained earlier. We use a pickupsInScene array to keep track
of all the pickups added to scene. A new function, checkAndCreatePickup, is called
from updateScene to check whether it is time to add a new pickup. When our plane
collides with a pickup, the pickItUp function is called. Please go through the source
file if there are any doubts. The code is as follows:

private void checkAndCreatePickup(float delta)
{
 pickupTiming.sub(delta);
 if(pickupTiming.x<=0)
 {
 pickupTiming.x=(float)(0.5+Math.random()*0.5);
 if(addPickup(Pickup.STAR))

Chapter 4

[85]

 pickupTiming.x=1+(float)Math.random()*2;
 }
 if(pickupTiming.y<=0)
 {
 pickupTiming.y=(float)(0.5+Math.random()*0.5);
 if(addPickup(Pickup.FUEL))
 pickupTiming.y=3+(float)Math.random()*2;
 }
 if(pickupTiming.z<=0)
 {
 pickupTiming.z=(float)(0.5+Math.random()*0.5);
 if(addPickup(Pickup.SHIELD))
 pickupTiming.z=10+(float)Math.random()*3;
 }
}
private boolean addPickup(int pickupType)
{
 Vector2 randomPosition=new Vector2();
 randomPosition.x=820;
 randomPosition.y=(float) (80+Math.random()*320);
 for(Vector2 vec: pillars)
 {
 if(vec.y==1)
 {
 obstacleRect.set(vec.x , 0, pillarUp.getRegionWidth(),
 pillarUp.getRegionHeight());
 }
 else
 {
 obstacleRect.set(vec.x , 480-pillarDown.getRegionHeight(),
 pillarUp.getRegionWidth(), pillarUp.getRegionHeight());
 }
 if(obstacleRect.contains(randomPosition))
 {
 return false;
 }
 }
 tempPickup=new Pickup(pickupType, game.manager);
 tempPickup.pickupPosition.set(randomPosition);
 pickupsInScene.add(tempPickup);
 return true;
}
private void pickIt(Pickup pickup)

Bring in the Extras!

[86]

{
 pickup.pickupSound.play();
 switch(pickup.pickupType){
 case Pickup.STAR:
 starCount+=pickup.pickupValue;
 break;
 case Pickup.SHIELD:
 shieldCount=pickup.pickupValue;
 break;
 case Pickup.FUEL:
 fuelCount=pickup.pickupValue;
 break;
 }
 pickupsInScene.removeValue(pickup, false);
}

Note that we avoid placing pickups within a pillar. We have also added new
variables to track fuel, star, and shield statuses. When fuelCount reaches 0, we need
to disable the tap input code so that the plane falls down to crash, as it should when
a plane's fuel runs out, as shown in the following screenshot:

Yes, as you can see I am not an expert in the game.

Chapter 4

[87]

Heads Up Display (HUD) UI
We need to show the fuel status, shield status, and stars collected at the top of the
game screen as our HUD. Fuel status is to be shown as a progressively filled graphic
in the top-left corner, whereas the shield status needs to display a shield over our
plane and show a countdown at the top of screen in the center that will show how
much time is left. Stars get added to the score, where score is actually the time we
survive. This needs to be displayed in top-right corner as text.

Adding a fuel bar is just a matter of drawing the fuelIndicator texture in a black
tint first and then drawing a portion of it again in the default white tint. The portion
to draw depends on the fuelPercentage variable, which can be easily calculated in
updateScene as follows:

fuelCount-=6*deltaTime;
fuelPercentage=(int) (114*fuelCount/100);
//114=fuelIndicator.getRegionWidth()

Then, add the following code in the drawScene method:

batch.setColor(Color.BLACK);
batch.draw(fuelIndicator, 10, 350);
batch.setColor(Color.WHITE);
batch.draw(fuelIndicator,10,350,0,0,fuelPercentage,119);
//119=fuelIndicator.getRegionHeight()

Now, we have a nice fuel bar that gradually decreases as fuel runs out. To display
the shield, we will add a new Animation named shield and draw it around
with the plane when the shieldCount value is positive. Now, there won't be any
collisions with pillars or meteor rocks. However, the plane will still crash if it hits
the top or bottom of the terrain, and the ShieldCount value needs to reduce in the
updateScene method. Now, it's time to learn how to put texts on screen to show our
score and shieldCount values.

Displaying text
There are multiple ways to display text in LibGDX, but the fact is that most of these
are unsuitable to show text that changes rapidly. In the game, we will need to
show text values that change rapidly, such as score, bonus, multipliers, and
so on. The ideal solution is to use a BitmapFont class. You have already learned
what BitmapFont is and what it does in Chapter 1, Wiring Up. Let's try to create
a BitmapFont class.

Bring in the Extras!

[88]

Hiero – the BitmapFont creator tool
Hiero is a free Java application that can be used to create bitmap fonts. You can find
this application at http://wiki.libgdx.googlecode.com/git/jws/hiero.jnlp.
It needs to be run as a web application, which sometimes might cause some Java
security concerns. If that happens, get additional help from the official Java website
at http://www.java.com/en/download/help/java_blocked.xml. Hiero can also
be run from within Eclipse if you have the LibGDX source projects, including the
gdx-tools project.

The following are the other alternatives:
•	 ShoeBox: http://renderhjs.net/shoebox/
•	 BMFont: http://www.angelcode.com/products/bmfont/
•	 Glyph Designer: http://www.71squared.com/

glyphdesigner

The UI of Hiero is as shown in the following screenshot:

http://wiki.libgdx.googlecode.com/git/jws/hiero.jnlp
http://www.java.com/en/download/help/java_blocked.xml
http://renderhjs.net/shoebox/
http://www.angelcode.com/products/bmfont/
http://www.71squared.com/glyphdesigner
http://www.71squared.com/glyphdesigner

Chapter 4

[89]

We need to select the font, font size, font color, and background color and apply any
styling available in the right panel. Once you have done so, export the BitmapFont file
by going to File | Save BMFont files. Hiero will create two files that we need to copy
and paste in our assets folder in the Thrust Copter-android project. We already
know how to use the BitmapFont class, but this time use the AssetManager class to
load and get the font files instead of loading directly. The font size I used is 40 and I
have provided the .fnt file in the source. The relevant code will be as follows:

manager.load("impact-40.fnt", BitmapFont.class);

font=manager.get("impact-40.fnt", BitmapFont.class);

font.draw(batch, ""+((int)shieldCount), 390, 450);
font.draw(batch, ""+(int)(starCount+score), 700, 450);

Conversion of shieldCount and starCount+score to string can also be done as follows:

String.format("%d", (int)(starCount+score)).

With all the UI in place, our game now looks like this:

Bring in the Extras!

[90]

Special effects with particles
Particle systems are basically a cluster of images that behave in a specific manner
in order to simulate graphical effects such as fire, smoke, explosion, and so on.
Each particle system will consist of hundreds or may be thousands of small images
that blend together to create the illusion of the special effect. Each of these images
is referred to as a particle and will have numerous properties that can be set or
controlled to create unlimited permutations and combinations resulting in infinite
different special effects.

Manually creating a particle system or hand coding all the properties is no easy task.
Hence, we have a LibGDX Particle Editor tool. You can download it from libgdx.
googlecode.com/svn/jws/particle-editor.jnlp. However, it would be better
to run it from the LibGDX source. It is acceptable to be overwhelmed at the first sight
of the tool's interface, but at the same time I am sure you are totally impressed by the
fire effect that is already playing in the editor's window:

libgdx.googlecode.com/svn/jws/particle-editor.jnlp
libgdx.googlecode.com/svn/jws/particle-editor.jnlp

Chapter 4

[91]

You can see a single emitter at the bottom of the left panel. An emitter is the source
for a particle system. We can have multiple emitters with different settings to have
composite special effects. There is an image setting where you can change the image
used for the particles. You are welcome to play with different images to see how the
effect changes. The value in the Duration field determines the time for which particles
will be emitted. The value in the Count field sets the minimum and maximum number
of particles that will be present. The value in the Emission field controls the number
of particles that will be emitted per second. The value in the Life field controls the
time for which a particle lives. The value of Spawn sets the shape which emits
particles. Other settings have self explanatory names that you can figure out.

The Additive option sets the blending to additive and the Continuous option makes
the particle effect loop infinitely. For the purpose of our game, we need to create
two different particle effects: one Smoke effect to add as trail for our plane and one
Explosion effect to add when plane crashes. Let's create the smoke effect first by
entering the following values in the respective fields:

•	 Count: In this field, enter Min as 0 and Max as 200.
•	 Duration: In this field, enter Value as 1000.
•	 Emission: In this field, enter Low as 100 and High as 250.
•	 Life: In this field, enter Low as 100 and High from 500 to 1000. Remove the

nodes in life graph so that only first node remains.
•	 Particle size: In this field, enter Low as 0 and High as 10.
•	 Velocity: In this field, enter Low as 0, and High from 150 to 300.
•	 Angle: In this field, enter Low as 180 and High from 170 to 210.
•	 Tint: In this field, enter the value Grey.
•	 Options: In this field, disable the Additive option and enable Continuous.

Save your Smoke effect with the name Smoke by clicking on the Save button. Creating
an explosion is not that simple. Click on the Open button in the Particle Editor and
open the Explosion file provided with source to explore how it is done. In order
to add these effects, copy the Smoke and Explosion files to the assets folder of the
Thrust Copter-android project. We also need to copy the particle.png file to the
assets folder. Add the particle effects with the following code:

manager.load("Smoke", ParticleEffect.class);
manager.load("Explosion", ParticleEffect.class);

smoke=game.manager.get("Smoke", ParticleEffect.class);
explosion=game.manager.get("Explosion", ParticleEffect.class);

Bring in the Extras!

[92]

Then, in the updateScene method, we need to update the effect using the
following code:

smoke.setPosition(planePosition.x+20, planePosition.y+30);
smoke.update(deltaTime);

In drawScene, write the following code:

smoke.draw(batch);

The explosion effect is to be conditionally drawn when the plane crashes. We have
a new function that gets called when this happens, in which we reset the explosion
effect so that it starts again:

private void endGame()
{
 if(gameState != GameState.GAME_OVER)
 {
 crashSound.play();
 gameState = GameState.GAME_OVER;
 explosion.reset();
 explosion.setPosition(planePosition.x+40, planePosition.y+40);
 }
}

We get the following output when we run the code:

Chapter 4

[93]

Pooling particle effects
Particle effects are resource-hungry in nature and using a lot of particles on your
scene takes a toll on performance. One of the concepts used in game development to
reduce runtime performance hit is pooling. Pooling is the method of creating a fixed
number of instances on initialization to be used throughout the game. Each time we
need an instance, we get one from the pool. Once it has served its purpose, we return
it to the pool for later use. This makes sure no new instances are created at runtime.
LibGDX has specialist classes to handle pooling for particles, ParticleEffectPool
and PooledEffect. A ParticleEffectPool class can be created by providing
a particle effect, initial size of the pool, and maximum size of the pool. It has an
obtain method that returns a PooledEffect class that can be used as a new
particle effect. Once we are done, the PooledEffect class can be returned to
the pool using the free method. I would advise you to use it wherever relevant.

Summary
Things got more serious in this chapter and we refactored our code to follow
standards. Now, you know how to create new screens and set them from our
Game instance. You learned about the standardized way of loading assets via the
AssetManager class. We created the UI for our game and explored the BitmapFont
creator tools, especially Hiero. I believe the highlight of the chapter was Particle
Editor and hope you had fun playing with it. There is no easier way to master it
other than experimenting with it.

In the next chapter, you will learn about Scene 2d and use it to create other screens,
such as the menu and loading screen.

Scene 2 – the Menu
Our game is almost complete but there is no menu scene. LibGDX provides Scene2D
to create menus and the UI. We will use it to create our menu and loading scenes.
We will do the following in this chapter:

•	 Explore Scene2D
•	 Learn how to use the Actor, Group, and Action classes
•	 Learn how to use the Stage class
•	 Create our menu scene
•	 Integrate a standard loading scene
•	 Learn how to handle Android's back and menu buttons
•	 Learn how to create a Nine Patch image
•	 Explore the layout options in Scene2D

The source files for this chapter can be found in chapter5.zip provided along with
the book. You can open it up as a reference while you proceed through the chapter.

Introducing Scene2D
Scene2D is a 2D scene graph that helps you create UIs and applications. It can handle
the laying out, input processing, and drawing processes for many standard UI
elements. At the core, Scene2D comprises the following:

•	 Actor: This is a node in the graph with a position, size, origin, scale, rotation,
and color. Each Actor node has its own coordinate system.

•	 Group: This is an Actor node with many child actors. The rotation and scale
of a group is added to all the child actors.

Scene 2 – the Menu

[96]

•	 Stage: This handles the drawing and input handling of all the actors through a
camera instance, a SpriteBatch class, and a root group holding all the actors.

•	 Actions: This is a simple system to animate actors over time.

Although Scene2D is ideally suited for a UI, it has been used to create complete
games as well. You can create board games with it, but for more complicated games,
I won't recommend it as it may limit your freedom of expression and the flexibility of
the game mechanics.

The stage for actors
The Stage class can be considered as conventional stage for a drama where
different artists or actors will act. Based on this analogy, Stage will be what we
will see in a scene. We will add different actors to the Stage instance. It is also an
InputProcessor interface that detects different inputs and delivers them to the
relevant actors. Stage is initialized with a Viewport parameter:

Stage stage = new Stage(new FitViewport(800, 480));
Gdx.input.setInputProcessor(stage);

It has an act method that receives the delta time value, which in turn calls the act
method on all the actors on Stage:

public void render (float delta) {
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 stage.act(delta);
 stage.draw();
}

The Stage class also has a draw method that draws everything on the stage. If we
need to make any actor invisible, we can use a setVisible method with a boolean
parameter. This will also toggle the input-handling capability of the actor as well.
Stage can also be thought of as a container that holds all the Scene2D items and
makes them work.

Actors and their actions
An actor can be partially thought of as the Scene2D version of LibGDX's Sprite. If
an actor is required to receive events, then it will need to have listeners attached to it.
For example, the following code shows how we can attach an InputListener event
to an actor instance to handle input events. Note that we can override only the
relevant functions in the listener for our purposes:

Chapter 5

[97]

actor.setBounds(0, 0, texture.getWidth(), texture.getHeight());

actor.addListener(new InputListener() {
 public boolean touchDown (InputEvent event, float x, float y, int
pointer, int button) {
 System.out.println("down");
 return true;
 }

 public void touchUp (InputEvent event, float x, float y, int
pointer, int button) {
 System.out.println("up");
 }
});

Any actor can be assigned actions to perform some standard animations. Once an
Action class is applied, it gets updated via the act method. The action will get
removed once it is complete. Some of the available actions are as follows:

•	 MoveToAction

•	 MoveByAction

•	 RotateByAction

•	 RotateToAction

•	 ScaleByAction

•	 ScaleToAction

•	 SizeByAction

•	 SizeToAction

The functionality of these Action classes can be understood from their names.
Adding an Action class to an actor is easy:

MoveToAction action = new MoveToAction();
action.setPosition(x, y);
action.setDuration(duration);
actor.addAction(action);

Complicated actions can be done by running multiple actions in parallel or in
sequence. An Action class can also have tweening curves applied to it:

action.setInterpolation(Interpolation.bounceOut);

Scene 2 – the Menu

[98]

Widgets
The scene2d.ui package provides a collection of widgets and other classes that are
built and based on Scene2D. There are layout widgets such as the following:

•	 Table

•	 Container

•	 Stack

•	 ScrollPane

•	 SplitPane

•	 Tree

•	 VerticalGroup

•	 HorizontalGroup

The normal widgets available are as follows:

•	 Label

•	 Image

•	 Button

•	 TextButton

•	 ImageButton

•	 CheckBox

•	 ButtonGroup

•	 TextField

•	 TextArea

•	 List

•	 SelectBox

•	 ProgressBar

•	 Slider

Chapter 5

[99]

•	 Window

•	 TouchPad

•	 Dialog

Widgets do not set their size or position; their respective parent widgets will set these
for them. We need to call the invalidate method of a widget if its state changes.
If the state change affects the size of the parent widget, then we need to call the
invalidateHierarchy method that calls the invalidate method of each parent
widget. In a typical case, we will just add a Table widget class that will fill the
entire Stage class where all the other widgets will be added. An example of this
is as follows:

 Table table = new Table();
 table.setFillParent(true);
 stage.addActor(table);

The Table class is a complicated topic in itself.
You will find more details at https://github.
com/libgdx/libgdx/wiki/Table.

To create any widget, we will need to provide a style instance that will determine
how it will be drawn. Different widgets have different style classes that we can use.
The following code shows a typical use case:

TextButtonStyle style = new TextButtonStyle();
style.up = new TextureRegionDrawable(upTexture);
style.down = new TextureRegionDrawable(downTexture);
style.font = buttonFont;

TextButton playButton = new TextButton("Play", style);
table.add(playButton);

https://github.com/libgdx/libgdx/wiki/Table
https://github.com/libgdx/libgdx/wiki/Table

Scene 2 – the Menu

[100]

Adding a loading scene
Let's use the information we have learned so far to implement a loading scene. We
will use a standard one available at https://github.com/Matsemann/libgdx-
loading-screen/tree/libgdx1.2.0-EyeOfMidas. This LoadingScreen class is
created by Mats Svensson. Go ahead and download the class and its support files.
The purpose of a loading scene is to show a progress bar while the assets are being
loaded. This is not relevant for our simple game, but once you have heavier assets
and multiple texture atlas classes, this becomes inevitable. From the Android project
of the downloaded file, copy the loading.pack and loading.png files to the assets
folder in the Thrust Copter-android project. Copy the matsemann folder from the
downloaded core project to our com folder within the Thrust Copter-core src
folder. We need to do some cleanup now, so go ahead and fire up Eclipse. Remove
the SomeCoolGame, AbstractScreen, and MainMenuScreen classes as we do not
need them. Edit the LoadingScreen class to extend ScreenAdapter instead of
AbstractScreen. Also, change the constructor to receive the instance of our Game
class as shown in the following code:

public class LoadingScreen extends ScreenAdapter {
 ThrustCopter game;

 public LoadingScreen(ThrustCopter thrustCopter) {
 game=thrustCopter;
 }

}

There will be an error in the render method where it was trying to set a scene to
a class we already removed. Replace it to set ThrustCopterScene instead:

game.setScreen(new ThrustCopterScene(game));

Now we need to move all the assets' loading code to the LoadingScreen class. Move
all of the code from the create method of the ThrustCopter class to the end of the
show method of LoadingScreen. The create method of ThrustCopter now looks
like this:

 public void create() {
 batch=new SpriteBatch();
 setScreen(new LoadingScreen(this));
}

https://github.com/Matsemann/libgdx-loading-screen/tree/libgdx1.2.0-EyeOfMidas
https://github.com/Matsemann/libgdx-loading-screen/tree/libgdx1.2.0-EyeOfMidas

Chapter 5

[101]

The render method of LoadingScreen needs to be edited as we do not need to wait
for the user to tap to proceed with our game:

if (game.manager.update()) {
 game.atlas=game.manager.get("thrustcopterassets.txt", TextureAtlas.
class);
 game.font=game.manager.get("impact-40.fnt", BitmapFont.class);
 game.setScreen(new ThrustCopterScene(game));
}

The output of the preceding code can be seen as follows:

I would also advise you to add a dispose method that disposes the instances used
in LoadingScreen. Run the desktop project to see a beautiful LibGDX-branded
progress bar.

