
www.it-ebooks.info

http://www.it-ebooks.info/

LibGDX Cross-Platform
Development Blueprints

Develop four exciting cross-platform games with
increasing complexity using LibGDX and understand
its key concepts

Indraneel Potnis

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

LibGDX Cross-Platform Development Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1161215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-206-6

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Indraneel Potnis

Reviewers
Si Fleming PhD

Stéphane Meylemans

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Subho Gupta

Content Development Editors
Anand Singh

Deepti Thore

Technical Editor
Taabish Khan

Copy Editor
Rashmi Sawant

Project Coordinator
Paushali Desai

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Indraneel Potnis is a mobile developer who lives in Mumbai. He has worked
in diverse areas of the IT industry, such as web development, QA, and mobile
application development.

Since childhood, he has been interested in playing computer games, and he became
interested in making them in college. He made a card game called Mendhicoat with a
friend on the Android platform and released it on the Google Play store.

I would like to thank my parents for their support in writing this
book. Special thanks go to Amey Kshirsagar from Arcoiris Labs for
proofreading and working on some of the art used here.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Si Fleming PhD is a principal engineer with experience in working with Java and
PHP for over a decade. He holds a PhD in computer science from the University of
Sussex, where his research focused on distributed systems, ad hoc social networks,
Q&A, security, and privacy.

Stéphane Meylemans has a bachelor's degree in information technology. He
worked in web development for eight years and then decided to move on to mobile
development (games and apps). He has learned Unreal Engine, Unity, and Android
app development and is currently working on several Android apps and games as
a freelancer. He is also an instructor in new technologies and works as a community
manager/event organizer for a game store in Belgium.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface vii
Chapter 1: Monty Hall Simulation 1

Setting up 1
Prerequisites 1
Installing the Gradle plugin 2
Using the setup app 2
Importing projects 4

Introduction to the game 4
General flow of the game 5
Summary of classes 6

Making the initial screen 6
Implementing the Door class 6
Implementing the GameManager class 7
Implementing the Monty class 10

Taking input 13
Updating the GameManager class 13
Implementing the InputManager class 16

Adding game logic 20
Finding doors with goats 20
Adding game states 21

Displaying text and implementing restart 24
Displaying text 24
Implementing restart 30
Displaying the background 33

Summary 33

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Whack-A-Mole 35
Making the initial screen 35

Implementing the Mole class 36
Implementing the GameManager class 37
Implementing the WhackAMole class 39

Adding some color 41
Adding the background 41
Implementing the holes 43
Adding moles in holes 44

Animating the mole 47
Jumping up and down 47
Waiting underground 51

Adding randomness and taking input 53
Randomizing wait times 53
Taking input 53

Adding more effects 55
Stunning the mole 55
Adding the stun sign 57

Keeping scores and adding sounds 59
Keeping scores 59
Adding sound effects 62

Summary 63
Chapter 3: Catch the Ball 65

Making a moving basket 66
Implementing the Basket class 67
Implementing the GameManager class 67
Implementing the CatchTheBall class 68
Moving the basket 70

Throwing the ball 73
Making the ball 73
Adding movement 74
Adding gravity 75

Detecting collisions 75
Colliding with the ground 75
Colliding with the basket 76

Throwing multiple balls 78
Throwing the balls after specific intervals 78
Randomizing and optimizing 82

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Keeping the score and maintaining the high score 85
Keeping the score 86
Custom fonts 88
Saving high scores 90

Implementing screens 92
Implementing the menu screen 92
Implementing screen transitions 95
Implementing the Back button 98
Catching the Back button 101

Adding sound effects and music 102
Adding sound effects 102
Adding background music 103

Summary 104
Chapter 4: Dungeon Bob 105

Creating the player 105
Implementing the Bob class 106
Implementing the GameManager class 107
Implementing the GameScreen class 108

Moving the player 111
Bob's movement on desktop 111
Continuous movement 113
Bob's movement on mobile 115

Character animation 120
Walking Bob 1 120
Walking Bob 2 124

Summary 127
Chapter 5: Using the Tiled Map Editor 129

Installation and basics 129
Installing and setting up Tiled 130
Map layers and drawing 133

Miscellaneous 141
Custom properties 141
Drawing objects 144
Tile animations and images 150

Summary 155

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 6: Drawing Tiled Maps 157
Asset management 157

Texture packer 157
The AssetManager class 161

Rendering maps 165
Basic map rendering 165
Reading the map 171
Map objects 176

Summary 183
Chapter 7: Collision Detection 185

Scaling objects and adding a secondary camera 185
Integrating Bob 185
Camera control 190
Integrating game objects 193

Physics and collision 196
Adding physics 196
Collision detection – 1 198
Collision detection – 2 201
Jumping 204

Summary 208
Chapter 8: Collectibles and Enemies 209

Collecting items and detecting hazards 209
Collecting objects 210
Displaying the score and adding hazards 216

Enemies 221
Adding enemies 221
Adding enemies through Tiled 225
Enemy motion 230

Summary 235
Chapter 9: More Enemies and Shooting 237

Skeletons and chasing 237
Skeletons 237
Chasing Bob 243

Shooting and stars 248
Stars 248
Shooting 254

Summary 262

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 10: More Levels and Effects 263
Multiple levels 263

Adding the door 263
Changing levels 266
Respawning Bob 269

Particle effects 272
Editor setup and basics 272
The Effect Emitters section 274
The Emitter Properties section 274
Loading the effect into the game 278

The loading screen 280
Game states 281
Integrating the screen in the game 282

Summary 291
Index 293

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
LibGDX is a game framework with which people can make efficient games that run
on all the platforms (mobile/web/desktop) with a single code base. Games are also a
big source of monetization in the mobile market. The programming language is Java,
which is widely used everywhere, and is very easy to learn.

This book will focus on practical things by introducing a different variety of
game projects in each chapter. This book will expose you to different areas, types,
techniques, and tactics of game development.

What this book covers
Chapter 1, Monty Hall Simulation, discusses how to set up LibGDX and how to create
a simple but a complete game from scratch.

Chapter 2, Whack-A-Mole, discusses some more concepts along with a game of
Whack-A-Mole. These concepts include animation, stun, and sound effects.

Chapter 3, Catch the Ball, discusses how to make a game called Catch the Ball and
covers some concepts. These concepts include motion physics, collision detection,
and implementing a menu screen.

Chapter 4, Dungeon Bob, discusses a platformer game called Dungeon Bob and covers
concepts such as character motion and character animation.

Chapter 5, Using the Tiled Map Editor, discusses a tool called Tiled, used to make and
design 2D levels/maps.

Chapter 6, Drawing Tiled Maps, discusses how to draw Tiled maps in the game and
covers asset management, among other things.

Chapter 7, Collision Detection, discusses map collision detection, camera control,
and jumping effects, among other things, as we progress through the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 8, Collectibles and Enemies, discusses how to add collectibles, hazards,
and enemies to our game, among other things.

Chapter 9, More Enemies and Shooting, discusses how to add more enemy types with
intelligence and shooting, among other things.

Chapter 10, More Levels and Effects, discusses how to make multiple levels, a loading
screen, and particle effects, among other things.

What you need for this book
The following things are required for this book:

• A computer with Internet connection
• JDK
• Eclipse with the ADT plugin installed
• Android SDK

Who this book is for
This book is for people who have a good knowledge of Java and are familiar with
LibGDX. You will learn about the development of different types of games with the
help of relevant concepts. You will also learn how to put these concepts in practice
while making fully functional games along the way.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Lastly, we need to dispose restartTexture as well."

A block of code is set as follows:

static Sprite restartSprite;
static Texture restartTexture;
static final float RESTART_RESIZE_FACTOR = 5500f;

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public static void initialize(float width,float height){
 // other code excluded
 TextManager.initialize(width, height);
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Select all of the projects and click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[x]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file
from https://www.packtpub.com/sites/default/files/downloads/
LibGDXCrossPlatformDevelopmentBlueprints_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/LibGDXCrossPlatformDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LibGDXCrossPlatformDevelopmentBlueprints_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Monty Hall Simulation
In this book, we are going to learn about developing games in LibGDX. LibGDX is
a cross-platform Java game framework that can deploy games to desktops as well
as mobile devices. We will learn the concepts and we will make four games along
the way. With each game, we will learn more concepts. You need to have basic
knowledge of Java and LibGDX.

We will cover the following topics in this chapter:

• Setting up
• Introduction to the game
• Creating the initial screen
• Taking inputs
• Adding the game logic
• Displaying text and implementing restart

Setting up
I'm going to briefly cover how to set up our projects in this section. So, let's
get started.

Prerequisites
Let's see how to set up our project. We are going to work with Eclipse as the IDE.
These are the prerequisites required before we set up the project. You should have
them installed:

• The JDK
• Eclipse with the ADT plugin installed
• The Android SDK

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[2]

Installing the Gradle plugin
We need to install the Gradle plugin for Eclipse as the LibGDX setup application is
Gradle-based.

Gradle is a project management tool that allows you to configure and build projects.
It handles dependencies of the projects by downloading them automatically and
keeping them in a central repository on the local disk. You can easily add or remove
dependencies by editing its configuration file.

To install the Gradle plugin for Eclipse, go to Help | Install New Software.
A window for Available Software will come up. Click on the Add button, next
to the Work with section. In the Add Repository window, type Gradle in the
Name field and http://dist.springsource.com/release/TOOLS/gradle
in the Location field.

This link might not work on old versions of Eclipse. You can use
http://dist.springsource.com/milestone/TOOLS/gradle
instead.

Once you click on OK, wait until the software component list to install comes up.
Select all the boxes and click on Next. Continue and confirm any subsequent steps.
When the plugin is installed, Eclipse will have to be restarted to take effect. After
restarting, the plugin will be active.

Using the setup app
Go to the LibGDX website and download the setup app from http://bitly.
com/1i3C7i3. LibGDX has a setup app that downloads the framework and
related libraries and creates skeleton projects for you to work with. Once you have
downloaded it, you will get a JAR file. Double-click on it to open the setup.

These are the inputs that you need to provide the app:

• Name: This is the name of your game. We will name it MontyHall.
• Package: This is the main package of your project. We will name it com.

packtpub.montyhall.
• Game class: This is the name of the main game class. We will name it Monty.
• Destination: This is the folder where you will create the projects. Give the

path to a folder in your drive where you want the projects.
• Android SDK: This is the path where you have installed the Android SDK.

www.it-ebooks.info

http://bitly.com/1i3C7i3
http://bitly.com/1i3C7i3
http://www.it-ebooks.info/

Chapter 1

[3]

• LibGDX Version: Here, select the default version.
• Sub Projects: These checkboxes will allow you to create projects for the

specified targets. Android is required as we need to keep the assets in the
Android project.

• Extensions: These are the additional libraries that you may require in
your game.

To enable the Eclipse project generation, click on Advanced, tick the checkbox near
Eclipse, and click on Save. Click on Generate to start creating the projects. My setup
looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[4]

Importing projects
Once the projects have been created for you, it is now time to import them in Eclipse.
Open Eclipse and go to File | Import | Gradle | Gradle Project. On the Import
Gradle Project screen, give the folder path where you want your projects to be
stored. It's better if you create a new folder and give its location. Click on Build
Model and give it some time to download the dependencies and configure
the projects.

After the download is complete, you will see the projects listed. Select all of the
projects and click on Finish. After the loading screen completes, your projects
would have been successfully imported in Eclipse. That's it, you have configured
the projects!

To test them out, right-click on the desktop project and go to Run As | Java
Application. A window will ask you to select the Java application; select
DesktopLauncher and click on OK.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Introduction to the game
The game is a classic Monty Hall simulation. You are presented with three closed
doors. Two of these doors contain a goat behind them. One door has a car behind it.
The objective of the game is to win the car by correctly guessing the door. You are
asked to select a door once. Once you select it, one of the doors containing the goat
is opened.

You are then asked to either keep your choice or switch your selection. After you
make the choice, the door you've selected is opened and you will come to know
whether you have won the car or not:

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

[5]

General flow of the game
The following flowchart shows the general workflow of the game:

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[6]

Summary of classes
The core game classes that we are going write are described in short, as follows:

• Door: This class is for a door that we are going to display. The player can
click/tap on it to open the door.

• InputManager: This class handles the input detection for the game and
updates appropriate structures as the game logic dictates.

• TextManager: This class handles all the text messages the user sees on
the screen.

• GameManager: This class handles the initialization/reinitialization of game
objects and miscellaneous game logic.

Making the initial screen
Here, we will make a basic game screen to display the door.

Implementing the Door class
To implement the Door class, we need to perform the following steps:

1. Create a new package in the core projects and name it com.packtpub.
gameobjects.

2. Create a new Java class in the com.packtpub.gameobjects package and
name it Door.

Type the following code in the file:

package com.packtpub.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Vector2;

public class Door {

 public Sprite openSprite; //Represents sprite to
 display when the door is open
 public Sprite closeSprite; //Represents sprite to
 display when the door is closed
 public boolean isOpen = false; //Whether the door is
 open or not

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

 public Vector2 position = new Vector2(); // position of
 the door
 //door dimensions
 public float height;
 public float width;

 public void render(SpriteBatch batch){

 if(isOpen){
 openSprite.draw(batch);
 }
 else{
 closeSprite.draw(batch);
 }

 }
}

In this class, we declared two sprites that represent the images for the open and the
closed positions of the door. We declared a Boolean variable called isOpen to denote
the status of the door, which is initially set to closed. A Boolean variable called
isGoat denotes whether there is a goat behind this door. The position variable
is used to set the position where the door will be drawn; the height and width
variables represent the door dimensions.

We declared a method called render (which takes a SpriteBatch to draw) that will
draw the open or closed image of the door, depending on the state of isOpen.

Whenever we draw something on the screen, we use the instance of
SpriteBatch to do it. The SpriteBatch does the job of uploading
the textures to the GPU for drawing. Uploading textures is generally a
computationally costly operation. SpriteBatch optimizes by grouping
textures and uploading them to the GPU in batches.

Implementing the GameManager class
Create a new package called com.packtpub.managers. Create a new file called
GameManager.java in this package. Type the following content:

package com.packtpub.managers;

import com.packtpub.gameobjects.Door;

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[8]

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.utils.Array;

public class GameManager {
 static Array<Door> doors ; // array of the 3 doors
 static Texture doorTexture; // texture image for the door
 private static final float DOOR_RESIZE_FACTOR = 2500f;
 private static final float DOOR_VERT_POSITION_FACTOR = 3f;
 private static final float DOOR1_
 HORIZ_POSITION_FACTOR = 7.77f;
 private static final float DOOR2_
 HORIZ_POSITION_FACTOR = 2.57f;
 private static final float DOOR3_
 HORIZ_POSITION_FACTOR = 1.52f;
 static float width,height;

 public static void initialize(float width,float height){
 GameManager.width = width;
 GameManager.height= height;
 doorTexture = new Texture(Gdx.files.internal("data
 /door_close.png"));
 initDoors();
 }

 public static void renderGame(SpriteBatch batch){
 // Render(draw) each door
 for(Door door : doors)
 door.render(batch);
 }

 public static void dispose() {
 // dispose of the door texture to ensure no memory leaks
 doorTexture.dispose();
 }

 public static void initDoors(){
 doors = new Array<Door>();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

 // instantiate new doors and add it to the array
 for(int i=0;i<3;i++){
 doors.add(new Door());
 }

 // set the doors' display position
 doors.get(0).position.set(width/DOOR1_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);
 doors.get(1).position.set(width/DOOR2_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);
 doors.get(2).position.set(width/DOOR3_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);

 for(Door door : doors){
 // instantiate sprite for the
 //closed door with the texture of it
 door.closeSprite = new Sprite(doorTexture);

 door.width = door.closeSprite.getWidth()*
 (width/DOOR_RESIZE_FACTOR);
 door.height = door.closeSprite.getHeight()*
 (width/DOOR_RESIZE_FACTOR);
 door.closeSprite.setSize(door.width, door.height);
 door.closeSprite.setPosition(
 door.position.x,door.position.y);
 }
 }
}

First, we declare an array of door objects, which are going to hold the instances of
the three doors for us. Then, we declare a texture image of the door. We declare
a constant named DOOR_RESIZE_FACTOR that we will use to resize the doors'
dimensions. Then, we have some constants related to door positioning. We have an
initialize() method, which we are going to use to implement the initialization
logic. This method takes width and height as arguments, which are our game's
viewport dimensions.

We instantiate and initialize doorTexture with the door_close.png image:

doorTexture = new Texture(
 Gdx.files.internal("data/door_close.png"));

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[10]

For this to work, copy the image of the closed door to your Android projects'
assets/data folder and refresh your project. We declare a function named
initDoors(), where we will write the initialization logic for the doors. In this
function, after the door objects are added to the doors' arrays, we set the positions
of the individual doors:

doors.get(0).position.set(width/DOOR1_HORIZ_POSITION_FACTOR,height
 /DOOR_VERT_POSITION_FACTOR);

doors.get(1).position.set(width/DOOR2_HORIZ_POSITION_FACTOR,height
 /DOOR_VERT_POSITION_FACTOR);

doors.get(2).position.set(width/DOOR3_HORIZ_POSITION_FACTOR,height
 /DOOR_VERT_POSITION_FACTOR);

You need not use the exact same values that I have used. You can do a little bit of
trial and error to set the values you want.

Next, we set the sprite for each door and its dimensions:

 door.closeSprite = new Sprite(doorTexture);
 door.width = door.closeSprite.getWidth()*
 (width/DOOR_RESIZE_FACTOR);
 door.height = door.closeSprite.getHeight()*
 (width/DOOR_RESIZE_FACTOR);
 door.closeSprite.setSize(door.width, door.height);
 door.closeSprite.setPosition(door.position.x, door.position.y);

In the renderGame() method, we simply iterate each door in the doors array and
render them. This method takes SpriteBatch as an argument, which is used to draw
the sprites. In the dispose() method, we dispose of our texture to ensure that there
are no memory leaks.

Implementing the Monty class
For the Monty class, type the following code:

package com.packtpub.montyhall;

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.managers.GameManager;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

public class Monty implements ApplicationListener {

 private OrthographicCamera camera;
 private SpriteBatch batch;
 //viewport width and height
 private float w,h;

 @Override
 public void create() {
 // set our viewport to window dimensions
 w = Gdx.graphics.getWidth();
 h = Gdx.graphics.getHeight();
 // instantiate the camera and set the viewport
 camera = new OrthographicCamera(w,h);
 // center the camera at w/2,h/2
 camera.setToOrtho(false);

 batch = new SpriteBatch();
 //initialize the game
 GameManager.initialize(w,h);
 }

 @Override
 public void dispose() {
 //dispose the batch and the texture
 batch.dispose();
 GameManager.dispose();
 }

 @Override
 public void render() {
 // Clear the screen
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 // set the spritebatch's drawing view to the camera's view
 batch.setProjectionMatrix(camera.combined);

 // render the game objects
 batch.begin();
 GameManager.renderGame(batch);
 batch.end();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[12]

 @Override
 public void resize(int width, int height) {
 }

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

}

We implement the ApplicationListener interface in our class and implement its
methods. Since our game is going to be 2D, we will use OrthographicCamera. The
camera is basically like an eye through which we can see the game world. We declare
a SpriteBatch that aids us in drawing sprites. Next, we set the viewport to the
dimensions of our game window, which we configured in our starter class with
the following lines:

w = Gdx.graphics.getWidth();
h = Gdx.graphics.getHeight();

We then instantiate the camera and set its viewport. The camera is centered at
viewport width(w)/2 and viewport height(h)/2 by the following line:

camera.setToOrtho(false);

The GameManager class' initialize() method is called to set up game objects and
their properties. In the render method. we first clear the screen with a white color
with the following code:

Gdx.gl.glClearColor(1, 1, 1, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

We set the spritebatch's drawing view to that of the camera's view with the
following code:

batch.setProjectionMatrix(camera.combined);

The GameManager class' render() method is called between the spritebatch's
begin() and end() calls to actually draw the images.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Draw calls should only be made for a particular SpriteBatch between
its begin() and end() calls.

Lastly, in the dispose() method, we dispose of the SpriteBatch and call the
GameManager class' dispose() method to clean up the memory when the game
is exiting. The following figure is a representation of how the game would look
conceptually in the coordinate point of view:

Taking input
We are now going to see how to capture the touch/click input and open a door when
it has been touched.

Updating the GameManager class
We have to make changes to the structure of our GameManager class. The changed/
added lines are highlighted in the following code:

package com.packtpub.managers;

import com.packtpub.gameobjects.Door;

import com.badlogic.gdx.Gdx;

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[14]

import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Vector3;
import com.badlogic.gdx.utils.Array;

public class GameManager {
 static Array<Door> doors ; // array of the 3 doors
 static Texture doorTexture; // texture image for the door
 static Texture carTexture; // texture image for the car
 static Texture goatTexture; // texture image for the goat
 static Vector3 temp = new Vector3(); // temp vector to store
 input coordinates

 private static final float DOOR_RESIZE_FACTOR = 2500f;
 private static final float DOOR_VERT_POSITION_FACTOR = 3f;
 private static final float DOOR1_
 HORIZ_POSITION_FACTOR = 7.77f;
 private static final float DOOR2_
 HORIZ_POSITION_FACTOR = 2.57f;
 private static final float DOOR3_
 HORIZ_POSITION_FACTOR = 1.52f;
 static float width,height;

 public static void initialize(float width,float height){
 GameManager.width = width;
 GameManager.height= height;
 doorTexture = new Texture(Gdx.files.internal("
 data/door_close.png"));
 carTexture = new Texture(Gdx.files.internal("
 data/door_open_car.png"));
 goatTexture = new Texture(Gdx.files.internal("
 data/door_open_goat.png"));

 initDoors();
 }

 public static void renderGame(SpriteBatch batch){
 // Render(draw) each door
 for(Door door : doors)
 door.render(batch);
 }

 public static void dispose() {
 // dispose of the textured to ensure no memory leaks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

 doorTexture.dispose();
 carTexture.dispose();
 goatTexture.dispose();
 }

 public static void initDoors(){
 doors = new Array<Door>();

 // instantiate new doors and add it to the array
 for(int i=0;i<3;i++){
 doors.add(new Door());
 }

 // set the doors' display position
 doors.get(0).position.set(width/DOOR1_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);
 doors.get(1).position.set(width/DOOR2_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);
 doors.get(2).position.set(width/DOOR3_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);

 for(Door door : doors){
 // instantiate sprite for
 //the closed door with the texture of it
 door.closeSprite = new Sprite(doorTexture);

 door.openSprite = new Sprite();
 door.width = door.closeSprite.getWidth()
 *(width/DOOR_RESIZE_FACTOR);
 door.height = door.closeSprite.getHeight()
 *(width/DOOR_RESIZE_FACTOR);
 door.closeSprite.setSize(door.width, door.height);
 door.closeSprite.setPosition
 (door.position.x,door.position.y);
 //set the dimensions for the open door
 door.openSprite.setSize(door.width, door.height);
 door.openSprite.setPosition(
 door.position.x, door.position.y);
 }
 //setting the textures for the open doors
 doors.get(0).openSprite.setRegion(goatTexture);
 doors.get(1).openSprite.setRegion(carTexture);
 doors.get(2).openSprite.setRegion(goatTexture);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[16]

We declared two more textures: one for the image of an open door with a goat
behind it and the other for the image of an open door with a car behind it. We
declared a vector to store the input coordinates of the point on the screen where
the user has touched or clicked. This will help us determine which door has been
selected:

static Vector3 temp = new Vector3();

Next, we load the textures with the images of a goat behind the door and a car
behind the door in the initialize() method. We then set the size and positions
of the corresponding sprites for each door in initDoors().

In the dispose() method, we dispose of the car and goat texture when they are not
in use.

Implementing the InputManager class
Create a new InputManager class in the com.packtpub.managers package and type
in the following code:

package com.packtpub.managers;

import com.packtpub.gameobjects.Door;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.OrthographicCamera;

public class InputManager {

 public static void handleInput(OrthographicCamera camera){
 // Check if the screen is touched
 if(Gdx.input.justTouched()){
 // Get input touch coordinates
 // and set the temp vector with these values
 GameManager.temp.set(
 Gdx.input.getX(),Gdx.input.getY(), 0);
 //get the touch coordinates
 //with respect to the camera's viewport
 camera.unproject(GameManager.temp);

 float touchX = GameManager.temp.x;
 float touchY= GameManager.temp.y;

 //iterate the doors array and
 //check if we tapped/touched/clicked on any door

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

 for(int i=0;i<GameManager.doors.size;i++){
 Door door = GameManager.doors.get(i);
 // only check if the door is closed
 if(!door.isOpen){

 if(handleDoor(door,touchX,touchY)){
 break;
 }
 }
 }

 }
 }

 public static boolean handleDoor
 (Door door,float touchX,float touchY){

 //check whether the touch
 //coordinates lie on the door's bounds
 if((touchX>=door.position.x) && touchX<=(door.position.x+
 door.width) && (touchY>=door.position.y) && touchY<=(
 door.position.y+door.height)){
 //open the door if it is touched/clicked
 door.isOpen=true;
 return true;

 }
 return false;
 }
}

We have two methods in this class: handleInput() and handleDoor().
In handleInput(), we first check whether the game screen has just been
touched using the following line of code:

Gdx.input.justTouched()

This function checks whether any new touch/click event has been detected on the
game screen. If it is detected, we start processing it. We get the input touch/click
coordinates using the following methods:

• Gdx.input.getX()

• Gdx.input.getY()

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[18]

We set the temporary vector with these x and y values. This is a 3D vector, and since
we are dealing with 2D here, we set the z coordinate to 0:

GameManager.temp.set(Gdx.input.getX(),Gdx.input.getY(), 0);

Now, you might wonder why we need to store 2D touch coordinates in a 3D vector
and what the need of storing them in a vector is anyway. The answer comes from
the way LibGDX gives us input coordinates. It gives us the pixel coordinates that
correspond to the actual size of the screen. In our case, the viewport size matches the
screen size exactly. But you may have viewports of different dimensions other than
the screen. We will get erroneous results in that case.

To understand this, imagine the screen is 800 x 600 px and we have set up the game
world to 400 x 300 units, that is, half the size. Now, if we click on the center, we
might expect to get the touch coordinates as (200, 150). But instead, LibGDX will give
us (400, 300) since it is the actual center of the game screen pixel-wise. To avoid this,
we convert screen coordinates to viewport coordinates using the following method:

camera.unproject(GameManager.temp);

This method needs a 3D vector as an argument. It converts the coordinates and
stores them in the same vector, so we can then use them in our input handling logic.
This method is called on the game's camera, so it is passed to the handleInput()
method. Next, we iterate over the doors array to check which door we have touched.
Here, we only check closed doors using the handleDoor() function:

handleDoor(door,touchX,touchY))

In this method, we check whether the touch point lies on a particular door. We do
this by checking horizontal bounds, as follows:

(touchX>=door.position.x) && touchX<=(door.position.x+door.width)

We do this by checking vertical bounds, as follows:

(touchY>=door.position.y) && touchY<=(door.position.y+door.height)

This is explained in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

If the point lies on the door, we change its state to open so that we can display the
image when the door is open. This method returns true if a door was touched and
false otherwise. This is handled by the handleInput() method that stops iterating
over the doors via break. Since we are not detecting multiple touches, only one door
can be touched at a time; we stop detecting touches for other doors once we find the
door that we have touched.

We just need to make a small addition to the render() method of our Monty class
to include the input detection by calling the InputManager class' handleInput()
method:

batch.setProjectionMatrix(camera.combined);
InputManager.handleInput(camera);
 // render the game objects
 batch.begin();

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[20]

Adding game logic
Here, we will add some logic to the game such as searching for doors that have goats
behind them and the addition of game states for easy management of the code.

Finding doors with goats
First of all, we need to declare a Boolean variable in our Door class called isGoat so
that we can determine whether a goat is behind the door:

 public boolean isGoat = false; // indicates whether a goat is
 behind the door
 public Vector2 position =new Vector2(); // position of the door
 //door dimensions
 public float height;

Next, we need to set this variable for each door appropriately in the initDoors()
method of the GameManager class:

 doors.get(0).openSprite.setRegion(goatTexture);
 doors.get(0).isGoat= true;
 doors.get(1).openSprite.setRegion(carTexture);
 doors.get(1).isGoat= false;
 doors.get(2).openSprite.setRegion(goatTexture);
 doors.get(2).isGoat= true;

When you select a door, another door that has a goat behind it is revealed. If there
are two doors remaining that have goats behind them, a door is chosen among them
in random. To find this, we are going to write a function called getGoatIndices().
In this method, we find door indices that have goats and store them in an array of
integers, which is declared in our GameManager class:

 static Texture goatTexture; // texture image for the goat
 static Vector3 temp = new Vector3(); // temp vector to store
 input coordinates
 static IntArray goatIndices; // array of integer to store door
 indices with goats

We use the IntArray class to store a list of integers. This is a LibGDX
type that provides utility functions similar to ArrayList, but at the same
time, it is faster and more memory-efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

We will instantiate it in the initialize() method of the GameManager class:

 goatIndices = new IntArray();

We now define the getGoatindices() method in GameManager. This method takes
the index of the door that is currently selected as an argument:

/** Find doors containing goats from the remaining doors */
public static IntArray getGoatindices(int selectedDoorIndex){
 goatIndices.clear(); // remove all previous values from the
 array

 for(int i=0;i<doors.size;i++){
 // exclude selected door
 if(i!=selectedDoorIndex && doors.get(i).isGoat) {
 goatIndices.add(i);
 }
 }

 return goatIndices;
}

We go over the elements of the doors array to the left-hand side of the selected
element and add the index if a goat is found behind the door. The same goes for
the right-hand side. We return the array of indices at the end of the method.

Adding game states
We have three states in the game: START, CONFIRM, and END:

• START: This is the initial state where all the doors are closed. Once the user
selects a door, a different door that has a goat behind it is opened. The state
changes to CONFIRM.

• CONFIRM: In this state, the user has the option to stay (select the same door
again) or switch (select the remaining closed door). Once a door has been
selected, it is opened. At this point, the game's logic checks whether the user
has won or lost and the state changes to END.

• END: In this state, the game is basically over and the user just sees the
message whether he has won or lost.