Investigating the LoadingScreen class
Let's see how the LoadingScreen class is wired. It will be interesting to note that
the initialization code is actually in the show method and not in the constructor.
The show method gets automatically called when a Screen instance is initialized.
We load the assets needed for the loading bar and force the AssetManager class to
load it instantly. A Stage instance is created along with multiple Image widgets and
a LoadingBar instance. The LoadingBar class actually extends Actor with a little bit
of additional code to draw the bar animation. All of these are added to Stage via the
addActor method.

Scene 2 – the Menu

[102]

The resize method is where all the widgets and actors are positioned properly.
The render method checks whether the AssetManager class has loaded the assets
completely by executing the following code:

if (game.manager.update()) {
...
}

We also find the percentage of completion and update the relevant graphics using
the following code:

// Interpolate the percentage to make it more smooth
percent = Interpolation.linear.apply(percent, game.manager.
getProgress(), 0.1f);

// Update positions (and size) to match the percentage
loadingBarHidden.setX(startX + endX * percent);
loadingBg.setX(loadingBarHidden.getX() + 30);
loadingBg.setWidth(450 - 450 * percent);
loadingBg.invalidate();

The hide method unloads the pack file used to load bar graphics, which is no more
necessary. The LoadingScreen class demonstrates how Stage, Widgets, and Actors
can be used in the minimal way possible.

Adding the menu scene
The Thrust Copter menu scene needs to have the PLAY GAME, SOUND OPTIONS,
LEADERBOARD, and EXIT GAME buttons. We need additional graphics for these
and we will also learn how to make those scalable graphics skins. Go ahead and
create a new class named MenuScene that extends ScreenAdapter and accepts the
ThrustCopter instance. We will use the uiskin.json, uiskin.png, uiskin.atlas,
and default.fnt files from the assets of the LibGDX tests project. We will make
use of two tables in this scene: one for the menu buttons and another for the options
display. The code in the constructor is as follows:

stage = new Stage(game.viewport);
Gdx.input.setInputProcessor(stage);
skin = new Skin(Gdx.files.internal("uiskin.json"));

screenBg = new Image(game.atlas.findRegion("background"));
title= new Image(game.manager.get("title.png", Texture.class));
helpTip=new Label("Tap around the plane to move it!",skin);
helpTip.setColor(Color.NAVY);

Chapter 5

[103]

table=new Table().debug();
playButton=new TextButton("PLAY GAME", skin);
table.add(playButton).padBottom(10);
table.row();
optionsButton=new TextButton("SOUND OPTIONS", skin);
table.add(optionsButton).padBottom(10);
table.row();
table.add(new TextButton("LEADERBOARD", skin)).padBottom(10);
table.row();
exitButton=new TextButton("EXIT GAME", skin);
table.add(exitButton);
table.setPosition(400, -200);

options=new Table().debug();
Label soundTitle=new Label("SOUND OPTIONS",skin);
soundTitle.setColor(Color.NAVY);
options.add(soundTitle).padBottom(25).colspan(2);
options.row();
muteCheckBox = new CheckBox(" MUTE ALL", skin);
options.add(muteCheckBox).padBottom(10).colspan(2);
options.row();
options.add(new Label("VOLUME ",skin)).padBottom(10).padRight(10);
volumeSlider = new Slider(0, 2, 0.2f, false, skin);
options.add(volumeSlider).padTop(10).padBottom(20);
options.row();
backButton=new TextButton("BACK", skin);
options.add(backButton).colspan(2).padTop(20);
options.setPosition(400, -200);
muteCheckBox.setChecked(!game.soundEnabled);
volumeSlider.setValue(game.soundVolume);

stage.addActor(screenBg);
stage.addActor(title);
stage.addActor(helpTip);
stage.addActor(table);
stage.addActor(options);

playButton.addListener(new ClickListener(){
 @Override
 public void clicked(InputEvent event, float x, float y) {
 game.setScreen(new ThrustCopterScene(game));
 }
});
optionsButton.addListener(new ClickListener(){
 @Override
 public void clicked(InputEvent event, float x, float y) {
 showMenu(false);

Scene 2 – the Menu

[104]

 }
});
exitButton.addListener(new ClickListener(){
 @Override
 public void clicked(InputEvent event, float x, float y) {
 Gdx.app.exit();

 }
});
volumeSlider.addListener(new ChangeListener() {
 public void changed (ChangeEvent event, Actor actor) {
 game.soundVolume=volumeSlider.getValue();
 }
});
muteCheckBox.addListener(new ChangeListener() {
 public void changed (ChangeEvent event, Actor actor) {
 game.soundEnabled=!muteCheckBox.isChecked();
 }
});
backButton.addListener(new ClickListener(){
 @Override
 public void clicked(InputEvent event, float x, float y) {
 showMenu(true);
 }
});

Do check out the uiskin.json file to see how it drives the skinning.

The backdrop is added as an image named screenBg. The game title is also an image
named title. There is a small label named helpTip that displays the instructions at
the bottom. The table named table contains all the menu buttons. The table named
options has a slider named volumeSlider, a checkbox named muteCheckBox, and a
text button named backButton. Check how the items are added and laid out in these
tables. As these tables are created with the debug method that is invoked, we can call
Table.drawDebug(stage) in the render method to see how the tables are laid out.
We have created a couple of public variables in the ThrustCopter class to track the
volume of sounds through soundVolume and whether the sound is enabled through
soundEnabled. Sound is enabled by default and volume is set to 1. The show method
will position the title and helpTip instances and add an Action instance to the
title instance, which will make it fly in when the scene is loaded:

Chapter 5

[105]

@Override
public void show() {
 title.setPosition(400-title.getWidth()/2, 450);
 helpTip.setPosition(400-helpTip.getWidth()/2, 30);

 MoveToAction actionMove = Actions.action(MoveToAction.class);
 actionMove.setPosition(400-title.getWidth()/2, 320);
 actionMove.setDuration(2);
 actionMove.setInterpolation(Interpolation.elasticOut);
 title.addAction(actionMove);

 showMenu(true);
}

There is a showMenu method that toggles the display of the two tables, thereby
showing the menu or options. Here as well, we will use Action to tween these tables
on and off the screen. An example of this is as follows:

private void showMenu(boolean flag) {
 MoveToAction actionMove1 = Actions.action(MoveToAction.class);//out
 actionMove1.setPosition(400, -200);
 actionMove1.setDuration(1);
 actionMove1.setInterpolation(Interpolation.swingIn);

 MoveToAction actionMove2 = Actions.action(MoveToAction.class);//in
 actionMove2.setPosition(400, 190);
 actionMove2.setDuration(1.5f);
 actionMove2.setInterpolation(Interpolation.swing);

 if(flag){
 table.addAction(actionMove2);
 options.addAction(actionMove1);
 }else{
 options.addAction(actionMove2);
 table.addAction(actionMove1);
 }
}

Remember to remove the InputProcessor interface in the hide method so that it
does not hijack the input processing when proceeding to another scene.

Scene 2 – the Menu

[106]

Make sure that LoadingScreen loads MenuScene rather than the ThrustCopterScene
class now. Check out the menu scene with the menu buttons displayed in the
following screenshot:

Check it out with the options displayed in the following screenshot:

We also need to make relevant changes to our ThrustCopterScene class to ensure
all sounds are controlled by soundEnabled and soundVolume:

if(game.soundEnabled){
 music = game.manager.get("sounds/journey.mp3", Music.class);

Chapter 5

[107]

 music.setLooping(true);
 music.play();
 music.setVolume(game.soundVolume);
 ...
}
...
if(game.soundEnabled)spawnSound.play(game.soundVolume);

Creating Scene2D layouts is not a simple straightforward task as it may seem.
You will definitely need more help. Please refer to https://github.com/
EsotericSoftware/tablelayout.

Creating scalable skins using the 9-patch tool
We have created many buttons with varying sizes, and there seems to be no distortion
in the button's base image used. This is so because we are making use of a Nine Patch
image. A Nine Patch image is drawn in nine sections. This enables it to stretch only the
middle section while scaling, thereby not stretching those areas that may make it look
pixelated. The original .png file when made into a Nine Patch will be saved as a .9.png
file. More details on Nine Patch can be found at http://developer.android.com/
guide/topics/graphics/2d-graphics.html#nine-patch.

The Android SDK has a Draw 9-Patch tool that we can use to create Nine Patch
images. More details on this tool can be found at http://developer.android.
com/tools/help/draw9patch.html. The draw9patch application can be found
in the tools folder within the Android SDK folder. Run it from the command line
or terminal. I have provided a dummybutton.png file with the source, which is a
rounded rectangle image that can be used as the button's base. You can drag-and-
drop it inside the draw9patch application window to see the following result that
will show how distortion happens when it is stretched:

https://github.com/EsotericSoftware/tablelayout
https://github.com/EsotericSoftware/tablelayout
http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch
http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch
http://developer.android.com/tools/help/draw9patch.html
http://developer.android.com/tools/help/draw9patch.html

Scene 2 – the Menu

[108]

We can draw lines outside the image to show the area where the stretching should
occur. Press Ctrl/command and draw the lines on the top and left borders as shown
in the following screenshot. Enable the Show patches checkbox to see the patches
being displayed. The pink area will be the one that will get stretched. Check how
the display will be updated to show no distortion. This image can be saved via
File | Save 9-patch and the screenshot is as follows:

Such an image can be used to create a TextButton instance by supplying a
TextButtonStyle class manually:

textButtonStyle = new TextButtonStyle();
textButtonStyle.font = font;
textButtonStyle.up = skin.getPatch("buttonup");
textButtonStyle.down = skin.getPatch("buttondown");
button = new TextButton("Play", textButtonStyle);

The Skin class can be created from our texture atlas instead of being initialized
from a JSON file as we had done. A 9 patch image can also be created dynamically,
which can be explored via https://gist.github.com/briangriffey/4391807.

https://gist.github.com/briangriffey/4391807

Chapter 5

[109]

Handling the Android back button
Android devices have a few additional buttons along with the home button, which
is found also on iOS devices. There is a back button, a menu button, and sometimes
a search button. The standard way of handling them is to capture and disable all
the buttons other than the back button. When the back button is pressed, the game
will respond in a context-sensitive way, depending on the scene being displayed.
For example, when we are in the game scene, it will pause to show the options to
resume, go back to the menu, and so on. Pausing should also happen when the
application gets interrupted as in the case of a call coming through. On the menu
scene, the user should be prompted with an exit dialog box.

As each screen needs to implement the exit dialog box in a different way, it is better
to capture it on a new class that gets extended by all our scenes. Then, each scene
can override the specific function to implement the context-sensitive result. For the
game screen, we can just call the pause and resume methods. The pause method
gets called when the game gets interrupted by another app or call. For the menu,
we can open an exit dialog box. Let's create a BaseScene class that extends the
ScreenAdapter class, which MenuScene and ThrustCopterScene will extend. We
will capture the menu key and back key as we had learned in input handling section:

protected ThrustCopter game;
private boolean keyHandled;
public BaseScene(ThrustCopter thrustCopter) {
 game=thrustCopter;
 keyHandled=false;
 Gdx.input.setCatchBackKey(true);
 Gdx.input.setCatchMenuKey(true);
}
@Override
public void render(float delta) {
 super.render(delta);
 if(Gdx.input.isKeyPressed(Keys.BACK)){
 if(keyHandled){
 return;
 }
 handleBackPress();
 keyHandled=true;
 }else{

Scene 2 – the Menu

[110]

 keyHandled=false;
 }
}
protected void handleBackPress() {
 System.out.println("back");
}

Now in our scenes, we can override the handleBackPress method to add the
functionality. Check how the exit dialog is implemented in MenuScene and the
game is paused in ThrustCopterScene.

Do not forget to call super.render(delta) from within the
render methods of all the scenes that extend the BaseScene class.

Summary
We entered a whole new world of Scene2D in this chapter. Although we have only
touched the surface of this incredible package, we have learned how to implement
a simple menu scene. We also used a Scene2D-based LoadingScreen to effectively
load assets and show a progress bar. We learned to capture the Android back button
and create 9 patch images using the draw9patch tool in the Android SDK. If you
explore further, you will find that complete games have been made using Scene2D,
hence consider this as a good starting point to you exploring much more.

In the next chapter, we will learn about the Box2D physics library and convert our
game to use it for many physics simulations.

Physics with Box2D
Almost all of us have played the Angry Birds game. Such games involve physics
calculations where we need to find out realistic results of how the different items in
the scene collide and interact with each other. Real-world physics equations need
to be used to calculate these results, and it is indeed a complicated affair. Thanks
to Erin Catto, we have the exceptional yet free and open source physics library
Box2D to save the day.

In this chapter, we will explore Box2D and cover the following topics:

•	 An introduction to Box2D
•	 Creating a new game scene, this time based on Box2D physics
•	 Learning how to create different types of Box2D bodies
•	 Learning how to detect collisions between Box2D bodies
•	 Learning how to disable certain collisions
•	 Learning how to draw the Box2D world using the debug renderer
•	 Learning how to map the Box2D world with our Camera world
•	 Learning how to implement fixed time updates for our Box2D world

The incredible world of Box2D
Box2D is an open source C++ engine for simulating rigid body physics in 2D.
Box2D was developed by Erin Catto and has the zlib license. It was developed
in a platform-independent way, so it can be ported to many other programming
languages. In most cases, the naming conventions and methodologies were left
unchanged or were drastically similar so that the existing knowledge of Box2D
in any language could be used in any other language as well. Here are the features
of Box2D:

Physics with Box2D

[112]

•	 Collision:
°° Continuous collision detection
°° Contact callbacks (begin, end, pre-solve, post-solve)
°° Convex polygons and circles
°° Multiple shapes per body
°° One-shot contact manifolds
°° Dynamic tree broadphase
°° Efficient pair management
°° Fast broadphase AABB queries
°° Collision groups and categories

•	 Physics:

°° Continuous physics with time of impact solver
°° Persistent body-joint-contact graph
°° Island solution and sleep management
°° Contact, friction, and restitution
°° Stable stacking with a linear-time solver
°° Revolute, prismatic, distance, pulley, gear, mouse joint, and other

types of joints
°° Joint limits, motors, and friction
°° Momentum-decoupled position correction
°° Fairly accurate reaction forces/impulses

All the documentation that can be found in the official Box2D manual (available
at http://box2d.org/manual.pdf) is valid for LibGDX as well. Keep this
PDF document as a handy reference, as you are going to need it for serious
Box2D experimentation.

In simple terms, Box2D can be considered as a system where real-world physics
can be simulated to find realistic results. We can create objects; apply gravity, force,
friction, restitution, density, and joints; and then make different rigid bodies interact
with each other in a way real objects interact. The difference is that in a real-world
situation, the interaction is in 3D, but here in Box2D, it is 2D only.

http://box2d.org/manual.pdf

Chapter 6

[113]

LibGDX with Box2D
LibGDX uses a thin Java wrapper over the original Box2D software that makes use of
Java Native Interface (JNI). Currently, Box2D is a separate extension that needs to be
manually included. As we will need to try out different experiments as we proceed
through the chapter, we can add Box2D to our existing project now. We can also
create another project just to try out Box2D, in which case you just need to check
the option in the gdx-setup.jar file (refer to the following screenshot) to enable
Box2D while creating your project:

However, in our Thrust Copter project, we did not enable Box2D when we created
the project. It's time to learn how we can add new extensions after the project is
created. We will need to edit the build.gradle file present in the root folder of our
project. Every project folder will have a file with this name, so make sure you open
the one in the root folder, which is the top-most folder containing all the different
platforms' project folders. The different sections in this file list the dependencies
each platform has. We will need to add the following additional lines of code
in the relevant sections.

Core dependency:

compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"

Desktop dependency:

compile "com.badlogicgames.gdx:gdx-box2d-platform:
$gdxVersion:natives-desktop"

Android dependency:

compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-box2d-platform:
$gdxVersion:natives-armeabi"

Physics with Box2D

[114]

natives "com.badlogicgames.gdx:gdx-box2d-platform:
$gdxVersion:natives-armeabi-v7a"
natives "com.badlogicgames.gdx:gdx-box2d-platform:
$gdxVersion:natives-x86"

iOS dependency:

compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-box2d-platform:
$gdxVersion:natives-ios"

HTML dependency:

compile "com.badlogicgames.gdx:gdx-box2d-gwt:$gdxVersion:sources"
compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion:sources"

These dependencies are specific to the extension we are adding. After saving the file,
we need to select all our projects in Eclipse, click on the right mouse button, select
Gradle, and click on Refresh Dependencies. This will make Gradle download all
the missing libraries and files to set up our Box2D environment.

Creating a Box2D world
We will need to set up a Box2D World instance first to start playing with Box2D.
This instance holds all the Box2D objects and runs the physics simulations within it.
Remember that Box2D deals with meters for scale, that is, 1 unit in Box2D is 1 meter.
Let's see how the world instance is created:

World world = new World(new Vector2(0, -9.8), true);

We used a gravity vector and a Boolean value that decides whether objects should
sleep within the world. It is suggested that you enable sleeping of objects in order to
save CPU cycles, as physics calculations tend to be very CPU-intensive. Box2D can
only simulate physics; we will need to use LibGDX graphics for rendering. The gravity
value can be anything, but ideally it should be close to 9.8—the real-world value for
acceleration due to gravity. Once the world is created, we can add rigid bodies to it.

Drawing the Box2D world
Box2D does not have rendering capability; it is a library used to simulate physics.
The game graphics need to be rendered manually using the LibGDX graphics
functionality. However, in order to see what is happening in the Box2D world
instance, we can use a Box2DDebugRenderer class provided in LibGDX. This
renderer actually draws wireframe primitives of the world instance as shown in
the following code:

Chapter 6

[115]

world = new World(new Vector2(0, -10), true);
debugRenderer = new Box2DDebugRenderer();
box2dCam=new OrthographicCamera(8, 4.8);
box2dCam.position.set(4, 2.4, 0);
...
if(DRAW_BOX2D_DEBUG){
 box2dCam.update();
 debugRenderer.render(world, box2dCam.combined);
}

Box2D works perfectly within a world size of 10 meters, and care should be taken to
ensure that all Box2D items are smaller than this or have a size corresponding to their
real-world size. For example, a hero can be 1 meter tall and should therefore have
a Box2D body size of 1 unit. Note that we are using a new OrthographicCamera
instance named box2dCam, which is of size 8 x 4.8. Box2D deals with meters and each
unit is a meter. This essentially means an 8 meter x 4.8 meter space. This camera is
used by the debugRenderer instance. Remember that our game camera is set to 800
x 480, which means that the relation between the Box2D world and our game world
is 1:100. This means 1 Box2D unit will make 100 units in the game scene. The DRAW_
BOX2D_DEBUG flag is a Boolean value used to toggle the debug rendering, as we won't
need it for the final game; it is required only in the development stage. Once you
add rigid bodies in the world instance, your world may be rendered as shown in the
following screenshot:

Physics with Box2D

[116]

The screenshot actually shows the start of our game where the middle box is our plane
and the top and bottom boxes are the terrains drawn using Box2DDebugRenderer.

We created our game camera in pixel sizes, which meant we could
easily place our art based on the size values. We could have created
that camera in 8 x 4.8 size, in which case we would not have to
convert between the game world and Box2D world coordinates.