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[22]

At the START state, which is the initial state, the initial screen is shown with all the
three doors closed, where the user is supposed to select a door. Once you select a
door, the game goes into the CONFIRM state, where another door with a goat behind it
is opened. At this time, you have the option to stay with your decision (the door you
chose) or switch your decision and choose the other closed door.

Once you make the decision and choose a door, it is opened, and you will know
whether you have won or lost. The game goes into the END state and it is over:

We will declare the three states by an enum and a variable level in the
GameManager class:

public static enum Level {
 START,
 CONFIRM,
 END
 }
static Level level;

We initialize the level with START in the initialize() method of the GameManager
class:

level = Level.START;

We are going to slightly change the signature of the handleDoor() method to
include the index of the door that we want to check in the InputManager class:

public static boolean handleDoor(Door door,float touchX,float
 touchY,int doorIndex)

This index is passed on by the handleInput() method:

handleDoor(door, touchX,touchY,i)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

We will implement further logic by updating the handleDoor() function:

public static boolean handleDoor(Door door,float touchX,float
 touchY,int doorIndex){

 // check whether the touch coordinates lie on the door's
 bounds
 if((touchX>=door.position.x) && touchX<=
 (door.position.x+door.width) && (touchY>=door.position.y)
 && touchY<=(door.position.y+door.height)){

 switch(GameManager.level){
 case START:
 // open a random door from the
 //remaining doors once the user selects a door
 GameManager.doors.get
 (GameManager.getGoatindices(doorIndex).
 random()).isOpen=true;
 // change the state to confirm
 GameManager.level = GameManager.Level.CONFIRM;
 break;
 case CONFIRM:
 door.isOpen=true; // open the selected door
 GameManager.level = GameManager.Level.END;
 // change the state to end
 break;
 }

 return true;

 }

 return false;
}

We write a switch statement that checks the game state. If the state is START, then
the user hasn't selected any door as of yet. So, after the user makes his selection,
we use the getGoatindices() function to get the door indices, which have a
goat behind them. Then, we randomly select one of them and get the door that
corresponds to it from the doors array. We then open this door and set the game
state to CONFIRM.

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[24]

If the state is CONFIRM, then the user has confirmed his selection. In this case,
we open the door that he has selected and change the state to END:

Displaying text and implementing restart
Here, we will learn how to display text messages on the screen and implement the
restart functionality. The messages give a visual cue to the user about the state of the
game and what action he is supposed to take. The restart functionality will allow the
user to restart the game from any point.

Displaying text
We have created the logic and different game states, but we haven't shown the user
whether he has won or lost. Also, we don't show which state he is in and what action
he is supposed to take. In this section, we are going to learn how to display text.
LibGDX has a class called BitmapFont that enables us to draw text on the screen.

We are going to create a class called TextManager, which is going to handle all the
text rendering. But first, we will make some changes to the code. We will introduce a
new Boolean variable in the GameManager class called hasWon to indicate whether the
user has won the game or not:

static Level level;
static boolean hasWon=false;
static Array<Door> doors ; // array of the 3 doors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

To set the variable, we are going to implement the logic in InputManager. We will
highlight the changes in the handleDoor() function:

case CONFIRM:
 door.isOpen=true; // open the selected door
 GameManager.level = GameManager.Level.END; // change the state
 to end
 if(!door.isGoat){
 GameManager.hasWon=true;
 }
 break;

Now, create a new class in the com.packtpub.managers package and name it
TextManager and type the following code:

package com.packtpub.managers;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class TextManager {
 static BitmapFont font; // we draw the text to the screen
 //using this variable
 // Texts corresponding to different states
 static String start = "Select a door";
 static StringBuffer confirm;
 static String win = "You Win!";
 static String lose = "You Lose!";
 // viewport width and height
 static float width,height;

 public static void initialize(float width,float height){

 TextManager.width = width;
 TextManager.height= height;
 //set the font color to cyan

 font = new BitmapFont();
 font.setColor(Color.CYAN);

 //scale the font size according to screen width
 font.scale(width/1600f);

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[26]

 confirm = new StringBuffer((String) "You selected door
 no.Do you want to switch or stay?");

 }

 public static void displayMessage(SpriteBatch batch){
 // draw the text based on the game state
 switch(GameManager.level){
 case START:
 // calculations to center the text on the screen
 font.draw(batch, start, (width/2 - font.
 getBounds(start).width/2), GameManager.doors
 .first().closeSprite.getY()/2 +
 font.getBounds(start).height/2);
 break;
 case CONFIRM:
 font.draw(batch, confirm, (width/2 - font.
 getBounds(confirm).width/2), GameManager.doors
 .first().closeSprite.getY()/2 +
 font.getBounds(confirm).height/2);
 break;
 case END:
 // draw win/lose text based on the status
 if(GameManager.hasWon)
 font.draw(batch, win,(width/2 - font.
 getBounds(win).width/2), GameManager.doors
 .first().closeSprite.getY()/2 + font
 .getBounds(win).height/2);
 else
 font.draw(batch,lose,(width/2 – font
 .getBounds(lose).width/2), GameManager.doors
 .first().closeSprite.getY()/2 +
 font.getBounds(lose).height/2);
 break;
 }

 }

 public static void setSelectedDoor(int doorIndex){
 // insert selected door number into confirm display text
 confirm.insert(confirm.indexOf("door no")+"door
 no".length(), " "+(doorIndex+1));
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

We declare a BitmapFont instance that we are going to use. BitmapFont is the class
used to display text in LibGDX. Next, we will define the strings that we are going to
display when the user is in the START state, that is, either he wins or he loses.

We are going to use StringBuffer to store the CONFIRM state's text. This is because
we need to modify it in between so that we can include the door number the user
has selected. We declare the width and height of the screen. These variables will be
required to correctly position our text.

We create a function called initialize() to set initial values of some variables.
This method takes height and width as arguments, which are passed to it by
GameManager:

public static void initialize(float width,float height)

We set the dimensions of our viewport at the first two lines in this method. Next,
we instantiate our font. By default, the font used is 15pt Arial:

font = new BitmapFont();

We can also use custom fonts and styles, which we will explore in later chapters.
We set the font's color to Cyan. You can set any color you want:

font.setColor(Color.CYAN);

We can also scale the font according to our requirement using the font.scale()
method:

font.scale(width/1600f);

This method is called in the GameManager class' initialize() method and the
viewport's dimensions are passed to it:

public static void initialize(float width,float height){
 // other code excluded
 TextManager.initialize(width, height);
}

We created a method called setSelectedDoor() to insert the door number the user
has selected in the CONFIRM state's text. This is done so that we can let the user know
which door he has selected. We insert the door index of the selected door after the
words door no.

This method is called in the InputManager class' handleDoor() function, where we
check whether a door has been selected by the user:

GameManager.level = GameManager.Level.CONFIRM; // change the state
 // to confirm
TextManager.setSelectedDoor(doorIndex);

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[28]

We declare a new method called displayMessage() that takes a SpriteBatch used
to draw. In this method, we are going to use the switch case to determine which text
to draw based on the state of the game.

If the state is START or CONFIRM, we display the corresponding text. If it is END,
we display the win/lose message, depending on the status:

public static void displayMessage(SpriteBatch batch){
 // draw the text based on the game state
 switch(GameManager.level){
 case START:
 // calculations to center the text on the screen
 font.draw(batch, start,(width/2 – font
 .getBounds(start).width/2), (height+ GameManager.
 doors.first().closeSprite.getY()+GameManager.
 doors.first().closeSprite.getHeight())/2 - font.
 getBounds(start).height/2);
 break;
 case CONFIRM:
 font.draw(batch, confirm,(width/2 – font
 .getBounds(confirm).width/2), (height+
 GameManager.doors.first().closeSprite.getY()
 +GameManager.doors.first().closeSprite.
 getHeight())/2 - font.getBounds(confirm)
 .height/2);
 break;
 case END:
 // draw win/lose text based on the status
 if(GameManager.hasWon)
 font.draw(batch, win,(width/2 – font
 .getBounds(win).width/2), (height+ GameManager.
 doors.first().closeSprite.getY()+GameManager.
 doors.first().closeSprite.getHeight())/2 -
 font.getBounds(win).height/2);
 else
 font.draw(batch, lose,(width/2 – font
 .getBounds(lose).width/2), (height+ GameManager.
 doors.first().closeSprite.getY()+GameManager.
 doors.first().closeSprite.getHeight())/2 -
 font.getBounds(lose).height/2);
 break;
 }

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

We are using a font.draw() method, which takes four arguments: the SpriteBatch
(used to draw), the message text, and the x and y positions of the displayed text. The
x and y positions are calculated in such a way that the text displayed is always in
the center. To correctly position the text, we use the BitmapFont class' getBounds()
method. This method is called on the particular font instance and the text to be
displayed is passed to it. It calculates the size of the text and returns it. An example
of this is as follows:

font.draw(batch, win,(width/2 - font.getBounds(win).width/2),
 GameManager.doors.first().closeSprite.getY()/2 +
 font.getBounds(win).height/2);

Let's take a look at the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[30]

We can also display text on multiple lines. We have to use \n in our strings where
we want the line break. To display this, we have to use the font.drawMultiline()
method instead of font.draw(). Finally, we need to call the displayMessage() of
TextManager in the GameManager class' renderGame() method. Add the following
line at the end of the renderGame() method:

TextManager.displayMessage(batch);

Implementing restart
Let's add a restart functionality to our game. We will display a button for restart, and
when the user clicks on it, our game will be restarted. First, let's copy the image that
we will use for the restart button to our project. I am using restart.png and this
image needs to be copied to the Android project's assets/data folder. All the assets
would be available for you in the code bundle accompanied with the book.

Let's declare a sprite called restartSprite and a corresponding texture in our
GameManager class. We also declare a constant named RESTART_RESIZE_FACTOR.
This will be used to resize the restart sprite based on screen dimensions. We will
initialize the sprite and set its parameters in the initialize() method of the
GameManager class:

static Sprite restartSprite;
static Texture restartTexture;
static final float RESTART_RESIZE_FACTOR = 5500f;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

The initialize() method will be as follows:

restartTexture = new Texture(
 Gdx.files.internal("data/restart.png"));
restartSprite = new Sprite(restartTexture);
restartSprite.setSize(restartSprite.getWidth()*
 width/RESTART_RESIZ E_FACTOR,restartSprite.getHeight()*
 width/RESTART_RESIZE_FACTOR);
restartSprite.setPosition(0 ,0);

The drawing of restartSprite will occur in the renderGame() method:

restartSprite.draw(batch);

Let's write a function for handling the user clicks/touches on the restart button.
We will create a function called handleRestart() in the InputManger class:

public static void handleRestart(float touchX,float touchY){
 // determine if the user has clicked/touched the restart
 button
 if((touchX>=GameManager.restartSprite.getX()) &&
 touchX<=(GameManager.restartSprite.getX()+GameManager
 .restartSprite.getWidth()) && (touchY>=GameManager
 .restartSprite.getY()) && touchY<=(GameManager
 .restartSprite.getY()+GameManager
 .restartSprite.getHeight())){

 GameManager.restartGame();
 }
}

This method is called by the handleInput() function and takes inputs x and y
coordinates as arguments:

handleRestart(touchX,touchY); // in handleInput() method.

Once it is determined that the button is touched using bounds checking, as described
previously, we will call the restartGame() function, which will be defined in the
GameManager class:

public static void restartGame(){
 // shuffle the positions of the doors inside the doors array
 doors.shuffle();

 // reset the door positions
 doors.get(0).position.set(width/DOOR1_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);

www.it-ebooks.info

http://www.it-ebooks.info/

Monty Hall Simulation

[32]

 doors.get(1).position.set(width/DOOR2_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);
 doors.get(2).position.set(width/DOOR3_
 HORIZ_POSITION_FACTOR,height/DOOR_VERT_POSITION_FACTOR);

 for(int i=0;i<GameManager.doors.size;i++){
 GameManager.doors.get(i).isOpen=false;
 // reset the sprite positions
 GameManager.doors.get(i).closeSprite.setPosition
 (GameManager.doors.get(i).position.x,
 GameManager.doors.get(i).position.y);
 GameManager.doors.get(i).openSprite.setPosition
 (GameManager.doors.get(i).position.x,
 GameManager.doors.get(i).position.y);

 }
 GameManager.hasWon=false;
 // reset the level
 GameManager.level = GameManager.level.START;
 TextManager.confirm = new StringBuffer((String) "You
 selected door no.Do you want to switch or stay?");
}

We call the shuffle() function on our doors array. This is done so that every time
we restart, the doors will be positioned in a different order:

Next, we set the isOpen status of each door to false, marking them closed, which
was the initial configuration. The positions of the sprites are reset to their original
positions as well. Finally, we reset hasWon to false, the CONFIRM state's string to its
original text, and the game's level to START.

Lastly, we need to dispose of restartTexture as well. So, we call it in the
dispose() method, as follows:

restartTexture.dispose();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

Displaying the background
We have done everything in our game except the background. To finish off, we
will quickly add a background image to the game to make it look better. In the
GameManager class, type the following code:

static Texture backtexture;
static Sprite backSprite;

In the initialize() method of the GameManager class, add the following code:

backtexture = new Texture(Gdx.files.internal
 ("data/background.jpg"));
backSprite = new Sprite(backtexture);
backSprite.setSize(width, height);
backSprite.setPosition(0,0f);

We will set width and height to the same values as that of our viewport to cover
the whole screen. Let's draw our background in the renderGame() method of the
same class:

backSprite.draw(batch);
// Render(draw) each door

Remember to draw the background before drawing anything else. Otherwise, it will
overlay on top of our game objects. Lastly, we need to dispose of the texture in the
dispose() method:

backtexture.dispose();

Summary
In this chapter, we learned how to set up LibGDX, and we created a simple but
complete game from scratch. We learned some of the concepts in LibGDX, such as
the following:

• Displaying images
• Capturing mouse/touch inputs
• Displaying text

In the next few chapters, we will learn more about LibGDX and game development
concepts progressively while making awesome games!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[35]

Whack-A-Mole
In this chapter, we are going to learn how to make a Whack-A-Mole style game. The
objective of the game is to whack as many moles as possible. The moles come up and
go down from the ground through holes. The user can tap on the moles to hit/whack
them. The user gets points on whacking the moles and the points are displayed on
the screen.

We will cover the following topics in this chapter:

• Making the initial screen
• Adding some color
• Animating the mole
• Adding randomness and taking inputs
• Adding more effects
• Keeping scores and adding sounds

Making the initial screen
We will implement a basic game screen with some moles.

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[36]

Implementing the Mole class
We will set up a new project with the LibGDX setup, which is similar to
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Let's see how to implement the mole in our game. Create a new package in the core
projects and name it com.packtpub.whackamole.gameobjects. Create a new Java
class in this package and name it Mole.

Type the following code in the file:

package com.packtpub.whackamole.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Vector2;

public class Mole {
 public Sprite moleSprite; //sprite to display the mole
 public Vector2 position =new Vector2();// The mole's position
 public float height,width; // the mole's dimensions

 public void render(SpriteBatch batch){

 moleSprite.draw(batch);

 }
}

This class defines the mole. We declare the sprite for the mole, its position, and
its dimensions. In the render method, we draw the mole using the SpriteBatch.
The code for this class is just the start, and we are going to add more members and
methods to it as we go further.

Implementing the GameManager class
Create a new package called com.packtpub.whackamole.managers. Create a new
file named GameManager.java in this package. Type the following content:

package com.packtpub.whackamole.managers;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.utils.Array;
import com.packtpub.whackamole.gameobjects.Mole;

public class GameManager {

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[38]

 static Array<Mole>moles; // array of the moles
 static Texture moleTexture; // texture image for the mole

 private static float MOLE_RESIZE_FACTOR = 2500f;

 private static float MOLE_VERT_POSITION_FACTOR = 3f;
 private static float MOLE1_HORIZ_POSITION_FACTOR = 5.8f;
 private static float MOLE2_HORIZ_POSITION_FACTOR = 2.4f;
 private static float MOLE3_HORIZ_POSITION_FACTOR = 1.5f;

 public static void initialize(float width,float height){

 moles = new Array<Mole>();
 moleTexture = new Texture(Gdx.files.internal
 ("data/mole.png"));
 // instantiate new moles and add it to the array
 for(int i=0;i<3;i++){
 moles.add(new Mole());
 }

 // set the mole's display position
 moles.get(0).position.set(width/MOLE1_HORIZ_
 POSITION_FACTOR,height/MOLE_VERT_POSITION_FACTOR);
 moles.get(1).position.set(width/MOLE2_HORIZ_
 POSITION_FACTOR,height/MOLE_VERT_POSITION_FACTOR);
 moles.get(2).position.set(width/MOLE3_HORIZ_
 POSITION_FACTOR,height/MOLE_VERT_POSITION_FACTOR);

 for(Mole mole : moles){
 // instantiate sprite for the mole with the texture of
 it
 mole.moleSprite = new Sprite(moleTexture);

 //set the dimensions for the mole
 mole.width = mole.moleSprite.getWidth()*
 (width/MOLE_RESIZE_FACTOR);
 mole.height = mole.moleSprite.getHeight()*
 (width/MOLE_RESIZE_FACTOR);
 mole.moleSprite.setSize(mole.width, mole.height);
 mole.moleSprite.setPosition(mole.position.x,
 mole.position.y);

 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

 public static void renderGame(SpriteBatch batch){

 // Render(draw) each mole
 for(Mole mole : moles)
 mole.render(batch);

 }
 public static void dispose() {
 // dispose of the mole texture to ensure no memory leaks
 moleTexture.dispose();

 }
}

Here, we are doing exactly what we did in the previous chapter. We are going to
create three mole instances, initialize them, display them, and at the end, we will
dispose of the texture used. The code is pretty self-explanatory.

Implementing the WhackAMole class
Edit the WhackAMole.java file and type the following code:

package com.packtpub.whackamole;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.whackamole.managers.GameManager;

public class WhackAMole extends ApplicationAdapter {
 SpriteBatch batch; // spritebatch for drawing
 OrthographicCamera camera;
 @Override
 public void create () {
 // get window dimensions and set our viewport dimensions
 float height= Gdx.graphics.getHeight();
 float width = Gdx.graphics.getWidth();
 // set our camera viewport to window dimensions
 camera = new OrthographicCamera(width,height);
 // center the camera at w/2,h/2
 camera.setToOrtho(false);

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[40]

 batch = new SpriteBatch();
 //initialize the game
 GameManager.initialize(width, height);
 }

 @Override
 public void dispose() {
 super.dispose();
 //dispose the batch and the textures
 batch.dispose();
 GameManager.dispose();
 }

 @Override
 public void render () {
 // Clear the screen
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 // set the spritebatch's drawing view to the camera's view
 batch.setProjectionMatrix(camera.combined);

 // render the game objects
 batch.begin();
 GameManager.renderGame(batch);
 batch.end();

 }
}

This class is also very similar to the one in the previous chapter. It has some
differences though. Instead of implementing the ApplicationListener interface,
we are now extending the ApplicationAdapter class. This allows us to override
the methods we want instead of implementing all of them. We have overridden
create(), render(), and dispose(), which perform the same functions as before.
If you run the game, you'll get three moles on the screen against a white background:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Adding some color
This topic will include how to add the background and the hole sprites for the mole
to come up and down.

Adding the background
Let's quickly add a background to our game. In the GameManager class, we will add
these variables:

static Texture backgroundTexture; // texture image for
 background
static Sprite backgroundSprite; // sprite for background

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[42]

In the GameManager class' initialize() method, we load the texture and initialize
the sprite to cover the whole screen:

backgroundTexture = new Texture(Gdx.files.internal
 ("data/ground.jpg"));
backgroundSprite = new Sprite(backgroundTexture); //set
 background sprite
// set background sprite's dimensions and position
backgroundSprite.setSize(width, height);
backgroundSprite.setPosition(0,0f);

Draw the sprite in the renderGame() method before drawing the mole:

backgroundSprite.draw(batch);

Then, dispose of the texture in the dispose() method:

backgroundTexture.dispose();

It will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Implementing the holes
In the background, we just added a ground texture. We will now add the holes from
where the mole comes out. We will just use a single texture for the hole and draw it
nine times on the screen. So, let's declare the array and the texture for the holes in the
GameManager class:

static Texture holeTexture; // texture image for background
static Array<Sprite> holeSprites; // array of hole sprites
private static float HOLE_RESIZE_FACTOR = 1100f;

We'll initialize them in the initialize() method like this:

holeTexture = new Texture(Gdx.files.internal("data/hole.png"));
holeSprites = new Array<Sprite>();
for(int i=0;i<3;i++){
 for(int j=0;j<3;j++){
 Sprite sprite = new Sprite(holeTexture);
 // resize the holes
 sprite.setSize(sprite.getWidth()*
 (width/HOLE_RESIZE_FACTOR), sprite.getHeight()*
 (width/HOLE_RESIZE_FACTOR));
 // position the holes so they are in the center of the
 ground
 sprite.setPosition(width*(j+1)/4f - sprite.getWidth()/2,
 height*(i+1)/4.4f - sprite.getHeight());
 holeSprites.add(sprite);
 }
}

Although we are using a single array to hold nine instances of holes, they are laid
out in a 3 x 3 grid on the screen. We position them appropriately and resize them so
that they can be displayed in the center. We can display them in the renderGame()
method between the background and the mole, as follows:

//render each hole
for(Sprite sprite : holeSprites)
 sprite.draw(batch);

Now, dispose of the hole texture in the dispose() method as usual:

holeTexture.dispose();

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[44]

Comment out the mole's rendering code and run the game to see something like this:

Adding moles in holes
Now, we are going to display the moles coming out of the holes. Every mole needs
to be displayed on top of a hole and positioned appropriately. Let's increase the
number of moles to nine in the initialize() method of GameManager:

// instantiate new moles and add it to the array
for(int i=0;i<9;i++){
 moles.add(new Mole());
}

Let's position the moles. But before that, we need to add one more variable to our
Mole class:

public float scaleFactor; // scaling factor for the mole

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Since we are scaling the mole according to our screen dimensions, we will preserve
the scaling factor for our mole. This information will be required later. Update the
code in the initialize() method, where we positioned them, and set the size and
delete the three lines where we positioned them (moles.get(0).position):

// set the mole's display position
for(int i=0;i<9;i++){

 Mole mole = moles.get(i);
 Sprite sprite = holeSprites.get(i);

 // instantiate sprite for the mole with the texture of it
 mole.moleSprite = new Sprite(moleTexture);

 //set mole's dimensions
 float scaleFactor = width/4000f;
 mole.scaleFactor=scaleFactor;
 mole.width = mole.moleSprite.getWidth()*(scaleFactor);
 mole.height = mole.moleSprite.getHeight()*(scaleFactor);
 mole.moleSprite.setSize(mole.width, mole.height);

 //set mole's position
 mole.position.x=(((2*sprite.getX() + sprite.getWidth())/2) -
 (mole.moleSprite.getWidth()/2));
 mole.position.y=(sprite.getY() + sprite.getHeight()/5f);

 mole.moleSprite.setPosition(mole.position.x, mole.position.y);

}

Here, we set the x and y coordinates of each mole so that they are centered and
placed on top of each hole. Let's talk about the x coordinate. Both the holes and the
corresponding centers should be aligned. First, we calculate the center of a hole
horizontally. This will be the midpoint of the x coordinate of the starting and ending
point of the sprite. This comes out to the following:

(sprite.getX() + [sprite.getX() + sprite.getWidth()]) /2

Or this:

(2*sprite.getX()+ sprite.getWidth()) /2

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[46]

Then, we offset that location with half of the mole's width so that when we draw,
the centers are aligned:

=(((2*sprite.getX() + sprite.getWidth())/2) - (mole.
 moleSprite.getWidth()/2)

For the y coordinate, we don't want to align the centers, so we draw at the starting
location of the hole plus a 20% offset:

(sprite.getY() + sprite.getHeight()/5f)

This is shown here:

Also, you will need to uncomment the drawing code for moles in the renderGame()
method of the GameManager class. The screen will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Animating the mole
We will see how to animate our mole in this section.

Jumping up and down
We will animate the mole such that it comes out of the hole and goes back in again.
This process continues repeatedly. Let's define some variables in our Mole class:

public enum State {GOINGUP,GOINGDOWN}; // define mole's states
public State state=State.GOINGUP; // variable describing mole's
 current state
public float currentHeight = 0.0f; // current height of the mole
 above ground
public float speed =2f; // speed of the mole as it goes up and
 down

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[48]

We have defined two states for the mole. One for going up and the other for going
down. The state variable is used to hold the current value of the state. This is
initialized to go up. The currentHeight variable is used to determine the current
height of the mole above the ground. The speed variable denotes how fast the mole
moves up or down.

We will add a new method to the same class called update(). This will contain the
logic for the animation and is called in every frame:

public void update(){
 switch(state){

 // here increase the height till it reaches max, once it
 reaches, change the state
 case GOINGUP:
 currentHeight+=speed;
 if(currentHeight>=height){
 currentHeight=height;
 state=State.GOINGDOWN;
 }
 break;
 // here decrease the height till it reaches min(0), once
 it reaches, change the state
 case GOINGDOWN:
 currentHeight-=speed;
 if(currentHeight<=0.0){
 currentHeight=0.0f;
 state=State.GOINGUP;
 }
 break;

 }

 // draw only some portion of the mole image, depending on
 height
 moleSprite.setRegion(0, 0, (int)(width/scaleFactor),
 (int)(currentHeight/scaleFactor));
 moleSprite.setSize(moleSprite.getWidth(), currentHeight);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

The logic is as follows. If the mole is in the GOINGUP state, we only draw the part of
the mole that is above the ground. The currentHeight variable determines this. We
increment it every time using the speed variable. So, when it is going up, the mole's
height goes on increasing until it reaches its actual height. After this point is reached,
we switch the state to GOINGDOWN where the mole goes down. This part of the logic is
similar, except that now we decrease the height of the mole at every frame:

To draw the mole partially, we use the following function:

moleSprite.setRegion();

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[50]

This function allows us to set a rectangular region inside a texture that we want to
draw. It takes four int types as arguments. The first two arguments specify the x
and y coordinates of the rectangle within the texture (from the top-left corner). The
next two arguments specify the width and height of the rectangle. All these values
correspond to the texture. Since we are scaling down our sprite, to get the width and
height corresponding to the texture, we reverse-scale them up by scaleFactor:

We then set the height of our sprite to match that of the selected rectangle with the
moleSprite.setSize() method.

The mole states look like this:

Remember to call the update() method in the GameManager class' renderGame()
method before rendering each mole:

//render each mole
for(Mole mole : moles){
 mole.update();
 mole.render(batch);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

Once the mole is completely down, it starts going up again and so on. If you run the
game now, you will get a nice animation of the mole going up and down the hole.

Waiting underground
Now, when the moles go down, they immediately start going up as soon as they
reach underground. Let's make them wait underground for some time before
they start coming up. Let's first add some variables to our Mole class to achieve
this effect:

public enum State {GOINGUP,GOINGDOWN,UNDERGROUND}; // define
 mole's states
public float timeUnderGround= 0.0f; // time since the mole is
 underground
public float maxTimeUnderGround= 0.8f; // max time allowed for
 the mole to stay underground

We add a new state called UNDERGROUND to determine whether the mole is
underground. The timeUnderGround variable is used to tell how much time the mole
has been underground since it went under the ground. The maxTimeUnderGround
variable is used to tell how much time the mole has to wait underground before it
starts coming up. Let's make some changes to our update() method to simulate
this effect:

public void update(){

 switch(state){

 case UNDERGROUND:
 if(timeUnderGround>=maxTimeUnderGround){
 state=State.GOINGUP;
 timeUnderGround=0.0f;
 }
 else{
 timeUnderGround+=Gdx.graphics.getDeltaTime();
 }
 break;
 // here increase the height till it reaches max, once it
 reaches, change the state
 case GOINGUP:
 currentHeight+=speed;
 if(currentHeight>=height){
 currentHeight=height;
 state=State.GOINGDOWN;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[52]

 break;

 // here decrease the height till it reaches min(0), once
 it reaches, change the state
 case GOINGDOWN:
 currentHeight-=speed;
 if(currentHeight<=0.0){
 currentHeight=0.0f;
 state=State.UNDERGROUND;
 }
 break;

 }

// draw only some portion of the mole image, depending on height
moleSprite.setRegion(0, 0, (int)(width/scaleFactor),
 (int)(currentHeight/scaleFactor));
moleSprite.setSize(moleSprite.getWidth(), currentHeight);

}

First, we check whether the mole is underground. If it is, then we check whether the
time taken by our mole to be underground has exceeded the maxTimeUnderGround
value. If yes, it is time for the mole to stop waiting and start going up. We set the
state to GOINGUP and reset our underground time counter to 0. If the waiting time has
not exceeded maxTimeUnderGround, we accumulate the wait time. We set the state to
UNDERGROUND when the mole is going down and its height reaches 0.

For accumulating the time, we use the Gdx.graphics.getDeltaTime() function.
This function gives us the time difference in seconds when the WhackAMole class'
render() method is called the last time:

Run the game now to see our moles waiting for some time underground before
coming up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

Adding randomness and taking input
Here, we will see how to add some randomness to the moles' actions and respond to
the user's actions.

Randomizing wait times
Our system is predictable. The moles come up and go down with each other in
perfect sync. Their cycle is fixed and we don't want that. Let's add some randomness
to it in order to make our game interesting. We will randomize the wait times of our
moles so that each one waits for a different period of time before coming up.

We will add a new function to our Mole class called randomizeWaitTime():

public void randomizeWaitTime(){
 maxTimeUnderGround =(float) Math.random()*2f;
}

This function will generate a number between 0 and 2 seconds.

We will call this method in the initialize() method of GameManager, where we
initialize our moles:

mole.position.x=(((2*sprite.getX() + sprite.getWidth())
 /2) - (mole.moleSprite.getWidth()/2));
mole.position.y=(((2*sprite.getY() + sprite.getHeight())/2));

mole.moleSprite.setPosition(mole.position.x,
 mole.position.y);
mole.randomizeWaitTime();

Taking input
In this section, we will talk about accepting the touch/click input from the user
and processing it. Our system is simple. When the user taps on a mole, we send it
underground. Let's implement a method called handleTouch() in the Mole class:

public boolean handleTouch(float touchX,float touchY){
 if((touchX>=position.x) &&touchX<=(position.x+width) &&
 (touchY>=position.y) &&touchY<=(position.y+currentHeight)){

 state = State.UNDERGROUND; // change the state to
 underground
 currentHeight=0.0f; // change the current height to 0

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[54]

 moleSprite.setRegion(0, 0, (int)(width/scaleFactor),
 (int)(currentHeight/scaleFactor));
 moleSprite.setSize(moleSprite.getWidth(), currentHeight);
 // reset the underground timer
 timeUnderGround=0.0f;
 randomizeWaitTime();
 return true;
 }
 return false;
}

This method accepts two parameters: touchX and touchY. These are the input
coordinates of the point on the screen where the user has touched/clicked. We
check whether the user has touched the mole, which is similar to how we did in the
previous chapter. The only difference is how the vertical bounds checking is done.
Since the height is constantly changing, we use currentHeight for detection.

Once we come to know that the user has tapped on a particular mole, we send it
underground by setting the state to UNDERGROUND, setting currentHeight to 0,
resetting the timeUnderGround variable, and then randomizing the wait time. We
return true if the touch is detected on a particular mole and false otherwise.

We will implement a new class called InputManager to call this method and pass
touch coordinates. In the com.packtpub.whackamole.managers package, add a
new class by this name:

package com.packtpub.whackamole.managers;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.math.Vector3;
import com.packtpub.whackamole.gameobjects.Mole;

public class InputManager {
 static Vector3 temp = new Vector3();

 public static void handleInput(OrthographicCamera camera){
 // Check if the screen is touched
 if(Gdx.input.justTouched()){
 // Get input touch coordinates and set the temp vector
 with these values
 temp.set(Gdx.input.getX(),Gdx.input.getY(), 0);
 //get the touch coordinates with respect to the
 camera's viewport
 camera.unproject(temp);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

 float touchX = temp.x;
 float touchY= temp.y;

 // iterate the moles array and check if we
 tapped/touched/clicked on any mole
 for(int i=0;i<GameManager.moles.size;i++){
 Mole mole = GameManager.moles.get(i);

 if(mole.handleTouch(touchX, touchY)){
 break;
 }

 }

 }

 }

This class needs no explanation as it is very similar to how we implemented it in the
previous chapter. We will call the InputManager class' handleInput() method in
the render() method of the WhackAMole class:

Gdx.gl.glClearColor(1, 1, 1, 1);
Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
InputManager.handleInput(camera);

Adding more effects
We will see how to add a stun effect to the mole in this section.

Stunning the mole
Let's add an effect where the mole is stunned for some time when we tap on it.
We will need some more variables for this in the Mole class:

public enum State {GOINGUP,GOINGDOWN,UNDERGROUND,STUNNED};
 // define mole's states
public float stunTime =0.1f; // The amount of time the mole would
 be stunned
public float stunCounter=0.0f; // The amount of time the mole is
 currently stunned

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[56]

We add the STUNNED state to denote whether the mole is stunned or not. The
stunTime variable denotes the amount of time the mole is to be kept in the STUNNED
state, and the stunCounter variable is used to keep track of that time. As we are
not sending the mole underground immediately, edit the handleTouch() method
as follows:

public boolean handleTouch(float touchX,float touchY){
 if((touchX>=position.x) &&touchX<=(position.x+width) &&
 (touchY>=position.y) &&touchY<=(position.y+currentHeight)){

 state = State.STUNNED; // change the state to stunned

 return true;
 }
 return false;
}

Here, we just set the mole to the STUNNED state when a touch/click event is detected
on it. We will edit the update() method to add a case to handle the stun effect:

case STUNNED:
 if(stunCounter>=stunTime){
 // send the mole underground
 state= State.UNDERGROUND;
 stunCounter=0.0f;
 currentHeight=0.0f;
 randomizeWaitTime();
 }
 else{
 stunCounter+=Gdx.graphics.getDeltaTime();
 }
break;

In the STUNNED state, if the stunCounter variable exceeds the maximum time we had
set, we change the state to UNDERGROUND. We reset stunCounter, change the current
height to 0, and then call randomizeWaitTime() to randomize the maximum time
the mole stays underground. If stunCounter has not exceeded the maximum stun
time, we keep accumulating stunCounter. The following diagram describes this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

One more thing, we don't want to stun the mole again if he is already stunned,
so we will update the handleInput() method in the InputManager class to reflect
this change:

if(mole.state!= Mole.State.STUNNED && mole.handleTouch(touchX,
 touchY)){
 break;
}

Adding the stun sign
Now, we'll add a sign to our moles when they are stunned. I'm using a picture of a
star. Let's add a new sprite to it in our Mole class:

public Sprite stunSprite; // sprite to display stun image

In the GameManager class, we will add a texture to our sprite:

static Texture stunTexture; // texture for stun image

We will load the texture with our stun image in the GameManager class'
initialize() method:

stunTexture = new Texture(Gdx.files.internal("data/stun.png"));

Then, we will initialize the stunSprite in the loop where we initialized the moles:

mole.stunSprite = new Sprite(stunTexture);

float scaleFactor = width/4000f;
mole.scaleFactor=scaleFactor;
mole.width = mole.moleSprite.getWidth()*(scaleFactor);
mole.height = mole.moleSprite.getHeight()*(scaleFactor);

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[58]

mole.moleSprite.setSize(mole.width, mole.height);

//set mole's position
mole.position.x=(((2*sprite.getX() + sprite.getWidth())/2) -
 (mole.moleSprite.getWidth()/2));
mole.position.y=(sprite.getY() + sprite.getHeight()/5f);

mole.moleSprite.setPosition(mole.position.x, mole.position.y);

mole.stunSprite.setSize(mole.width/2f, mole.height/2f);

When we tap on the mole, we want to show the stun image near the mole's head.
In the handleTouch() method of the Mole class, we do this by positioning our
stunSprite in such a way that its center is aligned with the mole's top-right corner:

stunSprite.setPosition(position.x+width-(stunSprite.getWidth()/2)
 , position.y+currentHeight -(stunSprite.getHeight()/2));

state = State.STUNNED; // change the state to underground

We display the image only when the mole is stunned in the render() method:

moleSprite.draw(batch);
if(state==State.STUNNED){
 stunSprite.draw(batch);
}

Finally, we dispose of the stunTexture in GameManager class' dispose() method:

stunTexture.dispose();

This is how the screen looks now:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Keeping scores and adding sounds
We will take a look at how to keep scores and add sound effects to the game in
this section.

Keeping scores
We want to keep track of how many times the user has whacked a mole and show it
to the user. For this, we add a new variable to the GameManager class called score:

public static int score; // score counter

Let's initialize it with 0 in the initialize() method:

score=0;

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[60]

To display the score, we are going to add a new class called TextManager to the
com.packtpub.whackamole.managers package, which is similar to what we
did previously:

package com.packtpub.whackamole.managers;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class TextManager {
 static BitmapFont font ; // we draw the text to the screen
 using this variable

 // viewport width and height
 static float width,height;

 public static void initialize(float width,float height){
 font = new BitmapFont();
 TextManager.width = width;
 TextManager.height= height;
 //set the font color to red
 font.setColor(Color.RED);
 //scale the font size according to screen width
 font.scale(width/1600f);
 }

 public static void displayMessage(SpriteBatch batch){
 float fontWidth = font.getBounds("Score: "+GameManager.
 score).width; // get the width of the text being
 displayed

 //show the score display at top right corner
 font.draw(batch, "Score: "+GameManager.score, width -
 fontWidth - width/15f,height*0.95f);

 }

}

We display the text at the top-right corner of the screen. Horizontally, we offset the
drawing position by the text width and value of screenWidth divided by 15 from
the right edge of the screen. Vertically, we just offset it by 5% from the top of
the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Initialize the TextManager class in the GameManager class:

TextManager.initialize(width, height);

Call the displayMessage() method in the renderGame() method:

TextManager.displayMessage(batch);

Finally, in the InputManager class' handleInput() method, we increase the score
when we hit the mole:

if(mole.state!= Mole.State.STUNNED&& mole.handleTouch(touchX,
 touchY)){
 GameManager.score++; //increase the score by one
 break;
}

The screen now looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Whack-A-Mole

[62]

Adding sound effects
Let's add some sound when our player hits the moles. Sound effects are usually short
audio clips suited especially for these kind of tasks. LibGDX supports the following
three kinds of audio formats:

• WAV: This format is not proprietary but takes a large amount of
storage space

• MP3: This format has a small size but is proprietary and may need licensing
for distribution

• OGG: This format is not proprietary and has a small size, but it doesn't
work on iOS

On Android, the size of the file used for sound effects
cannot be over 1 MB in size.

Each format has its own pros and cons, but we will use WAV here. I'm using the
hit.wav sound clip taken from the http://opengameart.org/ website. We will
make a new folder in our assets folder called sounds and copy the file to it.

Let's add a variable that holds our sound instance called hitSound in the
GameManager class:

public static Sound hitSound;

Since we are using only one type of sound effect for the hit sound, we are using only
one instance. Let's initialize the instance in the initialize() method:

hitSound = Gdx.audio.newSound(Gdx.files.internal
 ("sounds/hit.wav"));

In the Mole class' handleTouch() method, we will play the sound when the mole
is hit:

GameManager.hitSound.play();

Finally, we dispose of the sound in the GameManager class' dispose() method:

hitSound.dispose();

You can set the volume by passing a float variable to the play method. It should be
in the range 0 to 1, with 0 being mute and 1 being full volume:

GameManager.hitSound.play(volume);

www.it-ebooks.info

http://opengameart.org/
http://www.it-ebooks.info/

Chapter 2

[63]

If you want more control over a specific instance of a hit sound for a particular mole,
the play method also returns a long value:

long id = GameManager.hitSound.play();

This value serves as an ID to that instance and you can manipulate it. To manipulate
the sound instance, you can call the following code:

GameManager.hitSound.stop(id); // to stop the sound instance
GameManager.hitSound.setLooping(id,true); // to keep the sound
 looping
GameManager.hitSound.setPitch(id,2); // set the pitch twice as
 much as original

Summary
In this chapter, we learned some more concepts along with a game of Whack-A-
Mole. These include the following:

• Animating sprites
• Implementing wait times
• Randomizing wait times
• Adding stun effects
• Adding sound effects

In the next chapter, we will make a game called Catch the Ball, where we will learn
more concepts, such as making custom fonts, saving high scores, game physics, game
menus, and many more.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[65]

Catch the Ball
In this chapter, we will learn how to make a game called Catch the Ball. The user has
to catch a ball thrown from a height in a basket. The ball will be randomly thrown
from above. The user would be given a point from where he needs to catch the ball.
We will display the score and also the highest score for the game.

The following topics will be covered in this chapter:

• Making a moving basket
• Throwing the ball
• Detecting collisions
• Throwing multiple balls
• Keeping score and saving the high score
• Implementing screens
• Adding sound effects and music

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[66]

Making a moving basket
Set up a project similar to the one I have, as shown here:

We will make a basic game screen that has a basket that can be controlled with touch.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Implementing the Basket class
Let's make a class to represent a basket. Create a new package in the core projects
and name it com.packtpub.catchtheball.gameobjects. Create a new Java class
in this package and name it Basket.

Type the following code in the file:

package com.packtpub.catchtheball.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class Basket {
 public Sprite basketSprite; //sprite to display the basket

 public void render(SpriteBatch batch){
 basketSprite.draw(batch);
 }

 public void setPosition(float x,float y){
 basketSprite.setPosition(x, y);
 }
}

You will find that the code is pretty self-explanatory. It's nothing new from what we
have learned in earlier chapters.

Implementing the GameManager class
Create a new package called com.packtpub.catchtheball.managers. Create a new
GameManager.java file in this package. Type the following content:

package com.packtpub.catchtheball.managers;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.catchtheball.gameobjects.Basket;

public class GameManager {
 public static Basket basket; // basket instance

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[68]

 static Texture basketTexture; // texture image for the basket
 public static Sprite backgroundSprite; // background sprite
 public static Texture backgroundTexture; // texture image for
 the background

 private static float BASKET_RESIZE_FACTOR = 3000f;

 public static void initialize(float width,float height){

 basket = new Basket();
 basketTexture = new Texture(Gdx.files.internal
 ("data/basket.png"));
 basket.basketSprite = new Sprite(basketTexture);
 basket.basketSprite.setSize(basket.basketSprite.
 getWidth()*(width/BASKET_RESIZE_FACTOR), basket.
 basketSprite.getHeight()*(width/BASKET_RESIZE_FACTOR));
 // set the position of the basket to bottom - left corner
 basket.setPosition(0, 0);

 backgroundTexture = new Texture(Gdx.files.internal
 ("data/background.jpg"));
 backgroundSprite= new Sprite(backgroundTexture);
 // set the background to completely fill the screen
 backgroundSprite.setSize(width, height);
 }

 public static void renderGame(SpriteBatch batch){
 backgroundSprite.draw(batch);
 basket.render(batch);
 }

 public static void dispose() {
 backgroundTexture.dispose();
 basketTexture.dispose();
 }
}

Implementing the CatchTheBall class
Update the following code in the CatchTheBall.java file in the com.packtpub.
catchtheball package:

package com.packtpub.catchtheball;

import com.badlogic.gdx.ApplicationAdapter;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.catchtheball.managers.GameManager;

public class CatchTheBall extends ApplicationAdapter {
 SpriteBatch batch; // spritebatch for drawing
 OrthographicCamera camera;
 @Override
 public void create () {
 // get window dimensions and set our viewport dimensions
 float height= Gdx.graphics.getHeight();
 float width = Gdx.graphics.getWidth();
 // set our camera viewport to window dimensions
 camera = new OrthographicCamera(width,height);
 // center the camera at w/2,h/2
 camera.setToOrtho(false);

 batch = new SpriteBatch();
 //initialize the game
 GameManager.initialize(width, height);
 }

 @Override
 public void dispose() {
 super.dispose();
 //dispose the batch and the textures
 batch.dispose();
 GameManager.dispose();
 }

 @Override
 public void render () {
 // Clear the screen
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 // set the spritebatch's drawing view to the camera's view
 batch.setProjectionMatrix(camera.combined);

 // render the game objects
 batch.begin();
 GameManager.renderGame(batch);

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[70]

 batch.end();

 }
}

Now, if you run the game, it should look something like this:

Moving the basket
We will add a method to our Basket class to handle the input:

public void handleTouch(float x,float y){
 if(x-(basketSprite.getWidth()/2)>0.0){
 setPosition(x-(basketSprite.getWidth()/2), 0);
 }
 else{
 setPosition(0,0);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

This method will set the basket's x coordinate to wherever the user has touched/
clicked on the screen. We will set the position in such a way that the basket's center
coincides with the touch coordinate. But if the user touches too close to the left end of
the screen, the basket will be drawn outside the visible area. In that case, we just set
the basket's position to (0, 0).

Let's make a new class called InputManager, which will handle the touch/click input
in our game. We will use a different strategy this time to handle the input. We have
used a strategy called polling previously. What we used to do is that at every frame,
we polled/queried the processor whether the user had touched the screen. This
wastes some processing time.

The strategy we are going to use now is called event handling. Basically, we set up
some callback methods for different types of inputs, which are automatically called
by the framework when they are triggered.

In the com.packtpub.catchtheball.managers package, add a new class named
InputManager:

package com.packtpub.catchtheball.managers;

import com.badlogic.gdx.InputAdapter;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.math.Vector3;

public class InputManager extends InputAdapter {

 OrthographicCamera camera;
 static Vector3 temp = new Vector3();

 public InputManager(OrthographicCamera camera) {
 this.camera = camera;
 }

 @Override
 public boolean touchUp(int screenX, int screenY, int pointer,
 int button) {

 temp.set(screenX,screenY, 0);
 //get the touch coordinates with respect to the camera's
 viewport
 camera.unproject(temp);

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[72]

 float touchX = temp.x;
 float touchY = temp.y;

 GameManager.basket.handleTouch(touchX, touchY);
 return false;
 }
}

This class extends the InputAdapter class of LibGDX, which implements the
callback methods to handle the input. We override a method called touchup(),
which is a callback method that is called when the user taps/clicks on the screen. It
takes four arguments, out of which the first two are the x and the y coordinates of the
touch. The third one is the pointer ID, which is used for multi-touch handling. The
last one identifies the button that was clicked on the desktop mouse.

The constructor receives the camera instance as an argument, which is saved in
its instance variable. This is used to get the correct touch/click coordinates of the
viewport. After we get them in the touchUp() method, we pass them to the basket's
handleTouch() method to handle its movement. To enable receiving input events in
our class, add the following line to the CatchTheBall class' constructor:

Gdx.input.setInputProcessor(new InputManager(camera));
 // enable InputManager to receive input events

Take a look at the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Throwing the ball
We will now see how to display a ball and throw it on the ground from above.

Making the ball
Let's make a new class called Ball to represent a ball. Under the com.packtpub.
catchtheball.gameobjects package, create a new class called Ball and type in the
following code:

package com.packtpub.catchtheball.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class Ball {
 public Sprite ballSprite; //sprite to represent a ball
 public void render(SpriteBatch batch){
 ballSprite.draw(batch);
 }
}

In the GameManager class, we will instantiate and initialize the ball, as we did for the
basket. Let's add some new variables and constants:

static Ball ball; // ball instance
static Texture ballTexture; // texture image for the ball

private static final float BALL_RESIZE_FACTOR = 2500f;

We will initialize the ball in the initialize() method of the GameManager class:

ball = new Ball();
ballTexture = new Texture(Gdx.files.internal("data/ball.png"));
ball.ballSprite = new Sprite(ballTexture);

ball.ballSprite.setSize(ball.ballSprite.getWidth()*
 (width/BALL_RESIZE_FACTOR), ball.ballSprite.getHeight()*(width/BALL_
RESIZE_FACTOR));
ball.ballSprite.setPosition(0.0f, height-
 ball.ballSprite.getHeight());

We will draw the ball in the render() method:

ball.render(batch);

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[74]

We will dispose of the texture in the dispose() method:

ballTexture.dispose();

Adding movement
Let's add two more variables to our Ball class:

public Vector2 position = new Vector2(); // vector to represent
 the position
public Vector2 velocity = new Vector2(); // vector to represent
 the velocity

The position variable represents the current x and y coordinates of the ball. Velocity
is defined as the rate of change of displacement. It indicates how fast the ball is
moving. You can think of it as speed. If the velocity of a car is 100 km/hr, the car will
travel 100 kilometers in one hour. Similarly, if we define the velocity of the ball as 10
units per second, then the ball will move 10 units in the game world in one second.

Let's add an update() method that will be called in every frame. The position
changes every time with velocity. So, we will add the velocity component to the
position in this method:

public void update() {
 position.add(velocity);// update the position w.r.t velocity
 ballSprite.setPosition(position.x, position.y);
 // set the position of the sprite
}

Since we are dropping the ball from above, let's set the velocity to -5 units/frame
(since it will be added to every frame) in the –ve y direction. We will do this when
we initialize the ball in the GameManager class' initialize() method:

ball = new Ball();
ballTexture = new Texture(Gdx.files.internal("data/ball.png"));
ball.ballSprite = new Sprite(ballTexture);
ball.ballSprite.setSize(ball.ballSprite.getWidth()*
 (width/BALL_RESIZE_FACTOR), ball.ballSprite.getHeight()*(width/BALL_
RESIZE_FACTOR));
ball.position.set(0.0f, height-ball.ballSprite.getHeight());
ball.velocity.set(0, -5);

We will call the update() method of the ball in the renderGame() method just
before drawing it:

ball.update();
ball.render(batch);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Now if you run the game, you should see the ball falling from above.

Adding gravity
To have a more realistic simulation of the ball falling down, we need to factor in
gravity. Here, gravity means acceleration due to gravity. Acceleration is defined as
the rate of change of velocity. It tells us how much the velocity changes over time.
Let's define a variable for gravity in the Ball class:

public final Vector2 gravity = new Vector2(0,-0.4f);
 // vector to represent the acceleration due to gravity

Since gravity is constantly acting on the ball, it will constantly change its velocity.
Edit the update() method to add gravity to the ball's velocity:

velocity.add(gravity); // update the velocity with gravity
position.add(velocity);// update the position w.r.t velocity

// Update the initial velocity to 0 in the GameManager's
 initialize() method

ball.velocity.set(0, 0);

When you run the game now, you should see the ball accelerating toward the
ground as it falls.

Detecting collisions
If you run the game, you will notice that the ball falls right off the screen. In this
topic, we are going to check for collisions between the ball and the ground and
between the ball and the basket.

Colliding with the ground
Checking for collision with the ground is actually pretty simple. We need to check
whether the ball has hit the base of our game screen. Let's add a new function to the
Ball class to check for collisions. We will call the function, checkCollisions():

public boolean checkCollisions(){
 // check if the ball hit the ground
 if(position.y<=0.0){
 return true;
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[76]

The only way to know whether the ball has hit the ground is by checking the y
coordinate. If it falls below zero, it means that the ball has touched the ground. We
call this method in the update() method, and we can display a simple text if the ball
goes below the ground:

if(checkCollisions()){
 System.out.println("Collided with ground"); // just to check.
 can remove later
}
velocity.add(gravity); // update the velocity with gravity

Colliding with the basket
To detect collisions with the basket, we are going to take a different approach. To
make the detection easier, we are going to assume that the basket is rectangular,
irrespective of its shape. LibGDX has utility methods to detect a collision between a
rectangle (basket) and a circle (ball).

Let's add a member variable to the Ball class of the circle type:

public Circle ballCircle; // collision circle for the ball

Now, in order to correctly detect collisions, the circle's radius needs to be at the
center of the ball sprite and the radius should be height/2. We set the radius and
center of the circle in the initialize() method of the GameManager class. The
Circle constructor takes the first argument as the center and the next argument as
the radius:

ball.velocity.set(0, 0);

Vector2 center = new Vector2();
//set the center at the center of ball sprite
center.x=ball.position.x + (ball.ballSprite.getWidth()/2);
center.y=ball.position.y + (ball.ballSprite.getHeight()/2);

ball.ballCircle = new Circle(center, (ball.ballSprite.
 getHeight()/2));

We will have to update the position of the rectangle in every frame in the update()
method of the Ball class:

ballSprite.setPosition(position.x, position.y);
 // set the position of the sprite
ballCircle.setPosition(position.x+ (ballSprite.getWidth()/2),
 (position.y+ ballSprite.getHeight()/2));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

We will follow similar steps for the basket. In the Basket class, add the following
line of code:

public Rectangle basketRectangle = new Rectangle();
 // collision rectangle for the basket

In the setPosition() method, we set the rectangle's position, as follows:

public void setPosition(float x,float y){
 basketSprite.setPosition(x, y);
 basketRectangle.setPosition(x, y);
}

Finally, in the GameManager class, we set the rectangle's size:

basket.setPosition(0, 0);
// set the size of the basket's bounding rectangle
basket.basketRectangle.setSize(basket.basketSprite.getWidth(),
 basket.basketSprite.getHeight());

We are going to separate the logic of detecting collisions with the ground into two
functions in the Ball class. The first one is detectCollisionwithGround():

public boolean checkCollisionsWithGround(){
 // check if the ball hits the ground
 if(position.y<=0.0){
 System.out.println("Collided with ground");
 return true;
 }
 return false;
}

It's the same as what we did earlier. We just change the name of the function and
print the output if a collision takes place. Secondly, we will create a function named
checkCollisionsWithBasket() to detect collisions with the basket:

public boolean checkCollisionsWithBasket(){
 // check if the ball collided with the basket
 if(Intersector.overlaps(ballCircle,
 GameManager.basket.basketRectangle)){
 System.out.println("Collided with basket");
 return true;
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[78]

LibGDX has a utility class called Intersector to detect intersections between
different shapes. We use its overlaps() method to check for collisions
between a circle and a rectangle. We will call these two functions in the
new checkCollisions() method:

public void checkCollisions(){
 checkCollisionsWithGround();
 checkCollisionsWithBasket();
}

We will call the checkCollisions() function in our update() method:

ballRectangle.setPosition(position); // set the position of the
 ball rectangle
checkCollisions();

Let's take a look at the following diagram:

Throwing multiple balls
In this section, we will learn how to throw multiple balls from the air. We will also
learn how to optimize our logic.

Throwing the balls after specific intervals
Before we do anything else, we need to add a flag to our Ball class to check whether
the ball is alive or not:

public boolean isAlive; // flag to indicate if the ball is alive
 or not

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

We will set the flag to false if it collides with either the basket or the ground. In the
checkCollisionsWithBasket() method, add the following lines of code:

if(Intersector.overlaps(ballCircle, GameManager.basket.
 basketRectangle)){
 isAlive=false;
 return true;
}

In the checkCollisionsWithGround() method, add the following lines of code:

public boolean checkCollisionsWithGround(){
 // check if the ball hit the ground
 if(position.y<=0.0){
 isAlive=false;
 return true;
 }
 return false;
}

In the GameManager class, we will set the ball to be alive at the start:

ball.velocity.set(0, 0);
// set the ball as alive
ball.isAlive=true;

We will only update and display the ball if it is alive. This will save some CPU
cycles and make the game faster. In the renderGame() method, add the following
lines of code:

if(ball.isAlive){
 ball.update();
 //Render(draw) the ball
 ball.render(batch);
}

Now, as we want to throw multiple balls, let's make an array called balls in our
GameManager class to represent this:

public static Array<Ball> balls = new Array<Ball>();
 // array of ball objects

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[80]

We will create a new class called SpawnManager that handles the creation and
deletion of new Ball objects based on the interval:

package com.packtpub.catchtheball.managers;

import com.badlogic.gdx.graphics.Texture;

public class SpawnManager {

 static float delayTime = 0.8f; // delay between two throwing
 two balls
 static float delayCounter=0.0f; // counter to keep track of
 delay

 static float width,height; //viewport width and height

 static Texture ballTexture; // texture image for the ball

 public static void initialize(float width,float height,Texture
 ballTexture){
 SpawnManager.width=width;
 SpawnManager.height=height;
 SpawnManager.ballTexture=ballTexture;
 delayCounter=0.0f;// reset delay counter
 }
}

Here, we declare a delayTime variable to indicate the delay between the creation
of the two balls. The delayCounter variable keeps track of the time elapsed since
the creation of the previous ball. We will instantiate and initialize the balls in this
class. That is why we declare the viewport dimensions and the texture of the ball.
We initialize these values that are passed from GameManager in the initialize()
method. Next, we define the createNewBall() method in the same class. We will
use a similar initialization logic for the ball as in GameManager. Also, we move the
BALL_RESIZE_FACTOR constant to this class from GameManager:

public static Ball createNewBall(){
 Ball ball = new Ball();
 ball.ballSprite = new Sprite(ballTexture);
 ball.ballSprite.setSize(ball.ballSprite.getWidth()
 (width/BALL_RESIZE_FACTOR), ball.ballSprite.getHeight()
 (width/BALL_RESIZE_FACTOR));
 ball.position.set(0.0f, height-ball.ballSprite.getHeight());
 ball.velocity.set(0, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

 ball.isAlive=true;

 Vector2 center = new Vector2();
 //set the center at the center of ball sprite
 center.x=ball.position.x + (ball.ballSprite.getWidth()/2);
 center.y=ball.position.y + (ball.ballSprite.getHeight()/2);

 ball.ballCircle = new Circle(center, (ball.ballSprite.
 getHeight()/2));
 return ball;
}

This method is called when we want to spawn a new ball. We create and initialize
a new ball and return it. Along with this, we also need to remove the balls, which
are not alive. Let's declare a variable to capture the indices of the balls, which are
not alive:

static List<Integer> removeIndices = new ArrayList<Integer>();
 // holds indices of the balls to remove

To remove these Ball objects, we will write a cleanup()function:

public static void cleanup(Array<Ball> balls){
 removeIndices.clear(); // empty the indices list
 for(int i=balls.size-1;i>=0;i--){
 if(!balls.get(i).isAlive){
 removeIndices.add(i); // get the indices of ball
 objects which are not alive/not active
 }
 }
 // Remove the ball objects from the array corresponding to
 the indices
 for (int i =0 ;i< removeIndices.size;i++)
 balls.removeIndex(i);

 }

Here, we iterate the balls array to see which objects are not alive or not active. We
record the indices of these objects in the removeIndices list. Note that we start from
the top end of the array as we want the indices in descending order. This will ensure
proper deletion of the elements. Next, we will define the run() method that will
implement the timing logic and creation of ball objects:

public static void run(Array<Ball> balls){
 // delaycounter has exceeded delay time
 if(delayCounter>=delayTime){

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[82]

 balls.add(createNewBall()); // create new ball
 delayCounter=0.0f;// reset delay counter
 }
 else{
 delayCounter+=Gdx.graphics.getDeltaTime();
 // otherwise accumulate the delay counter
 }
}

Here, we check whether the delay counter exceeds the delay time. If it exceeds,
then we spawn a new ball object. We then add it to the balls array. Otherwise,
we accumulate the delay counter with the delta time.

With all of this in place, in the GameManager class, we need to make some
modifications. First of all, we need to remove the single ball instance and
the initialization code for it. Keep the texture initialization code though. Next,
we need to add the initialization method call of the SpawnManager class in the
initialize() method:

SpawnManager.initialize(width, height, ballTexture);

Finally, we need to remove the update() and render() methods of the ball and
replace them with the following code:

SpawnManager.run(balls);
for(Ball ball:balls){

 if(ball.isAlive){
 ball.update();
 ball.render(batch);
 }
}
SpawnManager.cleanup(balls);

If you run the game, you will see balls falling after a set delay time.

Randomizing and optimizing
In our game, the balls always fall from the same location, so let's add some logic that
would make them fall from different places every time. For this, we will first need to
add an instance of the random class to our SpawnManager class:

static Random random = new Random(); // object of random class to
 generate random numbers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

In our createNewBall() method, we set the x coordinate to 0 for the ball. Replace
this line with the following:

ball.position.set(random.nextInt((int) (width - ball.ballSprite.
 getWidth())), height-ball.ballSprite.getHeight());

The nextInt() method is a method in the random class, which takes an integer
argument. It gives a random number between 0 and that integer. If we call it
random.nextInt(5), then it will return a random number between 0 and 5. We call
it width - ball.ballSprite.getWidth() as we want to drop the ball between the
left end of the screen (0) and the right end without the ball going out of the screen
(width - ball.ballSprite.getWidth()).