Simulating the Box2D world
To calculate the physics, we need to tell the world instance to run its step method.
We will call the step method from within our render method, as physics needs to be
calculated as many times as possible for accurate results:

world.step(deltaTime, 8, 3);

The arguments passed to the step method are velocityIterations and
positionIterations, which are the number of times velocity and position of a
rigid body is calculated by Box2D. The higher these numbers, the better the results.
However, the performance will be affected. The recommended values are 8 and 3,
but a lower value can be used if it works fine. The step method calculates the new
velocity and position of all the rigid bodies in the world instance based on their
current movement, interaction, collision, and forces in action.

Fixing the time step
Ideally, when the FPS is stable, the deltaTime value will remain constant. In
reality, this won't be the case, and we will have different deltaTime values within
the render method. This happens when the device is slower, or the processor is
multitasking with some resource-hungry operations, or if your code is on the heavier
side. It is recommended that constant values should be used to step through the
physics calculations. We must try to make sure that physics stepping is done based
on the same value as much as possible for correct results. The solution is to step
based on a lower fixed time irrespective of the deltaTime value, but repeat as
many times as needed. Refer to the following code:

private float tempValue = 0;

private void fixedTimeStep(float deltaTime) {
 float frameTime = Math.min(deltaTime, 0.25f);
 tempValue += frameTime;
 while (tempValue >= 0.1) {

Chapter 6

[117]

 world.step(0.1, 8, 3);
 tempValue -= 0.1;
 }
}

This sample code loops through to call the step method using a fixed value of 0.1
as many times as possible within the current deltaTime value. Such an approach
is highly recommended in a complicated physics game, but we will skip this in our
game for the sake of simplicity.

You can find out more about this topic at http://gafferongames.com/game-
physics/fix-your-timestep/.

Box2D rigid bodies
A body is just a collection of matter with some attributes assigned to it, such as its
position and orientation. It is what we usually call an object in the real world. A
rigid body describes an idealized body, which is assumed to be solid and thus
incapable of being deformed by the exerting forces. Box2D supports rigid bodies,
but the 3D physics library bullet has support for soft bodies as well. There are
three types of bodies:

•	 Static: This type of body cannot move and is not affected by forces. However,
they will affect a dynamic body (the ground).

•	 Kinematic: This type of body is similar to a static body that can move. It is
not affected by forces and can affect dynamic bodies (moving platforms).

•	 Dynamic: This type of body will be affected by forces and is capable of
moving around and interacting with other static, dynamic, or kinematic
bodies (bouncing balls).

Creating a body requires a bit of ground work, as this translates directly from the
C++ implementation. Refer to the following code:

BodyDef bodyDef = new BodyDef();
bodyDef.type = BodyType.DynamicBody;
bodyDef.position.set(10, 30);

Body body = world.createBody(bodyDef);

CircleShape circle = new CircleShape();
circle.setRadius(6f);

FixtureDef fixtureDef = new FixtureDef();

http://gafferongames.com/game-physics/fix-your-timestep/
http://gafferongames.com/game-physics/fix-your-timestep/

Physics with Box2D

[118]

fixtureDef.shape = circle;
fixtureDef.density = 0.5f;
fixtureDef.friction = 0.4f;
fixtureDef.restitution = 0.6f;

Fixture fixture = body.createFixture(fixtureDef);
circle.dispose();

The preceding code is a bit too much just to create a Dynamic body. Let's try to
understand what is happening here. We use a body definition BodyDef to define the
type of body along with its position in the Box2D world instance. Various shapes are
available to create the shape of our body, for example, ChainShape, PolygonShape,
CircleShape, and EdgeShape. Fixtures store the properties of the body, which is
defined using a fixture definition FixtureDef. Fixtures can have density, which sets
the mass, friction, and restitution. This in turn sets the bounciness. Go ahead and
create a few bodies to see whether they show up in the debug renderer.

We can also create custom shapes by providing vertex data:
PolygonShape trianglePoly = new PolygonShape();
float[] vertices = {-5.4f, -11.95f, 1.1f, 11.95f,
5.4f, -11.95f};
trianglePoly.set(vertices);
boxBody.createFixture(trianglePoly, 1);
trianglePoly.dispose();

Interactions in the Box2D world
A kinematic body needs to be assigned a velocity for it to move. It won't be affected by
forces or static bodies. We will use it for our meteor rocks:

meteorBody.setLinearVelocity(2.0f, 0.0f);

We will need to add forces to the applicable dynamic bodies to move them or they
need to be affected by other static, dynamic, or kinematic bodies. If the Box2D
world has constant force at play, then we can set the resultant of that force as the
final force when creating the world instance. For example, the following code says
that there is a horizontal force (8,0) in the world instance along with gravity of (0,-
10), resulting in an effective force of (8,-10). The code is as follows:

world = new World(new Vector2(8, -10), true);

Such a force will affect all dynamic bodies in this world in every physics step.
Alternatively, we can apply force or impulse to move a dynamic body. Force is
applied over time and needs to be applied at a position. Refer to the following code:

Chapter 6

[119]

planeBody.applyForce(1.0f, 0.0f, pos.x, pos.y, true);

Impulse has an immediate effect than force which acts over time. Refer to the
following code:

planeBody.applyLinearImpulse(1.0f, 0, pos.x, pos.y, true);

For our game, we will use impulse to provide the force when we tap near the plane.

Linking the Box2D and game worlds
Till now, we are only able to see wireframe drawings using the debug renderer. So,
how will we relate our game graphics with the Box2D bodies? One way is to store
the graphics data using the setUserData method for the corresponding body as in
the following code:

heroBody.setUserData(heroTexture);

Then, later in the render method, we can poll the position and rotation of the body
as well as the texture using getUserData and draw it as in the following code:

position= heroBody.getPosition();
rotation=(MathUtils.radiansToDegrees * heroBody.etAngle();
heroTexture= (TextureRegion)heroBody.getUserData();
batch.draw(heroTexture, position.x, position.y, 0, 0, 88, 73, 1,
1, rotation);

Care has to be taken that the position is converted from the Box2D space to game
space, which is in the ratio of 1:100 in our case. So, we will need to multiply the
position value by 100:

position.scl(100);

Detecting collisions
We will need to detect collisions as they happen to execute some additional code
pertaining to our game logic. For this purpose, we need to use a ContactListener
instance as follows:

world.setContactListener(new ContactListener() {
 @Override
 public void beginContact (Contact contact) {
 // System.out.println("begin contact");
 }

 @Override

Physics with Box2D

[120]

 public void endContact (Contact contact) {
 // System.out.println("end contact");
 }

 @Override
 public void preSolve (Contact contact, Manifold oldManifold) {
 System.out.println(contact.getFixtureA().getBody());
 System.out.println(contact.getFixtureB().getBody());
 }

 @Override
 public void postSolve (Contact contact, ContactImpulse impulse) {
 }
});

The listener methods beginContact and endContact are fired when a collision
happens and ends, respectively. There will always be two fixtures with contact
names A and B. These fixtures can be retrieved and their related bodies are
identified as follows:

contact.getFixtureA().getBody();

Listener methods preSolve and postSolve are fired just before the collision happens
and just after the collision has ended. These can be used in specific use cases where
we may need to disable the collision or enable something else after the collision.

There is a Physics Body Editor tool by Aurelien Ribon that
can help you create complex shapes based on graphics data. It
can be found at http://www.aurelienribon.com/blog/
projects/physics-body-editor/.

So much for the theory, let's get on with converting our game.

Box2D version of Thrust Copter
With what we have learned so far, let's try to completely redo our game scene to use
Box2D instead of our old code. First, check whether the Box2D library is retrieved
with Gradle, as explained earlier in this chapter. We will retain all the old source as
well as that will still be our real game. Create a new folder Box2D within the current
package and create a new ThrustCopterSceneBox2D class, extending BaseScene
within this new folder. So, all our Box2D-related classes will be placed in this new
package, com.csharks.thrustcopter.box2d. We will reuse some of the code from
the original ThrustCopterScene class, but we will change the code for movement,
rendering, and creation of items.

http://www.aurelienribon.com/blog/projects/physics-body-editor/
http://www.aurelienribon.com/blog/projects/physics-body-editor/

Chapter 6

[121]

Creating and placing objects
Our approach with the original game is to move all items from right to left while
keeping the plane at a specific x position to create the illusion of scrolling. In our
Box2D version, we will let our plane fly through the world, thereby moving the
plane and not the other objects. All other items will be part of the world and may
remain stationary as the pillars and pickups or move on their own as the meteor
rocks. We will use a variable to store the ratio between Box2D units (meter) and
game world units (pixels). Refer to the following code:

private static final int BOX2D_TO_CAMERA =100;

We have a new method called initPhysics where the Box2D variables are
initialized. We create rigid bodies for the plane, the top and bottom terrains, and the
meteors. The meteorBody instance is placed away from our viewable area until
it is used. Refer to the following code:

private void initPhysics() {
 world = new World(new Vector2(5f, -8), true);
 debugRenderer = new Box2DDebugRenderer();
 box2dCam=new OrthographicCamera(8, 4.8);
 box2dCam.position.set(4, 2.4, 0);
 previousCamXPos=4;

 planeBody=createPhysicsObjectFromGraphics(plane.getKeyFrame(0),
planePosition,BodyType.DynamicBody);
 terrainBodyUp=createPhysicsObjectFromGraphics(terrainAbove,
new Vector2(terrainAbove.getRegionWidth()/2,480- terrainAbove.
getRegionHeight()/2), BodyType.StaticBody);
 terrainBodyDown=createPhysicsObjectFromGraphics(terrainBelo
w, new Vector2(terrainBelow.getRegionWidth()/2, terrainBelow.
getRegionHeight()/2),BodyType.StaticBody);
 meteorBody=createPhysicsObjectFromGraphics(selectedMeteorTexture,
new Vector2(800,500),BodyType.KinematicBody);
}

You will notice that the world has a gravity of -8 and a force of
5 in positive x direction. If we are creating a realistic simulation,
then the value of gravity has to be -10. However, our game is not
a realistic one. For example, our plane flies at 2.4 meters from
the ground and has a size of 0.88 m x 0.73 m. With a realistic
gravity, we will have a hard time keeping it above ground.

Physics with Box2D

[122]

A new function, createPhysicsObjectFromGraphics, helps us to handle all the
necessary boilerplate code to create rigid bodies. This can be given a texture region
with a position and body type to create a rigid body, as shown in the following code:

private Body createPhysicsObjectFromGraphics(TextureRegion region,
Vector2 position, BodyType bodyType) {
 BodyDef boxBodyDef = new BodyDef();
 boxBodyDef.type = bodyType;
 boxBodyDef.position.x = position.x/BOX2D_TO_CAMERA;
 boxBodyDef.position.y = position.y/BOX2D_TO_CAMERA;
 Body boxBody = world.createBody(boxBodyDef);
 PolygonShape boxPoly = new PolygonShape();
 boxPoly.setAsBox(region.getRegionWidth()/(2*BOX2D_TO_CAMERA),
region.getRegionHeight()/(2*BOX2D_TO_CAMERA));

 FixtureDef fixtureDef = new FixtureDef();
 fixtureDef.shape = boxPoly;
 fixtureDef.density=1;
 fixtureDef.restitution=0.2f;
 boxBody.createFixture(fixtureDef);

 boxPoly.dispose();
 boxBody.setUserData(region);
 return boxBody;
}

The render method calls the Box2D variant of updateScene and drawScene, and
it draws the Box2D world instance using the debug renderer. Refer to the
following code:

updateSceneBox2D(delta);
drawSceneBox2D();
if(DRAW_BOX2D_DEBUG){
 box2dCam.update();
 debugRenderer.render(world, box2dCam.combined);
}

In the updateSceneBox2D method, we find the deltaPosition value based on the
change in the position of box2dCam. Although the code to move the terrain graphic
remains the same, as follows:

deltaPosition=(box2dCam.position.x-previousCamXPos)*BOX2D_TO_CAMERA;
previousCamXPos=box2dCam.position.x;
...
world.step(deltaTime, 8, 3);

box2dCam.position.x=planeBody.getPosition().x+1.94f;

Chapter 6

[123]

terrainBodyUp.setTransform(box2dCam.position.x+0.04f, 4.45f, 0);
terrainBodyDown.setTransform(box2dCam.position.x+0.04f, 0.35f, 0);

We are moving the box2dCam instance along with the plane to get the same display
as our original game. We need to keep the rigid bodies of the top and bottom terrain
always within the scene, or else we will need to create them very wide or multiple
times. So, we also move them along with the camera. There are changes to the code
that detects tap and applies force, as shown in the following code:

if(Gdx.input.justTouched()){
 ...
 if(fuelCount>0){
 touchPosition.set(Gdx.input.getX(),Gdx.input.getY(),0);
 touchPositionBox2D.set(touchPosition);
 box2dCam.unproject(touchPositionBox2D);
 tmpVector.set(planeBody.getPosition());
 tmpVector.sub(touchPositionBox2D.x, touchPositionBox2D.y).nor();

 tmpVector.scl(TOUCH_IMPULSE – MathUtils.clamp (2.0f*Vector2.
dst (touchPositionBox2D.x, touchPositionBox2D.y, planeBody.
getPosition().x, planeBody.getPosition().y), 0.0f, TOUCH_
IMPULSE));
 planeBody.applyLinearImpulse(tmpVector, planeBody.getPosition(),
true);
 tapDrawTime=TAP_DRAW_TIME_MAX;
 camera.unproject(touchPosition);
 }

}

A tap needs to be detected and converted based on box2dCam and not the
game camera.

Creating obstacles
We need to change the way the pillars and meteors are added. The terrains rigid
bodies are already added. See how the launchMeteor function is altered to use Box2D:

private void launchMeteor() {
 nextMeteorIn=1.5f+(float)Math.random()*5;
 if(meteorInScene){
 return;
 }
 tmpVector.set(box2dCam.position.x+4.2,0);

Physics with Box2D

[124]

 if(game.soundEnabled)spawnSound.play(game.soundVolume);
 meteorInScene=true;
 tmpVector.y=(float)(80+Math.random()*320)/BOX2D_TO_CAMERA;
 meteorBody.setTransform(tmpVector,0);
 Vector2 destination=new Vector2();
 destination.x=box2dCam.position.x-4.2;
 destination.y=(float) (80+Math.random()*320)/BOX2D_TO_CAMERA;
 destination.sub(tmpVector).nor();
 destination.scl(METEOR_SPEED);
 meteorBody.setLinearVelocity(destination);
}

The setTransform method of a body sets a new position and rotation without
affecting physics. Positioning is done based on the x position of the box2DCam
instance, which remains at the center of the viewable scene. Pillar rocks are added in
a similar manner using a vertex-based shape that helps us to create a triangular rigid
body to match with the shape of the rock. Refer to the following code:

private void addPillar() {
 if(pillars.size==0){
 tmpVector.x=(float) (800 + Math.random()*400);
 }else{
 tmpVector.x=lastPillarBody.getPosition().x*BOX2D_TO_CAMERA+(float)
(600 + Math.random()*400);
 }
 Body pillar;
 if(MathUtils.randomBoolean()){
 pillar=createPillarBody(pillarUp, new Vector2(tmpVector.
x+pillarUp.getRegionWidth()/2, pillarUp.
getRegionHeight()/2),BodyType.StaticBody);
 }else{
 pillar=createPillarBody(pillarDown, new Vector2(tmpVector.
x+pillarDown.getRegionWidth()/2, 480- pillarDown.
getRegionHeight()/2),BodyType.StaticBody);
 }
 lastPillarBody=pillar;
 pillars.add(pillar);
}
private Body createPillarBody(TextureRegion region, Vector2 position,
BodyType bodyType) {
 BodyDef boxBodyDef = new BodyDef();
 boxBodyDef.type = bodyType;
 boxBodyDef.position.x = position.x/BOX2D_TO_CAMERA;
 boxBodyDef.position.y = position.y/BOX2D_TO_CAMERA;
 Body boxBody = world.createBody(boxBodyDef);

Chapter 6

[125]

 PolygonShape trianglePoly = new PolygonShape();

 if(region == pillarUp){
 float[] vertices = {-.54f, -1.195f, .11f, 1.195f, .54f, -1.195f};
 trianglePoly.set(vertices);
 }else{
 float[] vertices = {-.54f, 1.195f, .54f, 1.195f, .11f, -1.195f};
 trianglePoly.set(vertices);
 }
 boxBody.createFixture(trianglePoly, 1);
 trianglePoly.dispose();
 boxBody.setUserData(region);
 return boxBody;
}

The vertices are provided in Box2D units, where (0,0) is the center of the body that
falls at the center of the triangle and not in a corner. To find the vertices, we need to
add or subtract width/2 or height/2 in Box2D units. After adding all this, you can play
the game by setting the scene to our new class in MenuScene. Interestingly, you will
see everything in the debug renderer but no other game graphics. Also, our plane
body will collide with everything in the scene to bounce off and rotate, which may
not be an expected behavior for our game.

Drawing the scene
For most of the rigid bodies, we store the related texture in the userData method.
So, rendering them is easy, as the the following code in the drawSceneBox2D
method shows:

for(Body vec: pillars) {
 tmpVector.set(vec.getPosition());
 tmpVector.scl(BOX2D_TO_CAMERA);
 tmpVector.x-=(box2dCam.position.x-4)*BOX2D_TO_CAMERA;
 toDraw=(TextureRegion) vec.getUserData();
 batch.draw(toDraw, tmpVector.x-toDraw.getRegionWidth()/2,
tmpVector.y- toDraw.getRegionHeight()/2);
}
planePosition=planeBody.getPosition();
planePosition.scl(BOX2D_TO_CAMERA);
smoke.setPosition(planePosition.x+20-(box2dCam.position.x-4)*BOX2D_TO_
CAMERA-44, planePosition.y-7);
smoke.draw(batch);
batch.draw(plane.getKeyFrame(planeAnimTime), planePosition.x-
(box2dCam.position.x-4)*BOX2D_TO_CAMERA-44, planePosition.y-36.5f);
if(shieldCount>0){

Physics with Box2D

[126]

 batch.draw(shield.getKeyFrame(planeAnimTime), planePosition.x-20-
(box2dCam.position.x-4)*BOX2D_TO_CAMERA-44, planePosition.y-36.5f);
 font.draw(batch, ""+((int)shieldCount), 390, 450);
}
if(meteorInScene){
 batch.draw(selectedMeteorTexture, meteorPosition.x-
(box2dCam.position.x-4)*BOX2D_TO_CAMERA-selectedMeteorTexture.
getRegionWidth()/2, meteorPosition.y-selectedMeteorTexture.
getRegionHeight()/2);
}

We need to offset by half of the TextureRegion instances' width and height as the
position returned using a rigid body's getPosition falls in the middle of the body.

Note that box2dCam is set at 4 units in x
and box2dCam.position.x-4 is 0 in x.