To optimize our code, we are going to follow a strategy called pooling. In our code,
we will create and delete objects from time to time. In the long run, this might cause
memory issues or performance issues, especially on mobile devices as they have less
memory and CPU speed than desktops. The key concept here is reuse.

To understand how pooling is implemented, think of a bag full of footballs.
Whenever a child needs a ball to play, he takes one out of the bag. When he is done
playing with the ball, he puts it back. The next child then does the same. This is
exactly what we are doing here. In our scenario, we call this bag a pool. Whenever
we need to display a ball in the game, we request the pool for a ball. The pool then
gives us the ball from its collection.

In the event where there are no free balls in the pool, it just creates a new ball object
and gives it back to us. Once we are done with the ball object, we release it back to
the pool. This increases our game's performance to a good amount, as we are not
creating new objects and thereby allocating memory every time. LibGDX provides
a class for object pooling called Pool. Copy the following code to the SpawnManager
class:

private final static Pool<Ball> ballPool = new Pool<Ball>() {
 // this method runs when a new instance of the ball object
 needs to be created (pool is empty and an object has
 been requested)
 @Override
 protected Ball newObject() {
 Ball ball = new Ball();

 // instantiate basket sprite
 ball.ballSprite = new Sprite(ballTexture);

 return ball;
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[84]

The ballPool variable is our object pool. This will create a new ball object when it is
empty and return the recycled ones from its collection when it's not. We override the
newObject() method that is called when somebody requests an object from the pool
and it is empty. Therefore, a new object has to be created and returned to the caller.
Here, we instantiate the Ball class and the sprite within it and return it. We need
to replace the createNewBall()and resetBall() methods and paste them in the
following code:

public static Ball resetBall(Ball ball){
 ball.ballSprite.setSize(ball.ballSprite.getTexture().
 getWidth()*(width/BALL_RESIZE_FACTOR),ball.ballSprite.
 getTexture().getHeight()*(width/BALL_RESIZE_FACTOR));
 ball.position.set(random.nextInt((int) (width - ball.
 ballSprite.getWidth())), height-ball.ballSprite.
 getHeight());
 ball.velocity.set(0, 0);
 ball.isAlive=true;

 Vector2 center = new Vector2();
 //set the center at the center of ball sprite
 center.x=ball.position.x + (ball.ballSprite.getWidth()/2);
 center.y=ball.position.y + (ball.ballSprite.getHeight()/2);

 ball.ballCircle = new Circle(center, (ball.
 ballSprite.getHeight()/2));
 return ball;
}

As we can get recycled ball objects, the state is unknown. We will reset the ball's
properties in this method. We set the size of the ball with respect to the texture, as it
stays the same every time. In the run() method, we need to replace the code where
we created the new ball:

if(delayCounter>=delayTime){
 Ball ball= ballPool.obtain(); // get a ball from the ball
 pool
 resetBall(ball); // reinitialize the ball
 balls.add(ball); // add the ball to our list
 delayCounter=0.0f;// reset delay counter
}

We also need to free the ball object pool in the initialize() method:

ballPool.clear(); // clear the object pool

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

When it is time to spawn the ball, we request a ball object from the ball pool,
reinitialize it, and add it to our active ball list. In our cleanup() method, instead of
just removing the ball objects, we return them to the pool with the free() method:

The code for this is as follows:

for (int i =0 ;i< removeIndices.size;i++){
 Ball ball= balls.removeIndex(i);
 ballPool.free(ball);// return the ball back to the pool
}

If you want to test how many new ball objects have been created, add a print
statement inside the newObject() method.

Keeping the score and maintaining the
high score
In this topic, we will learn how to display the game score and save the high score.
We will also see how to use custom fonts to display text on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[86]

Keeping the score
We want to keep track of how many times the user has collected the ball and show it
to him. So, we add a new variable to the GameManager class called score:

public static int score;

Let's initialize it to 0 in the initialize() method:

score=0;

To display the score, we are going to add a new class called TextManager
to the com.packtpub.catchtheball.managers package, similar to what
we did previously:

package com.packtpub.catchtheball.managers;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class TextManager {
 static BitmapFont font; // we draw the text to the screen
 using this variable

 // viewport width and height
 static float width,height;

 public static void initialize(float width,float height){
 font = new BitmapFont();
 TextManager.width = width;
 TextManager.height= height;
 //set the font color to red
 font.setColor(Color.RED);
 //scale the font size according to screen width
 font.setScale(width/500f);
 }

 public static void displayMessage(SpriteBatch batch){
 float fontWidth = font.getBounds("Score: "+GameManager
 .score).width; // get the width of the text being
 displayed

 //top the score display at top right corner
 font.draw(batch, "Score: "+GameManager.score, width -
 fontWidth - width/15f,height*0.95f);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

Initialize the TextManager class in GameManager class' initialize() method:

TextManager.initialize(width, height);

Call the displayMessage() method in the renderGame() method:

TextManager.displayMessage(batch);

Finally, in the Ball class' checkCollisionsWithBasket() method, we increase the
score when we catch the ball with the basket:

if(Intersector.overlaps(ballCircle, GameManager.
 basket.basketRectangle)){
 GameManager.score++;
 isAlive=false;
 return true;
}

If you run the game now, you can see the score increasing when we catch the balls:

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[88]

Custom fonts
Let's see how to use custom fonts in a game. LibGDX allows you to specify the font
file to use within the font's constructor. We cannot use the TrueType font or the .ttf
file as LibGDX requires the bitmap font format.

The BitmapFont file format stores each character as an image. This is very easy and
efficient to render instead of the TTF format. So, we need to convert our font file from
TTF to the bitmap format. Fortunately, there is a tool called Hiero which can do this
for us.

You can download Hiero from https://libgdx.googlecode.com/files/hiero.
jar. You will get a JAR file, which you can double-click to open:

In the Font section, there is a file input area where you can select the TTF file. Once
you select it, you can see how the font looks in the rendering section. To keep it
simple, we will not add any extra effects:

www.it-ebooks.info

https://libgdx.googlecode.com/files/hiero.jar
https://libgdx.googlecode.com/files/hiero.jar
http://www.it-ebooks.info/

Chapter 3

[89]

Save the font by navigating to File | Save BMFont files (text). Give the file a .fnt
extension and save it. Hiero creates one more file with the .png extension. You can
actually open the image in any image viewer/editor to see how the font characters
are stored. To load the font in our game, create a new folder called fonts in the
assets/data directory. Copy the font file and the image to this folder.

In the code where we instantiated BitmapFont, replace the line with the
following code:

// load the font from the font file
font = new BitmapFont(Gdx.files.internal
 ("data/fonts/[fontname].fnt"));

Since we set the font size to 32, we need to resize the font to look better. Next, we set
the scale:

font.setScale(width/1400f);

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[90]

That's it. You can now see the score text in your custom font:

Don't ship system fonts with your game. You might not have a license for
this. You can use royalty-free fonts from the Internet.

Saving high scores
In LibGDX, you can save persistent data, such as a high score, using preferences.
Preferences are a way to store the kind of data that will persist after an app relaunch.
On desktop OSes, they are stored as files in user directories. On mobile devices,
they are stored using native APIs on the devices.

First, let's declare a variable for the high score in the GameManager class:

public static int highScore; // high score

Next, let's declare the variable for preferences:

static Preferences prefs; // preferences instance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

In the initialize() method, add the following two lines:

prefs = Gdx.app.getPreferences("My Preferences"); // get the
 preferences
highScore = prefs.getInteger("highscore"); // get current high
 score

We get the preferences and then we get the current high score from them. In the Ball
class' checkCollisionsWithBasket() method, we set the current score to the high
score if it exceeds the current high score:

GameManager.score++;
if(GameManager.score>GameManager.highScore){
 GameManager.highScore=GameManager.score;
}

In the dispose() method of GameManager, when we close our game, we will save
the high score:

prefs.putInteger("highscore", score);
prefs.flush();

To display the high score, add this line to the TextManager class' displayMessage()
method:

font.draw(batch, "High Score: "+GameManager.highScore,
 width/40f,height*0.95f);

This is similar to what we did for the score, except that here we will display the high
score text in the top-left corner of our screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[92]

Implementing screens
In this section, we will learn how to implement a menu screen for our game and how
to transition between it and the game screen.

Implementing the menu screen
Let's implement a menu screen for our game. The game will start with the menu
screen. We will add two buttons to this screen: Start and Exit and a background. On
pressing the Start button, the user will be directed to the game screen. On pressing
the Exit button, the application quits.

To create the menu screen, create a new class in the com.packtpub.catchtheball
package called MenuScreen and type the following code:

package com.packtpub.catchtheball;

import com.badlogic.gdx.Screen;
public class MenuScreen implements Screen {

 @Override
 public void show() {

 }

 @Override
 public void render(float delta) {

 }

 @Override
 public void resize(int width, int height) {

 }

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

 }

 @Override
 public void hide() {

 }

 @Override
 public void dispose() {

 }

}

To implement a screen in LibGDX, we have to implement the Screen interface. As
it is an interface, we will have to implement all the methods from it. These methods
are similar to the AppicationListener interface, which we saw earlier. It adds the
two show() and hide()methods. These methods are called when the screen is being
shown (active) and when the screen is hidden (deactivated).

Let's declare some variables in this class:

SpriteBatch batch; // spritebatch for drawing
OrthographicCamera camera;

Texture startButtonTexture;
Texture exitButtonTexture;
Texture backGroundTexture;
Sprite startButtonSprite;
Sprite exitButtonSprite;
Sprite backGroundSprite;

private static float BUTTON_RESIZE_FACTOR = 800f;
private static float START_VERT_POSITION_FACTOR = 2.7f;
private static float EXIT_VERT_POSITION_FACTOR = 4.2f;

We declare textures and sprites for the Start and Exit buttons. As there is no
create() method, we will initialize the variables in the constructor. Let's first
initialize the camera and the batch:

public MenuScreen(){

 // get window dimensions and set our viewport dimensions
 float height= Gdx.graphics.getHeight();
 float width = Gdx.graphics.getWidth();

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[94]

 // set our camera viewport to window dimensions
 camera = new OrthographicCamera(width,height);

 // center the camera at w/2,h/2
 camera.setToOrtho(false);

 batch = new SpriteBatch();
}

Next, we will initialize our textures and the sprites for the buttons in the
same method:

//initialize button textures and sprites
startButtonTexture = new Texture(Gdx.files.internal
 ("data/start_button.png"));
exitButtonTexture = new Texture(Gdx.files.internal
 ("data/exit_button.png"));
backGroundTexture = new Texture(Gdx.files.internal
 ("data/menubackground.jpg"));

startButtonSprite = new Sprite(startButtonTexture);
exitButtonSprite = new Sprite(exitButtonTexture);
backGroundSprite = new Sprite(backGroundTexture);

// set the size and positions
startButtonSprite.setSize(startButtonSprite.getWidth()
 *(width/BUTTON_RESIZE_FACTOR), startButtonSprite.
 getHeight()*(width/BUTTON_RESIZE_FACTOR));
exitButtonSprite.setSize(exitButtonSprite.getWidth()
 *(width/BUTTON_RESIZE_FACTOR), exitButtonSprite.
 getHeight()*(width/BUTTON_RESIZE_FACTOR));
backGroundSprite.setSize(width,height);

startButtonSprite.setPosition((width/2f -startButtonSprite.
 getWidth()/2) , width/START_VERT_POSITION_FACTOR);
exitButtonSprite.setPosition((width/2f -exitButtonSprite.
 getWidth()/2) , width/EXIT_VERT_POSITION_FACTOR);

// set the transparency for the background
backGroundSprite.setAlpha(0.2f);

The Sprite class has a method called setAlpha() where you can set the
transparency. The values range from 0 to 1. The 0 value makes it completely
transparent and 1 makes it completely opaque.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

Now, render the objects in the render() method:

// Clear the screen
Gdx.gl.glClearColor(1, 1, 1, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

// set the spritebatch's drawing view to the camera's view
batch.setProjectionMatrix(camera.combined);

// render the game objects
batch.begin();
backGroundSprite.draw(batch);
startButtonSprite.draw(batch);
exitButtonSprite.draw(batch);
batch.end();

Finally, dispose of the objects in the dispose() method:

startButtonTexture.dispose();
exitButtonTexture.dispose();
batch.dispose();

Implementing screen transitions
We created the menu screen, but we haven't displayed it or handled the screen
transitions. Let's do that. We cannot call this class from the launcher. We need a
new class that we can call from the launcher and do screen transitions. This class
has to extend the Game class from the LibGDX APIs. Create a new class in the com.
packtpub.catchtheball package called MainGame and paste the following code:

package com.packtpub.catchtheball;

import com.badlogic.gdx.Game;

public class MainGame extends Game {

 @Override
 public void create() {
 setScreen(new MenuScreen());
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[96]

In the create() method, we call the setScreen() method to change our currently
displayed screen to MenuScreen by passing an instance of it. In the launcher
classes, pass the instance of this class. For example, in the desktop launcher,
it is implemented as follows:

new LwjglApplication(new MainGame(), config);

If you run the game now, you can see the menu screen:

Let's now implement the transition of the game screens. First, let's edit the
CatchTheBall class so that we can call this from the menu screen:

public class CatchTheBall implements Screen {

Now, instead of extending ApplicationAdapter, we will implement the Screen
interface. Add the unimplemented methods using Eclipse's assistance, remove any
super calls in the implemented methods, and replace the create() method with the
constructor. You will have to change the signature of the render() method as well:

public void render(float delta) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

In the MenuScreen class, let's declare an instance of the MainGame class. We will need
this to call its setScreen() method to transition between the screens. Parameterize
the constructor of the MenuScreen class to set this instance:

MainGame game; // instance of the main game, to call setScreen
 methods

MenuScreen(MainGame game){
 this.game= game;

We will also need to modify the line in the create() method of the MainGame class
where we set the menu screen to pass its instance:

setScreen(new MenuScreen(this));

Let's now handle the click/touch input for the buttons. Declare a temporary vector in
the MenuScreen class to store the input coordinates:

Vector3 temp = new Vector3(); //temporary vector to capture
 input coordinates

We will add a new method called handleTouch() to our MenuScreen class to handle
the touch input:

void handleTouch(){
 // Check if the screen is touched
 if(Gdx.input.justTouched()) {
 // Get input touch coordinates and set the temp vector
 with these values
 temp.set(Gdx.input.getX(),Gdx.input.getY(), 0);
 //get the touch coordinates with respect to the camera's
 viewport
 camera.unproject(temp);

 float touchX = temp.x;
 float touchY= temp.y;

 // handle touch input on the start button
 if((touchX>=startButtonSprite.getX()) && touchX<=
 (startButtonSprite.getX()+startButtonSprite.
 getWidth()) && (touchY>=startButtonSprite.getY()) &&
 touchY<=(startButtonSprite.getY()+startButtonSprite.
 getHeight())){
 game.setScreen(new CatchTheBall()); // Bring the game
 screen to front

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[98]

 }

 // handle touch input on the exit button
 else if((touchX>=exitButtonSprite.getX()) && touchX<=
 (exitButtonSprite.getX()+exitButtonSprite.
 getWidth()) && (touchY>=exitButtonSprite.getY()) &&
 touchY<=(exitButtonSprite.getY()+exitButtonSprite.
 getHeight())){
 Gdx.app.exit(); // Quit the application

 }

 }
}

In this method, after capturing the input coordinates, we first check whether the
user has touched the Start button. If he has touched it, then we bring the game
screen to the front by calling the setScreen() method of the game. If the user has
touched the Exit button, then we quit the application. We call this method in the
render() method:

batch.end();

handleTouch();

We call the dispose() method to free resources in the hide() method, as it is not
called by the framework automatically this time. When we switch from one screen to
another, the hide() method is called for the first screen:

public void hide() {
 dispose();
}

Implementing the Back button
We can go from the menu screen to the game screen, but we can't go back. Let's add
this functionality with the help of a Back button. First, we will save a reference to the
MainGame object in the CatchTheBall class so that we can switch screens:

public static MainGame game; // instance of the main game, to call
 setScreen methods

CatchTheBall (MainGame game) {
 CatchTheBall.game = game;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

We will pass the reference from the MenuScreen class:

game.setScreen(new CatchTheBall(game)); // Bring the game screen
 to front

Now, we'll declare the texture and the sprite for the Back button in the
GameManager class:

public static Sprite backButtonSprite; // back button sprite
public static Texture backButtonTexture; // texture image for the
 back button

We need to initialize them in the initialize() method:

//load back button texture
backButtonTexture = new Texture(Gdx.files.internal
 ("data/backbutton.png"));
//set back button sprite with the texture
backButtonSprite= new Sprite(backButtonTexture);

Set the Back button's dimensions and position it on the top center of the screen:

backButtonSprite.setSize(backButtonSprite.getWidth()*
 (width/BACK_BTN_RESIZE_FACTOR), backButtonSprite.getHeight()*
 (width/BACK_BTN_RESIZE_FACTOR));
// set the button's position to top center
backButtonSprite.setPosition(width/2- backButtonSprite.
 getWidth()/2, height*0.935f);

Render it in the renderGame() method:

//draw the back button
backButtonSprite.draw(batch);

Finally, dispose of the texture when it is no longer needed using the
dispose() method:

backButtonTexture.dispose();

Now, we need to handle touch/tap events on the Back button so that we can go
back to the menu screen. We will add a method named handleBackButton() to the
InputManager class. This will check whether the Back button has been touched and
set the screen back to the menu screen:

public void handleBackButton(float touchX,float touchY){
 // handle touch input on the back button
 if((touchX>=GameManager.backButtonSprite.getX()) && touchX
 <=(GameManager.backButtonSprite.getX()+GameManager.
 backButtonSprite.getWidth()) && (touchy>=GameManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[100]

 backButtonSprite.getY()) && touchY<=(GameManager.
 backButtonSprite.getY()+GameManager.
 backButtonSprite.getHeight())){
 CatchTheBall.game.setScreen(new MenuScreen
 (CatchTheBall.game)); // Bring the menu screen to front
 }
}

We will call this method in the touchup() method:

GameManager.basket.handleTouch(touchX, touchY);
handleBackButton(touchX, touchY);

We will call the dispose() method in the hide() method of the CatchTheBall class:

@Override
public void hide() {
 dispose();
}

The screen will now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Catching the Back button
In Android, when the user presses the Back button, he is taken out of our application.
This is the default behavior of the OS. We need our application to go back to the
menu screen after the Back button is pressed. For this to happen, the OS needs to
pass the key event to our application so that we can override the default behavior.
In the GameManager class' initialize() method, just add this line of code:

Gdx.input.setCatchBackKey(true); // catch back key press event

Now, our InputManager will receive the Back keypress event. We need to handle
this by implementing the keyUp() method:

@Override
public boolean keyUp(int keycode) {
 if(keycode==Keys.BACK){
 CatchTheBall.game.setScreen(new MenuScreen(CatchTheBall.
 game)); // Bring the menu screen to front
 }
 return false;
}

This method receives the key code as an argument. We then check whether the key
pressed was the Back button, and if it is, then we set the current screen to the menu
screen. We can even handle the Esc key on the desktop and cause the transition from
the game screen to the menu screen as well, as shown in the following code:

if(keycode==Keys.BACK || keycode==Keys.ESCAPE)

Let's take a look at the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[102]

Adding sound effects and music
In this section, we will add collision sound effects and background music to
our game.

Adding sound effects
We will play a different sound effect when the ball is colliding with the ground
and when it is collected by the basket. Let's add the variables that hold our sound
instances in the GameManager class:

public static Sound groundHitSound; // instance of sound to play
 when the ball hits the ground
public static Sound basketHitSound; // instance of sound to play
 when the ball is collected by the basket

Make a new folder called sounds in the Android project's assets/data directory
and copy the two files for the effects in it. Let's initialize the instance in the
initialize() method:

//load the sound effects from file
groundHitSound = Gdx.audio.newSound(Gdx.files.internal
 ("data/sounds/groundHit.wav"));
basketHitSound = Gdx.audio.newSound(Gdx.files.internal
 ("data/sounds/basketHit.wav"));

In the Ball class' checkCollisionsWithGround() method, we will play
groundHitSound when it collides with the ground:

public boolean checkCollisionsWithGround(){
 // check if the ball hit the ground
 if(position.y<=0.0){
 GameManager.groundHitSound.play();

In the checkCollisionsWithBasket() method, we will play basketHitSound when
it is collected by the basket:

if(Intersector.overlaps(ballCircle, GameManager.basket.
 basketRectangle)){
 GameManager.groundHitSound.play();

Finally, we will dispose of the sound instances when they are not needed using the
dispose() method:

//dispose the sound instances
groundHitSound.dispose();
basketHitSound.dispose();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

Adding background music
To play background music, we will use the Music interface. Music files are usually
longer in length than sound effects. This is why they are streamed from the disk
rather than loaded in the memory.

Let's add a music instance to our GameManager class:

public static Music backgroundMusic; // instance of background
 music

Copy the music file to the sounds folder. We will load the music in the
initialize() method:

backgroundMusic = Gdx.audio.newMusic(Gdx.files.internal
 ("data/sounds/backmusic.mp3")); // load the background music
 from file

Let's set the music to looping, which will replay the music after it is over:

backgroundMusic.setLooping(true); // set the music to loop

We will play the music by calling the play() method on the instance:

backgroundMusic.play(); // play the music

Finally, we will dispose of the instance in the dispose() method if not needed:

backgroundMusic.dispose();

We need to stop the music instance when we dispose of the resources in the
CatchTheBall class' dispose() method:

@Override
public void dispose() {
 //dispose the batch and the textures
 batch.dispose();
 GameManager.backgroundMusic.stop();
 GameManager.dispose();
}

To pause the music, we can call the pause() method on the instance, and to stop it,
there is a stop() method as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Catch the Ball

[104]

Summary
In this chapter, we made a game called Catch the Ball and learned some concepts
along the way. These include the following:

• Motion physics
• Collision detection
• Optimizing memory
• Using custom fonts
• Saving high scores
• Implementing different screens
• Adding music

In the next chapter, we will begin learning about creating a platformer game called
Dungeon Bob. We will learn about character motion and animation.

www.it-ebooks.info

http://www.it-ebooks.info/

[105]

Dungeon Bob
Starting from this chapter, we are going to make a platform game called Dungeon
Bob. The story is quite simple. Our main character, Bob, is stuck in a dungeon and
has to find his way out to get home. The dungeon is full of hostile creatures who will
attack him, and he needs to fight them. It also contains some environmental hazards,
which he needs to evade. This game will have multiple levels and the player must
complete all of them to beat the game.

We will cover the following topics in this chapter:

• Creating the player
• Moving the player
• Character animation

Creating the player
In this section, we will see how to create the player character and display it against a
background.

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[106]

Implementing the Bob class
First, we need to set up a new project. Run the project generator and follow on
similar lines as in the previous chapters. The following is the screenshot of my
project settings:

Import the project in Eclipse as usual. Let's make a class to represent our player, Bob.
Create a new package in the core projects and name it com.packtpub.dungeonbob.
gameobjects. Create a new Java class in this package and name it Bob. Type the
following code in the file:

package com.packtpub.dungeonbob.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class Bob {
 public Sprite bobSprite; //sprite to display Bob

 public void render(SpriteBatch batch){
 bobSprite.draw(batch);
 }
 public void setPosition(float x,float y){
 bobSprite.setPosition(x, y);
 }
}

Implementing the GameManager class
Create a new package called com.packtpub.dungeonbob.managers. Create a new
GameManager.java file in this package. Type the following content:

package com.packtpub.dungeonbob.managers;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.dungeonbob.gameobjects.Bob;

public class GameManager {
 static Bob bob; // bob instance
 static Texture bobTexture; // texture image for the bob
 public static Sprite backgroundSprite; // background sprite
 public static Texture backgroundTexture; // texture image for
 the background
 public static final float BOB_RESIZE_FACTOR = 400f;

 public static void initialize(float width,float height){
 // instantiate the bob
 bob = new Bob();
 // load the bob texture with image from file
 bobTexture = new Texture(Gdx.files.internal
 ("data/bob.png"));
 // instantiate bob sprite
 bob.bobSprite = new Sprite(bobTexture);
 //set the size of the bob

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[108]

 bob.bobSprite.setSize(bob.bobSprite.getWidth()
 (width/BOB_RESIZE_FACTOR), bob.bobSprite.getHeight()
 (width/BOB_RESIZE_FACTOR)); // set the position of
 bob to bottom - center
 bob.setPosition(width/2f, 0);
 //load background texture
 backgroundTexture = new Texture(Gdx.files.internal
 ("data/background.jpg"));
 //set background sprite with the texture
 backgroundSprite= new Sprite(backgroundTexture);
 // set the background to completely fill the screen
 backgroundSprite.setSize(width, height);
 }

 public static void renderGame(SpriteBatch batch){
 // draw the background
 backgroundSprite.draw(batch);
 // Render(draw) the bob
 bob.render(batch);

 }
 public static void dispose() {
 //dispose the background texture
 backgroundTexture.dispose();
 // dispose of the bob texture to ensure no memory leaks
 bobTexture.dispose();

 }
}

Implementing the GameScreen class
Create a new class in com.packtpub.dungeonbob called MainGame and paste it in the
following code:

package com.packtpub.dungeonbob;
import com.badlogic.gdx.Game;

public class MainGame extends Game {

 @Override
 public void create() {
 setScreen(new GameScreen(this));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

This is our entry point in the game and it sets the current screen to GameScreen,
which we are going to implement. Create a new class in com.packtpub.dungeonbob
called GameScreen and paste it in the following code:

package com.packtpub.dungeonbob;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Screen;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.dungeonbob.managers.GameManager;

public class GameScreen implements Screen {

 MainGame game ;
 SpriteBatch batch; // spritebatch for drawing
 OrthographicCamera camera;

 public GameScreen (MainGame game){
 this.game=game;
 // get window dimensions and set our viewport dimensions
 float height= Gdx.graphics.getHeight();
 float width = Gdx.graphics.getWidth();
 // set our camera viewport to window dimensions
 camera = new OrthographicCamera(width,height);
 // center the camera at w/2,h/2
 camera.setToOrtho(false);

 batch = new SpriteBatch();
 //initialize the game
 GameManager.initialize(width, height);

 }

 @Override
 public void show() {

 }

 @Override
 public void render(float delta) {
 // Clear the screen
 Gdx.gl.glClearColor(1, 1, 1, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[110]

 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 // set the spritebatch's drawing view to the camera's view
 batch.setProjectionMatrix(camera.combined);

 // render the game objects
 batch.begin();
 GameManager.renderGame(batch);
 batch.end();

 }

 @Override
 public void resize(int width, int height) {

 }

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void hide() {

 }

 @Override
 public void dispose() {
 //dispose the batch and the textures
 batch.dispose();
 GameManager.dispose();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

The screen will look like this:

Moving the player
This section handles the movement of the player, Bob, for both desktop and
mobile platforms.

Bob's movement on desktop
We are going to make Bob move by taking an input from the keyboard. First,
let's add a method to the Bob class called move():

// move bob's with the specified amount
public void move (float x, float y){
 setPosition(bobSprite.getX()+x,bobSprite.getY()+y);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[112]

This method takes the distance Bob needs to move in the x and y directions and
updates his position by that. Let's add a new class to handle the input. Create a class
named InputManager in the com.packtpub.dungeonbob.managers package and
type the following code:

package com.packtpub.dungeonbob.managers;

import com.badlogic.gdx.InputAdapter;
import com.badlogic.gdx.Input.Keys;

public class InputManager extends InputAdapter{

 @Override
 public boolean keyDown(int keycode) {
 // move bob 3 units to left or right depending on the key
 presses
 if(keycode==Keys.LEFT){
 GameManager.bob.move(-3f, 0);
 }

 else if(keycode==Keys.RIGHT){
 GameManager.bob.move(3f, 0);
 }

 return false;
 }

}

Here, we move Bob 3 units to the left if the left key is pressed on the keyboard and
3 units to the right if the right key is pressed. In the GameScreen class' constructor,
add the following line so that InputManager can start receiving input events:

Gdx.input.setInputProcessor(new InputManager());
 // enable InputManager to receive input events

If you run the game now, you can move Bob by pressing left or right keys on
the keyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

Continuous movement
You must have noticed that Bob does not move continuously if the left or right key
is kept pressed. You have to tap the keys again and again for him to move. To enable
a continuous movement, let's first add two variables to the Bob class and also a
constant to signify horizontal movement units:

boolean isLeftPressed;// indicates if left key is pressed
boolean isRightPressed; // indicates if right key is pressed
private static final float X_MOVE_UNITS = 3f;// units bob will
 move in x direction

We will keep track of whether the left or right key is pressed with the help of these
two variables. We will need to add two functions that will set or unset the values of
the variables on input:

public void setLeftPressed(boolean isPressed)
{
 // to have motion in only one direction if both are
 pressed
 if(isRightPressed && isPressed){
 isRightPressed = false;
 }

 isLeftPressed = isPressed;
}
public void setRightPressed(boolean isPressed)
{
 // to have motion in only one direction if both are
 pressed
 if(isLeftPressed && isPressed){
 isLeftPressed = false;
 }

 isRightPressed = isPressed;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[114]

In the setLeftPressed() method, we pass a isPressed value, which indicates
the state of the left button. If the right button is already pressed, we mark it as not
pressed. We then update the value of isLeftPressed. A similar logic applies to the
setRightPressed() method. To have a continuous motion, we will also need an
update method, which will be called continuously:

public void update(){
 // move specified units to left if left key is pressed
 if (isLeftPressed){
 move (-X_MOVE_UNITS ,0);
 }

 // move specified units to right if right key is pressed
 else if (isRightPressed){
 move (X_MOVE_UNITS,0);
 }
}

We move the player to the left by 3 units if the left key is pressed and to the right by
3 units if the right key is pressed. This method is called in the GameManager class'
renderGame() method:

bob.update()
// Render(draw) the bob
bob.render(batch);

Our input handling logic in the InputManager class also needs to be changed:

@Override
public boolean keyDown(int keycode) {
 // set the left key status to pressed
 if(keycode==Keys.LEFT){
 GameManager.bob.setLeftPressed(true);
 }
 // set the right key status to pressed
 else if(keycode==Keys.RIGHT){
 GameManager.bob.setRightPressed(true);
 }

 return false;
}

@Override
public boolean keyUp(int keycode) {
 // set the left key status to pressed
 if(keycode==Keys.LEFT){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

 GameManager.bob.setLeftPressed(false);
 }
 // set the right key status to pressed
 else if(keycode==Keys.RIGHT){
 GameManager.bob.setRightPressed(false);
 }

 return false;
}

We basically set the pressed status of the corresponding keys to true in the
keyDown() function and to false in the keyUp() function. If you now run the game,
you will be able to see Bob moving continuously to the left or the right when the
corresponding buttons are kept pressed.