Handling collisions
By default, the Box2D world is simulating the right response for our game at this
point. The plane will bounce and tumble all over the place if it collides with meteor
rocks or pillars. Such a response would have been excellent if our game was Angry
Birds or Cut the Rope. If we think about it such a response is fine as our game will end
on such a collision. In order to detect collisions, we will use ContactListener. In the
initPhysics method, we add the code in the endContact method as follows:

world.setContactListener(new ContactListener() {
 @Override
 public void endContact (Contact contact) {
 bodyA=contact.getFixtureA().getBody();
 bodyB=contact.getFixtureB().getBody();
 boolean planeFound=false;
 if(bodyA.equals(planeBody)){
 planeFound=true;
 unknownBody=bodyB;
 }else if(bodyB.equals(planeBody)){
 planeFound=true;
 unknownBody=bodyA;
 }
 if(planeFound){
 ItemType itemType=getItemType(unknownBody);
 if(itemType==ItemType.Terrain){

Chapter 6

[127]

 endGame();
 }else if(shieldCount<=0 && (itemType==ItemType.Meteor||
itemType==ItemType.Pillar)){
 endGame();
 }else if(itemType==ItemType.Pickup){
 pickIt((PickupBox2D) unknownBody.getUserData());
 }
 }
 }
 ...
});

This will end the game with any collision involving the plane, even those with
pickups if you implemented them. This is shown in the following screenshot:

To restart the game, we will need another function to reset the physics-related values
as well, which gets called from the resetScene function when the game is over.
Refer to the following code:

private void resetPhysics() {
 for(Body vec: pillars) {
 world.destroyBody(vec);
 }

Physics with Box2D

[128]

 pillars.clear();
 tmpVector.set(800,500);
 meteorBody.setTransform(tmpVector,0);
 tmpVector.set(planePosition);
 planeBody.setTransform(tmpVector.x/BOX2D_TO_CAMERA, tmpVector.y/
BOX2D_TO_CAMERA, 0);
 planeBody.setAwake(true);
 box2dCam.position.set(4.0, 2.4, 0);
 previousCamXPos=4;

 terrainBodyUp.setTransform(box2dCam.position.x+0.04f, 4.45f, 0);
 terrainBodyDown.setTransform(box2dCam.position.x+0.04f, 0.35f, 0);
 lastPillarBody=null;
 addPillar();
}

Collision filtering is a complicated feature, using which you
can set collisions between specific items only. You can find out
more on this topic at http://www.aurelienribon.com/
blog/2011/07/box2d-tutorial-collision-filtering/.

Ignoring collisions with shield
Our game logic demands that when the plane has shield, it should be invincible
against pillars and meteor rocks. In such a case, we will need to ignore those collisions
by detecting them before the actual collision happens. This can be done using the
preSolve method in the ContactListener event. Refer to the following code:

public void preSolve (Contact contact, Manifold oldManifold) {
 bodyA=contact.getFixtureA().getBody();
 bodyB=contact.getFixtureB().getBody();
 boolean planeFound=false;
 if(bodyA.equals(planeBody)){
 planeFound=true;
 unknownBody=bodyB;
 }else if(bodyB.equals(planeBody)){
 planeFound=true;
 unknownBody=bodyA;
 }
 if(planeFound){
 ItemType itemType=getItemType(unknownBody);
 if(shieldCount>0 && (itemType==ItemType.Meteor||
itemType==ItemType.Pillar)){

http://www.aurelienribon.com/blog/2011/07/box2d-tutorial-collision-filtering/
http://www.aurelienribon.com/blog/2011/07/box2d-tutorial-collision-filtering/

Chapter 6

[129]

 contact.setEnabled(false);
 }else if(itemType==ItemType.Pickup){
 contact.setEnabled(false);
 }
 }
}

Collision for pickups
The previous code also disabled collision with pickups, as we don't want the plane to
bounce off pickups. Even though the collisions are disabled, the endContact method
will still be called and to collect the pickup we call the pickIt function. One of the
changes in addPickup is the way we detect whether the new pickup will overlap a
pillar. We use a QueryAABB method of the world instance, which finds out
any overlapping fixtures based on the provided rectangular area. Refer to the
following code:

testPoint.x=box2dCam.position.x+4.2f;
testPoint.y=(float)(80+Math.random()*320)/BOX2D_TO_CAMERA;

hitBody = null;
world.QueryAABB(callback, testPoint.x - 1.9f, testPoint.y - 1.9f,
testPoint.x + 1.9f, testPoint.y + 1.9f);

if (hitBody != null) {
 return false;
}

The QueryAABB method is actually used to select items using touch or a mouse, but
serves our purpose just as well. Refer to the following code:

Vector3 testPoint = new Vector3();
 QueryCallback callback = new QueryCallback() {
 @Override
 public boolean reportFixture (Fixture fixture) {
 if (fixture.testPoint(testPoint.x, testPoint.y)) {
 hitBody = fixture.getBody();
 return false;
 } else
 return true;
 }
 };

Physics with Box2D

[130]

The final output can be seen in the following screenshot:

Please go through the code to get the complete picture of the implementation. Note
that this is not as polished as our original game, but is a good start nonetheless. You
may struggle with the various values used while converting units for rendering.
Most of those values would be the size of the textures either used directly or
converted to Box2D units. Also, do not forget to disable debug rendering
when releasing your game.

Summary
Box2D is an immensely capable library and can be used to implement very
complex physics simulations. In this chapter, we had an overview of Box2D
and discussed the different rigid bodies. We also converted our game to use
Box2D physics for gameplay mechanics. We successfully rendered the Box2D
world using Box2DdebugRenderer. The importance of fixing our time step was
also explained. You also learned to use ContactListener to detect collisions and
how to disable collisions using the preSolve method.

In the next chapter, we will explore the third dimension with LibGDX 3D and learn
to use bullet physics.

The Amazing World of 3D
What would be better than a 2D game? A 3D game of course! LibGDX is famous
for its 2D capabilities, but it also packs an arsenal of 3D features. Creating simple
3D games is easy using LibGDX, but creating a feature-rich 3D game can be a very
complex process. We do not need help with writing game logic as it remains the
same, but I will be explaining the concepts of 3D in this chapter. In this chapter,
we will explore LibGDX 3D and cover the following topics:

•	 Exploring 3D in LibGDX
•	 Introducing the PerspectiveCamera, Environment, ModelBatch, Model,

and ModelInstance classes
•	 Creating and rendering 3D primitives
•	 Loading 3D models
•	 Using the fbx-conv application to convert to the .g3db or .g3dj formats
•	 Loading and rendering animated 3D models
•	 Animating via code
•	 Interacting with 3D objects
•	 Creating 3D particle effects using Flame
•	 Learning bullet physics

I would like you to try to convert our game to 3D after learning the concepts in this
chapter and combining that with the game logic from previous chapters. The source
files for this chapter and the 3D files can be found in the chapter7.zip file provided
along with the book.

The Amazing World of 3D

[132]

Introducing the third dimension
Before we start exploring 3D features of LibGDX, let's learn some basics of 3D and
how 3D content can be created. The difference between 2D and 3D is the addition of
a new axis—the z axis. We are familiar with this newcomer after using the Vector3
class. The z axis adds depth to the scene in addition to width and height, and it can
be considered perpendicular to the screen.

Creating 3D content
This may not be something a programmer will be doing, but it is always good to
know how to create basic 3D content. There are many applications out there that can
help us create 3D content, but one name that stands apart is Blender. Blender is an
incredible tool to create, texture, rig, animate, and composite 3D content. As a matter
of fact, it even has its own game engine that runs on Python. The icing on the cake
is that this incredibly powerful application is free. The UI of Blender is shown in the
following screenshot:

You can download Blender from www.blender.org.

www.blender.org

Chapter 7

[133]

Although Blender can seem very intimidating to start with, download it and try
to learn more about it. While creating your content in Blender, remember the
following points:

•	 Do not create any more vertices than absolutely necessary (low poly modeling)
•	 Triangulate your mesh
•	 Create your models in the right size
•	 Recalculate normals outside once you finish modeling
•	 Apply textures to the faces using UV unwrapping or multiface texturing
•	 Use Power of Two (POT) textures (for example, 64 x 64, 128 x 512, and so on)
•	 The animation key frame interpolation should be linear
•	 Bake all animations into vertex animations
•	 Export only the required models in the FBX format

We can also export in the .obj format, but the .obj loader in LibGDX is experimental.
Depending on the modeling tool you use, there can be many issues, including flipped
axes, flipped normals, missing textures, missing animations, and so on. You will need
to work closely with the 3D artist to come up with a schema that works perfectly.

The PerspectiveCamera class
In order to perceive the depth, we need to use a different kind of camera—the
PerspectiveCamera class. A perspective camera is set up as follows:

 camera = new PerspectiveCamera(70, Gdx.graphics.getWidth(), Gdx.
graphics.getHeight());
 camera.position.set(0f, 4f, 3f);
 camera.lookAt(0, 0, 0);
 camera.near = 0.1f;
 camera.far = 300f;
 camera.update();

The PerspectiveCamera class takes in the field of view and size of the area as
parameters and has a convenient lookAt method to point towards the correct
direction. Only items within the near and far attributes will be rendered by
the camera.

The Amazing World of 3D

[134]

Converting 3D files to G3DB
LibGDX supports a .g3db file format, which is an optimized binary file format
that works with LibGDX efficiently. We can convert the .obj or .fbx formats to
.g3db using the fbx-conv application that is available at https://github.com/
libgdx/fbx-conv. The binary can be downloaded directly from http://libgdx.
badlogicgames.com/fbx-conv/. We need to run the application via the command
line as follows:

•	 For Windows, use the following command:

fbx-conv-win32.exe [options] <input> [<output>]

•	 For Linux, use the following command:

fbx-conv-lin64 [options] <input> [<output>]

•	 For Mac, use the following command:

fbx-conv-mac [options] <input> [<output>]

I have provided the planeanim1.fbx file that you can try to convert. It has the
animated plane 3D mesh:

fbx-conv-mac -f planeanim1.fbx

LibGDX also supports a JSON-based format, .g3dj. This format can be used for
debugging purposes, as we can open it up using any text editor to explore the details:

fbx-conv-mac -f -o G3DJ planeanim1.fbx

Playing with primitives
3D content is created or loaded into LibGDX as a Model class instance. The Model
class has the mesh, texture, and animation data in the form of nodes arranged in a
hierarchy. A Model class is rendered by creating a ModelInstance class. Let's create
a new project or a new package within our existing project to play with 3D. I am
using com.csharks.thrustcopter.thirdDimension.Sample3D for 3D experiments.
We can create many 3D primitives in LibGDX, for example, a box, sphere, cone,
cylinder, capsule, and arrow. To create a Model class in code, we will need the help
of the ModelBuilder class. The following code creates a box of size (1,1,1):

ModelBuilder modelBuilder = new ModelBuilder();
Model model = modelBuilder.createBox(1f, 1f, 1f,
 new Material(ColorAttribute.createDiffuse(Color.GREEN)),
 Usage.Position | Usage.Normal);
ModelInstance instance=new ModelInstance(model);

https://github.com/libgdx/fbx-conv
https://github.com/libgdx/fbx-conv
http://libgdx.badlogicgames.com/fbx-conv/
http://libgdx.badlogicgames.com/fbx-conv/

Chapter 7

[135]

We assign a Material instance with a diffuse ColorAttribute instance of green.
The Material class describes how the model should be rendered and provides
attributes to the shader. The ModelBuilder class has other convenient methods such
as createCylinder, createSphere, createArrow, createCone, and createCapsule
that are evident. The Usage.Position attribute defines the position of our primitive
and the Usage.Normal attribute defines normals so that lights can be effectively
applied. Remember that all models should be disposed after use.

Rendering the ModelInstance classes
Remember how we used SpriteBatch to efficiently render our 2D content? We will
use its 3D cousin ModelBatch to render the 3D ModelInstance classes. Their usage
is very similar:

modelBatch = new ModelBatch(new DefaultShaderProvider());
...
public void render(float delta) {
 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(),
 Gdx.graphics.getHeight());
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT |
 GL20.GL_DEPTH_BUFFER_BIT);
 Gdx.gl.glClearColor(0.13f, 0.13f, 0.13f, 1);
 modelBatch.begin(camera);
 modelBatch.render(instance);
 modelBatch.end();
 super.render(delta);
}

When the class is rendered, you will find that there is no shading applied and
everything looks plain, as shown in the following screenshot:

The Amazing World of 3D

[136]

We need to add an environment consisting of the DirectionalLight and
AmbientLight classes so that the proper shading is applied and the content looks
more 3D than 2D:

environment = new Environment();
environment.set(new ColorAttribute(ColorAttribute.AmbientLight,
0.4f, 0.4f, 0.4f, 1f));
environment.add(new DirectionalLight().set(0.8f, 0.8f, 0.8f, -
0.8f, 0.3f, -1f));

In the render method, insert the following line of code:

modelBatch.render(instance, environment);

The DirectionalLight class takes a color and direction as parameters. In order to
explore the 3D world, we can take the help of CameraInputController that enables
us to touch and drag objects in the 3D world:

 cameraController = new CameraInputController(camera);
 Gdx.input.setInputProcessor(cameraController);

In the render method, insert the following line of code:

cameraController.update();

Check out the Sample3D source file to see the code in action:

Chapter 7

[137]

Loading 3D models
We can use AssetManager to load the .g3db or .g3dj files using the following code:

game.manager.load("planeanim1.g3db", Model.class);
game.manager.finishLoading();
Model model = game.manager.get("planeanim1.g3db", Model.class);
ModelInstance plane = new ModelInstance(model);
plane.transform.setToTranslation(0, 0, -1f);

To position the plane, we use the setToTranslation method of the
ModelInstance transform.

Playing animations
Our plane's 3D model has an animation where the front propeller rotates. Each
animation is identified by a name or ID. When in doubt, we can open up the .g3dj
file to check the name in the animation section at the bottom of the file. For the plane,
the animation name is Scene, which is something Blender applied automatically. We
will use AnimationController to play animations:

controller = new AnimationController(plane);
controller.setAnimation("Scene",-1);

In the render method, insert the following line of code:

controller.update(delta);

Providing a value of -1 in the setAnimation method gets the animation to loop
infinitely, which is the case with our propeller animation. When we need to do
something after an animation is played, we will use an AnimationListener
event as follows:

controller.setAnimation("Scene",2, new AnimationListener() {
 @Override
 public void onLoop(AnimationDesc animation) {
 }
 @Override
 public void onEnd(AnimationDesc animation) {
 }
});

We can play animations one after the other using queuing:

controller.queue(id, loopCount, speed, listener, transitionTime);

The Amazing World of 3D

[138]

Animations can be blended together over a time for a smooth transition using the
animate method:

controller.animate(id, transitionTime)

To move, scale, or rotate a ModelInstance class with code, we just need to set its
transform matrix values in the render method. We can use the setToTranslation,
setToRotation, setToScaling, rotate, scale, and translate methods for this
purpose. Check out the Sample3D source file to see the code in action and the
screenshot can be seen as follows:

Interacting with 3D objects
Let's discuss how to select 3D objects present in a scene. We will add 10 planes to the
scene, store them in an array named instances, and select any of them by tapping.
The selected plane will be set to rotate until another selection is made. We will add
an InputAdapter class's instance named myAdapter and wire it to accept inputs via
an InputMultiplexer interface, as we also need our cameraController instance to
receive inputs. The code is as follows:

InputAdapter myAdapter=new InputAdapter(){
 @Override
 public boolean touchDown (int screenX, int screenY, int pointer, int
button) {
 selecting = getObject(screenX, screenY);
 return selecting >= 0;

Chapter 7

[139]

 }
 @Override
 public boolean touchDragged (int screenX, int screenY, int pointer)
{
 return selecting >= 0;
 }
 @Override
 public boolean touchUp (int screenX, int screenY, int pointer, int
button) {
 if (selecting >= 0) {
 if (selecting == getObject(screenX, screenY))
 setSelected(selecting);
 selecting = -1;
 return true;
 }
 return false;
 }
};
Gdx.input.setInputProcessor(new InputMultiplexer(myAdapter,
cameraController));

The getObject function is where the action happens and we use ray picking to select
the 3D content that intersects with the ray. We also choose the object that is closest to
the camera as follows, as many objects may fall in the line of sight of the ray:

public int getObject (int screenX, int screenY) {
 Ray ray = camera.getPickRay(screenX, screenY);
 int result = -1;
 float distance = -1;
 for (int i = 0; i < instances.size; ++i) {
 final ModelInstance instance = instances.get(i);
 instance.transform.getTranslation(position);
 position.add(center);
 float dist2 = ray.origin.dst2(position);
 if (distance >= 0f && dist2 > distance) continue;
 if (Intersector.intersectRaySphere(ray, position, radius, null)) {
 result = i;
 distance = dist2;
 }
 }
 return result;
}

The Amazing World of 3D

[140]

The Intersector helper class also has methods to look for an intersection with a
bounding box (intersectRayBoundsFast), but we are looking for a sphere around
our plane. The radius of the sphere is calculated to contain the maximum width of
the bounding box even when our plane is rotated. The bounding box, the bounding
box center, and the radius of the bounding sphere are calculated as follows:

plane.calculateBoundingBox(bounds);
center.set(bounds.getCenter());
dimensions.set(bounds.getDimensions());
radius = dimensions.len() / 2f;

Check out the Interaction3D source file for this experiment, as shown in the
following screenshot:

Most of the 3D experiments in LibGDX and their explanations
are done by Xoppa. Do check out the blog at http://blog.
xoppa.com/.

3D frustum culling in LibGDX
In a complex 3D game, there can be many objects that need to be added to the scene.
3D operations are very resource-hungry and unless managed properly, this can affect
the performance of the game. Using frustum culling, we can easily limit the number
of items being rendered by the camera. We only need to render those objects that
fall within the field of view of the camera. By adding an isVisible function, we
can check each ModelInstance class before rendering. The code is as follows:

private boolean isVisible(ModelInstance instance) {
 instance.transform.getTranslation(position);

http://blog.xoppa.com/
http://blog.xoppa.com/

Chapter 7

[141]

 return camera.frustum.pointInFrustum(position);
}

This checks whether the center of the 3D object falls within the camera frustum, but
this can be inaccurate for objects with volume. Alternatively, we can check against
the bounding box of the 3D object as shown in the following code:

position.add(center);
return camera.frustum.boundsInFrustum(position, dimensions);

Such a calculation can again return wrong values if we rotate the object, as the
bounding boxes are not rotated. In such cases, it is safe to look for the bounding
sphere. The code is as follows:

return camera.frustum.sphereInFrustum(position, radius);

3D particles with Flame
Remember the 2D particle editor? 2D particles are not suited for 3D, as they fail when
dealing with perspective and depth. Hence, we have their 3D big brother along with
a GUI editor named Flame. Flame can be run from the gdx-tools project. Explaining
the editor is out of scope of this book, but I am sure that from your experience with
the LibGDX particle editor you will definitely figure it out. Make sure you are using
LibGDX Version 1.3.0 or later for this feature, as shown in the following screenshot:

The Amazing World of 3D

[142]

I created the trailing smoke particle effect and saved it in a file named Smoke3D. We
need to copy the trailing smoke particle effect and the pre_particle.png file to our
assets folder before adding the smoke to our plane. Make sure that you import the
right package, as many names are the same for the 2D and 3D particle classes. The
code is as follows:

particleSystem = ParticleSystem.get();
PointSpriteParticleBatch pointSpriteBatch = new
PointSpriteParticleBatch();
pointSpriteBatch.setCamera(camera);
particleSystem.add(pointSpriteBatch);

ParticleEffectLoader.ParticleEffectLoadParameter loadParam = new
ParticleEffectLoader.ParticleEffectLoadParameter(particleSystem.
getBatches());
ParticleEffectLoader loader = new ParticleEffectLoader(new
InternalFileHandleResolver());
game.manager.setLoader(ParticleEffect.class, loader);
game.manager.load("Smoke3D", ParticleEffect.class, loadParam);
game.manager.finishLoading();

ParticleEffect originalEffect = game.manager.get("Smoke3D");
effect = originalEffect.copy();
effect.init();
effect.start();
particleSystem.add(effect);

Creating the 3D particle effect requires a lot of work. We are creating separate
batches to handle these particles as we need to get maximum performance. The
effect needs to be copied and cannot be used directly. To render the effect, use the
following code:

particleSystem.update();
particleSystem.begin();
particleSystem.draw();
particleSystem.end();
modelBatch.render(particleSystem);

Chapter 7

[143]

Check out the source file for this experiment, SmokingPlane and the screenshot can
be seen as follows:

Using bullet physics
The Bullet class is a 3D collision detection and physics library that is similar to
Box2D (http://bulletphysics.org/mediawiki-1.5.8/index.php/Main_Page).
LibGDX has a wrapper for Bullet, but it has a steep learning curve due to the
JavaCPP bridge. Please check out the official Bullet manual at https://github.
com/erwincoumans/bullet2/blob/master/Bullet_User_Manual.pdf?raw=true.
The Bullet package is an extension and needs to be added manually. Follow the
same process that you followed for Box2D with the following details, and refresh
the Gradle dependencies.