Bob's movement on mobile
We designed the movement for Bob keeping desktops in mind, which have a
keyboard. Most of the mobile devices don't have a keyboard nowadays, so we need
to make up for this fact. What we are going to do is display a paddle on the screen
that upon touch will handle the movement for Bob.

So, let's add a left and right paddle to our game. We declare two textures and sprites
in the GameManager class, one for each paddle:

static Texture leftPaddleTexture;
static Texture rightPaddleTexture;
static Sprite leftPaddleSprite;
static Sprite rightPaddleSprite;
public static final float PADDLE_RESIZE_FACTOR = 700f;
public static final float PADDLE_ALPHA = 0.25f;
public static final float PADDLE_HORIZ_POSITION_FACTOR = 0.02f;
public static final float PADDLE_VERT_POSITION_FACTOR = 0.01f;

Let's create a method called initializeLeftPaddle() to instantiate and initialize
the left paddle:

public static void initializeLeftPaddle(float width,float height){
 //load background texture
 leftPaddleTexture = new Texture(Gdx.files.internal
 ("data/paddleLeft.png"));
 //set left paddle sprite with the texture
 leftPaddleSprite= new Sprite(leftPaddleTexture);
 // resize the sprite

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[116]

 leftPaddleSprite.setSize(leftPaddleSprite.getWidth()*width/
 PADDLE_RESIZE_FACTOR, leftPaddleSprite.getHeight()*width/
 PADDLE_RESIZE_FACTOR);
 // set the position to bottom left corner with offset
 leftPaddleSprite.setPosition(width*
 PADDLE_HORIZ_POSITION_FACTOR, height*
 PADDLE_VERT_POSITION_FACTOR);
 // make the paddle semi transparent
 leftPaddleSprite.setAlpha(PADDLE_ALPHA);
}

We make the paddle semitransparent so that the game world can also be partially
seen behind. We do the same thing for the right paddle:

public static void initializeRightPaddle(float width,float
 height){
 //load background texture
 rightPaddleTexture = new Texture(Gdx.files.internal
 ("data/paddleRight.png"));
 //set right paddle sprite with the texture
 rightPaddleSprite= new Sprite(rightPaddleTexture);
 // resize the sprite
 rightPaddleSprite.setSize(rightPaddleSprite.getWidth()*width/
 PADDLE_RESIZE_FACTOR, rightPaddleSprite.getHeight()*width/
 PADDLE_RESIZE_FACTOR);
 // set the position to bottom left corner with offset
 rightPaddleSprite.setPosition(leftPaddleSprite.getX()+
 leftPaddleSprite.getWidth()+ width*
 PADDLE_HORIZ_POSITION_FACTOR, height*
 PADDLE_VERT_POSITION_FACTOR);
 // make the paddle semi transparent
 rightPaddleSprite.setAlpha(PADDLE_ALPHA);
}

We call these functions in the GameManager class' initialize() method:

initializeLeftPaddle(width,height);
initializeRightPaddle(width,height);

We display the paddles in the renderGame() method:

leftPaddleSprite.draw(batch);
rightPaddleSprite.draw(batch);

Finally, we dispose the textures in the dispose() method:

leftPaddleTexture.dispose();
rightPaddleTexture.dispose();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

The screen now looks like this:

To detect the touch input, we will add two new methods to the InputManager class.
First, we will add the isLeftPaddleTouched() method to handle the touch input on
the left paddle:

boolean isLeftPaddleTouched(float touchX, float touchY){
 // handle touch input on the left paddle
 if((touchX>=GameManager.leftPaddleSprite.getX()) && touchX
 <=(GameManager.leftPaddleSprite.getX()+GameManager.
 leftPaddleSprite.getWidth()) && (touchY>=GameManager.
 leftPaddleSprite.getY()) && touchY<=(GameManager.
 leftPaddleSprite.getY()+GameManager.leftPaddleSprite.
 getHeight())){
 return true;
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[118]

We have a similar function for the right paddle:

boolean isRightPaddleTouched(float touchX, float touchY){
 // handle touch input on the right paddle
 if((touchX>=GameManager.rightPaddleSprite.getX()) &&
 touchX<=(GameManager.rightPaddleSprite.getX()
 +GameManager.rightPaddleSprite.getWidth()) && (touchy
 >=GameManager.rightPaddleSprite.getY()) && touchY<=
 (GameManager.rightPaddleSprite.getY()+GameManager.
 rightPaddleSprite.getHeight())){
 return true;
 }
 return false;
}

In the Bob class, we need to add two variables that check whether the corresponding
paddles are touched or not:

boolean isLeftPaddleTouched; // indicates if left paddle is
 touched
boolean isRightPaddleTouched; // indicates if right paddle is
 touched

Similar to what we did previously, we need to add two methods to set the touched
status for both the paddles:

public void setLeftPaddleTouched(boolean isTouched)
{
 // to restrict motion in only one direction if both are
 touched
 if(isRightPaddleTouched && isTouched){
 isRightPaddleTouched = false;
 }

 isLeftPaddleTouched = isTouched;
}
public void setRightPaddleTouched(boolean isTouched)
{
 // to restrict motion if both are touched
 if(isLeftPaddleTouched && isTouched){
 isLeftPaddleTouched = false;
 }

 isRightPaddleTouched = isTouched;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

In the InputManager class, let's add a constructor to save the camera instance,
which is required to get the correct touch coordinates. First, let's declare it and
a temporary vector:

OrthographicCamera camera;
static Vector3 temp = new Vector3(); // temporary vector
public InputManager(OrthographicCamera camera) {

 this.camera = camera;
}

Then, edit the corresponding line in GameScreen:

Gdx.input.setInputProcessor(new InputManager(camera));
 // enable InputManager to receive input events

We will override the onTouchUp() and onTouchDown()callback methods in
InputManager. The onTouchDown() method is called when the user touches the
screen. The onTouchUp() method is called when the user lifts their finger from
the screen:

@Override
public boolean touchDown(int screenX, int screenY, int pointer,
 int button) {
 temp.set(screenX,screenY, 0);
 //get the touch co-ordinates with respect to the camera's
 viewport
 camera.unproject(temp);

 float touchX = temp.x;
 float touchY = temp.y;

 if(isLeftPaddleTouched(touchX,touchY)){
 GameManager.bob.setLeftPaddleTouched(true);
 }
 else if(isRightPaddleTouched(touchX,touchY)){
 GameManager.bob.setRightPaddleTouched(true);
 }
 return false;

}

@Override
public boolean touchUp(int screenX, int screenY, int pointer,
 int button) {

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[120]

 temp.set(screenX,screenY, 0);
 //get the touch co-ordinates with respect to the camera's
 viewport
 camera.unproject(temp);

 float touchX = temp.x;
 float touchY = temp.y;

 if(isLeftPaddleTouched(touchX,touchY)){
 GameManager.bob.setLeftPaddleTouched(false);
 }
 else if(isRightPaddleTouched(touchX,touchY)){
 GameManager.bob.setRightPaddleTouched(false);
 }
 return false;
}

The logic is similar to how we handle the keyboard input. Now, for the actual
movement, add the following lines to the Bob class' update() method:

// move specified units to left if left paddle is touched
if (isLeftPaddleTouched){
 move (-X_MOVE_UNITS,0);
}

// move specified units to right if right paddle is touched
else if (isRightPaddleTouched){
 move (X_MOVE_UNITS,0);
}

Character animation
In this section, we will learn how to animate our character Bob.

Walking Bob 1
You might have noticed that when we move Bob, he does not appear to be walking.
He just slides on the screen. To create a realistic walking effect, we need to animate
our character. Animation is just a sequence of images shown one after the other at
regular intervals. This creates an illusion of a continuous motion.

Alright, so let's get started. First, we will need the sequence of images. We will use
a single image that consists of all these images. This is called a sprite sheet. I have
already acquired the sprite sheet for our character, which looks similar to this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

The image contains the different walk stages of Bob. Each stage or each image of Bob
within this sheet is called an animation frame. The interval after which we switch
the animation frames is called an animation time. LibGDX has an Animation class,
which helps us with this. First, let's declare some variables in the Bob class:

Animation walkAnimation; // animation instance
Texture walkSheet; // sprite sheet
TextureRegion currentFrame; // current animation frame
float stateTime; // elapsed time

private static int ANIMATION_FRAME_SIZE =8; // this specifies the
 number of frames(images) that we are using for animation

private static float ANIMATION_TIME_PERIOD =0.08f;// this
 specifies the time between two consecutive frames of animation

The walkAnimation instance is the animation instance, which will help us animate
the player. The walkSheet instance is the texture image for Bob's sprite sheet.
The currentFrame instance is the current walk image from the sprite sheet. The
stateTime instance is used to keep track of the time if and when Bob moves. Let's
create a method called initialize() in the Bob class to initialize the properties:

public void initialize(float width,float height,Texture
 walkSheet){
 this.walkSheet = walkSheet; // save the sprite sheet
 //split the sprite sheet into different textures
 TextureRegion[][] tmp = TextureRegion.split(walkSheet,
 walkSheet.getWidth()/ANIMATION_FRAME_SIZE, walkSheet.
 getHeight());
 // convert 2D array to 1D
 TextureRegion[] walkFrames = tmp[0];
 // create a new animation sequence with the walk frames
 and time period of specified seconds
 walkAnimation = new Animation(ANIMATION_TIME_PERIOD,
 walkFrames);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[122]

This method takes the screen width, height, and walksheet (sprite sheet) as
arguments, which will be passed by the GameManager class. We need to split the
walksheet into separate frames, which is done by the TextureRegion.split()
method. We get a 2D array of TextureRegion, out of which we just use the first row
to represent a 1D array. We will create the animation with these images/frames with
the time period of 0.08 seconds. This means that the time gap between two successive
frames is 0.08 seconds:

This concept is explained in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

Let's move some of Bob's initialization lines along with the corresponding constants
from GameManager to this function with slight changes:

// instantiate bob sprite
bobSprite = new Sprite();
//set the size of the bob
bobSprite.setSize((walkSheet.getWidth()/ANIMATION_FRAME_SIZE)
 (width/BOB_RESIZE_FACTOR),walkSheet.getHeight()
 (width/BOB_RESIZE_FACTOR));
// set the position of the bob to bottom - center
setPosition(width/2f, 0);

As we are not going to use Bob's static image here, replace Texture with the
sprite sheet:

static Texture bobSpriteSheet; // texture sprite sheet for the bob

In the initialize() method, add the following code:

// instantiate the bob
bob = new Bob();
// load the bob texture with image from file
bobSpriteSheet= new Texture(Gdx.files.internal
 ("data/bob_spritesheet.png"));
// initialize Bob
bob.initialize(width,height,bobSpriteSheet);

In the dispose() method, add the following code:

// dispose of the bob spritesheet texture to ensure no memory leaks
bobSpriteSheet.dispose();

In the initialize() method of the Bob class, add these two lines to the end of
the code:

// set the animation to loop
walkAnimation.setPlayMode(PlayMode.LOOP);
// get initial frame
currentFrame = walkAnimation.getKeyFrame(stateTime, true);

We set the animation mode to loop that will cycle the animation frames. When the
last frame is drawn, it will start from the beginning and so on. We set the first frame
for our player to draw the next line. The way Animation class works is that it asks
for the state time and based on the time period that we set, it gives us an image from
the array of frames. This image or current frame is then drawn by us on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[124]

Walking Bob 2
We keep updating the state time of Bob only when he is moving. It doesn't make
any sense to keep updating the animation state time when Bob is not moving. This
will also result in an erroneous animation. Let's add a variable to the Bob class to
implement this:

boolean updateAnimationStateTime = false; // keep track of when to
 update Bob's state time

We will change the update() method as follows:

public void update(){
 updateAnimationStateTime=false;

 // move specified units to left if left key is pressed
 if (isLeftPressed){
 updateAnimationStateTime=true;
 move (-X_MOVE_UNITS,0);
 }

 // move specified units to right if right key is pressed
 else if (isRightPressed){
 updateAnimationStateTime=true;
 move (X_MOVE_UNITS,0);
 }

 // move specified units to left if left paddle is touched
 if (isLeftPaddleTouched){
 updateAnimationStateTime=true;
 move (-X_MOVE_UNITS,0);
 }

 // move specified units to right if right paddle is
 touched
 else if (isRightPaddleTouched){
 updateAnimationStateTime=true;
 move (X_MOVE_UNITS,0);
 }

 //If Bob is moving, only then update his state time

 if(updateAnimationStateTime){
 stateTime += Gdx.graphics.getDeltaTime();
 currentFrame = walkAnimation.getKeyFrame(stateTime,
 true);
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Finally, in the render() method of the Bob class, we will set the sprite's texture to
the one we get from the animation:

bobSprite.setRegion(currentFrame); // set the bob sprite's
 texture to the current frame
bobSprite.draw(batch);

If you now run the game, you should be able to see the walking animation for Bob
when he moves. There is one thing remaining here. When the player moves to the
left, he walks backward. We want the player to look toward the left when he moves
to the left. To enable this, we will first add an enum to our Bob class:

enum Direction{LEFT,RIGHT};
Direction direction = Direction.RIGHT; //denotes player's
 direction. defaulted to right

Next, we will set the player's face direction appropriately while he moves. In the
update() method, add the following code:

public void update(){
 updateAnimationStateTime=false;
 // move specified units to left if left key is pressed
 if (isLeftPressed){
 updateAnimationStateTime=true;
 direction=Direction.LEFT;
 move (-X_MOVE_UNITS,0);
 }

 // move specified units to right if right key is pressed
 else if (isRightPressed){
 updateAnimationStateTime=true;
 direction=Direction.RIGHT;
 move (X_MOVE_UNITS,0);
 }

 // move specified units to left if left paddle is touched
 if (isLeftPaddleTouched){
 updateAnimationStateTime=true;
 direction=Direction.LEFT;
 move (-X_MOVE_UNITS,0);
 }

 // move specified units to right if right paddle is touched
 else if (isRightPaddleTouched){
 updateAnimationStateTime=true;
 direction=Direction.RIGHT;

www.it-ebooks.info

http://www.it-ebooks.info/

Dungeon Bob

[126]

 move (X_MOVE_UNITS,0);
 }

 //If Bob is moving, only then update his state time
 if(updateAnimationStateTime){
 stateTime += Gdx.graphics.getDeltaTime();
 currentFrame = walkAnimation.getKeyFrame(stateTime,
 true);
 }

}

To actually draw the player with the changed direction, we will update the update()
method as follows:

public void render(SpriteBatch batch){

 bobSprite.setRegion(currentFrame); // set the bob sprite's
 texture to the current frame
 if(direction==Direction.LEFT){
 bobSprite.setFlip(true, false);
 }
 else{
 bobSprite.setFlip(false, false);
 }
 bobSprite.draw(batch);
}

The setFlip() methods of the sprite class take two arguments that allow us to
reverse the sprite's direction horizontally or vertically or both. If the direction is
left, we flip Bob's image so that he looks to the left; otherwise, we remove the flip:

If you run the game now, you can see the player looking left and right as we
move him.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

Summary
In this chapter, we introduced a platform game called Dungeon Bob and learned the
following concepts:

• Character motion
• Handling the keyboard input
• A continuous motion
• Facilitating the touch input for mobile devices using navigational paddles
• Character animation

In the next chapter, we will learn about a tool called Tiled. This tool will be used to
make levels inside our game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[129]

Using the Tiled Map Editor
LibGDX is a game framework and not a game engine. This is why it doesn't have an
editor to place game objects or to make levels. Imagine a game, such as Super Mario,
where you have a lot of levels. It would be cumbersome to place all the objects from
the code. Tiled is a 2D level/map editor most suited for this purpose. In this chapter,
we will learn how to use this editor and its features and also learn how to use it to
visually make levels for your game. LibGDX provides excellent support for reading
and rendering maps/levels made through Tiled.

We will cover the following topics in this chapter:

• Installation and basics
• Miscellaneous

Installation and basics
This section will cover how to install and set up the editor. We will also learn about
map layers and the basic drawing of maps.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[130]

Installing and setting up Tiled
To install the Tiled map editor, navigate to http://www.mapeditor.org/download.
html and download the version of Tiled according to your OS:

Install the software and open it. At the time of writing, I am using the version 0.11.0.
When you open it, you will be presented with an interface similar to this:

www.it-ebooks.info

http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.it-ebooks.info/

Chapter 5

[131]

To create a new map, go to the File | New option. You will be presented with a
menu to set some of the basic map properties, as shown in the following screenshot:

In the Orientation option, select Orthogonal, as this is what we are going to use
throughout this book and is mostly used for 2D games. You can consider it a
rectangular grid view. The other options for this are Isometric (for a 3D-like view),
Isometric (Staggered), and Hexagonal (Staggered). Keep the default values for the
Tile layer format and Tile render order options.

Coming to the Tile size section; you can specify the height and width for an
individual tile (unit) for your map in pixels. Keep this 16 x 16 for now. The Map size
section specifies how big your map is in terms of tiles. By multiplying this with the
tile size, you will get the actual size of your map in pixels. We will keep the width to
50 tiles and the height to 20 tiles.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[132]

Click on OK. The next thing that we need is a tileset. A tileset is an image that is
made up of different images called tiles. This is what you need in order to create
the maps. Click on Map in the menu and then click on New Tileset:

Name it tileset and select the image for which you want to use it. We will use a
tileset, which looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

Keep the other options as they are and click on the OK button. The tilesets will be
loaded in the editor after this step. You can see them in the middle pane, also called
the Tilesets pane, on the right-hand side of the editor:

Tiled automatically divides the tiles from the tileset image according to the
configuration. As we set the size to 16 x 16, the image is divided into individual
tile images of sizes 16 x 16. You can add multiple tilesets as well.

Map layers and drawing
Before we draw anything, let's first go to map layers. In Tiled, you can create a map
with multiple layers, which are stacked on top of one another. For example, the
layers can be backgrounds, walls, collectibles, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[134]

Structuring the map in this way makes it easier to parse and apply rules. For
example, while parsing the map, you can ignore the collision between the player and
the background layer. You can also handle the collectibles' layer separately if you
want. By default, a layer is created when you create a new map. Double-click on Tile
Layer 1 to rename it. Change the name to Background:

Let's now fill the Background layer with the background tile. Select the purple tile
from the tileset and select the bucket icon from the tool menu:

This is used to fill the map completely with one tile or used to fill an enclosed area
with the specified tile. When you move the cursor to the map area, you can see the
map being highlighted. Click there to apply the tile to the whole map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Save the map by going to File | Save. In the Save As window, give a name to the file
you want and don't forget to save the map in the same folder as that of your tileset:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[136]

Next, we will draw some walls. Create a new layer by navigating to Layer | Add
Tile Layer in the menu bar. You will notice that a new layer called Tile layer 2 has
been added to the Layers pane. Change the name to Wall. You can change the order
of the layers by using the arrow symbols below the Layers pane:

Select a wall tile from the Tilesets pane and select the stamp brush icon from the
top menu:

The stamp tool allows you to paint the map per tile or use it as a set of tiles. You can
now paint the map with the walls you want:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

To paint it more precisely, you can turn the grid on. It will show the tile boundaries
on the map. Go to View and select the Show Grid option:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[138]

After selecting View and the Show Grid option, you will get the following view:

To select multiple tiles, hold the Ctrl key on your keyboard and then select the tiles.
You can then paint the map with them:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

To erase anything that you painted on the map, select the eraser icon from the
toolbar menu:

Using this, you can remove the tiles that you have painted. If your map is huge and
if you want to see a miniature version of it, there is a minimap feature available.
To view it, click on the Mini-map tab below the Layers window:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[140]

To show/hide layers, click on the checkbox next to their names:

You can also change the opacity of a layer by selecting it and moving the slider at the
top of the Layers pane:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

Miscellaneous
This topic will cover how to add properties to the map components and how to add
objects and tile animations to the map.

Custom properties
You can add custom properties to your map, which you can then use in your game
while rendering. To add them, go to Map | Map Properties:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[142]

In the Properties pane, click on the + icon to add a new property:

A new dialog box will open, where you can give the property name:

After you give the property name and click on OK, the property appears in the
Custom Properties section of the Properties pane, where you can give its value:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

Similarly, you can add properties to an individual tile/layer. You need to select them
to add a new property:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[144]

Drawing objects
Sometimes, simple tiles may not satisfy your requirements. You might need to create
objects with complex shapes. You can easily define these shape outlines in the editor.
The first thing you need to do is create an object layer. Navigate to Layer | Add
Object Layer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

You will notice that a new layer has been added to the Layers pane called Object
Layer 1. You can rename it if you like:

With this layer selected, you can see the object toolbar getting enabled:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[146]

You can draw basic shapes, such as a rectangle or an ellipse/circle:

You can also draw a polygon and a polyline by selecting the appropriate options
from the toolbar. Once you have added all the edges, click on the right mouse button
to stop drawing the current object:

Once the polygon/polyline has been drawn, you can edit it by selecting the Edit
Polygons option from the toolbar:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

After this, select the area that encompasses your polygon in order to change it to the
edit mode. You can edit your polygons/polylines now:

You can also add custom properties to your polygons by right-clicking on them and
selecting Object Properties:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[148]

You can then add custom properties, as mentioned previously:

You can also add tiles as an object. Click on the Insert Tile icon in the toolbar:

Once you have selected this icon, you can insert tiles as objects into the map.
You will observe that the tiles can be placed anywhere now, irrespective of
the grid boundaries:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

To select and move multiple objects, you can select the Select Objects option from
the toolbar:

You can then select the area that encompasses the objects. Once they have been
selected, you can move them by dragging them with your mouse cursor:

You can also rotate the object by dragging the indicators at the corners after they
have been selected:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[150]

Tile animations and images
Tiled allows you to create animations in the editor. Let's make an animated shining
crystal. First, we will need an animation sheet of the crystal. I am using this one,
which is 16 x 16 pixels per crystal:

The next thing we need to do is add this sheet as a tileset to the editor and name it
crystals. To do this, follow the same steps, as mentioned earlier. After you add the
tileset, you will see a new tab in the Tilesets pane:

Navigate to View | Tile Animation Editor to open the animation editor:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

A new window will open that will allow you to edit the animations:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[152]

On the right-hand side of the window, you will see the individual animation frames
that make up the animation. This is the animation tileset, which we added. Hold the
Ctrl key on your keyboard and select all of them with your mouse. Then, drag them
to the left-hand side of the window:

The numbers beside the images indicate the amount of time each image will be
displayed in milliseconds. The images are displayed in this order and repeated
continuously. In this example, every image will be shown for 100 ms or one-tenth of
a second. In the bottom-left corner, you can preview the animation you just created.
Click on the Close button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

You can now see something like this in the Tilesets pane:

The first tile represents the animation that we just created. Select it and you can
draw the animation anywhere in the map. You can see the animation playing
within the map:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Tiled Map Editor

[154]

Lastly, we can also add images to our map. To use them, we need to add an image
layer to our map. Navigate to Layer | Add Image Layer. You will notice that a new
layer has been added to the Layers pane. Rename it House:

To use an image, we need to set the image's path as a property for this layer. In the
Properties pane, you will find a property called Image. There is a file picker next to
it where you can select the image you want:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

Once you have set the image, you can use it to draw on the map:

Summary
In this chapter, we learned about a tool called Tiled that is used to design
2D levels/maps. We learned the following topics:

• Adding tilesets
• Using map layers
• Drawing tools, such as stamp and fill tools
• Adding custom properties to the map
• Drawing various objects
• Making tile animations and adding images

In the next chapter, we will see how to read the maps and render them in the game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[157]

Drawing Tiled Maps
In the previous chapter, we created a game level in the editor. In this chapter, we will
learn how to display the level in the game. We will also learn about a technique used
to improve the game performance called texture packing. Along with this, we will
learn how to effectively manage our game assets.

We will cover the following topics in this chapter:

• Asset management
• Map rendering

Asset management
This topic will teach you how to optimize and manage assets in your game. This is
necessary as the manual management of game assets is quite cumbersome as the
code and game size increases.

Texture packer
So far, we have been using separate images or textures in our games for different
game objects, such as a player, mole, door, and so on. However, this method is slow
in performance due to the way in which it is carried out in the backend. The GPU
needs to switch textures each and every time we draw different game objects, which
is a costly operation.

To avoid this issue, we pack different images into a single large image. This image
is called a texture atlas. Doing so avoids the GPU from having to switch textures,
increasing the performance of our game. Now, you don't have to do image packing
manually in Photoshop or any image editing software. There is a readymade tool
called Texturepacker-GUI which does that.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[158]

To download the tool, navigate to https://code.google.com/p/libgdx-
texturepacker-gui/downloads/list. You can download the latest version
from there. I am using version 3.2.0. After you extract the file, double-click on the
gdx-texturepacker.jar file to run the app:

Click on the New pack button, which will open a dialog box that asks for a name.
Give the name you want for the pack file. Here, I am giving pack1:

www.it-ebooks.info

https://code.google.com/p/libgdx-texturepacker-gui/downloads/list
https://code.google.com/p/libgdx-texturepacker-gui/downloads/list
http://www.it-ebooks.info/

Chapter 6

[159]

In the Input directory option, select the folder where you have kept the separate
images for your game. In our case, let's select the directory where we have kept the
images for Dungeon Bob. The Output directory is the folder where you want the
packed image to be generated. Do not keep the background image in this directory,
as we would need to handle it separately:

In the pack settings section, the Min page width and Min page height options
represent the size of the packed image/texture; 1024 x 1024 should be fine for us as
older devices can handle a texture with this resolution. The only constraint is that
this setting should be higher than any of the input image you are using. If you want
to pack large textures, you can increase this setting.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[160]

Uncheck the Force PoT option and click on Pack selected. Now, you should be able
to see something like this:

The view on the right-hand side of the screen shows the packed image that
comprises your images. If the combined size of the images exceed the maximum
page size, multiple pages of packed textures are generated. You can navigate
through them using the Next page and Previous page buttons in the top-right corner
of the screen. The output directory will contain the packed images and .pack files
that contain information of where each image is located in the packed image. Copy
the pack file and the image to the data folder of your Android project:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

The AssetManager class
The AssetManager class is a utility class in LibGDX that allows you to manage
your game assets in an easy and uniform way. With this class, you can load game
resources asynchronously, which makes it easy to display a loading screen. Let's
refactor our game to make use of both TextureAtlas (packed textures) and
AssetManager. Let's first create a class to keep track of the configuration information,
such as filenames, level names, and so on. Create a new class in the com.packtpub.
dungeonbob package called GameConstants and paste in the following code:

package com.packtpub.dungeonbob;

public class GameConstants {

 public static final String bobSpriteSheet = "bob_spritesheet";

 public static final String backGroundImage = "data/
 background.jpg";

 public static final String leftPaddleImage = "paddleLeft";

 public static final String rightPaddleImage = "paddleRight";

 public static final String texturePack = "data/pack1.pack";
}

Right now, we have set the paths and names for the image assets in our game.
In the GameManager class, add a reference to AssetManager:

static AssetManager assetManager;

We will instantiate it in the initialize() method:

assetManager = new AssetManager();

Now, we'll create a method to load the assets into the same class:

public static void loadAssets(){
 // queue the assets for loading
 assetManager.load(GameConstants.backGroundImage,
 Texture.class);

 assetManager.load(GameConstants.texturePack,
 TextureAtlas.class);

 //blocking method to load all assets
 assetManager.finishLoading();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[162]

To queue any assets for loading, we call the load() method. The asset's path is
passed as the first argument and the class as the second one. The assets are not
available for use after the load() method. To make them available, we call the
finishLoading() method. This is a blocking function that makes all the assets
called using the load() method available for use. This is not an asynchronous
loading of the assets. We will learn about that in the subsequent chapters.

We call this function after instantiating assetManager in the initialize() method:

assetManager = new AssetManager();
loadAssets();

To use the background texture now, replace the line where we instantiated it with
the following line of code:

backgroundTexture = assetManager.get
 (GameConstants.backGroundImage);

The get() method of AssetManager retrieves the asset specified. As it already
knows which type of the asset it is (we gave this information while calling the
load() method), we don't need any cast. Now, to dispose of the assets, we use
the unload() method of AssetManager, which takes the filename of the asset as
an argument. In the dispose() method of our GameManager class, replace the
backgroundTexture.dispose(); line with the following code:

assetManager.unload(GameConstants.backGroundImage);

To dispose of all the managed assets at once, you can use the following code:

assetManager.clear();

You should not dispose of managed assets manually.

We need to make some changes to the Bob class for it to work correctly with the
Texturepacker-GUI tool. Since the animation sheet for Bob (or walksheet) is not a
complete texture anymore (the whole texture is being packed into one), we
need to change the type of walkSheet to TextureRegion:

TextureRegion walkSheet; // sprite sheet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

To accommodate these changes, we need to change the initialize() method
as follows:

public void initialize(float width,float height,TextureRegion
 walkSheet){
 this.walkSheet=walkSheet; // save the sprite-sheet

 //split the sprite-sheet into different textures
 TextureRegion[][] tmp = walkSheet.split(walkSheet.
 getRegionWidth()/ANIMATION_FRAME_SIZE, walkSheet.
 getRegionHeight());
 // convert 2D array to 1D
 TextureRegion[] walkFrames = tmp[0];

 // create a new animation sequence with the walk frames
 and time period of specified seconds
 walkAnimation = new Animation(0.08f, walkFrames);

 // instantiate bob sprite
 bobSprite = new Sprite();
 //set the size of bob
 bobSprite.setSize((walkSheet.getRegionWidth()/
 ANIMATION_FRAME_SIZE)*(width/BOB_RESIZE_FACTOR),walkSheet.
 getRegionHeight()*(width/BOB_RESIZE_FACTOR));

 // set the position of the bob to bottom - center
 setPosition(width/2f, 0);

 // set the animation to loop
 walkAnimation.setPlayMode(PlayMode.LOOP);
 // get initial frame
 currentFrame = walkAnimation.getKeyFrame(stateTime, true);

}

In the GameManager class, we need to change the type of bobSpriteSheet to
TextureRegion as well:

static TextureRegion bobSpriteSheet; // texture spriteSheet for
 the bob.

We need to add a new variable to the texture atlas:

static TextureAtlas texturePack ; // packed texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[164]

In the initialize() method, we need to get the texture atlas/texture pack from
assetManager:

texturePack = assetManager.get(GameConstants.texturePack);
 // get the packed texture from asset manager

To get the texture region that corresponds to Bob's spritesheet from the packed
image/texture pack, use its findRegion() method:

// load the bob sprite sheet from the packed image
bobSpriteSheet = texturePack.findRegion
 (GameConstants.bobSpriteSheet);

If you have used the assetManager.clear() method, then you don't need to
dispose of these assets separately.

Similar steps are required for the paddles:

static TextureRegion leftPaddleTexture;
static TextureRegion rightPaddleTexture;

In the initializeLeftPaddle() method, add the following code:

//load left paddle texture region
leftPaddleTexture = texturePack.findRegion
 (GameConstants.leftPaddleImage);

In the initializeRightPaddle() method, add the following code:

//load right paddle texture region
rightPaddleTexture = texturePack.findRegion
 (GameConstants.rightPaddleImage);

Let's take a look at the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

Also, don't forget to remove the dispose() calls for these two methods in the
dispose() method. If you run the game now, it should work in the same way,
as mentioned earlier, except that now our assets are better managed and show
better performance.

Rendering maps
This section will cover how to display the Tiled map in the game. We will also learn
about the LibGDX APIs that can parse the Tiled map format and display them in
the game.

Basic map rendering
Let's deal with rendering the maps made with Tiled in our game. For this, I've made
a new small map in Tiled, which looks something like this. We will continue with the
same project from Chapter 4, Dungeon Bob:

This map is 35 x 20 units in size. I have used two layers. One for the crystals and the
other for things such as walls and hazardous liquids. Keep the .tmx file along with
the corresponding assets in the data/maps folder of your Android project.

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[166]

First of all, let's disable the drawing of our game objects for the time being in order to
concentrate on the map. We'll later integrate them. Comment out the draw() calls to
Bob, paddles, and backgrounds. We will need a map instance to work with our map.
In the GameManager class, add this line of code:

static TiledMap map;

Let's define the path for the map file in the GameConstants class:

public static final String level1 = "data/maps/level1.tmx";

To queue the map for loading, add these lines of code to the loadAssets() method
of GameManager before the finishedLoading() method's call:

// set the tiled map loader for the assetmanager
assetManager.setLoader(TiledMap.class, new TmxMapLoader(new
 InternalFileHandleResolver()));
//load the tiled map
assetManager.load(GameConstants.level1, TiledMap.class);
//blocking method to load all assets
assetManager.finishLoading();

Now, you can get the map instance loaded into the initialize() method:

loadAssets();
// get the map instance loaded
map = assetManager.get(GameConstants.level1);

To render the map, we need a map renderer. As we are using an orthogonal map,
the OrthogonalTiledMapRenderer from the Tiled package is suitable for this
purpose. Declare its instance in the GameManager class:

public static OrthogonalTiledMapRenderer renderer;
 // map renderer

Now, we will instantiate it in the initialize() method. But first, we need to define
the unit scale. The unit scale indicates the pixel to game-unit ratio. If it is one, then
one map pixel will be equal to one game unit. If your tiles are 16 x 16 in a map and
you want to map them as 1 x 1 squares, then you need to define the unit scale
as 1/16.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

With the unit scale as 1/16, we get the following diagram:

With the unit scale as 1, we get the following diagram:

Let's define it as 1/16f for now in the GameConstants class:

public static final float unitScale = 1/16f;

To instantiate the map renderer, add the following code after we get the map in the
GameManager class:

// get the map instance loaded
map = assetManager.get(GameConstants.level1);
renderer = new OrthogonalTiledMapRenderer(map, GameConstants.
unitScale);

It takes two parameters: the map and the unit scale. Next, we have to set the
renderer's view to the main camera's view. As we can't access the camera from
GameManager, let's first make it public and static in the GameScreen class:

public static OrthographicCamera camera;

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[168]

Add the following line to the initialize() method of GameManager:

renderer = new OrthogonalTiledMapRenderer(map, GameConstants.
unitScale);
// set the renderer's view to the game's main camera
renderer.setView(GameScreen.camera);

To draw the map, we will call the renderer's render() method. We won't call it
in the renderGame() method as it will interfere with the sprite batch's rendering
process. Instead, we will call it in the GameScreen class' render() method:

// render the game objects
batch.begin();
GameManager.renderGame(batch);
batch.end();

GameManager.renderer.render();

To show the complete map, we would need to change the camera's viewport to
the map's width and height. Add the following lines of code after the renderer's
instantiation in the initialize() method:

renderer = new OrthogonalTiledMapRenderer(map, GameConstants.
 unitScale);

GameScreen.camera.setToOrtho(false, 35,20); // show 35x20 map
 tiles on screen
GameScreen.camera.update();
// set the renderer's view to the game's main camera
renderer.setView(GameScreen.camera);

If you run the game now, you will notice that the complete map has been displayed
on the screen with the crystal animations as well!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

If your level is huge like most platformers, you would want to show only part of the
map on the screen at a time. Let's show 15 x 13 units at a time. Edit the appropriate
line so that it looks like this:

GameScreen.camera.setToOrtho(false, 15,13); // show 15x13 map
 tiles on screen

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[170]

The screen will now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

The following screenshot shows the total map and viewport distinction:

Reading the map
The map has properties. These are key-value pairs, which you can get in your game.
To view them, you can iterate over the keys and get the corresponding properties.
Reset the code to show 35 x 20 units and add the following lines of code after the
map initialization to see the properties:

// get the map instance loaded
map = assetManager.get(GameConstants.level1);

Iterator<String> iterator = map.getProperties().getKeys();
while(iterator.hasNext()){
 String key =iterator.next();
 System.out.println("Name:" +key+" Value: "+map.
 getProperties().get(key));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[172]

If you run the game now, you will see the following output in the console
output window:

These are the map's default properties. As I've mentioned earlier, you can set custom
properties for the map in the editor and get them through code:

The code output after reading the map's properties is as follows:

A map contains layers. To get these layers, you need to call map.getLayers(), which
will give all the layers contained in the map. To get a specific layer, you can call the
GameManager class' initialize() method after you get the map instance:

TiledMapTileLayer tiledLayer = (TiledMapTileLayer)
 map.getLayers().get(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

This will give you the first map layer, starting from the bottom. Alternatively, you
can get a layer by its name:

TiledMapTileLayer tiledLayer = (TiledMapTileLayer)
 map.getLayers().get("Wall");

The preceding line will give you the layer named Wall. Once you get a layer, you
can then get its opacity using tiledLayer.getOpacity() and check whether the
layer is visible using tiledLayer.isVisible(). You can also set these properties
at runtime.

Let's try to set the wall layer's opacity to 0.25. First, get the layer from the map,
as mentioned earlier, and call the initialize() method of GameManager:

tiledLayer.setOpacity(0.25f);

The screen will now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[174]

As you can see, the wall layer is now semitransparent, but the crystals are unaffected.
To make the layer invisible, use the following line of code:

tiledLayer.setVisible(false);

The screen will now look like this:

We can only see the crystals as the wall layer is invisible. To get the properties of a
layer, use tiledLayer.getProperties(). A Tiled map layer also contains a matrix
of cells, which are the tiles that we paint in the editor. A cell is a container for these
tiles and contains some additional attributes. For example, if we place a brick tile in a
certain position in the layer, then that information can be queried from the layer and
will be stored as a cell. To get a cell, use the following code:

Cell cell = tileLayer.getCell(column, row);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

This is different from how we access 2D arrays (row,column).

The bottom-left cell of the map is located at (0, 0) and the top-right cell is located
at (width-1, height-1). To remove a cell, you can use the setCell() method of the
layer and set it to null. Let's try to remove the first cell. First, remove the calls to
setOpacity() and setVisible():

tiledLayer.setCell(0, 0, null);

This is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[176]

As you can see, the cell in the bottom-left corner is removed. This technique can
be used in a game such as Super Mario where the brick disappears when Mario
touches it with his head. Once you get a cell, you can set/get its rotation or flip
it horizontally/vertically. Let's rotate the tile at (0, 0) by 90 degrees. Replace the
setCell() line with the following code:

tiledLayer.getCell(0, 0).setRotation(Cell.ROTATE_90);

Add this line after you have got the layer from the map. If you run the game now,
you will notice that the particular tile has been rotated by 90 degrees:

To flip the tile horizontally, use cell.setFlipHorizontally(true) and to flip it
vertically, use setFlipVertically(true).

Map objects
Let's add some shapes to our map using the editor in the object layer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

I've added a rectangle, polygon, eclipse, and polyline to the map. To draw the map
objects, let's define a new method called drawShapes() in the GameManager class:

static void drawShapes(){
}

In this method, we will retrieve the objects from the map and draw them based
on their types. To get the objects, we will first have to get the object layer. In the
initialize() method of the GameManager class, add this line of code to get the
object layer:

MapLayer objectLayer = map.getLayers().get("Object Layer");

We declare a variable to store the map objects in the class:

static MapObjects mapObjects;

To get all the map objects in the object layer, add the following line of code:

mapObjects = objectLayer.getObjects();

Now, we can proceed to retrieve the individual objects and draw them. We will
use an iterator in the drawShapes() function to iterate over the objects. Add the
following lines of code to the drawShapes() function:

Iterator<MapObject> mapObjectIterator = mapObjects.iterator();
while(mapObjectIterator.hasNext()){
 MapObject mapObject = mapObjectIterator.next();
}

There are different types of objects in our map. Let's start off by displaying the
rectangle map object. We need to check whether the map object retrieved in the
current iteration is of the rectangle type. To do this, add the following lines of code:

if(mapObject instanceof RectangleMapObject){
 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();
}

If the object is of the rectangle type, we cast it to RectangleMapObject and get a
Rectangle instance from it. To actually draw the object on the screen, you need
something called ShapeRenderer. The ShapeRenderer is a class in LibGDX that
allows you to draw basic shapes. We declare a reference of ShapeRenderer in the
GameManager class:

static ShapeRenderer shapeRenderer; // for drawing shapes

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[178]

Next, we will instantiate the shape renderer in the initialize() method of
GameManager:

shapeRenderer = new ShapeRenderer();

The drawShapes() method looks something like this after the rendering code is
added to it and it is called by the renderGame() function of the same class:

static void drawShapes(){
 GameScreen.camera.update();
 // set the shaperenderer's view to camera's view
 shapeRenderer.setProjectionMatrix(GameScreen.camera.
 combined.scl(GameConstants.unitScale));

 // set the shape as completely filled
 shapeRenderer.begin(ShapeType.Line);
 //set the shape's color as blue
 shapeRenderer.setColor(0, 1, 1, 1);

 Iterator<MapObject> mapObjectIterator = mapObjects.
 iterator();
 while(mapObjectIterator.hasNext()){
 // get the map object from iterator
 MapObject mapObject = mapObjectIterator.next();

 // check if it is a rectangle
 if(mapObject instanceof RectangleMapObject){
 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();
 //draw rectangle shape on the screen
 shapeRenderer.rect(rectangle.x, rectangle.y,
 rectangle.width, rectangle.height);
 }

 }
 shapeRenderer.end();
}

First, we set the ShapeRenderer class' view to the camera's view multiplied by the
unit scale. This is needed as the coordinates of the objects obtained from the maps are
absolute ones. To render them properly, we need to scale them as per our unit scale.
The shapes are drawn between the begin() and end() methods of ShapeRenderer.
The begin() method takes an argument that specifies whether the shape would be
completely filled with the color or just an outline.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

We are using ShapeType.Line, which means that it would be a rectangle outline.
Then, we set the color to blue with the RGBA values. Finally, we draw the rectangle
shape using the shapeRenderer.rect() method and using the rectangle instance
that we obtained, we end ShapeRenderer:

Let's draw another object type. This one is a polygon object. Update the
drawShapes() method like this:

// check if it is a rectangle
if(mapObject instanceof RectangleMapObject){
 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();
 //draw rectangle shape on the screen
 shapeRenderer.rect(rectangle.x, rectangle.y, rectangle.width,
 rectangle.height);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[180]

// check if it is a polygon
else if(mapObject instanceof PolygonMapObject){
 Polygon polygon = ((PolygonMapObject)mapObject).
 getPolygon();
 shapeRenderer.polygon(polygon.getTransformedVertices());
}

Here, we check whether the object is of the polygon type. We then retrieve a polygon
instance from it. The ShapeRenderer class' polygon() method is used to draw a
polygon on the screen and expects an array of polygon vertices as an argument. We
get this array from the polygon instance by calling getTransformedVertices()
on it:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

Update the drawshapes() method again for an ellipse this time:

// check if it is a polygon
else if(mapObject instanceof PolygonMapObject){
 Polygon polygon = ((PolygonMapObject)mapObject).getPolygon();

 shapeRenderer.polygon(polygon.getTransformedVertices());
}

//check if it an ellipse
else if(mapObject instanceof EllipseMapObject){
 Ellipse ellipse = ((EllipseMapObject)mapObject).getEllipse();

 shapeRenderer.ellipse(ellipse.x, ellipse.y, ellipse.width,
 ellipse.height);
}

The screen will now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Tiled Maps

[182]

Finally, for a polyline, we add the following highlighted code:

//check if it an ellipse
else if(mapObject instanceof EllipseMapObject){
 Ellipse ellipse = ((EllipseMapObject)mapObject).getEllipse();

 shapeRenderer.ellipse(ellipse.x, ellipse.y, ellipse.width,
 ellipse.height);
}

// check if it is a polyline
else if(mapObject instanceof PolylineMapObject){
 Polyline polyline = ((PolylineMapObject)mapObject).
 getPolyline();

 shapeRenderer.polyline(polyline.getTransformedVertices());
}

The screen will now look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

Summary
In this chapter, we learned the following topics:

• Packing textures for performance
• Managing assets using the AssetManager class
• Drawing the Tiled map on the game screen
• Reading map properties and layers, and updating them on the fly
• Reading objects from the map and displaying them

In the next chapter, we will cover game physics and collisions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[185]

Collision Detection
In this chapter, we will learn how to integrate Bob and other game objects with
the Tiled map that we created. We will also learn how to control the camera and
follow the player around. We will also learn how to add realistic physics and detect
collisions between obstacles from the map.

In this chapter, we will cover the following topics:

• Integrating game objects
• Physics and collision

Scaling objects and adding a secondary
camera
In this section, we will learn how to integrate the game objects with the Tiled map
and camera control.

Integrating Bob
In the previous chapter, we rendered the map but other game objects, such as Bob,
the paddles, and the background were out of picture. Let's first try to integrate them
with the map. Remove the map iteration code (layers/tiles/objects). Remove the call
to drawshapes() as well.

Reduce the viewport size to 15 x 13 in the initialize() method of the GameManager
class:

GameScreen.camera.setToOrtho(false, 15,13);

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[186]

Now, uncomment all the draw calls for the other game objects and run the game:

Okay, so what happened to the game objects? Why could we not see them?
To understand this, change the unit scale to 1/4 in the GameConstants class:

public static final float unitScale = 1/4f;

Change the camera's viewport to width and height in the GameManager class'
initialize() method:

GameScreen.camera.setToOrtho(false, width,height);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

The screen will now look like this:

If you take a look at the bottom-left corner, that is where our map is. And that is the
area the camera focuses on and zooms in on. As the other objects are too big or out of
the view of the camera, we cannot see them. Revert to those changes (the unit scale
and camera viewport), and then we will focus on how to display the game objects in
proportion to the map, starting with Bob.

As the unit scale is 1/16, let's try to bring the size of Bob to that scale. In the Bob
class' initialize() method, update the following code:

//set the size of the bob
bobSprite.setSize((walkSheet.getRegionWidth()/
 ANIMATION_FRAME_SIZE)*(width/BOB_RESIZE_FACTOR),
 walkSheet.getRegionHeight()*(width/BOB_RESIZE_FACTOR));
//scale bob's size w.r.t unit scale

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[188]

bobSprite.setSize(bobSprite.getWidth()*GameConstants.
 unitScale,bobSprite.getHeight()*GameConstants.unitScale);
// set the position of the bob to bottom - left
setPosition(0, 0);

The screen will now look like this:

Now, we are getting somewhere. Let's resize him a bit more and set the position to 2
units up. Update the resize factor in the Bob class:

public static final float BOB_RESIZE_FACTOR = 700f;

Also, set the position in the Bob class' initialize() method:

bobSprite.setSize(bobSprite.getWidth()*GameConstants.unitScale,
 bobSprite.getHeight()*GameConstants.unitScale);
// set the position of the bob to bottom - left
setPosition(0, 2);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

The screen will now look like this:

If you now try to make Bob walk, you will notice that he moves too fast and too far
on the screen. Let's try to normalize this. Update the X_MOVE_UNITS constant:

private static final float X_MOVE_UNITS = 0.1f; // units bob will
 move in x direction

If you run the game now, you can see Bob moving at an appropriate pace.

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[190]

Camera control
When we move the player, he goes off the screen when he is at the edge. We need
a way to restrict this. We will also need a way to show different parts of the map
when the player moves. To do this, we first need to understand how the camera
is positioned:

As shown in the preceding diagram, the camera is positioned at the center of the
viewport window. In order to make more areas of the map visible on the screen, we
need to move the camera as well. This would move the viewport window along with
it and we would get the desired effect:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

When we move the player with the camera, this is how it looks:

First, let's declare the map's width and height as variables in the GameManager class:

public static int mapWidth;
public static int mapHeight;

Next, we will use the techniques to read map properties from the previous
chapter to set the values of these variables. We will add a new method called
setMapDimensions() to the GameManager class. This method will read the level's
height and width and update the variables accordingly:

static void setMapDimensions(){
 MapProperties properties = map.getProperties();
 mapHeight = Integer.parseInt(properties.get
 ("height").toString());
 mapWidth = Integer.parseInt(properties.get
 ("width").toString());
}

This method will be called in the GameManager class' initialize() method:

map = assetManager.get(GameConstants.level1);
setMapDimensions();

In the renderGame() method, add these lines of code so that the camera scrolls with
the player:

bob.render(batch);
//update the camera's x position to Bob's x position
GameScreen.camera.position.x= bob.bobSprite.getX();

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[192]

//if the viewport goes outside the map's dimensions update the
 camera's position correctly
if(!((GameScreen.camera.position.x-GameScreen.camera.
 viewportWidth/2)>0)){
 GameScreen.camera.position.x = GameScreen.camera.
 viewportWidth/2;
}
else if(((GameScreen.camera.position.x+GameScreen.camera.
 viewportWidth/2)>=mapWidth)){
 GameScreen.camera.position.x = mapWidth - GameScreen.camera.
 viewportWidth/2;
}

renderer.setView(GameScreen.camera);
GameScreen.camera.update();

The first line of the code sets the camera's x coordinate to Bob's x coordinate. This
gives an effect of the camera following the player in the x direction. The next if
else statement checks whether the camera's viewport goes outside the map's
bounds when Bob is at the edge. If it does, we just reset the camera's position
so that it remains within those boundaries:

Run the game now to see the scrolling effect in action. Our player Bob still goes off
the screen and there is no check to prevent this. Instead of a boundary check, we will
use tile collisions to handle this, which will be shown later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

Integrating game objects
Let's now try to integrate the paddles and background in the game. To display
them, we can do the same thing that we did for Bob, that is, change their dimensions
and coordinates. This would cause a problem when we move the camera and they
would be out of view. We want them to be on the screen at all times. We can always
move them with the camera, which would be a hassle. There is an easy way to avoid
all this; we can use a secondary camera. This camera is just used to display the
nonmoving objects on the screen.

We declare the secondary camera in the GameScreen class. We will call this
hudCamera:

public static OrthographicCamera camera,hudCamera;

We then instantiate and initialize it in the constructor:

// set our hud camera's viewport to window dimensions
hudCamera = new OrthographicCamera(width,height);
// center the camera at w/2,h/2
hudCamera.setToOrtho(false);

Since we are using hudCamera for the paddles, we would want to couple our input
manager with this camera instead of the main one:

Gdx.input.setInputProcessor(new InputManager(hudCamera));
 // enable InputManager to receive input events

The following diagram shows how we are going to display the objects and camera,
which would be coupled with them:

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[194]

To get this order, we first need to separate the drawing of the background into a
separate method in the GameManager class:

public static void renderBackground(SpriteBatch batch){
 // draw the background
 backgroundSprite.draw(batch);
}

public static void renderGame(SpriteBatch batch){
 //draw the Bob with respect to main cam
 batch.setProjectionMatrix(GameScreen.camera.combined);

 bob.update();
 // Render(draw) the bob
 bob.render(batch);
 //update the camera's x position to Bob's x position
 GameScreen.camera.position.x= bob.bobSprite.getX();
 //if the viewport goes outside the map's dimensions update the
 camera's position correctly
 if(!((GameScreen.camera.position.x-(GameScreen.camera.
 viewportWidth/2))>0)){
 GameScreen.camera.position.x = GameScreen.camera.
 viewportWidth/2;
 }
 else if(((GameScreen.camera.position.x+(GameScreen.
 camera.viewportWidth/2))>=mapWidth)){
 GameScreen.camera.position.x = mapWidth - GameScreen.
 camera.viewportWidth/2;
 }

 renderer.setView(GameScreen.camera);
 GameScreen.camera.update();

 //draw the paddles with respect to hud cam
 batch.setProjectionMatrix(GameScreen.hudCamera.combined);

 leftPaddleSprite.draw(batch);
 rightPaddleSprite.draw(batch);

}

Then, we update the GameScreen class' render() method, as shown in the
following code:

public void render(float delta) {
 // Clear the screen
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

 // set the spritebatch's drawing view to the hud camera's
 view
 batch.setProjectionMatrix(hudCamera.combined);

 batch.begin();
 GameManager.renderBackground(batch);
 batch.end();

 GameManager.renderer.render();

 batch.begin();
 GameManager.renderGame(batch);
 batch.end();

}

What we basically do here is couple the appropriate camera with the batch and then
draw the game objects. If you run the game now, you can see all the game objects:

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[196]

Physics and collision
In this section, we will cover how to add realistic physics to the game and
collision detection.

Adding physics
Let's add more realistic physics to our game. We will need to keep track of Bob's
velocity. Add a velocity variable to the Bob class:

Vector2 velocity; // Bob's velocity

Instantiate and initialize it in the initialize() method:

velocity = new Vector2(0, 0);

Now, when we move the player, we set the velocity to a predefined value. Let's call it
maxVelocity and change the X_MOVE_UNITS constant to maxVelocity:

private static final float maxVelocity = 0.1f;

Now, let's update the player's velocity when we press the arrow keys/touch paddles
in the update() method:

// move specified units to left if left key is pressed
if (isLeftPressed){
 direction=Direction.LEFT;
 velocity.x=-maxVelocity;
}

// move specified units to right if right key is pressed
else if (isRightPressed){
 direction=Direction.RIGHT;
 velocity.x=maxVelocity;
}

// move specified units to left if left paddle is touched
if (isLeftPaddleTouched){
 direction=Direction.LEFT;
 velocity.x=-maxVelocity;
}

// move specified units to right if right paddle is touched
else if (isRightPaddleTouched){
 direction=Direction.RIGHT;
 velocity.x=maxVelocity;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

We removed the call to move here, as Bob would be moving according to the velocity
he currently has. We also removed the setting of the updateAnimationstateTime
variable, as it will be set according to the velocity. We update Bob's animation
stateTime value only when he is moving, that is, when his velocity is not 0.
Add the following line of code to make that effect:

// if bob is not at rest, animate him
if(velocity.x!=0){
 updateAnimationStateTime=true;
}
move(velocity.x, velocity.y); // update Bob's position according
 to velocity

If you run the game now and try to move the player, you will observe that he
continues to walk even if you don't press the button. This is because once he is in
motion, there is nothing to restrict him. We would need something such as friction or
a damping effect so that he can eventually slow down and come to a halt. Let's add a
constant named damping to denote this:

private static final float damping= 0.03f;

To take it into effect, add these lines of code to the update() method of the Bob class:

//reduce bob's velocity if he is not at rest by damping factor
if(velocity.x<0){
 velocity.x+=damping;
}
else if(velocity.x>0) {
 velocity.x-=damping;
}
// if bob is not at rest, animate him
if(velocity.x!=0){
 updateAnimationStateTime=true;
}

Here, we first check whether he is moving to the left; if he is, then we add a damping
force to the right direction. If he is moving to the right, then we add it to the left
direction. If you run the game now, you can indeed see Bob slowing after a short
while. But he also moves in the backward direction. This is because his velocity
never remains at 0 after damping as it continues unconditionally. To fix this, we
will stop his motion as soon as his velocity becomes too low:

//if bob's velocity becomes too low make it 0 so that he stays at
 rest
if(direction==Direction.RIGHT && velocity.x<=0.02f){
 velocity.x=0.0f;

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[198]

}

else if(direction==Direction.LEFT && velocity.x>=-0.02f){
 velocity.x=0.0f;
}
// if bob is not at rest, animate him
if(velocity.x!=0){
 updateAnimationStateTime=true;
}

If you run the game now, you can see the player moving properly on the screen.
Now, let's add gravity to the game. Let's define the gravity value as a constant:

private static final Vector2 gravity = new Vector2(0, -0.02f);

As the gravity acts only in the downward y direction, we have given the value as (0,
-0.2) to the gravity vector. Applying the gravity to Bob is very easy. You just need
to add this line of code to the Bob class' update() method:

velocity.add(gravity); // factor gravity into Bob's velocity
move(velocity.x, velocity.y); // update Bob's position according
 to velocity

The gravitational force affects Bob's velocity. This is why we add both these vectors
to every frame. If you run the game now, you can see Bob falling straight down.
This is because we have not done any collision detection between Bob and the tiles.

Collision detection – 1
Let's talk about collision detection. We need to first check whether the player collides
with the walls. One strategy would be to check the collision between the player and
all the wall tiles at every frame. This would be inefficient as a lot of computations
would need to be performed at every frame, which would lower the game's
performance. Our strategy would be to only consider the tiles that are near
the player for collision detection.

Let's create a utility method to get tiles from the map lying within a given range.
Create a new package named com.packtpub.dungeonbob.utils and add a new
class named MapUtils to it. Type the following code in the class:

package com.packtpub.dungeonbob.utils;

import com.badlogic.gdx.maps.tiled.TiledMap;

public class MapUtils {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

 public static TiledMap map;
 public static void initialize(TiledMap map){
 MapUtils.map= map;
 }

}

We declare a reference to the map; there is an initialize() method so that we can
set the reference. Add the following lines of code to the class as well:

// create a pool of rectangle objects for collision detection
private static Pool<Rectangle> rectPool = new Pool<Rectangle>() {
 @Override
 protected Rectangle newObject () {
 return new Rectangle();
 }
};
// denotes a list of tiles which are likely to collide with the
 player
private static Array<Rectangle> tiles = new Array<Rectangle>();

Here, we create a pool of rectangle objects and a list of tiles, which are likely to
collide with the player. Now, we'll add a method to actually get the tiles:

public static Array<Rectangle> getTiles (int startX, int startY,
 int endX, int endY, String layerName) {

 TiledMapTileLayer layer = (TiledMapTileLayer)map.getLayers().
 get(layerName);
 // return the rectangle objects to the pool from previous
 frame
 rectPool.freeAll(tiles);

 tiles.clear();

 for (int y = startY; y <= endY; y++) {
 for (int x = startX; x <= endX; x++) {

 Cell cell = layer.getCell(x, y);
 //if cell is present at a particular location in the
 map,
 if (cell != null) {
 //add a rectangle object representing its position
 and dimensions to the tiles list
 Rectangle rect = rectPool.obtain();
 rect.set(x, y, 1, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[200]

 tiles.add(rect);
 }
 }
 }
 return tiles;
}

This method accepts coordinates of start and end points as the first four parameters.
We will get the tiles from the map between these points:

The method also accepts layerName as a parameter. As you might have items and
collectibles on different layers, this method should also be able to get them for
collision. At the start of this method, we release the rectangles, which were used
previously, and clear the list of tiles to start fresh. Next, the for loop iterates the tiles
between the start and the end point and finds the tiles between them. Once the tile is
found, we request a rectangle object from the pool, set its position and dimensions to
the same as that of the tile, and add it to the list of tiles:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

Don't forget to call the initialize() method in the GameManager class'
initialize() method:

initializeRightPaddle(width,height);

MapUtils.initialize(map);

Collision detection – 2
In our Bob class, we need a rectangle object to represent a bounding box around him.
This will be required to detect collisions between tiles, so let's add this:

Rectangle bobRectangle; // represents collision box around Bob

We instantiate it in the initialize() method:

bobRectangle = new Rectangle();

We'll create a new method to detect whether Bob has collided with the walls. Add a
method to the Bob class with the checkWallHit()name and type the following code:

public void checkWallHit(){

 // set the bob's bounding rectangle to its position and
 dimensions
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());
 int startX, startY, endX, endY;
 //if bob is moving right, get the tiles to his right side
 if (velocity.x > 0) {
 startX = endX = (int)(bobSprite.getX() + bobSprite.
 getWidth()+velocity.x);
 }
 //if bob is moving left, get the tiles to his left side
 else {
 startX = endX = (int)(bobSprite.getX() + velocity.x);
 }
 startY = (int)(bobSprite.getY());
 endY = (int)(bobSprite.getY() + bobSprite.getHeight());

 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getTiles(startX, startY,
 endX, endY,"Wall");

 // if bob collides with any tile while walking right, stop his
 horizontal motion

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[202]

 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {

 velocity.x = 0;

 break;
 }
 }
}

First of all, we set Bob's bounding rectangle according to its position and dimensions:

In this method, we are detecting the collisions on the horizontal and vertical axis
separately. So far, we have written the code for the horizontal axis. Next, we check
whether Bob is moving to the right by checking his velocity on the x axis. If he is,
then we get the tiles to his right:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

A similar logic is applied when he moves to the left. Once we set the start and end
points from where to consider, we pass them to the getTiles() function of the
MapUtils class in order to get their bounding rectangles for collision detection. Once
we get them, we check whether any tile collide with Bob. If it does, then we stop his
motion. To check for collisions on the vertical axis, add the following lines of code to
the same function, as shown here:

bobRectangle.x = bobSprite.getX();

//if bob is moving up, get the tiles above him
if (velocity.y > 0) {
 startY = endY = (int)(bobSprite.getY() +
 bobSprite.getHeight());

}
// if bob is moving down, get the tiles below him
else {
 startY = endY = (int)(bobSprite.getY() + velocity.y);
}
startX = (int)(bobSprite.getX());
endX = (int)(bobSprite.getX() + bobSprite.getWidth());
// get the tiles from map utilities
tiles= MapUtils.getTiles(startX, startY, endX,
 endY,"Wall");

bobRectangle.y += velocity.y;
for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 // we reset the Bob's y-position here
 // so it is just below/above the tile we collided with

 if (velocity.y > 0) {
 bobSprite.setY(tile.y - bobSprite.getHeight());

 } else if(velocity.y < 0) {
 bobSprite.setY(tile.y + tile.height);

 }
 velocity.y = 0;
 break;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[204]

Here, we follow a similar procedure to detect collisions, except that the y component
of Bob's velocity is used here. Once we detect that a tile has collided with Bob,
we reset his position so that he is just above or just below that tile:

We need to add this method just before we update Bob's position in the update()
method:

checkWallHit();
move(velocity.x, velocity.y); // update Bob's position
 according to velocity

If you run the game now, you can see that Bob is now unable to pass through walls.