Core dependency:

compile "com.badlogicgames.gdx:gdx-bullet:$gdxVersion"

Desktop dependency:

compile "com.badlogicgames.gdx:gdx-bullet-platform:
$gdxVersion:natives-desktop"

http://bulletphysics.org/mediawiki-1.5.8/index.php/Main_Page
https://github.com/erwincoumans/bullet2/blob/master/Bullet_User_Manual.pdf?raw=true
https://github.com/erwincoumans/bullet2/blob/master/Bullet_User_Manual.pdf?raw=true

The Amazing World of 3D

[144]

Android dependency:

compile "com.badlogicgames.gdx:gdx-bullet:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-bullet-platform:
$gdxVersion:natives-armeabi"
natives "com.badlogicgames.gdx:gdx-bullet-platform:
$gdxVersion:natives-armeabi-v7a"
natives "com.badlogicgames.gdx:gdx-bullet-platform:
$gdxVersion:natives-x86"

iOS dependency:

compile "com.badlogicgames.gdx:gdx-bullet:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-bullet-platform:
$gdxVersion:natives-ios"

There is no HTML dependency as Bullet is not yet compatible with the HTML
build. I will try to introduce the core functionality of Bullet, which is within the
scope of our book. There are LibGDX books out there that cover Bullet in much
more detail, but that is for expert developers.

Check out Xoppa's blog on adding bullet physics for more details at
http://blog.xoppa.com/using-the-libgdx-3d-physics-
bullet-wrapper-part1/.

Creating the bullet world
Most of the steps required to set up rigid body collisions in Bullet is similar to
the steps in Box2D, but it has a few additional steps as we are dealing with an
additional dimension—3D physics calculations are much more complex. We need
to start Bullet with Bullet.init before we initialize any of the related variables.
Creating the bullet world requires four variables. We need a collision configuration
to configure the bullet collision detection, a collision dispatcher to handle near phase
collision detection, a broad phase detection helper, and a constraint solver that deals
with connected bodies, as shown in the following code:

Bullet.init();
collisionConfiguration = new btDefaultCollisionConfiguration();
dispatcher = new btCollisionDispatcher(collisionConfiguration);
broadphase = new btDbvtBroadphase();
solver = new btSequentialImpulseConstraintSolver();
world = new btDiscreteDynamicsWorld(dispatcher, broadphase,
solver, collisionConfiguration);
world.setGravity(new Vector3(0, -9.81f, 1f));

http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part1/
http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part1/

Chapter 7

[145]

In the preceding code, we are only using the default values for simplicity, but
remember to dispose them.

Adding rigid bodies
The Bullet class has rigid body dynamics as well as soft body dynamics. As in
Box2D, we have three kinds of rigid bodies—static, dynamic, and kinematic. We
create a static or kinematic rigid body by providing a mass equal to zero. Dynamic
rigid bodies require a MotionState class that optimizes physics calculations using
call callbacks when a change happens. All rigid bodies require a collision shape
relevant to the shape of the object. There are many types of collision shapes, such
as box, sphere, cone, cylinder, capsule, and so on. The following code creates a
primitive 3D box and adds a box-shaped rigid body to the Bullet world:

Model box = modelBuilder.createBox(1f, 1f, 1f, new
Material(ColorAttribute.createDiffuse(Color.BLUE)), Usage.Position |
Usage.Normal);
ModelInstance boxInstance=new ModelInstance(box);
btDefaultMotionState motionState = new btDefaultMotionState
(boxInstance.transform);
motionState.setWorldTransform(boxInstance.transform.trn(0, 0, 0));
btCollisionShape boxshape = new btBoxShape(new Vector3(0.5f, 0.5f,
0.5f));
btRigidBody boxbody = new btRigidBody(1, motionState, boxshape);
world.addRigidBody(boxbody);

We have assigned a mass of 1 kg to our box. We need to step the physics simulation
as we did in the case of Box2D. Hence, we call the following line of code in the
render method:

world.stepSimulation(Gdx.graphics.getDeltaTime(), 5);

Once the physics is calculated, we need to synchronize the motionState instance
with the ModelInstance transform using the following code:

motionState.getWorldTransform(boxInstance.transform);

To simulate more accurate collisions, we may need to create collision shapes
that are very similar to our 3D mesh. Check out the source file to see how the
convexHullShape instance is used for our plane in the twin stacks experiment file
named BulletSample. We apply an impulse to the plane to make it fly using the
following code:

planebody.applyCentralImpulse(new Vector3(0,0,-65));

Please do remember to dispose everything you create, since Bullet is C code, which
doesn't get help from a garbage collector.

The Amazing World of 3D

[146]

Collision detection
To detect collisions, we need to extend ContactListener and override the relevant
function. We can store and compare the userData values to detect which object has
collided, as we did in Box2D:

public static class MyContactListener extends ContactListener {
 @Override
 public void onContactStarted (btCollisionObject colObj0,
btCollisionObject colObj1) {
 if(colObj0.userData=="plane" || colObj1.userData=="plane"){
 Gdx.app.log("ContactCallback", "Plane Collides");
 }
 }
}
contactListener = new MyContactListener();

Adding shadows
Shadows play a very important role in 3D simulations, as they add depth and
realism. The implementation of shadows in LibGDX is experimental and may still be
evolving, but it is very easy to add. We need a DirectionalShadowLight class and
an additional ModelBatch class to add shadows as follows:

shadowLight = new DirectionalShadowLight(1024, 1024, 60, 60, 1f, 300);
shadowLight.set(0.8f, 0.8f, 0.8f, -1f, -.8f, -.2f);
environment.add(shadowLight);
environment.shadowMap = shadowLight;
shadowBatch = new ModelBatch(new DepthShaderProvider());

In the render method, we need to draw the shadow before we draw the model
instances using the following code:

shadowLight.begin(Vector3.Zero, camera.direction);
shadowBatch.begin(shadowLight.getCamera());
shadowBatch.render(instances);
shadowBatch.end();
shadowLight.end();

Chapter 7

[147]

Check out the previous shared code where our plane crashes with two sets of stacked
boxes. This is shown in the following screenshot:

We have just touched the tip of the iceberg with Bullet, but it is so powerful that
even now many Hollywood movies use it for special effects.

Summary
This surely was one of the toughest chapters in this book, but it is most rewarding
once you start using what you learned to implement the 3D functionalities. You
learned how to create 3D primitives and load 3D models. We used the fbx-conv
application to convert 3D models to the LibGDX-friendly .g3db format. You also
learned about ModelBatch, PerspectiveCamera, Environment, and ModelInstance
classes. Then, you learned about the 3D particle effects editor, Flame. Finally, you
learned about bullet physics and created a simple rigid body dynamics simulation.

In the next chapter, you will learn to load TMX tile maps and implement
data persistence.

Saving Our Data
Our game requires handling of data between the different play sessions. For
example, we will need to save the scores and calculate a high-score list based on
all the games played. We will also need to compare a new score with the old ones
and save the high scores in the high-score list for future display. Similarly, we will
also need to save the value of the sound volume and check whether we have set our
game's volume to mute. In this chapter, we will explore the different ways in which
we persist data, covering the following topics in the process:

•	 Exploring Preferences in LibGDX
•	 Using Preferences to save and load the sound status and sound volume
•	 Learning to access files in the internal, local, and external storage
•	 Saving local high scores
•	 Creating a new scene to display the leaderboard
•	 Creating tile map-based levels using the TMX tile map parser
•	 Using the Tiled tool to create a tile-based level map

We will not make any changes to the game logic in this chapter. Also, we will not use
the Box2D-based game logic to proceed further. The source files for this chapter can
be found in the chapter8.zip file provided along with the book.

Persisting game preferences
The easiest way to save and load persisting data is to use Preferences. This can
be used when the data to be saved is small, for example, a few different variables,
due to size limitations for this mode. On desktops, Preferences are written onto
an XML file saved in the home directory with the name specified while creating the
Preferences file. On Android, it is saved as SharedPreferences, while on iOS an
NSMutableDictionary class is written to file. We can have multiple Preferences
files saved under different names.

Saving Our Data

[150]

The Preferences class is the only way to have persisting data while running on the
browser, as the browser cannot get file access due to security reasons.

In order to access a saved Preferences value we can use the following code like it is
used in ThrustCopter.java class:

 protected Preferences getPrefs()
 {
 if(preferences==null){
 preferences = Gdx.app.getPreferences("ThrustCopter");
 }
 if(preferences==null){
 System.out.println("null preferences");
 }
 return preferences;
 }

We can save boolean, int, float, long, string, and map via preferences.

Saving and loading sound preferences
We need to persist two of the variables related to handling sound in our game—
soundEnabled and soundVolume. We will make use of some new functions in the
ThrustCopter class to do this:

 public void saveSoundStatus(){
 getPrefs().putBoolean("soundstatus", soundEnabled);
 }
 public boolean loadSoundStatus(){
 return getPrefs().getBoolean("soundstatus",true);
 }
 public void saveSoundVolume(){
 getPrefs().putFloat("soundvolume", soundVolume);
 }
 public float loadSoundVolume(){
 return getPrefs().getFloat("soundvolume",1.0f);
 }
 public void flushPref(){
 getPrefs().flush();
 }
 public void saveAll(){
 System.out.println("saving preferences");
 saveSoundVolume();
 saveSoundStatus();
 flushPref();
 }

Chapter 8

[151]

The Boolean value soundEnabled is saved using the putBoolean method and loaded
using the getBoolean method. Similarly, the float equivalent of these methods are
used for a float value soundVolume. Once the values for preferences are set via the
corresponding put method, we need to call the flush method to save it to the device
memory. In the create method of the ThrustCopter class, we use the following
code to get the saved values of these variables:

 soundEnabled=loadSoundStatus();
 soundVolume=loadSoundVolume();

The get methods do have the provision to provide default values if there are no
preferences saved. For soundVolume, we provide a default value of 1.0f and
soundEnabled is TRUE by default. When we access the sound options from the
menu, we will be altering these values. Hence, we need to save the altered values
while exiting the sound options display by using the following code:

 game.saveAll();

This way, the next time we run our game, we will get the same sound status and
sound volume that we had set earlier. Generally, Preferences are enough for our
game's purpose, but we will need other alternatives for complex games.

Implementing a local leaderboard
A leaderboard shows a list of finite number of high scores of our game. A local
leaderboard is limited to the device on which the game runs; hence, it lists only the
scores achieved on that device. For such a system, we need to save the finite number
of scores and compare any new score with them to decide whether to store the new
score as part of the leaderboard. We may as well use Preferences for this, but I
want to demonstrate how we can read and write files in LibGDX.

Filesystems and access permissions
LibGDX is cross-platform and has to deal with all kinds of filesystems across
the different devices. On desktops, there are usually no restrictions on reading
or writing files. For the web platform, file access is extremely restricted. The iOS
platform behaves almost the same as the desktop platform, with access to internal,
external, absolute and local file types. For Android, files can be saved within the
APK file that has read-only permission. These files are exclusive to the application
and other applications cannot access them. An Android application also has access
to the internal storage that is exclusive to that particular application. Internal storage
is a portion of the internal memory that is dedicated to the application where we
have read and write access.

Saving Our Data

[152]

An Android application also has access to external storage that is not exclusive to
the application. We have read and write permissions for external files, but these
files can be accessed by other applications as well. Also, the external storage access
requires explicit permissions that are set in the AndroidManifest file. It is not safe to
save data in the external storage, as the user can always remove the external storage
memory card, thereby denying access to those files.

Therefore, it is always better to check for the availability of the storage type via
code before we actually read or write data to them. The following code checks the
availability of the external storage:

Gdx.files.isExternalStorageAvailable();

Note that file access is prone to throw runtime exceptions as the file may not be
present, or SD card may be removed, and so on.

We can check for the existence of the file using the following code:

Gdx.files.external("mydata.txt").exists();

Reading and writing files
We can read any file type if we know the access path by using a FileHandle class.
The following code reads the mydata.txt file placed in the assets folder of our
Android project. Such a file is packaged along with the APK and is therefore internal.
Refer to the following code:

FileHandle file = Gdx.files.internal("mydata.txt");
String text = file.readString();

We cannot write to the internal storage, but we can write to external, local,
and absolute storage. Writing a string to a file is easy, and it is shown in the
following code:

FileHandle file = Gdx.files.local("mydata.txt");
file.writeString("some new data", false);

While writing the code, we can specify whether to append to an existing file or to
completely overwrite the content. Usually, we need to save some sensitive data into
files, which means we do not want anyone to access these files and alter the contents.
In order to secure files, we can try encrypting files to make them harder to be read. The
easiest way to encode is to use the Base64Coder class. Refer to the following code:

Base64Coder.encodeString(textcontent);

Chapter 8

[153]

Use the following code to decode the content after reading from the file:

Base64Coder.decodeString(filestring);

Please be aware that encoding may not essentially make the files safe and secure,
as any encoding is decodable. An encoded text will seem gibberish to anyone who
accesses it. However, be aware that this is a standard encoding method; hence, we
have a standard decoding method that can be employed to get correct data.

The leaderboard
Let's implement a local leaderboard for our Thrust Copter game. We will save 10
high scores into a .json file. For this purpose, we will create a new class called
SaveManager that can be used to save any data on any of our future game projects
as well. Data is logically stored within a Save class in an ObjectMap as key-object
pairs so that any class can be saved as follows:

public static class Save{
 public ObjectMap<String, Object> data = new ObjectMap<String,
Object>();
}

We save the data as a local .json file in the bin folder with the name scores.json
using the following code:

private FileHandle file = Gdx.files.local("bin/scores.json");

The .json file is loaded and saved via the following methods, and we use
Base64Coder to encode and decode the file:

private Save getSave(){
 Save save = new Save();
 if(file.exists()){
 Json json = new Json();
 if(encoded)save = json.fromJson(Save.class, Base64Coder.
decodeString(file.readString()));
 else save = json.fromJson(Save.class,file.readString());
 }
 return save;
}

public void saveToJson(){

Saving Our Data

[154]

 Json json = new Json();
 json.setOutputType(OutputType.json);
 if(encoded) file.writeString(Base64Coder.encodeString(json.
prettyPrint(save)), false);
 else file.writeString(json.prettyPrint(save), false);
}

In order to access individual data from the ObjectMap class, we have specific
methods:

public <T> T loadDataValue(String key, Class type){
 if(save.data.containsKey(key))return (T) save.data.get(key);
 else return null;
}
public void saveDataValue(String key, Object object){
 save.data.put(key, object);
 saveToJson();
}

Generics enables us to read any data type. When specific data is read, we need
to check it for a null value, which is a value that is returned when the data is not
found. When the game runs for the first time, we need to store the value for all the
10 scores. This is done by the prepareLocalScores function in the ThrustCopter
class. We save the scores using the keys Score1, Score2, and so on up to Score10.
We check to see whether one of the score values is null, which indicates that we
are running the game for the first time. In such a case, we store 0 as value for all
10 scores as follows:

private void prepareLocalScores() {
 saveManager=new SaveManager(true);
 if(saveManager.loadDataValue("Score1", int.class)==null){
 for(int i=1;i<=10;i++){
 saveManager.saveDataValue("Score"+i, 0);
 }
 }
}

Saving and displaying scores
We have a new LeaderboardScene class to display the leaderboard when it is
accessed via the LEADERBOARD button in the menu. This class uses Scene2D to
create labels to list all the stored score values, as shown in the following screenshot:

Chapter 8

[155]

There is nothing special in the LeaderboardScene class other than the listing of all
the stored score values. The code is as follows:

Label score;
for(int i=1;i<=10;i++){
 score=new Label(i+". "+ game.saveManager.loadDataValue("Score"+i,
int.class), skin);
 table.add(score).padBottom(2).align(Align.left);
 table.row();
}

To save a score, we will call the checkAndStoreScore function from the endGame
function within the ThrustCopterScene class. The checkAndStoreScore method
checks whether the current score is higher than the lowest score saved in the
leaderboard, and then it inserts the score in the correct position. The code is as follows:

private void checkAndStoreScore() {
 int finalScore=(int)(starCount+score);
 int lowestScore=game.saveManager.loadDataValue("Score10", int.
class);
 if(finalScore>lowestScore){
 int[] scores = new int[10];
 for(int i=1;i<=10;i++){

Saving Our Data

[156]

 scores[i-1]=game.saveManager.loadDataValue("Score"+i,
int.class);
 }
 scores[9]=finalScore;
 for(int i=9;i>0;i--){
 if(scores[i]>scores[i-1]){
 finalScore=scores[i-1];
 scores[i-1]=scores[i];
 scores[i]=finalScore;
 }else{
 break;
 }
 }
 Gdx.app.log("info", "saving new score");
 for(int i=1;i<=10;i++){
 game.saveManager.saveDataValue("Score"+i, scores[i-1]);
 }
 }
}

You can find the scores.json file in the bin folder of
your desktop project.

Tile-based level design
Let's learn something that is not related to our game. Some kinds of games can be
easily implemented using a tile-based approach, for example, 2D platformers,
top-down scrollers, side scrollers, hexagonal tile games, and isometric games.
In these games, the levels are often created using grids of graphic blocks called
tiles. Let's learn how to create such a level and load it into LibGDX.

Using Tiled
Tiled is a free application that can be used to create tile-based levels, and it can be
downloaded from www.mapeditor.org. Tiled allows us to design levels easily using
just a few mouse clicks. First, we need to create a new map by specifying the tile
height, tile width, rows, and columns that is shown in the following screenshot:

www.mapeditor.org

Chapter 8

[157]

We will use the tilesheet named tiles70x70_spritesheet.png, which is provided
in the source and has tiles of 72 x 72 pixels. In order to fill our screen, which is of the
size 800 x 480 pixels, we will need 12 columns and 7 rows of tiles. Once we have the
blank map, we need to add a new Tileset, as shown in the following screenshot:

Saving Our Data

[158]

We provide a name to the Tileset, provide the height and width details of the tiles,
and select the tilesheet. Then, we can see each individual tiles within the Tiled
window. We can select individual tiles and draw on the map to place tiles, as
shown in the following screenshot:

We can add multiple tile layers to make everything look right. For example, we will
need to set some Base tiles to fill the whole map as the base layer. Then, we can have
a Platforms layer where we can place all our platforms. Then, we can have a Props
layer where we can place the props and specific items. Layers can be also be used for
collision detection, Box2D, or other special info. Once you have designed your level,
it can be saved as a .tmx file. The preceding screenshot shows how the platformer.
tmx level is created.

Loading TMX levels
To display the Tiled TMX levels, we need to copy the .tmx file along with the
tilesheet .png file into our assets folder. Then, we can use our asset manager to
load it as follows:

private TiledMap map;
private TiledMapRenderer renderer;

Chapter 8

[159]

...
game.manager.setLoader(TiledMap.class, new TmxMapLoader(new
InternalFileHandleResolver()));
game.manager.load("platformer.tmx", TiledMap.class);
game.manager.finishLoading();
map = game.manager.get("platformer.tmx");
renderer=new OrthogonalTiledMapRenderer(map);

Then in the render method add the following code:

game.camera.update();
renderer.setView(game.camera);
renderer.render();

Please have a look at the following screenshot:

There are some gaps in between the tiles in this case, which are due to the imperfect
packing of tiles in the tilesheet .png as I have used a free tilesheet that is available
at http://kenney.nl/. If you have a perfectly packed tilesheet, there won't be any
noticeable gaps. Once we have the TiledMap class, we can access individual layers
and individual cells using following code:

TiledMapTileLayer layer =
(TiledMapTileLayer)map.getLayers().get(0);

kenney.nl
http://kenney.nl/

Saving Our Data

[160]

Cell cell= layer.getCell(3, 5);

If the .tmx file is not encoded, then we can open it up in
a normal text editor such as Notepad.

Summary
In this chapter, you learned about persisting data and the usage of Tiled maps. You
learned how to create TMX tile maps using the Tiled tool. We loaded a TMX map
and successfully rendered it using OrthogonalTiledMapRenderer. You learned
how to use Preferences to save simple variables and used it to store our sound
status. We implemented a local leaderboard scene using local file access. We also
created a SaveManager class to load and save encrypted scores list into a .json file.
Encryption and decryption was done using the Base64Coder class.

In the next chapter, we will finish our game by adding the final touches and making
it ready for publishing.

Finishing Our Android Game
It's time to wrap up our primary project, our Android game. There are some very
important features that any game should have such as ways to monetize, global
leaderboards, game analytics, global achievements, and social integration. We will
explore different ways to accomplish these features and finalize our game for release.
In this chapter, we will explore the following topics:

•	 Interfacing platform-specific code
•	 AdMob (Google Mobile Ads) integration
•	 Google Analytics integration
•	 Leaderboard and achievements using Google Play services
•	 Flurry analytics, Swarm social integration, and other services
•	 Finalizing the Android project with icons and other details

We will not make any changes to the game logic in this chapter and the source files
for this chapter can be found in the chapter9.zip file provided along with the book.
Note that most of these services require unique IDs or secret keys that are specific to
your account.

Using Google's offerings
For all the additional features we mentioned previously, we have many third-party
offerings, and the most important ones will be introduced later in this chapter. Let's
first learn how to use all those features that Google has to offer. Google provides
AdMob (Google Mobile Ads) to display ads to monetize our game. Google Analytics
can be used to track basic app data. Google Play services can be used to implement
and track global leaderboards and achievements. Before we start implementing all of
these, we need to ensure the following points:

•	 Use the SDK manager to update to the latest Android SDK tools

Finishing Our Android Game

[162]

•	 Download and install Google Play services via the SDK manager

Interfacing platform-specific code
This chapter deals with an Android project, and much of what we will do will be
specific to that platform. We need a way to detect the currently running platform to
decide whether to invoke these features or not. Hence, we add a new public Boolean
variable, isAndroid, in the ThrustCopter class, which is false by default. We can
detect ApplicationType using the following code in the create method:

switch (Gdx.app.getType()) {
case Android:
 isAndroid=true;
break;
case Desktop:
break;
case WebGL:
break;
case iOS:
break;
default:
}

Now, we can check whether the game is running on an Android device using the
following code:

if(game.isAndroid){
...
}

From the core project, we need to call the Android main class to invoke Android-
specific code. We enable this using a new interface created in the core project:
IActivityRequestHandler. Then, we make sure our AndroidLauncher main class
implements this interface as follows:

public class AndroidLauncher extends AndroidApplication implements
IActivityRequestHandler{
...
initialize(new ThrustCopter(this), config);

Chapter 9

[163]

Note that we are passing this as a parameter to ThrustCopter, which provides a
reference to the implemented interface. As this is Android-specific, other platforms'
start classes can pass null as an argument, as we will only use this parameter on
the Android platform. In the ThrustCopter class, we save the reference with the
name handler, as shown in the following code:

public ThrustCopter(IActivityRequestHandler IARH) {
 handler=IARH;
...

Visit https://github.com/libgdx/libgdx/wiki/Interfacing-
with-platform-specific-code for more information.

Implementing Google Analytics tracking
The default implementation of Google Analytics will automatically provide the
following information about your app: the number of users and sessions, session
duration, operating systems, device models, and geography. To start off, we need to
create a Google Analytics property and app view. Go ahead and start using Google
Analytics by accessing it at https://www.google.com/analytics/web/?hl=en.
Create a new account and select Mobile app and fill in the details. Once all details
are entered, click on Get Tracking ID to generate a new tracking ID. The tracking ID
will be unique for each account.

The Google Analytics version may change in future, which means
the way they are integrated may also change. Check out the Google
developers portal for details at https://developers.google.
com/analytics/devguides/collection/android/v4/.

The AndroidManifest file needs to have the following permissions and the
minSdkVersion instance should be set to 9, as follows:

<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="23" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name=
"android.permission.ACCESS_NETWORK_STATE" />

https://github.com/libgdx/libgdx/wiki/Interfacing-with-platform-specific-code
https://github.com/libgdx/libgdx/wiki/Interfacing-with-platform-specific-code
https://www.google.com/analytics/web/?hl=en
https://developers.google.com/analytics/devguides/collection/android/v4/
https://developers.google.com/analytics/devguides/collection/android/v4/

Finishing Our Android Game

[164]

Have a look at the following Google Analytics registration form:

Copy the library project at <android-sdk>/extras/google/google_play_
services/libproject/google-play-services_lib/ to the location where you
maintain your Android app projects. Import the library project into your Eclipse
workspace. Click on File, select Import, select Android, click on Existing Android
Code Into Workspace, and browse to the copy of the library project to import it. This
step is important for all the Google-related services that we are about to integrate.
We need to refer to this library project from our Thrust Copter-android project.
Right-click on the Thrust Copter-android project and select Properties. Select the
Android section, which will display a blank Library section to the right. Click on
Add... to select our library project and add it as a reference.

Chapter 9

[165]

Adding tracker configuration files
We can provide configuration files to create Analytics trackers. Usually, we need only
one tracker, which is usually called the global tracker, to report the basic analytics data.
We add the global_tracker.xml file to the res/xml folder in the Android project.
Copy this file from the source provided. Update the ga_trackingId section with the
new tracking ID you got on creating your application entry on the Google Analytics
site. The screenName section consists of the different scenes that will be tracked. We
added the MenuScene and ThrustCopterScene classes to the screenName section. This
needs to be changed for each game as follows:

<screenName name="com.csharks.thrustcopter.ThrustCopterScene">Thrust
Copter Game</screenName>
 <screenName name="com.csharks.thrustcopter.MenuScene">Thrust
Copter Menu</screenName>

Once the tracker XML file is in place, add the following element to the Android
Manifest application part:

<meta-data
 android:name=
"com.google.android.gms.analytics.globalConfigResource"
 android:resource="@xml/global_tracker" />

We need to access the tracker and report activity start, stop, and scene changes. This
can be done using the following code in the AndroidLauncher class:

Tracker globalTracker;

Then, add the following code within the onCreate method:

 GoogleAnalytics analytics = GoogleAnalytics.getInstance(this);
 globalTracker=analytics.newTracker(R.xml.global_tracker);

Now, we will move on to reporting. We added a new function in the
IActivityRequestHandler interface called setTrackerScreenName(String
path), which needs to be implemented as well:

 @Override
 protected void onStart(){
 super.onStart();
 GoogleAnalytics.getInstance(this).reportActivityStart(this);
 }
 @Override
 public void onStop() {
 super.onStop();

Finishing Our Android Game

[166]

 GoogleAnalytics.getInstance(this).reportActivityStop(this);
 }
 @Override
 public void setTrackerScreenName(String path) {
 globalTracker.setScreenName(path);
 globalTracker.send(new HitBuilders.AppViewBuilder().build());
 }

We also need to report screen names as well when we switch scenes. We do this
within the constructors of MenuScene and ThrustCopterScene as follows:

if(game.isAndroid){
 game.handler.setTrackerScreenName("com.csharks.thrustcopter.
MenuScene");
}

It's time to test whether everything is working. Connect your Android device and
run our Android project on it. We can see that the analytics reporting is showing up
in logcat. Once we have significant data, we can access the Google Analytics Web
interface to analyze how the game is being played by the masses.

Adding Google Mobile Ads
Legacy AdMob is being renamed Google Mobile Ads, which is now linked with
Google AdSense. First, we need to set up AdMob to serve ads by visiting https://
www.google.com/ads/admob/index.html. Click on the Monetize section and use
the Add your app manually option to set up a new banner ad. This will allot a new
AdMob ad unit ID. The Ads API is also part of the Google Play services platform
that we have already integrated into our Android project. We have already added
as follows the necessary permissions to AndroidManifest, but we need to add the
following as well:

<!--This meta-data tag is required to use Google Play Services.-->
<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
 <!--Include the AdActivity configChanges and theme. -->
<activity android:name="com.google.android.gms.ads.AdActivity"
android:configChanges="keyboard|keyboardHidden|orientation|screen
Layout|uiMode|screenSize|smallestScreenSize"
android:theme="@android:style/Theme.Translucent" />

https://www.google.com/ads/admob/index.html
https://www.google.com/ads/admob/index.html

Chapter 9

[167]

AdMob needs its own view, whereas LibGDX creates its own view when initializing.
A typical way of coexisting will be our Game view in fullscreen with the Ad view
overlaid. We will use RelativeLayout to arrange both views. We need to replace
the initialize method with the initializeForView method, which lacks some
functionality; we need to specify those manually. The onCreate method of the
AndroidLauncher class has the following new code:

requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);
getWindow().clearFlags(WindowManager.LayoutParams.FLAG_FORCE_NOT_
FULLSCREEN);

RelativeLayout layout = new RelativeLayout(this);
View gameView = initializeForView(new ThrustCopter(this), config);
layout.addView(gameView);

// Add the AdMob view
RelativeLayout.LayoutParams adParams =
 new RelativeLayout.LayoutParams(RelativeLayout.LayoutParams.
WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT);
adParams.addRule(RelativeLayout.ALIGN_PARENT_TOP);
adParams.addRule(RelativeLayout.CENTER_HORIZONTAL);
adView = new AdView(this);
adView.setAdSize(AdSize.BANNER);
adView.setAdUnitId(AD_UNIT_ID);
startAdvertising();
layout.addView(adView, adParams);
setContentView(layout);

The startAdvertising function is as follows:

private void startAdvertising() {
 AdRequest adRequest = new AdRequest.Builder().build();
 adView.loadAd(adRequest);
}

The IActivityRequestHandler class has a new method, showAds(boolean show),
that toggles the visibility of the adView instance. The method is implemented
as follows:

@Override
public void showAds(boolean show) {
 handler.sendEmptyMessage(show ? SHOW_ADS : HIDE_ADS);
}

Finishing Our Android Game

[168]

Here, handler, which is used to access adView from the thread that created it, is
initialized as follows:

private final int SHOW_ADS = 1;
private final int HIDE_ADS = 0;

protected Handler handler = new Handler()
 {
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case SHOW_ADS:
 {
 adView.setVisibility(View.VISIBLE);
 break;
 }
 case HIDE_ADS:
 {
 adView.setVisibility(View.GONE);
 break;
 }
 }
 }
 };

For more information, visit https://github.com/libgdx/
libgdx/wiki/Admob-in-libgdx.

Alternatively, runOnUiThread can be used instead of the handleMessage method.
This is explained later in the Leaderboard and achievements using Google Play services
section. Now, we can show ads in the menu and hide it when we switch to the game,
as shown in the following screenshot:

https://github.com/libgdx/libgdx/wiki/Admob-in-libgdx
https://github.com/libgdx/libgdx/wiki/Admob-in-libgdx

Chapter 9

[169]

Leaderboards and achievements using
Google Play services
It's time to add a global leaderboard and achievements using Google Play services.
This will be done only for the Android project and we will keep the local leaderboard
system in place for other platforms. To integrate these, we need access to Google
Developer Console, which is only available to those who have a Google Developer
account. Please go ahead and sign up for one if you do not have one yet. You will
need it to publish your Android games to Google Play Store.

Enroll for a Google Developer account at http://developer.
android.com/distribute/googleplay/start.html. This
has a $25 fee.

http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/distribute/googleplay/start.html

Finishing Our Android Game

[170]

You can access the Developer console at https://play.google.com/apps/
publish/. This is where you publish a new app or add Google Play services to your
app. We need to create one leaderboard and five achievements for our game. Google
insists that we add five achievements in order to allow publishing the app. The use
of the Developer console to create leaderboards and achievements is well detailed
in the step-by-step guide at https://developers.google.com/games/services/
console/enabling. Once you create your app entry with a leaderboard and
achievements, you will get an app ID, leaderboard ID, and achievements IDs.

Please be aware that every external service integration step may change
when a new version is released. Here, integration of LibGDX Google
Play services is based on the tutorial found at http://fortheloss.
org/tutorial-set-up-google-services-with-libgdx/.

You will need to provide a package name while linking your app to create a client
ID. Note that our Android package will have a .android part as well. In our case,
the package name is com.csharks.thrustcopter.android. A client ID is to be
generated for debug.keystore as well as your release signing certificate. We already
have a debug.keystore file and will be creating a final signing certificate in the next
chapter. Do not forget to link it as well before publishing the game.

Linking BaseGameUtils
We have already wired up the google-play-services library project and
updated the Manifest file. In addition, we need some helper classes from the
sample project BaseGameUtils, which needs to be downloaded from https://
developers.google.com/games/services/downloads/#samples. Once the files
are extracted, a folder named android-basic-samples-master will be created
with the BasicSamples and Scripts folders. Google now supports Android Studio
by default, and hence the projects won't work with Eclipse directly. We need to
create Eclipse-compatible projects. Copy the make_eclipse_compat script file to the
folder containing the BasicSamples folder and run it to create a new folder named
eclipse_compat that has all the projects.

Import the libraries/BaseGameUtils project to Eclipse by going to File | Import
| Android | Existing Android Code Into Workspace. Copy the libraries/
BaseGameUtils project to your workspace while importing it, as you did with the
google-play-services library. Assign this project to a library project by going to
Properties | Android and selecting the isLibrary checkbox. We also need to link the
google-play-services library project to this project by going to Properties | Java
Build Path | Projects | Add and selecting that project. Our Android project needs to
link to this project as a library by navigating to Properties | Android and clicking on
Add in the Library section to add BaseGameUtils.

https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://developers.google.com/games/services/console/enabling
https://developers.google.com/games/services/console/enabling
http://fortheloss.org/tutorial-set-up-google-services-with-libgdx/
http://fortheloss.org/tutorial-set-up-google-services-with-libgdx/
https://developers.google.com/games/services/downloads/#samples
https://developers.google.com/games/services/downloads/#samples

Chapter 9

[171]

You may need to clean the BasegameUtils file to make errors go away. Create an
ids.xml file in the res/values folder within the Android project where we will
keep all our game-related IDs:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_id">your app id</string>
 <string name="leaderboard_id">your leaderboard id</string>
 <string name="achievement10_id">your achievement id 1</string>
 <string name="achievement20_id">your achievement id 2</string>
 <string name="achievement30_id">your achievement id 3</string>
 <string name="achievement40_id">your achievement id 4</string>
 <string name="achievement50_id">your achievement id 5</string>
</resources>

In the case of Thrust Copter, the achievements are collecting 10, 20, 30, 40, and 50
stars—hence the name. The Android Manifest file needs to know the app ID, for
which we add the following code inside the application tag:

<meta-data android:name="com.google.android.gms.games.APP_ID"
android:value="@string/app_id"/>
<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>

Wiring with code
We need to add new functions to our IActivityRequestHandler class and
implement them in the AndroidLauncher class to access the leaderboard and
achievements. The most important methods are as follows:

 public void login();
 public void logOut();
 public boolean isSignedIn();
 public void submitScore(int score);
 public void unlockAchievement(int stars);
 public void showScores();
 public void showAchievements();

The method names are self-explanatory. We will create an instance of the
GameHelper class from BaseGameUtils to facilitate communication with Google
Play services. The GameHelper instance needs to know about the life cycle of the app
and when the app responds to an Intent class. The AndroidLauncher class needs to
implement the GameHelperListener interface so that it can respond to events. Refer
to the following code:

public class AndroidLauncher extends AndroidApplication implements
IActivityRequestHandler, GameHelperListener{

Finishing Our Android Game

[172]

Then, add the following line of code in the onCreate method:

gameHelper=new GameHelper(this, GameHelper.CLIENT_GAMES);
gameHelper.enableDebugLog(true, "GPS");
gameHelper.setup(this);

The following code shows how we can implement the IActivityRequestHandler
functions using gameHelper:

 @Override
 protected void onStart(){
 ...
 gameHelper.onStart(this);
 }
 @Override
 public void onStop() {
 ...
 gameHelper.onStop();
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode,
Intent data)
 {
 super.onActivityResult(requestCode, resultCode, data);
 gameHelper.onActivityResult(requestCode, resultCode, data);
 }
 @Override
 public void login() {
 try
 {
 runOnUiThread(new Runnable()
 {
 //@Override
 public void run()
 {
 gameHelper.beginUserInitiatedSignIn();
 }
 });
 }
 catch (Exception e)
 {
 Gdx.app.log("ThrustCopter", "Log in failed: " + e.getMessage()
+ ".");
 }

Chapter 9

[173]

 }
 @Override
 public void logOut() {
 try
 {
 runOnUiThread(new Runnable()
 {
 //@Override
 public void run()
 {
 gameHelper.signOut();
 }
 });
 }
 catch (Exception e)
 {
 Gdx.app.log("ThrustCopter", "Log out failed: " +
e.getMessage() + ".");
 }
 }
 @Override
 public boolean isSignedIn() {
 return gameHelper.isSignedIn();
 }
 @Override
 public void submitScore(int score) {
 if (isSignedIn())
 {
 Games.Leaderboards.submitScore(gameHelper.getApiClient(),
getString(R.string.leaderboard_id), score);
 }
 }
 public void unlockAchievements(String achievementID) {
 if (isSignedIn()){
 Games.Achievements.unlock(gameHelper.getApiClient(),
achievementID);
 }
 }
 @Override
 public void showScores() {
 if (isSignedIn() == true) startActivityForResult(Games.
Leaderboards.getLeaderboardIntent (gameHelper.getApiClient(),
getString(R.string.leaderboard_id)), 9002);
 }
 @Override

Finishing Our Android Game

[174]

 public void showAchievements() {
 if (isSignedIn()) { startActivityForResult (Games.Achievements.
getAchievementsIntent (gameHelper.getApiClient()),9002);
 }
 }
 @Override
 public void onSignInFailed() {
 Gdx.app.log("ThrustCopter", "Sign in fail");
 }
 @Override
 public void onSignInSucceeded() {
 Gdx.app.log("ThrustCopter", "SignedIn");
 }

The MenuScene leaderboard button code is updated to show the global leaderboard
on an Android device as follows:

if(game.isAndroid){
 game.handler.showScores();
}else{
 game.setScreen(new LeaderboardScene(game));
}

Similarly, the checkAndStoreScore function in ThrustCopterScene is changed to
report the score on an Android device:

private void checkAndStoreScore() {
 int finalScore=(int)(starCount+score);
 if(game.isAndroid){
 game.handler.submitScore(finalScore);
 }else{
 ...
 }
}

Explore the code further to find how achievements are being reported. When you
test the game on your Android device with an active Internet connection, we can
see that Google Play automatically logs us in. By default, your Developer account
will be added as tester; however, if we need others to test our game, then we need to
explicitly add them in the Developer console, as shown in the following screenshot:

Chapter 9

[175]

To integrate the same features on an iOS device, we need
RoboVM bindings. Please visit https://github.com/
BlueRiverInteractive/robovm-ios-bindings for more details.