Jumping
Let's now implement a logic to make Bob jump. We will add a new constant called
jumpVelocity to the Bob class:

private static final float jumpVelocity = 0.35f;

This defines the extent of his jump.

We add a method called jump to the Bob class and type the following code:

public void jump(){
 velocity.y=jumpVelocity;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

To trigger the jump action, we need to map it to a key. In the InputManager class'
keyDown() method, add the following highlighted code:

// make bob jump
else if(keycode==Keys.SPACE){
 GameManager.bob.jump();
}

return false;

If you run the game, you can make Bob jump by pressing the Space key. We still
need an onscreen button for the jump so that it can work on mobile devices. First,
add the image for the jump in the packed image using the Texturepacker-GUI tool.
Once this is done, add a constant to the GameConstants class, representing the name
of the button image:

public static final String jumpImage = "buttonA";

We add the texture and sprite to the button in the GameManager class:

static TextureRegion jumpButtonTexture;
static Sprite jumpButtonSprite;

Next, we will need to write a separate function in the GameManager class to
initialize it:

public static void initializeJumpButton(float width,float height){
 //load jump button texture region
 jumpButtonTexture = texturePack.findRegion
 (GameConstants.jumpImage);
 //set jump button sprite with the texture
 jumpButtonSprite= new Sprite(jumpButtonTexture);
 // resize the sprite
 jumpButtonSprite.setSize(jumpButtonSprite.getWidth()*width/
 PADDLE_RESIZE_FACTOR, jumpButtonSprite.getHeight()*
 width/PADDLE_RESIZE_FACTOR);
 // set the position to bottom right corner with offset
 jumpButtonSprite.setPosition(width*0.9f, height*0.01f);
 // make the button semi transparent
 jumpButtonSprite.setAlpha(0.25f);
}

Now, we call it in the initialize() method of the same class:

initializeJumpButton(width, height);

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[206]

To render it, call its draw() method in the renderGame() method:

rightPaddleSprite.draw(batch);
jumpButtonSprite.draw(batch);

If you run the game, you will be able to see the A button on the screen:

We still haven't mapped the jump functionality to the button, so let's do it. In the
InputManager class, we need to add a function that will detect the touch input on
the button:

boolean isjumpButtonTouched(float touchX, float touchY){
 // handle touch input on the jump button
 if((touchX>=GameManager.jumpButtonSprite.getX()) && touchX
 <=(GameManager.jumpButtonSprite.getX()+GameManager.
 jumpButtonSprite.getWidth()) && (touchY>=GameManager.
 jumpButtonSprite.getY()) && touchY<=(GameManager.
 jumpButtonSprite.getY()+GameManager.jumpButtonSprite.
 getHeight())){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

 return true;
 }
 return false;
}

In the touchdown() method, we need to handle the case when the user taps on the
jump button. Add the highlighted code:

else if(isRightPaddleTouched(touchX,touchY)){
 GameManager.bob.setRightPaddleTouched(true);
}
else if(isjumpButtonTouched(touchX, touchY)){
 GameManager.bob.jump();
}
return true;

Now, if you run the game, we can jump using the onscreen control too. If you notice,
Bob can jump even when he is in the air. We want to restrict the player from jumping
if he is not on the ground. To implement this, we need to add a variable called
isGrounded to the Bob class to check whether he is on the ground:

boolean isGrounded = false; // denotes whether the player is on
 the ground

We will set the status to true when a collision is detected while falling down. In the
checkWallHit() function, add the highlighted line to the appropriate section:

if (velocity.y > 0) {
 bobSprite.setY(tile.y - bobSprite.getHeight());

}
else if(velocity.y < 0) {
 bobSprite.setY(tile.y + tile.height);
 isGrounded=true;
}

When the player is jumping, he is off the ground. That is, when the status is set to
false. Add the highlighted line to the jump() function:

if(isGrounded){
 velocity.y=jumpVelocity;
 isGrounded=false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

[208]

Let's take a look at the following diagram:

We run the game now to see the desired effect.

Summary
In this chapter, we learned the following topics:

• Integrating Bob and the game objects with the Tiled map
• Camera control and scrolling
• Adding realistic physics
• Collision detection between the walls and Bob
• Implementing the jumping effect

In the next chapter, we will learn how to keep scores and add collectibles and
enemies to our game.

www.it-ebooks.info

http://www.it-ebooks.info/

[209]

Collectibles and Enemies
In this chapter, we will learn how to collect the items that we placed in the map. We
will also see how to add hazardous locations and detect them. We will also learn
how to add enemies to our game and make them move around the game world.

In this chapter, we will cover the following topics:

• Collecting objects and detecting hazards
• Enemies

Collecting items and detecting hazards
In this section, we will learn how to collect items in the game, such as crystals, and
display scores. We will also learn how to detect hazards in the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[210]

Collecting objects
In this subtopic, we will learn how to collect objects such as crystals. I have made
some changes to the map and it looks like the following screenshot:

The map is resized to 30 x 15 units. I have used a different layer for the water below
called Hazards. Tiles on this layer are supposed to be hazardous to the player. If
Bob collides with them, he will die. We will see how to implement this later in this
chapter. I've added four more crystal animations to the Collectibles layer. We will
use the full size of the map so that we can view the complete level. Update the
following line of code in the GameManager class' initialize() method, which
will use the size of the map as read from its properties:

GameScreen.camera.setToOrtho(false,mapWidth,mapHeight);

We will also need to update Bob's position in his class' initialize() method:

setPosition(7, 5);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

If you run the game now, it will look like the following screenshot:

Before we take a look at how to collect collectible objects, let's first do a little bit of
refactoring. We will separate the logic of getting tiles that are near Bob, which we
will use for the collision detection. This will come in handy as we can reuse the same
logic for any other sprites and to detect collisions for other tile layers as well. We will
add two methods to the MapUtils class using the following code:

/** this method returns the tiles which are near to a sprite
 horizontally */
public static Array<Rectangle> getHorizNeighbourTiles(Vector2
 velocity,Sprite sprite,String layerName){
 int startX, startY, endX, endY;
 //if the sprite is moving right, get the tiles to its right
 side
 if (velocity.x > 0) {
 startX = endX = (int)(sprite.getX() + sprite.getWidth()+
 velocity.x);
 }
 //if the sprite is moving left, get the tiles to its left side
 else {

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[212]

 startX = endX = (int)(sprite.getX() + velocity.x);
 }
 startY = (int)(sprite.getY());
 endY = (int)(sprite.getY() + sprite.getHeight());

 // get the tiles
 return getTiles(startX, startY, endX, endY,layerName);
}

/** this method returns the tiles which are near to a sprite
 vertically */
public static Array<Rectangle> getVertNeighbourTiles(Vector2
 velocity,Sprite sprite,String layerName){
 int startX, startY, endX, endY;
 //if sprite is moving up, get the tiles above it
 if (velocity.y > 0) {
 startY = endY = (int)(sprite.getY() +
 sprite.getHeight());

 }
 // if sprite is moving down, get the tiles below it
 else {
 startY = endY = (int)(sprite.getY() + velocity.y);
 }
 startX = (int)(sprite.getX());
 endX = (int)(sprite.getX() + sprite.getWidth());
 // get the tiles
 return getTiles(startX, startY, endX, endY,layerName);
}

The checkWallhit() method in the Bob class looks like this:

public void checkWallHit(){

 // set the bob's bounding rectangle to its position and
 dimensions
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());

 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getHorizNeighbourTiles
 (velocity, bobSprite, "Wall");

 //if bob collides with any tile while walking right, stop his
 horizontal motion
 for (Rectangle tile : tiles) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

 if (bobRectangle.overlaps(tile)) {
 velocity.x = 0;
 break;
 }
 }

 bobRectangle.x = bobSprite.getX();
 tiles = MapUtils.getVertNeighbourTiles(velocity, bobSprite,
 "Wall");

 bobRectangle.y += velocity.y;
 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 // we reset the Bob's y-position here
 // so it is just below/above the tile we collided with

 if (velocity.y > 0) {
 bobSprite.setY(tile.y - bobSprite.getHeight());

 }
 else if(velocity.y < 0) {
 bobSprite.setY(tile.y + tile.height);
 isGrounded=true;
 }
 velocity.y = 0;
 break;
 }
 }

}

To start detecting collisions with collectible objects, we will create a new method
called checkCollectibleHit() in the Bob class. Add the following code to the class:

public void checkCollectibleHit(){
 // set bob's bounding rectangle to its position and
 dimensions
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());

 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getHorizNeighbourTiles
 (velocity, bobSprite, "Collectibles");

 // get the collectibles layer

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[214]

 TiledMapTileLayer layer = (TiledMapTileLayer)GameManager.map.
 getLayers().get("Collectibles");

 //if bob collides with any tile while walking right, remove it
 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)){
 layer.setCell((int)tile.x, (int)tile.y, null);
 break;
 }
 }

 bobRectangle.x = bobSprite.getX();
 tiles= MapUtils.getVertNeighbourTiles(velocity, bobSprite,
 "Collectibles");

 bobRectangle.y += velocity.y;
 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 layer.setCell((int)tile.x, (int)tile.y, null);
 }
 }
}

This method is very similar to the one that we wrote to detect collisions between
the walls. In this section, if Bob is walking to the right, we gather tiles from the
Collectibles layer, which are to his right and to his left otherwise. If Bob collides
with any collectible item, it is deleted from the map using the following line of code:

layer.setCell((int)tile.x, (int)tile.y, null);

Basically, the cell at that coordinate is set to null (deleted) from the layer. Add a call
to this method in the update() method of the Bob class:

checkWallHit();
checkCollectibleHit();

If you run the game now, you can see the crystals disappear when the player touches
them. We haven't implemented a scoring system in our game as of yet. Let's create
a new class to store game-related data (scores, high scores, and so on). Create a new
class in the com.packtpub.dungeonbob package, name it GameData, and type the
following code:

package com.packtpub.dungeonbob;
public class GameData {
 public static int score= 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

Now, we'll assign different points to different crystals. In the map editor, add a new
custom property called points to the collectibles tileset. Select the first (animated)
tile for each crystal and give different values to points:

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[216]

In the code, we need to update the checkCollectibleHit() method and check the
points for a particular crystal when it is collected. Add the following lines of code to
the loop where we check for collisions. Remember to add it to both the loops:

for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 MapProperties tilePoperties=layer.getCell((int)tile.x,
 (int)tile.y).getTile().getProperties();
 int itemPoints=Integer.parseInt(tilePoperties.
 get("points").toString());
 GameData.score+=itemPoints;
 layer.setCell((int)tile.x, (int)tile.y, null);
 break;
 }
}

We first determine the tile that we have hit by calling getTile() on the obtained
cell. This is done as the properties are set for a tile and not its instance on the map
(cell). Once the tile is determined, we get its properties and check the value of its
points property. We can then get the value and add it to our game score. To verify
this, you can add print statements after retrieving the points.

Displaying the score and adding hazards
We will display the game score, as was done previously, albeit a bit differently
as we are using assetManager here. I have used a custom font called dos here.
I have copied the .fnt file made in the Hiero tool and the corresponding image
to the data/fonts folder of the Android project. We need to set the path in the
GameConstants class:

public static final String fontPath = "data/fonts/dos.fnt";

Next, we need to declare the bitmap font variable in the GameManager class:

static BitmapFont font;

We will need to queue the font for loading in the GameManager class' loadAssets()
method:

assetManager.load(GameConstants.fontPath,BitmapFont.class);

Now, in the initialize() method, we can load the font from assetManager after
loadAssets() is called:

font = assetManager.get(GameConstants.fontPath);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[217]

To actually display the score, we will create a new class. Make a new class in the
com.packtpub.dungeonbob.managers package, name it TextManager, and type in
the following code:

package com.packtpub.dungeonbob.managers;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.packtpub.dungeonbob.GameData;

public class TextManager {
 static BitmapFont font ; // we draw the text to the screen
 using this variable
 // viewport width and height
 static float width,height;
 public static void initialize(float width,float height,
 BitmapFont font){
 TextManager.font = font;
 //font = new BitmapFont();
 TextManager.width = width;
 TextManager.height= height;
 //set the font color to red
 font.setColor(Color.RED);
 //scale the font size according to screen width
 font.setScale(width/1000f);

}
public static void displayMessage(SpriteBatch batch){
 float fontWidth = font.getBounds("Score:
 "+GameData.score).width; // get the width of the text being
 displayed
 //top the score display at top right corner
 font.draw(batch, "Score: "+GameData.score, width - fontWidth -
 width/15f,height*0.98f);
 }
}

Next, we need to call the initialize() method of the TextManager class in the
GameManager class' initialize() method:

MapUtils.initialize(map);
TextManager.initialize(width, height, font);

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[218]

Finally, we need to call the TextManager class' displayMessage() method in the
GameManager class' renderGame() method. Add this at the very end of the code,
as we will need it to display the font with respect to the HUD cam:

jumpButtonSprite.draw(batch);
TextManager.displayMessage(batch);

If you run the game now, you can see the score being displayed:

Now, let's work on how to make our character die when he collides with any hazard.
In this level, the water below is a hazard. So, we need to check collisions with the
Hazards layer and act accordingly. Add a new method named checkHazards() to
the Bob class:

public void checkHazards(){
 // set the bob's bounding rectangle to its position and
 dimensions
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[219]

 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getHorizNeighbourTiles
 (velocity, bobSprite, "Hazards");
 //if bob collides with any tile while walking right, check the
 points and update score
 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 Gdx.app.exit();
 }
 }

 bobRectangle.x = bobSprite.getX();
 tiles= MapUtils.getVertNeighbourTiles(velocity, bobSprite,
 "Hazards");

 bobRectangle.y += velocity.y;
 for (Rectangle tile : tiles) {
 if (bobRectangle.overlaps(tile)) {
 Gdx.app.exit();
 }
 }
}

In this method, we quit the game if we come across any hazard. Add this method call
to the update() method of the Bob class:

checkCollectibleHit();
checkHazards();

Instead of quitting the game, we can also respawn Bob after he dies. Let's first define
his spawn point in the GameConstants class:

public static final Vector2 spawnPoint = new Vector2(8,6);

We need to change the line where we set Bob's initial position in the initialize()
method, as shown in the following code:

setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);

Now, to respawn Bob when he collides with any hazard, we will set his position to
the spawn point instead of Gdx.app.exit();:

if (bobRectangle.overlaps(tile)) {
 setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[220]

If you run the game now, you can see Bob coming out from his starting point when
he touches the water below. To further enhance this concept, we can add extra lives
to Bob. He will respawn if he has any lives left; otherwise, the game will quit. First,
let's add this variable to the GameData class:

public static short lives= 3;

Now, in the checkHazards() method, update the part where we check for collisions,
as shown here:

if(bobRectangle.overlaps(tile)) {
 if(GameData.lives>0){
 setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);
 GameData.lives--;
 break;
 }
 else{
 Gdx.app.exit();
 }
}

Remember to update this in all the places where we collide with hazards. If you
run the game now, you will see Bob respawning until his lives are exhausted.
We also need to display the number of lives in the game, which we will do using
TextManager. Add this line of code to its displayMessage() method:

// show the number of lives at top left corner
font.draw(batch, "Lives: "+GameData.lives, width*0.01f,
 height*0.98f);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[221]

If you run the game now, it looks like this:

Enemies
In this section, we will learn how to add enemies to the game.

Adding enemies
Let's add enemies to our game. We will make a base enemy class and then extend
this class with the classes for specific enemies. Create a new class named Enemy in the
com.packtpub.dungeonbob.gameobjects class and type the following code:

package com.packtpub.dungeonbob.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Rectangle;

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[222]

import com.badlogic.gdx.math.Vector2;
public abstract class Enemy {

 Sprite sprite; // enemy sprite
 Vector2 velocity; // velocity of the enemy
 Rectangle rectangle; // rectangle object to detect collisions
 public abstract void render(SpriteBatch batch);
 public abstract void update();
}

The first type of enemy that we are going to create is the zombie. First, we need to
add the image to our texture atlas using the Texturepacker-GUI tool and copy the
pack and the .png file to the project directory. We will refer to the image as zombie.
So, let's add a constant to the GameConstants class with this name:

public static final String zombieImage = "zombie";

Now, let's make the zombie class. Create a new class in com.packtpub.dungeonbob.
gameobjects, name it Zombie, and type the following code:

package com.packtpub.dungeonbob.gameobjects;

import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.math.Rectangle;
import com.badlogic.gdx.math.Vector2;
import com.packtpub.dungeonbob.GameConstants;

public class Zombie extends Enemy {

 private static final float RESIZE_FACTOR = 900f;
 @Override
 public void render(SpriteBatch batch) {
 sprite.draw(batch);
 }

 @Override
 public void update() {

 }
 public Zombie(float width,float height,TextureRegion
 zombieTexture){

 sprite = new Sprite(zombieTexture);
 sprite.setSize(sprite.getWidth()*(width/RESIZE_FACTOR),
 sprite.getHeight()*(width/RESIZE_FACTOR));
 sprite.setSize(sprite.getWidth()*GameConstants.
 unitScale,sprite.getHeight()*GameConstants.unitScale);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[223]

 sprite.setPosition(17, 4);
 velocity = new Vector2(0, 0);

 rectangle = new Rectangle();
 }
}

In the GameManager class, add a variable to zombie:

public static Zombie zombie; // zombie instance

In the initialize() method, we will instantiate and initialize the Zombie class:

// instantiate and initialize zombie with the image from texture
 atlas
zombie = new Zombie(width, height, texturePack.findRegion
 (GameConstants.zombieImage));

Now, in order to display it, we will just add a call to its render() method in the
renderGame() function. We will display the zombie with respect to the main camera:

bob.render(batch);
zombie.render(batch);

Now, if you run the game, you will see the zombie on the screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[224]

At the moment, it doesn't do anything. The player can even walk over the zombie.
We will now add the collision detection. First, let's edit the update() method of the
Zombie class:

@Override
public void update() {
 // set the rectangle with zombie's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(),
 sprite.getWidth(), sprite.getHeight());
}

We call it before we render the zombie in the GameManager class:

zombie.update();
zombie.render(batch);

In the Bob class, we create a new method called checkEnemies() and type the
following code:

public void checkEnemies(){
 // set the bob's bounding rectangle to its position and
 dimensions
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());

 // check whether bob collides with the zombie
 if(GameManager.zombie.rectangle.overlaps(bobRectangle)){
 if(GameData.lives>0){
 setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);
 GameData.lives--;
 }
 else{
 Gdx.app.exit();
 }
 }
}

We call this method in the update() method:

checkHazards();
checkEnemies();

We check whether Bob has collided with the zombie, and if he does, we apply the
same logic as the hazards. If you run the game now, you can see the collision effect in
action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[225]

Adding enemies through Tiled
We have just added a single zombie. The game can have multiple zombies. Adding
zombies one after the other and manually setting the positions is a very cumbersome
task. What if we could visually add the zombies in the level? The answer is Tiled! We
are going to learn how to add zombies to our level through the Tiled editor.

First of all, we would need a tileset to represent different letters for different enemies.
I have just added the letter Z as of now (just a single image of the letter Z), but you
can add others:

The next thing you need to do is add an object layer called Enemies. After selecting
the layer, click on the Insert Tile option in the toolbar:

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[226]

Now, select the Z tile and you can start placing it anywhere in the map. These are
places where the zombies would spawn:

Now, select the Objects tab from the Layers section. Give the name zombie to these
objects so that we can identify them:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[227]

Now, save the map and update it in your project. In the code, we need to parse the
enemy layer, read the points where we have placed the zombie Z icon, and create
zombie objects accordingly. In the Zombie class, change the initialization process a
little bit, as shown in the following code:

public Zombie(float width,float height,TextureRegion
 zombieTexture,float x,float y){

 sprite = new Sprite(zombieTexture);
 sprite.setSize(sprite.getWidth()*(width/RESIZE_FACTOR),
 sprite.getHeight()*(width/RESIZE_FACTOR));
 sprite.setSize(sprite.getWidth()*GameConstants.unitScale,
 sprite.getHeight()*GameConstants.unitScale);
 sprite.setPosition(x,y);
 velocity = new Vector2(0, 0);

 rectangle = new Rectangle();
}

We now accept x and y as parameters in the constructor and set the position
accordingly. In the MapUtils class, we will create a new method to spawn enemies:

public static void spawnEnemies(Array<Enemy> enemies,float width,
 float height,TextureAtlas texturePack){

 Iterator<MapObject> mapObjectIterator = map.getLayers().
 get("Enemies").getObjects().iterator();

 float unitScale= GameConstants.unitScale;
 while(mapObjectIterator.hasNext()){
 // get the map object from iterator
 MapObject mapObject = mapObjectIterator.next();

 // if the name of the object is "zombie" as we have given
 if(mapObject.getName().equals("zombie")){

 Rectangle rectangle = ((RectangleMapObject)
 mapObject).getRectangle();

 //create a zombie object and place it in that location
 Zombie zombie = new Zombie(width, height, texturePack.
 findRegion(GameConstants.zombieImage),rectangle.x*
 unitScale,rectangle.y*unitScale);
 enemies.add(zombie);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[228]

This function iterates over the objects in the map (level) in the Enemies layer. It
then finds the location of the objects named zombies. These are the Z blocks that we
placed in the Tiled editor. Once such an object is found, we create a zombie object
at that location and add it to the enemies array. This array holds all the enemies
present in the map. This is useful as we don't need to keep a separate array for all
enemy types as they would extend the Enemy base class.

Note that the coordinates returned from the map are pixel coordinates of the
object locations. We multiply them with unitScale so that they are converted
into the world coordinates. Now, we need to make some changes to them so that
we can display not one but multiple zombies. Change the zombie instance in the
GameManager class so that it represents an array of enemies:

public static Array<Enemy> enemies; // enemies list

In the initialize() method, replace the instantiation of a single zombie with
these lines:

enemies = new Array<Enemy>();
MapUtils.spawnEnemies(enemies,width,height,texturePack);

In the render() method, change the lines of code where we update and render a
single zombie to these lines of code:

for(Enemy enemy :enemies){
 enemy.update();
 enemy.render(batch);
}

Lastly, in the Bob class' checkEnemies() method, we iterate over the enemies array
to check whether there are any collisions:

// check whether bob collides with the zombies
for(Enemy enemy:GameManager.enemies){
 if(enemy.rectangle.overlaps(bobRectangle)){
 if(GameData.lives>0){
 setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);
 GameData.lives--;
 break;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[229]

 else{
 Gdx.app.exit();
 }
 }
}

If you run the game now, you can see the zombies on the screen where you
placed them:

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[230]

Enemy motion
The zombies that we created are stationary. We need to add motion to them. To do
this, I am changing the level a little bit:

I have placed the zombies in horizontally enclosed areas. This is done because we
are going to give only a horizontal motion to the zombies. As soon as they hit a wall
while walking, they will switch direction. Let's define the zombies' velocities as a
constant in the Zombie class:

private static final float ZOMBIE_VELOCITY = 0.04f;

Then, we update Bob's spawn point in the GameConstants class:

public static final Vector2 spawnPoint = new Vector2(6,7);

We need to set the velocity for the zombie in the constructor of its class:

velocity = new Vector2(ZOMBIE_VELOCITY, 0);

We also need to add enums to denote the zombie's direction:

enum Direction{LEFT,RIGHT};
Direction direction = Direction.LEFT; //denotes zombie's direction

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[231]

We need to create a method to detect collisions with the wall in the Zombie class.
We create a new method called checkWallHit() and type the following code:

public void checkWallHit(){
 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getHorizNeighbourTiles
 (velocity, sprite, "Wall");
 //if zombie collides with any wall tile while walking
 right/left, reverse his horizontal motion
 for (Rectangle tile : tiles) {
 if (rectangle.overlaps(tile)) {
 velocity.x *=-1;
 break;
 }
 }
}

In this method, we detect the collisions between each zombie and the wall. If they
collide, we reverse their direction and velocity so that they can start moving in the
opposite direction. We need to update the update() method as well:

@Override
public void update() {
 // set the rectangle with zombie's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(),
 sprite.getHeight());
 checkWallHit();
 // change the direction based on velocity
 if (velocity.x < 0) {
 direction = Direction.LEFT;
 } else {
 direction = Direction.RIGHT;
 }
 sprite.setX(sprite.getX()+velocity.x);

 if(direction==Direction.RIGHT){
 sprite.setFlip(true, false);
 }
 else {
 sprite.setFlip(false, false);
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[232]

If you run the game now, you can see the zombies moving back and forth in
the game:

All the zombies have the same velocity. If you want to have a different velocity for
each zombie, you can set a custom property in the editor for each zombie object and
read it in the code to set. Finally, we have to animate the zombie. The sprite sheet for
the animation needs to be first packed via the Texturepacker-GUI tool:

Replace the zombieImage constant in the GameConstants class with this line of code:

public static final String zombieSpriteSheet =
 "zombie_spritesheet";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[233]

In the Zombie class, we need to add these members:

Animation walkAnimation; // animation instance
 TextureRegion walkSheet; // sprite sheet
 TextureRegion currentFrame; // current animation frame
 float stateTime;
 private static int ANIMATION_FRAME_SIZE=3;

We update the zombie constructor in the following code:

public Zombie(float width,float height,TextureRegion zombieSheet,
 float x,float y){

 sprite = new Sprite();
 sprite.setPosition(x,y);
 velocity = new Vector2(ZOMBIE_VELOCITY, 0);
 rectangle = new Rectangle();
 this.walkSheet=zombieSheet; // save the sprite-sheet
 //split the sprite-sheet into different textures
 TextureRegion[][] tmp = walkSheet.split(walkSheet.
 getRegionWidth()/ANIMATION_FRAME_SIZE, walkSheet.
 getRegionHeight());
 // convert 2D array to 1D
 TextureRegion[] walkFrames = tmp[0];

 // create a new animation sequence with the walk frames and
 time period of 0.04 seconds
 walkAnimation = new Animation(0.25f, walkFrames);

 // set the animation to loop
 walkAnimation.setPlayMode(PlayMode.LOOP_PINGPONG);
 // get initial frame
 currentFrame = walkAnimation.getKeyFrame(stateTime, true);

 sprite.setSize(((walkSheet.getRegionWidth()/
 ANIMATION_FRAME_SIZE)*(width/RESIZE_FACTOR)),
 (walkSheet.getRegionHeight()*(width/RESIZE_FACTOR)));
 sprite.setSize(sprite.getWidth()*GameConstants.
 unitScale,sprite.getHeight()*GameConstants.unitScale);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Collectibles and Enemies

[234]

We edit the update() method as follows:

@Override
public void update() {
 // set the rectangle with zombie's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(),
 sprite.getHeight());
 checkWallHit();
 if (velocity.x < 0) {
 direction = Direction.LEFT;
 } else {
 direction = Direction.RIGHT;
 }
 sprite.setX(sprite.getX()+velocity.x);
 stateTime += Gdx.graphics.getDeltaTime();
 currentFrame = walkAnimation.getKeyFrame(stateTime, true);

 sprite.setRegion(currentFrame); // set the zombie sprite's
 texture to the current frame

 if(direction==Direction.RIGHT){
 sprite.setFlip(true, false);
 }
 else {
 sprite.setFlip(false, false);
 }

}

Finally, in the MapUtils class' spawnEnemies() method, update the instantiation line
as follows:

Zombie zombie = new Zombie(width, height, texturePack.findRegion
 (GameConstants.zombieSpriteSheet),rectangle.
 x*unitScale,rectangle.y*unitScale);

You can see the walking animation of the zombie if you run the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[235]

Summary
In this chapter, we learned the following topics:

• Collecting items in the game and keeping scores
• Displaying scores and adding hazards
• Hazard detection and keeping track of lives
• Adding enemies to the game
• Adding enemies to a level through Tiled
• Adding motion and animation to enemies

In the next chapter, we will learn how to make enemies chase the player. We will
also see how to shoot bullets and how to make enemies follow a predefined path.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[237]

More Enemies and Shooting
In this chapter, we will learn about two new enemy types. We will learn how to
program an enemy to chase the player and follow a specified path. We will also
learn how to shoot bullets and kill enemies.