Famous third-party alternatives
Although Google offers all these features that we have integrated, there is a high
probability that you need to look for other alternatives as well, which may be better
in some way or another. Let me share some of those alternatives with you.

Flurry for analytics
Visit http://www.flurry.com/ to explore what Flurry has to offer. Flurry analytics
is almost an industry standard when it comes to games. The integration for Android
is explained at http://support.flurry.com/index.php?title=Analytics/
GettingStarted/Android. Along with this, Flurry also offers ads. Basic tracking
involves adding just a few lines of code after including the JAR files:

FlurryAgent.onStartSession(this, "YOUR_API_KEY");

https://github.com/BlueRiverInteractive/robovm-ios-bindings
https://github.com/BlueRiverInteractive/robovm-ios-bindings
http://www.flurry.com/
http://support.flurry.com/index.php?title=Analytics/GettingStarted/Android
http://support.flurry.com/index.php?title=Analytics/GettingStarted/Android

Finishing Our Android Game

[176]

Add the following code as well:

FlurryAgent.onEndSession(this);

Ads from InMobi
A famous alternative to AdMob is InMobi Ads. You will need to create an account
and Ad by signing in at http://www.inmobi.com/. Once this is done, you can
integrate the Ad as per the instructions given in the integration docs, but this may be
a complicated affair. An alternative is to use Ad Mediation through AdMob. Check
out the link https://developers.google.com/mobile-ads-sdk/docs/admob/
android/mediation-networks to enable AdMob to serve InMobi Ads.

Swarm – the all-in-one package
Swarm is a third-party solution offering leaderboards, achievements, monetization,
social features, and cloud storage. Visit http://swarmconnect.com/ to check out all
that Swarm has to offer. Integrating Swarm may not be very easy, but considering
the features it offers, it is worth the effort. Social sharing is part of Swarm, which in
itself makes it a great solution. Swarm offers a LibGDX-specific tutorial to integrate
its solutions at http://swarmconnect.com/admin/docs/libgdx.

Wiring up social sharing manually is not an easy process, and I
advise you to use readily available solutions for Facebook and
Twitter sharing. An easy alternative to share content to social media
is by using ACTION_SEND. Visit http://developer.android.
com/training/sharing/send.html for more information.

Creating icons
The icons to be used for our game are in the res folder in the Android project's folder.
The drawable folders contain dpi-specific icons to be used depending on the device.
We can manually create each of these icons and replace the ic_launcher.png file or
can use some tools to create all the versions of icons from a single larger icon image.
One such tool is available at http://romannurik.github.io/AndroidAssetStudio/
icons-launcher.html. Once the icons are in place, we are all set to publish our game.
You are welcome to go ahead and add a pause screen to your game, from where a
player can choose to resume the game, mute the sound, or go back to the menu.

http://www.inmobi.com/
https://developers.google.com/mobile-ads-sdk/docs/admob/android/mediation-networks
https://developers.google.com/mobile-ads-sdk/docs/admob/android/mediation-networks
http://swarmconnect.com/
http://swarmconnect.com/admin/docs/libgdx
http://developer.android.com/training/sharing/send.html
http://developer.android.com/training/sharing/send.html
http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html

Chapter 9

[177]

Summary
In this chapter, you learned how to handle platform-specific code. Although we
implemented everything for the Android project only, we can use RoboVM bindings
to do the same for iOS. You learned how to use Google Play services to integrate
AdMob, Analytics, a leaderboard, and achievements. Finally, we created icons,
and our Android project is now ready to be published.

In the next chapter, we will publish our game to different platforms.

Time to Publish
This chapter is about publishing our game to different platforms and stores. LibGDX
and Eclipse handle many aspects related to this like magic, but there are steps
involved that we need to be aware of. An interesting fact is that LibGDX also allows
us to deploy a game to OUYA or as an applet on the Web. This final chapter will
cover the following topics:

•	 Publishing to Google Play
•	 Publishing to Apple App Store
•	 Publishing to the Web
•	 Publishing to a desktop
•	 New developments and needful resources

There is no source code for this chapter.

Publishing the Android version
In order to publish the Android version of the game to Google Play Store, we
need an Android developer account. You can enroll for an account using http://
developer.android.com/distribute/googleplay/start.html and access the
developer console at https://play.google.com/apps/publish/. This is where
you publish a new app or add Google Play services to your app. We need to create
an entry for our game in Google Play Console to later upload our release version of
the .apk file.

http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/distribute/googleplay/start.html
https://play.google.com/apps/publish/

Time to Publish

[180]

Preparing the store listing
In the publishing portal, select Add New Application to start the process. This will
show a pop up where you can either upload the .apk file or prepare the store listing.
We need to prepare the store listing first, so select this option and proceed providing
the necessary details, as shown in the following screenshot:

It is wise to check the launch checklist at http://developer.
android.com/distribute/tools/launch-checklist.html.

We need to provide both short and long descriptions of the game and multiple graphic
assets such as screenshots, icons, promo images, feature graphics, video links, and so
on. We also need to select the application type, which in this case is Games. At the
Pricing & Distribution section, we can set our game as either a paid or free game. It
is here that we select the countries where the game will be shown. The main section
of Game services is where we added our Google Play services entry. Make sure all
the graphic assets and details needed in the Game services entry for the game are
also filled out. You will need to add icons to your achievements and ensure they are
all there, as shown in the following screenshot:

http://developer.android.com/distribute/tools/launch-checklist.html
http://developer.android.com/distribute/tools/launch-checklist.html

Chapter 10

[181]

Preparing to release the APK
Next up, we need to upload the Android binary file to the APK section for which we
first need to create our release build.

Check out http://developer.android.com/tools/publishing/
preparing.html to learn how to prepare your app for release.

A few things to remember before you release your app are as follows:

•	 Remove all debugging code
•	 Remove all unwanted classes
•	 Remove unused assets
•	 Publish Google Play services
•	 Create a release build

http://developer.android.com/tools/publishing/preparing.html
http://developer.android.com/tools/publishing/preparing.html

Time to Publish

[182]

We need to publish our Google Play services entry before we actually publish the
game. But the release-signing key needs to be linked. If this is done by following the
previous chapter, then you can publish the Google Play services entry. If you have
not created a signing certificate for release, please wait until you create one. Create
a Client ID in the Link App section of the Google Play services entry using this
release keystore.

To create a release build for our Android game, we need to right-click on the
Android project and select Export, then navigate to Android | Export Android
Application. Your project will be selected; if not, select the relevant project for
exporting and click on Next. If you have an existing keystore, then select Use
Existing Keystore; if not, select Create New Keystore.

To create a new keystore, please follow the documentation given
at http://developer.android.com/tools/publishing/
app-signing.html.

Using an existing keystore, you will need to provide the location of the keystore
you want to sign with and the password. In the next screen, you will need to select
the alias and enter its password as well. Next up, you can select a destination for
your APK and click on Finish. Now that we have our final APK, we can upload
it to the APK section of the developer console. Click on the Upload your first apk
to Production button to do this. After you upload the APK, it is just a matter of
publishing it to the Play Store by changing its status on the top-right dropdown. It
may take a few hours for the game to appear in the Google Play Store though. I have
shared the final .apk file for Thrust Copter.

The Google Play link for our Thrust Copter game is https://
play.google.com/store/apps/details?id=com.
csharks.thrustcopter.

Publishing the desktop version
A desktop version is one that can work on a PC, Mac, or Linux. We can do this easily
by creating a runnable JAR using Eclipse. Right-click on the desktop project, navigate
to Export | Java | Runnable Jar, and click on Next. In the next screen, we need to
select the launch configuration used to launch our desktop game from the dropdown
and select a location to create the output JAR file. Clicking on Finish will create a
.jar file that can be run on any desktop with Java installed.

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://play.google.com/store/apps/details?id=com.csharks.thrustcopter
https://play.google.com/store/apps/details?id=com.csharks.thrustcopter
https://play.google.com/store/apps/details?id=com.csharks.thrustcopter

Chapter 10

[183]

Alternatively, we can make the desktop version run natively without
Java dependency by packing JRE along with it, using tools such as
JarWrapper. For more information, refer to https://github.
com/stbachmann/JarWrapper and also http://launch4j.
sourceforge.net/.

I have shared the runnable .jar file for Thrust Copter.

Publishing the Web version
Publishing the HTML version is straightforward. Right-click on the HTML project
and navigate to Google | GWT Compile. This will launch the compile options
window. Keep everything default and select Compile. A pop up will ask for the war
directory and you can point to it within the HTML project folder. The compilation
will take time, and we can track the progress in the console window. Once it is
finished, you can find the final files within the war folder.

When publishing to the Web, we can also publish the Web version
as an applet. Check out this tutorial at http://javaeggs.
com/2014/publishing-your-libgdx-game-as-an-applet/.

Before you compile the HTML project, make sure the HTML build works from
within Eclipse as explained in Chapter 1, Wiring Up. For Thrust Copter, you may get
an error that classes are not found. You may need to add these class folders to the
following ThrustCopter.gwt.xml file found in the src directory of the core project:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
trunk//EN" "http://google-web-toolkit.googlecode.com/svn/trunk/distro-
source/core/src/gwt-module.dtd">
<module>
 <source path="com/csharks/thrustcopter" />
 <source path="com/csharks" />
 <source path="com/matsemann/libgdxloadingscreen" />
 <source path="com/matsemann/libgdxloadingscreen/screen" />
</module>

Once we have the Web build, we can use it to create an app that
is deployable on the Windows 8.1 platform. Follow this link,
http://www.badlogicgames.com/forum/viewtopic.
php?f=17&t=14766.

https://github.com/stbachmann/JarWrapper
https://github.com/stbachmann/JarWrapper
http://launch4j.sourceforge.net/
http://launch4j.sourceforge.net/
http://javaeggs.com/2014/publishing-your-libgdx-game-as-an-applet/
http://javaeggs.com/2014/publishing-your-libgdx-game-as-an-applet/
http://www.badlogicgames.com/forum/viewtopic.php?f=17&t=14766
http://www.badlogicgames.com/forum/viewtopic.php?f=17&t=14766

Time to Publish

[184]

Publishing the iOS version
Deployment on Apple App Store should not be considered as an easy task. The steps
involved can be very intimidating for a first-timer. But that has not stopped millions
of developers out there.

A very detailed tutorial on App Store publishing can be found at
http://www.raywenderlich.com/8003/how-to-submit-your-
app-to-apple-from-no-account-to-app-store-part-1 and
http://www.raywenderlich.com/8045/how-to-submit-your-
app-to-apple-from-no-account-to-app-store-part-2.

We need to meet the following requirements for publishing the iOS version:

•	 iOS developer account (costs $99 per year)
•	 Mac with the latest Xcode IDE (from Mac App Store)
•	 Development and distribution certificates installed on the Mac
•	 New App ID and iTunes Connect entry for the new app
•	 Development and distribution provisioning profiles for the app
•	 Testing devices added to the developer portal and provisioning profiles
•	 The final release IPA that uses the distribution provisioning profile signed

with a distribution certificate
•	 A lot of patience

Important websites you will need to use are developer.apple.com and
itunesconnect.apple.com. We need the app entry on the iTunes Connect website
with the Ready to Upload Binary status in order to upload our .ipa file.

First steps at the developer portal
Once you have acquired the developer account, create and install both the
development and distribution certificates on your Mac. The next step is to create a
new App ID by providing the correct bundle ID, which in this case is com.csharks.
thrustcopter. Once we have the App ID, we need to create the development and
distribution provisioning profiles for it. The development provisioning profile lets
us test our app on selected devices. These devices need to be added to the developer
portal and selected to be part of the provisioning profile while we're creating
them. While creating provisioning profiles, you will be asked to select the App ID,
certificate, and devices, and you'll be asked to provide a name. We can use Xcode to
sync these profiles with Mac or manually download and add them.

http://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
http://www.raywenderlich.com/8003/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-1
http://www.raywenderlich.com/8045/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-2
http://www.raywenderlich.com/8045/how-to-submit-your-app-to-apple-from-no-account-to-app-store-part-2
developer.apple.com
itunesconnect.apple.com

Chapter 10

[185]

Preparing the iOS project
An iOS app requires multiple launch images and a collection of icons to support the
different devices. Check out the list of these devices at https://developer.apple.
com/library/IOs/documentation/UserExperience/Conceptual/MobileHIG/
IconMatrix.html. These images need to be replaced in the data folder in the iOS
project folder. You need to take care that you follow the naming conventions exactly.
We can set the build and the app version in the robovm.properties file. The info.
plist.xml file determines most of the properties and configurations, the important
ones of which are detailed as follows:.

•	 UIDeviceFamily: The array that follows this key enables iPhone and iPad
publishing. Currently, it has two values, meaning we are publishing a
universal app that supports both devices.

•	 UISupportedInterfaceOrientations: The array after this key determines
the supported screen orientations. You can add or remove orientations
as needed.

•	 CFBundleIconFiles: You can add all icons in the array after this key.

Testing the build on a device
You may have already tested your game project on an iOS simulator by right-clicking
on the project and navigating to Run As | iOS Simulator App. But before we take the
final build, we should test the project on a real iOS device. For this, we need to connect
the device via a USB cable. Now make sure the run configuration is correct by selecting
the iOS project and Eclipse tab by navigating to Run | RunConfigurations. Set the
correct signing identity and provisioning profile, as shown in the following screenshot:

https://developer.apple.com/library/IOs/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/IOs/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/IOs/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html

Time to Publish

[186]

Now right-click on the iOS project and go to Run As | iOS Device App. Note that
it's important that you set the correct app in the robovm.properties file. Remember
that LibGDX has added .iOSLauncher to the end of the App ID. Also, you may need
to update the UISupportedInterfaceOrientations entry in the info.plist.xml
file to have only the needed orientations.

Creating the IPA
To create an IPA for testing, we need to use the development certificate and
development provisioning profile. Right-click on the iOS project and go to
RoboVM Tools | Package for App Store/Ad-Hoc distribution. This will launch
a pop up asking for a destination folder, the signing-certificate dropdown, and
the provisioning profiles dropdown. Select the correct details and hit OK to start
the compilation, as shown in the following screenshot:

We need to do the same with the distribution certificate and distribution provisioning
profile in order to create an IPA to be uploaded to the App Store. The Application
Loader app on Mac can be used to do this. At the time of this writing, the RoboVM
plugin version is 0.0.14 and goes with RoboVM 1.0.0 alpha4 and LibGDX 1.4.1. Ensure
that you update to the latest version of all the plugins when dealing with Apple, as
they tend to be not very backward compatible with their systems. Also, please
actively follow the Badlogic Games blog for latest information, for example,
http://www.badlogicgames.com/wordpress/?p=3533.

This particular version was just released and had issues that will soon be fixed. I had
to duplicate clang to clang++ at /Applications/Xcode.app/Contents/Developer/
Toolchains/XcodeDefault.xctoolchain /usr/bin and update the robovm.xml
forceLinkClasses properties as follows to make the compilation work:

<forceLinkClasses>

http://www.badlogicgames.com/wordpress/?p=3533

Chapter 10

[187]

 <pattern>com.badlogic.gdx.scenes.scene2d.ui.*</pattern>
 <pattern>com.android.okhttp.HttpHandler</pattern>
 <pattern>com.android.okhttp.HttpsHandler</pattern>
 <pattern>com.android.org.conscrypt.**</pattern>
 <pattern>com.android.org.bouncycastle.jce.provider.
BouncyCastleProvider </pattern>
 <pattern>com.android.org.bouncycastle.jcajce.provider.keystore.
BC$Mappings </pattern> <pattern> com.android.org.
bouncycastle.jcajce.provider.keystore.bc.BcKeyStoreSpi </pattern>
<pattern> com.android.org.bouncycastle.jcajce.provider.keystore.
bc.BcKeyStoreSpi$Std </pattern> <pattern> com.android.org.
bouncycastle.jce.provider.PKIXCertPathValidatorSpi </pattern>
 <pattern> com.android.org.bouncycastle.crypto.digests.
AndroidDigestFactoryOpenSSL </pattern>
 </forceLinkClasses>

Some useful resources and links
So, the book has come to its end, but your journey has just started. Mobile
technology is a fast-evolving technology, which means you need to keep on learning
and watching out for new changes and features. Do not forget to try out all the
LibGDX demos and tests before you venture on. An awesome collection of LibGDX-
related links can be found at the LibGDX wiki page, https://github.com/libgdx/
libgdx/wiki/External-tutorials. Among them, one of particular importance
is libgdx-utils at https://bitbucket.org/dermetfan/libgdx-utils. There is
also a page that lists out the different versions of LibGDX along with the associated
plugin versions: http://libgdx.badlogicgames.com/versions.html. Also, the
link to the LibGDX forum is http://www.badlogicgames.com/forum/. But among
all the latest developments, one that stands out is Overlap2D.

Overlap2D
Overlap2D is a Game Level and UI Editor for LibGDX games. At the time of writing,
it is v0.0.6, but still very powerful and feature rich. Head over to http://overlap2d.
com/ to download your version while it is free. Using Overlap2D, we can visually
design our game scene, menu UI, and much more, thus saving hours, maybe be
even weeks of time.

Check out the mind-blowing video of the tool in action at https://www.youtube.
com/watch?v=I0g-t0nZ-qE.

At the time of this writing, the following features are present:

•	 Visual design of graphics elements

https://github.com/libgdx/libgdx/wiki/External-tutorials
https://github.com/libgdx/libgdx/wiki/External-tutorials
https://bitbucket.org/dermetfan/libgdx-utils
http://libgdx.badlogicgames.com/versions.html
http://www.badlogicgames.com/forum/
http://overlap2d.com/
http://overlap2d.com/
https://www.youtube.com/watch?v=I0g-t0nZ-qE
https://www.youtube.com/watch?v=I0g-t0nZ-qE

Time to Publish

[188]

•	 Creation of composite elements and composite buttons
•	 Visual layout of Scene2D elements
•	 Box2D lights
•	 Multiple layers
•	 Integrated Physics Editor
•	 Particles effects integration
•	 TTF font support
•	 9-patch image support

The following screenshot shows the Overlap2D UI:

Avetis Zarkharyan, the maestro behind this tool, has shared all that we can expect in
the future for Overlap2D:

•	 Cocos2D runtime
•	 JavaScript runtime
•	 Starling runtime

Chapter 10

[189]

•	 Runtime based on C++/C#
•	 Unity runtime
•	 Triggering system
•	 Custom-shape polygon textures
•	 Dynamic physics based on spine bone positions and much more

A lot of time is wasted while we create our game levels and menus using trial and
error methods. Overlap2D is a life saver and makes prototyping easy and fast.

Working with Overlap2D
This part might change as the tool approaches the v1.0 release, but let me explain
the basic concepts to get you started. We create a new project in Overlap2D and
specify a resolution for which we have created our art assets for. This will be the
largest supported resolution, and Overlap2D will be able to create assets for lower
resolutions and aspect ratios. Assets are imported via File | Import to library,
which helps us import images, particle files, spine animations, TTF fonts, and
9-patch images. Once we have the assets, we can drag-and-drop them onto the
stage to design our level.

We are able to move, scale, and rotate everything that is placed on the stage. We
might need to group a few items together to form a single item. This can be done in
Overlap2D by selecting those items and then right-clicking on and selecting Group
into Composite, which creates CompositeItem. After this, they act as part of a single
item, which can be very convenient. We can also create multiple layers and place items
of specific layers to add depth to the scene's level. We can also add lights to the level
for setting the whole ambience of the level or lighting up specific portions of the level.

Multiple scenes can be designed in this way. Once we have everything designed,
we can export it to create a JSON file with all the necessary data to recreate it within
LibGDX. It will contain the following files:

•	 Several scenes that are .json files containing information on what your scene
has, the coordinates, and other configurations

•	 Several of the AtlasPack classes separated for different resolutions, each
containing all the game assets except for animations

•	 Spine animation directory for each resolution with anim.png, anim.atlas,
and anim.json

•	 Sprite animation directory for each resolution with atlas packs for each
•	 A directory with used TTF fonts

Time to Publish

[190]

•	 Particle effect files
•	 Finally, the project.dt file with a project information like scenes list and

resolutions list

For a Flappy Bird tutorial to get you started with Overlap2D, refer
to http://www.gamefromscratch.com/post/2014/09/08/
Guest-Tutorial-Making-Flappy-Bird-using-Overlap2D-
and-LibGDX.aspx.

We can use the ResourceManager class to load the assets into LibGDX. The
SceneLoader class can be used to load a complete scene as a root actor, which
is a CompositeItem class. We have provided names for items within the scene,
and we can retrieve them using the getItemById method. We can add logic to
a CompositeItem class using the addScript method. Such a logic class should
implement the iScript interface that has an init and act method. The init
method will be called when the item is initialized and placed on the stage, and the
act method will be called in every frame. This way, we can add scripts to the entire
scene or individual items, provided they are composite items.

Keep track of the development of Overlap2D and use it in your LibGDX projects.
The link to the forums is http://overlap2d.com/forums/.

Summary
This concludes our last chapter. In this chapter, we learned how to publish our game
to different platforms. We also learned about Overlap2D and how to save a lot of
time using it to create our game scenes.

I hope this has been a good journey and you have learned LibGDX and grown in
confidence to create your next blockbuster game. Get on with it and please do let
me know regarding your game or any other queries you may have.

LevelUp!

http://www.gamefromscratch.com/post/2014/09/08/Guest-Tutorial-Making-Flappy-Bird-using-Overlap2D-and-LibGDX.aspx
http://www.gamefromscratch.com/post/2014/09/08/Guest-Tutorial-Making-Flappy-Bird-using-Overlap2D-and-LibGDX.aspx
http://www.gamefromscratch.com/post/2014/09/08/Guest-Tutorial-Making-Flappy-Bird-using-Overlap2D-and-LibGDX.aspx
http://overlap2d.com/forums/

Index
Symbols
3D

about 132
bullet physics 143

3D content
creating 132, 133
PerspectiveCamera class 133

3D files
converting, to G3DB 134

3D frustum culling
using, in LibGDX 140, 141

3D ModelInstance classes
rendering 135, 136

3D models
animations, playing 137
loading 137

3D objects
3D particles, with Flame 141, 142
frustum culling, using in LibGDX 140, 141
interacting with 138-140

3D particles
using, with Flame 141, 142

9 patch image
reference link 108

A
AdMob

about 166
reference link, for setting up 166

ADT plugin
about 7
installing 12

Android back button
handling 109, 110

Android development environment,
setting up

about 12
ADT plugin, installing 12, 13
Android SDK, linking with Eclipse 12, 13
Gradle plugin, installing 14, 15
GWT, setting up 14
LibGDX support plugins, installing 14
RoboVM plugin, installing 14

Android Development Tool. See ADT
plugin

Android game, finalizing
global leaderboard and achievements,

adding 169, 170
Google's offerings 161
icons, creating 176
third-party alternatives 175

Android SDK
about 7
download link 12
linking, with Eclipse 12, 13

Android version, of game
APK release, preparing 181, 182
publishing 179
reference link, for launch checklist 180
store listing, preparing 180

Android Virtual Device (AVD) 22
Ant

download link 27
setting up 27

applet
reference link 183

[192]

App Store publishing
reference link, for tutorial 184

art assets
planning 34
reference link 34

AssetManager class
using 81, 82

audio
adding, to game 74, 75

B
Badlogic Games blog

reference link 186
BaseGameUtils

code, writing 171-174
linking 170, 171

BitmapFont creator tool 88, 89
Blender

about 132
URL 132

BMFont
URL 88

Box2D
about 111
collision features 111, 112
LibGDX, using with 113, 114
linking, with game worlds 119
physics features 112
URL, for documentation 112

Box2D rigid bodies
about 117
dynamic 117
kinematic 117
static 117

Box2D version, Thrust Copter
about 120
objects, creating 121-123
objects, placing 121-123
obstacles, creating 123-125
scene, creating 125

Box2D world
creating 114
drawing 114-116
simulating 116

Bullet class 143
bullet physics, 3D

bullet world, creating 144
reference links 143
using 143

bullet world, 3D physics
collision detection 146
creating 144
rigid bodies, adding 145
shadows, adding 146

C
collision filtering

URL, for tutorial 128
collision, for pickups 129, 130
collisions

detecting 119, 120
handling 126, 127
ignoring, with shield 128

create method 33

D
data, handling

persisting game preferences, loading 150
persisting game preferences, saving 149
sound preferences, loading 151
sound preferences, saving 150

desktop version, of game
about 182
publishing 182

Draw 9-Patch tool
reference link 107

dynamic body, Box2D 117

E
Eclipse

Android SDK, linking 12, 13
download link 11
installing 11

F
fbx-conv application

reference link 134

[193]

filesystems and access permissions
about 151
files, reading 152, 153
files, writing 152, 153

FillViewport 51
FitViewport 51
Flame

3D particles, using with 141, 142
Flappy Bird game example

reference link 26
Flappy Bird tutorial, with Overlap2D

reference link 190
Flurry

about 175
URL 175

Flurry analytics 175
Frames Per Second (FPS) 33

G
G3DB

3D files, converting to 134
game

Android version, publishing 179
desktop version, publishing 182
iOS version, publishing 184
Web version, publishing 183

Game class instance
creating 79, 80

Game Design Doc (GDD) 31
game states

adding 63-66
collision, adding with meteor rock 72, 73
collision, adding with pillars 69, 70
meteor rocks, adding 71, 72
pillar rocks, adding 67, 68

game worlds
Box2D, linking with 119

gdx-setup-ui
download link 29

GestureDetector class 62
gestures

capturing 62
Glyph Designer

URL 88

Google Analytics
reference link 163

Google Analytics tracking
implementing 163, 164

Google App Engine (GAE) 7
Google Developer Console

accessing 170
Google Mobile Ads

adding, to Android game 166-168
Google Play services

used, for adding leaderboards and
achievements 169, 170

Google's offerings, for Android game
Google Analytics tracking,

implementing 163, 164
Google Mobile Ads, adding 166-168
platform-specific code, interfacing 162
tracker configuration files, adding 165, 166
using 161

Google Web Toolkit. See GWT
Gradle plugin

installing 14
reference link 15

Gradle setup application
Gradle projects, importing to Eclipse 18-20
Hello World project 17, 18
project, running 20-23
URL 16
using 16

graphics
about 31
displaying 38, 39

Graphics Processing Unit (GPU) 38
graphics, Thrust Copter game

aspect ratios, handling 51-53
code, reviewing 45-47
displaying 38
final game scene 40, 41
multiple screen sizes, handling 51-53
plane animation, adding 43
plane, moving 44
revised code 50
texture packing 47

Group class 95

[194]

GWT
about 7
setting up 14

H
Heads Up Display (HUD) 35
Heads Up Display (HUD) UI 87
Hello World project

alternate LibGDX setup 29
demos, running 26
exploring 24
Hello World text, displaying 25, 26
tests, running 27-29

Hiero
about 88
URL 25, 88

I
icons

creating 176
info.plist.xml file

about 185
CFBundleIconFiles 185
UIDeviceFamily 185
UISupportedInterfaceOrientations 185

InMobi Ads
about 176
URL 176

InputAdapter class
game controllers 63
gestures, capturing 62
using 61, 62

InputProcessor
about 61
keyDown() method 61
keyTyped() method 61
keyUp() method 61
touchDown() method 61
touchDragged() method 61
touchUp() method 61

interactions, in Box2D world
about 118
Box2D, linking with game worlds 119
collisions, detecting 119, 120

iOS version, of game
build, testing on device 185, 186
iOS project, preparing 185
IPA, creating 186
publishing 184
steps, at developer portal 184

J
JarWrapper

reference link 183
Java development environment

setting up 8-10
Java Development Kit (JDK)

about 7
downloading, from Oracle site 8
installing 8

Java Native Interface (JNI) 113

K
kinematic body, Box2D 117

L
leaderboard 151
leaderboards and achievements

adding, Google Play services used 169, 170
LibGDX

3D frustum culling, using 140, 141
about 113
application life cycle 33
graphics 31
online resources 187
reference link 8, 15
using, with Box2D 113, 114

LibGDX API documentation
reference link 35

LibGDX Gradle combo
about 15
Gradle setup application, using 16

LibGDX support plugins
installing 14

loading scene
adding, to Scene2D 100, 101
reference link 100

[195]

LoadingScreen class
about 100, 101
investigating 101, 102

local leaderboard
about 151
filesystems and access permissions 151, 152
implementing 151-154
scores, displaying 154, 155
scores, saving 154, 155

Luna 11

M
Material class 135
menu scene

adding, to Scene2D 102-107
scalable skins, creating with 9-patch

tool 107, 108
Model class 134
music

reference link 74

N
navigating, plane

accelerometer data, accessing 60
event handling, for inputs 61
InputAdapter class, using 61
input methods, dealing with 60
keyboard keys, polling 60
touch input, using 57-59

Nine Patch
reference link 107

O
online resources, LibGDX 187
OUYA

about 56, 63
reference link 63

Overlap2D
about 187
features 187
reference link, for forums 190
reference link, for video 187
UI 188

URL 187
working with 189, 190

P
particles

about 90, 91
effects, pooling 93

persisting game preferences
loading 150
saving 149

PerspectiveCamera class 133
Physics Body Editor tool

URL 120
pickups

about 83
class, using 83, 84
Heads Up Display (HUD) UI 87
logic, adding 84-86

plane, piloting
about 55, 56
audio, adding 74
game, making easier 74
game states, adding 63-66
navigating, touch input used 57-59

platform-specific code
interfacing 162

Power of Two (POT) textures 133
Preferences class 150
primitives, 3D

Material class 135
ModelBuilder class 135
Model class 134
ModelInstance classes, rendering 135, 136
Usage.Normal attribute 135
Usage.Position attribute 135
working with 134

R
refactoring

about 80, 81
time 77, 78

render method 33, 102
resize method 33, 102
resume method 33

[196]

RoboVM plugin
download link 14
installing 14
URL 14

S
Scene2D

about 95
Action class 97
Actions 96
Actor 95
Group 95
loading scene, adding 100, 101
menu scene, adding 102-106
reference link 107
Stage 96
stage for actors 96
widgets 98, 99

ScreenViewport 51
shield

collisions, ignoring with 128
ShoeBox

URL 88
show method 101
sound effects

adding, to game 75
sound preferences

loading 151
saving 150

SpriteBatch class 24, 38
Stage class 96
static body, Box2D 117
StretchViewport 51
Swarm

about 176
URL 176

T
Table class

reference link 99
text

displaying 87
texture drawing 38

TexturePacker class 48
TexturePacker GUI

reference link 48
texture packing 38, 47-50
TextureRegion class 39
third-party alternatives

about 175
Flurry analytics 175
InMobi Ads 176
Swarm 176

Thrust Copter game
about 31
art assets, planning 34, 35
creating 31-33
game scene, creating 35, 36
game scene, populating 36-38
life cycle 33

ThrustCopterScene class
AssetManager, using 81, 82
creating 78, 79
Game class instance, creating 79, 80
refactoring 80, 81

tile-based level design
about 156
Tiled, using 156-158

Tiled
about 156
download link 156
TMX levels, loading 158, 159
using 156-158

Tiled TMX levels
using 158, 159

tilesheet 159
time step, fixing

about 116
URL 117

tracker configuration files
adding, to Android game 165, 166

U
Usage.Normal attribute 135
Usage.Position attribute 135

[197]

V
Vector2 class

reference link 45
verdana39.fnt

download link 25
verdana39.png

download link 25

W
Web version, of game

publishing 183
widgets, Scene2D

about 98
creating 99

X
Xoppa, blog

URL 140

Thank you for buying
LibGDX Game Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Libgdx Game
Development
ISBN: 978-1-78216-604-7 Paperback: 388 pages

Walk through a complete game development cycle
with practical examples and build cross-platform
games with Libgdx

1.	 Create a Libgdx multi-platform game
from start to finish.

2.	 Learn about the key features of Libgdx
that will ease and speed up your
development cycles.

3.	 Write your game code once and run it on
a multitude of platforms using Libgdx.

Learning Windows 8 Game
Development
ISBN: 978-1-84969-744-6 Paperback: 244 pages

Learn how to develop exciting tablet and PC games
for Windows 8 using practical, hands-on examples

1.	 Use cutting-edge technologies like DirectX
to make awesome games.

2.	 Discover tools that will make game
development easier.

3.	 Bring your game to the latest touch-enabled
PCs and tablets.

Please check www.PacktPub.com for information on our titles

Learning Objective-C by
Developing iPhone Games
ISBN: 978-1-84969-610-4 Paperback: 284 pages

Leverage Xcode and Objective-C to develop
iPhone games

1.	 Get started with the Xcode
development environment.

2.	 Dive deep into programming
with Objective-C.

3.	 A practical and engaging tutorial to
create vintage games such as Space
Invaders and Galaga.

Creating E-Learning Games
with Unity
ISBN: 978-1-84969-342-4 Paperback: 246 pages

Develop your own 3D e-learning game using
gamification, systems design, and gameplay
programming techniques

1.	 Develop a game framework for a 3D
eLearning game.

2.	 Program dynamic interactive actors and
objects to populate your game world.

3.	 An easy-to-follow guide along with an
extensive source code to support and guide
readers through the concepts in the book.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Wiring Up
	Getting started
	Setting up the Java development environment
	Installing Eclipse

	Setting up the Android development environment
	Installing the ADT plugin and linking the Android SDK with Eclipse
	Installing the LibGDX support plugins
	Setting up GWT
	Installing the RoboVM plugin
	Installing the Gradle plugin

	The LibGDX Gradle combo
	Using the Gradle setup application
	A Hello World project
	Importing Gradle projects to Eclipse
	Running the project

	Exploring the project
	Displaying the Hello World text
	Running demos
	Running tests

	The alternate LibGDX setup

	Summary

	Chapter 2: Let There Be Graphics!
	The ThrustCopter game
	A LibGDX app's life cycle
	Creating the Thrust Copter project
	Planning art assets
	The game scene
	Populating the game scene

	Displaying the graphics
	The final game scene
	Adding the plane animation
	Moving the plane

	The code so far
	Texture packing
	The revised code

	Handling multiple screen sizes and
aspect ratios

	Summary

	Chapter 3: Thou Shall Not Pass!
	Piloting our plane
	Navigating using touch input
	Dealing with other input methods
	Polling keyboard keys
	Accessing accelerometer data
	Event handling for inputs
	Using the InputAdapter class

	Adding the different game states
	Adding the pillar rocks
	Adding meteor rocks

	Making the game easier
	Playing with audio
	Adding sound effects

	Summary

	Chapter 4: Bring in the Extras!
	Refactoring time
	Creating a ThrustCopterScene class
	Creating our Game class instance

	Time for pickups
	Using a pickup class
	Adding pickup logic

	Displaying text
	Hiero – the BitmapFont creator tool

	Special effects with particles
	Pooling particle effects

	Summary

	Chapter 5: Scene 2 – the Menu
	Introducing Scene2D
	The stage for actors
	Actors and their actions

	Widgets
	Adding a loading scene
	Investigating the LoadingScreen class

	Adding the menu scene
	Creating scalable skins using the 9-patch tool

	Handling the Android back button
	Summary

	Chapter 6: Physics with Box2D
	The incredible world of Box2D
	LibGDX with Box2D
	Creating a Box2D world
	Drawing the Box2D world
	Simulating the Box2D world

	Fixing the time step
	Box2D rigid bodies
	Interactions in the Box2D world
	Linking the Box2D and game worlds
	Detecting collisions

	Box2D version of Thrust Copter
	Creating and placing objects
	Creating obstacles
	Drawing the scene

	Handling collisions
	Ignoring collisions with shield
	Collision for pickups

	Summary

	Chapter 7: The Amazing World of 3D
	Introducing the third dimension
	Creating 3D content
	The PerspectiveCamera class

	Converting 3D files to G3DB
	Playing with primitives
	Rendering the ModelInstance classes
	Loading 3D models

	Interacting with 3D objects
	3D frustum culling in LibGDX
	3D particles with Flame

	Using bullet physics
	Creating the bullet world
	Adding rigid bodies
	Collision detection
	Adding shadows

	Summary

	Chapter 8: Saving Our Data
	Persisting game preferences
	Saving and loading sound preferences

	Implementing a local leaderboard
	Filesystems and access permissions
	Reading and writing files
	The leaderboard
	Saving and displaying scores

	Tile-based level design
	Using Tiled
	Loading TMX levels

	Summary

	Chapter 9: Finishing Our Android Game
	Using Google's offerings
	Interfacing platform-specific code
	Implementing Google Analytics tracking
	Adding tracker configuration files
	Adding Google Mobile Ads

	Leaderboards and achievements using Google Play services
	Linking BaseGameUtils
	Wiring with code

	The famous third-party alternatives
	Flurry for analytics
	Ads from InMobi
	Swarm – the all-in-one package

	Creating icons
	Summary

	Chapter 10: Time to Publish
	Publishing the Android version
	Preparing the store listing
	Preparing to release the APK

	Publishing the desktop version
	Publishing the Web version
	Publishing the iOS version
	First steps at developer portal
	Preparing the iOS project
	Testing the build on a device
	Creating the IPA

	Some useful resources and links
	Overlap2D
	Working with Overlap2D

	Summary

	Index