In this chapter, we will cover the following topics:

• Skeletons and chasing
• Shooting and stars

Skeletons and chasing
In this section, we will learn how to add a new enemy type: a skeleton. We will also
learn how to chase the player with the skeleton.

Skeletons
The zombie that we made in the previous chapter was just following a straight path.
It was not intelligent. Let's make a new enemy of the skeleton type. This will be very
similar to a zombie but with a twist. The skeletons will follow the player when he is
closer. The sprite sheet for them looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[238]

First, we add this sheet to the packed texture and copy the files to the project so that
we can use them. Next, we need to edit the map and place the skeletons in it. I have
updated the map and placed a skeleton, which looks like this:

The Objects layer looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

To access the sprite sheet, let's define its name in the GameConstants class:

public static final String skeletonSpriteSheet =
 "skeleton_spritesheet";

Before we create the skeleton class, let's move the checkWallHit() method from the
Zombie class to the base Enemy class. Now, we'll create the Skeleton class. This will
be similar to the Zombie class as of now. Add a new class named Skeleton to the
com.packtpub.dungeonbob.gameobjects package and type in the following code:

package com.packtpub.dungeonbob.gameobjects;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.g2d.Animation;
import com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.math.Rectangle;
import com.badlogic.gdx.math.Vector2;
import com.packtpub.dungeonbob.GameConstants;

public class Skeleton extends Enemy {

 private static final float RESIZE_FACTOR = 900f;
 private static final float SKELETON_VELOCITY = 0.04f;
 private static int ANIMATION_FRAME_SIZE=9;
 enum Direction{LEFT,RIGHT};
 Direction direction = Direction.LEFT; //denotes skeleton's
 direction
 Animation walkAnimation; // animation instance
 TextureRegion walkSheet; // sprite sheet
 TextureRegion currentFrame; // current animation frame
 float stateTime;

 @Override
 public void render(SpriteBatch batch) {
 sprite.draw(batch);
 }

 @Override
 public void update() {

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[240]

 // set the rectangle with skeleton's dimensions for
 collisions
 rectangle.set(sprite.getX(), sprite.getY(),
 sprite.getWidth(), sprite.getHeight());
 checkWallHit();

 // change the direction based on velocity
 if (velocity.x < 0) {
 direction = Direction.LEFT;
 } else {
 direction = Direction.RIGHT;
 }

 sprite.setX(sprite.getX()+velocity.x);
 stateTime += Gdx.graphics.getDeltaTime();
 currentFrame = walkAnimation.getKeyFrame(stateTime, true);

 sprite.setRegion(currentFrame); // set the skeleton
 sprite's texture to the current frame

 if(direction==Direction.RIGHT){
 sprite.setFlip(true, false);
 }
 else {
 sprite.setFlip(false, false);
 }

 }

 public Skeleton(float width,float height,TextureRegion
 skeletonSheet,float x,float y){

 sprite = new Sprite();
 sprite.setPosition(x,y);
 velocity = new Vector2(SKELETON_VELOCITY, 0);
 rectangle = new Rectangle();
 this.walkSheet= skeletonSheet; // save the sprite-sheet
 //split the sprite-sheet into different textures
 TextureRegion[][] tmp = walkSheet.split(
 walkSheet.getRegionWidth()/ANIMATION_FRAME_SIZE,
 walkSheet.getRegionHeight());
 // convert 2D array to 1D
 TextureRegion[] walkFrames = tmp[0];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[241]

 // create a new animation sequence with the walk frames
 and time period of 0.04 seconds
 walkAnimation = new Animation(0.25f, walkFrames);

 // set the animation to loop
 walkAnimation.setPlayMode(PlayMode.LOOP_PINGPONG);
 // get initial frame
 currentFrame = walkAnimation.getKeyFrame(stateTime, true);

 sprite.setSize(((walkSheet.getRegionWidth()
 /ANIMATION_FRAME_SIZE)*(width/RESIZE_FACTOR)),
 (walkSheet.getRegionHeight()*(width/RESIZE_FACTOR)));
 sprite.setSize(sprite.getWidth()*GameConstants.
 unitScale,sprite.getHeight()*GameConstants.unitScale);

 }

}

To parse the map and create skeleton objects, we will update the spawnEnemies()
method in the MapUtils class:

// if the name of the object is "zombie" as we have given
if(mapObject.getName().equals("zombie")){
 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();

 //create a zombie object and place it in that location
 Zombie zombie = new Zombie(width, height, texturePack.
 findRegion(GameConstants.zombieSpriteSheet),
 rectangle.x*unitScale,rectangle.y*unitScale);
 enemies.add(zombie);
}
// if the name of the object is "skeleton" as we have given
else if(mapObject.getName().equals("skeleton")){
 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();
 //create a skeleton object and place it in that location
 Skeleton skeleton = new Skeleton(width, height, texturePack.
 findRegion(GameConstants.skeletonSpriteSheet),
 rectangle.x*unitScale,rectangle.y*unitScale);
 enemies.add(skeleton);
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[242]

If you run the game now, you can see the skeleton walking. If Bob runs into the
skeleton, you can also see his lives getting lost. Since we are adding both a zombie
and skeleton to the array of the Enemy type, we don't have to render, update,
or handle collisions for them separately:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[243]

Chasing Bob
Let's add some chasing capabilities to our skeleton. If Bob comes near the skeleton,
it should follow him. This is illustrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[244]

We will set a sensing range for the skeleton. Whenever Bob comes within that range,
the skeleton will start chasing him. First, make the Bob variable in GameManager class
as public:

public static Bob bob; // bob instance

We will add a constant to the Skeleton class for the horizontal sense distance:

private static final float HORIZ_SENSE_DISTANCE = 4;

We will add a new method to the Skeleton class called senseAndFollow():

public void senseAndFollow(){
 // get the distance between Bob and skeleton
 float difference =GameManager.bob.bobSprite.getX()-
 (sprite.getX()+sprite.getWidth()/2);

 //if the distance is between certain threshold, start chasing
 if(Math.abs(difference)<=HORIZ_SENSE_DISTANCE){

 // if bob is near and behind the skeleton switch
 directions
 if((direction == Direction.LEFT) && difference>0){
 velocity.x *=-1;
 }

 if((direction == Direction.RIGHT)&& difference<0){
 direction = Direction.LEFT;
 velocity.x *=-1;
 }

 }

}

In this method, we first get the horizontal distance between Bob and the skeleton. If
it is below the threshold (4 units in this case), the skeleton decides to chase Bob. If
Bob is behind the skeleton, it turns its direction and goes after him. If the skeleton is
facing Bob, then it is already going in that direction. So, there is nothing to do.

We call this method in the update() function:

senseAndFollow();
checkWallHit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

If you run the game now and move Bob closer behind the skeleton, you can see it
turning around. However, there is still a problem with this logic, which you can
notice in a situation like this:

Here, we can see the skeleton stuttering while walking. This happens when the
skeleton is near the edges. After hitting the wall, the logic dictates it to go back. But
since it senses Bob, it tries to go back and while doing so, it hits the wall. It goes back
and forth. As a result, the skeleton gets stuck. To avoid this situation, we need to
make it smarter.

Since the skeleton would never be able to catch Bob in this case, it need not follow
him. What we need to check is whether there is a wall tile between the skeleton and
Bob; if so, then he need not follow.

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[246]

To check this in the code, update the senseAndFollow() function, as follows:

public void senseAndFollow(){
 // get the distance between Bob and skeleton
 float difference =GameManager.bob.bobSprite.getX()-
 (sprite.getX()+sprite.getWidth()/2);

 //if the distance is between certain threshold, start chasing
 if(Math.abs(difference)<=HORIZ_SENSE_DISTANCE){

 int startX, startY, endX, endY;

 // get the tiles between bob and the skeleton
 if (difference > 0) {
 endX = (int) GameManager.bob.bobSprite.getX();
 startX = (int) sprite.getX();
 }
 else {
 startX = (int) GameManager.bob.bobSprite.getX();
 endX = (int) sprite.getX();
 }
 startY = (int) (sprite.getY());
 endY = (int) (sprite.getY() + sprite.getHeight());

 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getTiles(startX,
 startY, endX,endY, "Wall");

 if (tiles.size == 0) {
 // if bob is near and behind the skeleton switch
 directions
 if((direction == Direction.LEFT) && difference>0){
 velocity.x *=-1;
 }

 if((direction == Direction.RIGHT)&& difference<0){
 direction = Direction.LEFT;
 velocity.x *=-1;
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

We get the count of wall tiles from the MapUtils class, and if it is 0 (nothing in
between), only then we follow Bob:

Run the game to see that the skeleton does not follow Bob in this position. There
is one more problem left to address though. Even if you are not near the skeleton
vertically, it still tries to follow you. To fix this, we need to take the vertical distance
into account as well. We basically need to make the sensing area, as shown here:

To implement this, update senseAndFollow() as follows:

float difference = GameManager.bob.bobSprite.getX() -
 (sprite.getX() + sprite.getWidth() / 2);

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[248]

float yDifference = GameManager.bob.bobSprite.getY() -
 sprite.getY();

// if the distance is between certain threshold, start chasing
if (Math.abs(difference) <= 4 && yDifference < sprite.getHeight()
 && yDifference>0) {

Shooting and stars
In this section, we will learn about enemies that follow a predefined path. We will
also learn how to shoot bullets and kill enemies in the game.

Stars
Let's try to make enemies who follow a path made by us. We will create a new
enemy type called star:

This type of an enemy will follow the path that we create in the Tiled map editor. I
have created the map, which looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[249]

The Objects layer looks like this:

As you can see, we created a path in the Objects layer using a polygon. We named
the path as star. The path represents a single path of the enemy of the star type. First,
let's pack the star image with the Texturepacker-GUI tool. Coming back to the code,
let's declare a constant in the GameConstants class:

public static final String startImage = "star";

Create a new class named Star in the com.packtpub.dungeonbob.gameobjects
package and paste the following content:

package com.packtpub.dungeonbob.gameobjects;
import com.badlogic.gdx.math.Vector2;
public class Star extends Enemy{

 float path[]; // points through which the star travels
 float angle;
 Vector2 current,next; // current point and the next point
 int currentIndex; //
 int pathSize; // total no of points

 private static float SPEED = 0.1f;
 private static float SCALE_FACTOR = 3500f;
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[250]

We maintain an array of floats that denote the points through which the star travels.
For the iteration, we maintain two Vector2 objects: current and next. These
denote the two points through which the star is currently travelling. Let's make the
constructor of the Star class:

public Star(float width, float height, TextureRegion
 startTexture,float path[]) {

 this.path = path;
 velocity = new Vector2();

 //multiply the points with unitscale to adjust them with
 respect to the game's coordinates
 for(int i=0;i<path.length;i++){
 path[i]=path[i]*GameConstants.unitScale;
 }

 // initialize first and the second point
 current = new Vector2(path[0], path[1]);
 next = new Vector2(path[2], path[3]);

 sprite = new Sprite(startTexture);
 sprite.setPosition(current.x, current.y);
 sprite.setSize(sprite.getWidth() * (width /SCALE_FACTOR),
 (sprite.getHeight() * (width /SCALE_FACTOR)));
 sprite.setSize(sprite.getWidth() * GameConstants.unitScale,
 sprite.getHeight() * GameConstants.unitScale);

 currentIndex=2;
 pathSize= path.length;
 rectangle = new Rectangle();
}

Let's add the update() method as well:

@Override
public void update(){
 // set the rectangle with star's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(),
 sprite.getHeight());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

 // calculate the angle between the line joining current-next
 with x axis
 angle= MathUtils.atan2((next.y-current.y),(next.x-current.x));
 // set the velocity to move on that line according to the
 angle
 velocity.set(SPEED*MathUtils.cos(angle), SPEED*
 MathUtils.sin(angle));

 sprite.setPosition(sprite.getX()+velocity.x, sprite.getY()
 +velocity.y);

 float xDifference= next.x-sprite.getX();
 float yDifference = next.y-sprite.getY();

 // if we have reached the next point,
 if(Math.abs(xDifference) <=SPEED && Math.abs
 (yDifference)<=SPEED){
 //travel between further points
 currentIndex+=2;
 current.set(next.x, next.y);
 next.set(path[currentIndex%pathSize],
 path[(currentIndex+1)%pathSize]);
 sprite.setPosition(current.x, current.y);
 }
}

We first calculate the angle of the line that joins the current and the next point in the
path with respect to the x axis:

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[252]

Then, we set the velocity of the star with respect to the cosine and sine components
of the angle that is calculated. This is done so that the star moves correctly along
the line. The total velocity of that star remains equal to the speed that we have set.
We calculate xDifference and yDifference and that tells us how close the star is to
the next point:

If the star is very near to the destination point (next), we update the current and the
next points for it. The present (next) point becomes the current and the farther point
in the path becomes the next point:

This cycle continues further and repeats. Now, we add the render() method:

@Override
public void render(SpriteBatch batch) {
 sprite.draw(batch);
}

In the MapUtils class' spawnEnemies() method, we need to update the code to parse
the paths from the map and create stars:

// if the name of the object is "skeleton" as we have given
else if(mapObject.getName().equals("skeleton")){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[253]

 Rectangle rectangle = ((RectangleMapObject)mapObject).
 getRectangle();
 //create a skeleton object and place it in that location
 Skeleton skeleton = new Skeleton(width, height, texturePack.
 findRegion(GameConstants.skeletonSpriteSheet),
 rectangle.x*unitScale,rectangle.y*unitScale);
 enemies.add(skeleton);
}
// if the name of the object is "star" as we have given
else if (mapObject.getName().equals("star")) {
 Polygon polygon = ((PolygonMapObject) mapObject).
 getPolygon();
 // create a star object and place it in that location
 Star star = new Star(width, height,texturePack.findRegion
 (GameConstants.startImage),polygon.
 getTransformedVertices());
 enemies.add(star);
}

If you run the game now, you can see the star travelling along the path you created.
You can also observe the collision detection between Bob and the star:

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[254]

Shooting
Until now, the player could only get killed by the enemies. Let's now add shooting
capabilities to Bob so that he can kill the enemies as well. Let's first add the bullet
image to the texture atlas via the texture packer GUI:

Once we have done this, we need to define the bullet image name in the
GameConstants class:

public static final String bulletImage = "bullet";

Now, we need to actually create the Bullet class. Create this class in the com.
packtpub.dungeonbob.gameobjects package. After creating this class, add the
following data members to it:

Sprite sprite; // bullet sprite

Vector2 velocity; // velocity of the bullet
Rectangle rectangle; // rectangle object to detect collisions

enum Direction{LEFT,RIGHT}; // represents in which direction the
 bullet is travelling
public enum State{ALIVE,DEAD}; // represents whether the bullet is
 active or not
public State state;
Direction direction;

private static final float BULLET_VELOCITY = 0.2f;
private static final float RESIZE_FACTOR = 1500f;

The bullet constructor is as follows:

public Bullet(float width, float height, TextureRegion
 bulletTexture) {
 sprite = new Sprite(bulletTexture);
 velocity = new Vector2();
 rectangle = new Rectangle();

 sprite.setSize((sprite.getWidth() * (width/RESIZE_FACTOR)*
 GameConstants.unitScale),(sprite.getHeight() *
 (width/RESIZE_FACTOR) * GameConstants.unitScale));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[255]

We are going to use only a single instance of a bullet in this level; that is, the player
can shoot only one bullet at a time. We are going to need a reset() method that will
reset the bullet's parameters once the player shoots it:

public void reset(float x, float y,boolean isLeft){
 state= State.ALIVE;
 sprite.setPosition(x, y);

 if(isLeft){
 direction=Direction.LEFT;
 velocity.set(-BULLET_VELOCITY,0);
 }
 else{
 direction=Direction.RIGHT;
 velocity.set(BULLET_VELOCITY,0);
 }
}

Once the player shoots a bullet, we need to change the state to alive. We need to
detect when the bullet hits the walls. Let's add a method named checkWallHit(),
which will do this:

public void checkWallHit() {
 // get the tiles from map utilities
 Array<Rectangle> tiles = MapUtils.getHorizNeighbourTiles
 (velocity, sprite, "Wall");

 // if bullet collides with any tile while walking right/left,
 mark it as dead
 for (Rectangle tile : tiles) {
 if (rectangle.overlaps(tile)){
 state= State.DEAD;
 break;
 }
 }
}

If the bullet hits any wall, we change its state to dead. Finally, we need the update()
and the render() methods:

public void update(){
 // set the rectangle with bullet's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(),
 sprite.getHeight());

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[256]

 checkWallHit();
 sprite.setX(sprite.getX() + velocity.x);
}

public void render(SpriteBatch batch) {

 if(direction==Direction.LEFT){
 sprite.setFlip(true, false);
 }
 else{
 sprite.setFlip(false, false);
 }

 sprite.draw(batch);
}

Now, to shoot the bullet, we need to make a shoot() method in the Bob class:

public void shoot(){
 if(GameManager.bullet.state==Bullet.State.DEAD){
 if(direction==Direction.RIGHT){
 GameManager.bullet.reset(bobSprite.getX()+
 bobSprite.getWidth(), bobSprite.getY()+
 (bobSprite.getHeight()/2), false);
 }
 else{
 GameManager.bullet.reset(bobSprite.getX(), bobSprite.
 getY()+(bobSprite.getHeight()/2), true);
 }
 }
}

We can only shoot the bullet if it's dead. The bullet's position (from where it
emerges) is decided based on the player's direction. We will use the left Ctrl key as
the key for shooting. To trigger the shoot, in the InputManager class' keyDown()
method, add the following code:

// make bob shoot
else if(keycode==Keys.CONTROL_LEFT){
 GameManager.bob.shoot();
}

In the GameManager class, we need to declare an instance of Bullet:

public static Bullet bullet;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[257]

We instantiate it in the initialize() method:

bullet = new Bullet(width, height, texturePack.
 findRegion("bullet"));
bullet.state = Bullet.State.DEAD;

In the renderGame() method, add the following lines of code:

if(bullet.state==Bullet.State.ALIVE){
 bullet.update();
 bullet.render(batch);
}

//draw the paddles with respect to hud cam
batch.setProjectionMatrix(GameScreen.hudCamera.combined);

If you run the game now and press the left Ctrl button, you can see Bob shooting a
bullet. It still passes through the enemies. To make the enemies die, let's add a state
to it in the Enemy class:

public enum State{ALIVE,DEAD}; // represents whether the enemy is
 active or not
public State state = State.ALIVE;

Now, we'll add some code to detect the collisions between the bullet and the enemy.
The update() method needs to be changed, as shown in the following code:

public void update(){
 Bullet bullet = GameManager.bullet;
 if(rectangle.overlaps(bullet.rectangle) && bullet.state
 ==Bullet.State.ALIVE){
 bullet.state=Bullet.State.DEAD;
 state=State.DEAD;
 }
}

We need to modify the update() method of the Star, Zombie, and Skeleton classes
in such a way that the super class' update() method will be called:

rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(), sprite.
getHeight());
super.update();

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[258]

Since Enemy is the base class, all the enemy types will collide with the bullet.
Now, we have changed the enemy state on collision, but we will still display them
irrespective of the state. Let's fix this. In the GameManager class' renderGame()
method, we will only render the enemies when they are alive:

for(Enemy enemy :enemies){
 if(enemy.state==Enemy.State.ALIVE){
 enemy.update();
 enemy.render(batch);
 }
}

If you run the game now and shoot, you will notice that when the bullet hits the
enemies, they disappear. You can try walking toward the position where they died.
Bob still dies. This is because we detect the collision between Bob and the enemies
without considering their states. Let's make the appropriate changes to the Bob class'
checkEnemies() method:

if(enemy.state== Enemy.State.ALIVE && enemy.rectangle.
overlaps(bobRectangle)){

There is one more thing to take care of. You wouldn't want your bullet to go off
screen and kill someone outside the visible area. To ensure this, we will kill the bullet
as it goes outside the screen bounds. First, let's declare a temporary rectangle to
represent the viewport in the Bullet class:

Rectangle temp = new Rectangle();

Now, we will modify the update() method:

public void update(){
 OrthographicCamera camera = GameScreen.camera;
 float camX= camera.position.x;
 float camY= camera.position.y;

 // set the rectangle with bullet's dimensions for collisions
 rectangle.set(sprite.getX(), sprite.getY(), sprite.getWidth(),
 sprite.getHeight());

 temp.set((camX-camera.viewportWidth/2), (camY-camera.
 viewportHeight/2) ,camera.viewportWidth,
 camera.viewportHeight);
 if(!temp.overlaps(rectangle)){
 state = State.DEAD;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[259]

 return;
 }

 checkWallHit();
 sprite.setX(sprite.getX() + velocity.x);
}

We get the camera reference and represent the viewport as a rectangle object. We
check whether this rectangle overlaps the bullet. If it does, then the bullet is within
the screen bounds:

The only thing left now is to add an onscreen button for shooting. After adding the
button icon to the texture atlas, we will define the image name for the button in the
GameConstants class:

public static final String shootImage = "buttonB";

Add the following members to the GameManager class:

static TextureRegion shootButtonTexture;
static Sprite shootButtonSprite;
public static final float SHOOT_BTN_RESIZE_FACTOR = 700f;

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[260]

The following code is the function used to initialize the shoot button:

public static void initializeShootButton(float width,float
 height){
 //load shoot button texture region
 shootButtonTexture = texturePack.findRegion
 (GameConstants.shootImage);
 //set shoot button sprite with the texture
 shootButtonSprite= new Sprite(shootButtonTexture);
 // resize the sprite
 shootButtonSprite.setSize(shootButtonSprite.getWidth()*width/
 SHOOT_BTN_RESIZE_FACTOR, shootButtonSprite.getHeight()*
 width/ SHOOT_BTN_RESIZE_FACTOR);
 // set the position to bottom right corner with offset
 shootButtonSprite.setPosition(width*0.8f, height*0.012f);
 // make the button semi transparent
 shootButtonSprite.setAlpha(0.25f);
}

We call the function in the initialize() method of the GameManager class:

initializeShootButton(width, height);

We draw it in the renderGame() method:

jumpButtonSprite.draw(batch);
shootButtonSprite.draw(batch);

To handle the touch input for it, we will add a method to the InputManager class:

boolean isshootButtonTouched(float touchX, float touchY){
 // handle touch input on the shoot button
 if((touchX>=GameManager.shootButtonSprite.getX()) && touchX
 <=(GameManager.shootButtonSprite.getX()+GameManager.
 shootButtonSprite.getWidth()) && (touchY>=
 GameManager.shootButtonSprite.getY()) && touchY<=
 (GameManager.shootButtonSprite.getY()+
 GameManager.shootButtonSprite.getHeight())){
 return true;
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[261]

In the touchdown() method of the same class, add the following code:

else if(isshootButtonTouched(touchX, touchY)){
 GameManager.bob.shoot();
}
 return false;

If you run the game now, you will see the B button on the screen. It will trigger the
shooting action, which is the same as that of the left Ctrl button:

www.it-ebooks.info

http://www.it-ebooks.info/

More Enemies and Shooting

[262]

Summary
In this chapter, we learned how to create some new enemy types and how to
implement shooting bullets. We learned the following topics:

• Enemy sensing the player
• Enemy following the player
• Avoiding obstacles while following
• Defining enemy paths in Tiled
• Reading the paths and making an enemy follow them
• Shooting a bullet
• Killing enemies with the bullet

In the next and final chapter, we will learn about particle effects, multiple levels,
and loading screens.

www.it-ebooks.info

http://www.it-ebooks.info/

[263]

More Levels and Effects
In this chapter, we will learn how to add different levels to our game. We will also
learn how to add particle effects, such as explosions, and make them using a tool.
Finally, we will take a look at how to implement a loading screen in the game.

In this chapter, we will cover the following topics:

• Multiple levels
• Particle effects
• A loading screen

Multiple levels
In this section, we will learn how to create different levels and transitions
between them.

Adding the door
Until now, what we have seen is only one level in the game. Games usually have
multiple levels for a good gameplay experience. We will see how to make different
levels and how to make transitions between them. But first, we will need to make
something that will trigger the game to move forward between different levels.
We will use a door as a trigger to change levels.

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[264]

I have updated the game map as follows:

The Objects layer with the key items tile layer looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[265]

The door property is shown here:

I've made a new tile layer named key items and added a door tile to it. I've also
added a door property to this tile. To be able to detect it in the game, we need to first
add a new member to the GameManager class called door with the Rectangle type:

public static Rectangle door;

Now, we need to parse the map and initialize the door object with the door object
from the map. We'll do this in the MapUtils class:

public static Rectangle spawnDoor(int mapWidth,int mapHeight){
 TiledMapTileLayer layer = (TiledMapTileLayer) map.getLayers().
 get("key items");
 if(layer==null) return null;

 for (int y = 0; y <= mapHeight; y++) {
 for (int x = 0; x <= mapWidth; x++) {
 Cell cell = layer.getCell(x, y);
 // if cell is present at a particular location in the
 map and it is a door
 if (cell != null && cell.getTile().
 getProperties().containsKey("door")) {
 Rectangle rect = new Rectangle(x, y, 1, 1);
 return rect;
 }
 }
 }

 return null;
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[266]

Here, we basically scan all the tiles in the key items layer, and if we find a door, we
create a rectangle object out of it. In the GameManager class' initialize() method,
we initialize the door object by calling the spawnDoor() method and passing the
map's dimensions:

door = MapUtils.spawnDoor(mapWidth, mapHeight);

To detect the collisions between the door and Bob, we will add a new method called
checkDoor() to the Bob class:

public void checkDoor(){
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());
 if(GameManager.door!=null && bobRectangle.
 overlaps(GameManager.door)){
 // add a print statement to check collisions
 }
}

We add a null check as the door might not be present in the level sometimes (the last
level). We call this function in the Bob class' update() method:

checkEnemies();
checkDoor();

Add a print statement in place of the comment and run the game. When the player
runs into the door, you can see the output on the console.

Changing levels
Now that we have made a trigger to change the level, let's actually make the new
level and write the code to switch between them. I have made a new level, which is
slightly different from the old one:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[267]

We save this level with the name, level2.tmx. Next, instead of a constant for the
level, we will use an array, which will point to the levels we have made. In the
GameConstants class, add the following code:

public static final String[] levels = {"data/maps/
 level1.tmx","data/maps/level2.tmx" };

In the GameManager class, we will need to declare a variable to keep track of the
current level:

static short currentLevelIndex=0;

Update all the references where the level is referenced. In the initialize() method,
add the following code:

map = assetManager.get(GameConstants.levels[currentLevelIndex]);

In the loadAssets() method, add the following code:

assetManager.load(GameConstants.levels[currentLevelIndex],
 TiledMap.class);

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[268]

We need to declare the width and height of the screen as static members of the
GameManager class:

public static float Width,Height;

Next, we will set these values to the screen's width and height in the initialize()
method:

public static void initialize(float width,float height){
 GameManager.Height = height;
 GameManager.Width = width;

We will now create a new method to load the levels:

public static void loadLevel(){
 currentLevelIndex++; // increase the level counter

 // load the next level and the assets
 assetManager.load(GameConstants.levels[currentLevelIndex],
 TiledMap.class);
 assetManager.finishLoading();
 map = assetManager.get(GameConstants.levels
 [currentLevelIndex]);
 setMapDimensions();
 renderer.setMap(map);
 MapUtils.initialize(map);

 enemies.clear(); // remove current level's enemies
 // spawn enemies from the next level
 MapUtils.spawnEnemies(enemies, Width,Height, texturePack);
 door = MapUtils.spawnDoor(mapWidth,mapHeight);

 GameScreen.camera.setToOrtho(false, mapWidth,mapHeight);
 // show specified units horizontally and vertically by the
 camera
 GameScreen.camera.update();
}

In this method, we basically increment the level counter to point to the next
level. We then proceed to load the corresponding TiledMap from assetManager.
Once this is done, we repopulate the level with enemies and game objects and reset
the game camera.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[269]

We set the camera's viewport to cover the whole level. This way, the whole level
will be visible on a single game screen. As I mentioned earlier, usually, part of the
whole level is made visible at a given time to get the scrolling effect; you can set
these values as you like. Finally, we will need to call this function in the Bob class'
checkDoor() method when we collide with the door:

public void checkDoor(){
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());
 if(GameManager.door!=null && bobRectangle.overlaps
 (GameManager.door)){
 GameManager.loadLevel();
 }
}

When you run the game and hit the door, the new level should be loaded!

Respawning Bob
When Bob is killed, he is instantly respawned at the spawn point. Let's add a delay
to it. First, we will need to add a way to check whether Bob is alive or not. Add the
following code to the Bob class:

public enum LifeState{ALIVE,DEAD};
public LifeState lifeState = LifeState.ALIVE;

The lifeState checks whether Bob is alive or not. We will also need to maintain the
delay time. In the Bob class, add the following code:

static float respawnDelay = 1; // represents maximum delay for
 respawn
public float respawnCounter = 0;

The respawnDelay represents the maximum delay time between Bob's death and its
resurrection in seconds. The respawnCounter represents how much time has passed
between Bob's death and its resurrection in seconds. Add a new method named
killBob(), as follows:

public void killBob(){
 lifeState=LifeState.DEAD;
 // start respawn counter
 respawnCounter = respawnDelay;
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[270]

Basically, when Bob dies, we change his life state to DEAD. After that, we set
respawnCounter to respawnDelay so that we can start the countdown.
We will need to call this method at all the places where Bob dies.

In the checkHazards() method, add the following code:

if (bobRectangle.overlaps(tile)) {
 if(GameData.lives>0){
 killBob();
 break;
 }

Remember to add this method to the second loop as well. In the checkEnemies()
method, add the following code:

if(enemy.state== Enemy.State.ALIVE && enemy.rectangle.overlaps
 (bobRectangle)){
 if(GameData.lives>0){
 killBob();
 break;
 }

We will need to add a method to reposition Bob after he dies and decrement his
lives. Add a method called respawnBob() to the Bob class:

public void respawnBob(){
 setPosition(GameConstants.spawnPoint.x, GameConstants.
 spawnPoint.y);
 GameData.lives--;
}

In the GameManager class' renderGame() method, make the following changes:

batch.setProjectionMatrix(GameScreen.camera.combined);

if(bob.lifeState==LifeState.ALIVE){
 bob.update();
 // Render(draw) the bob
 bob.render(batch);
}
else {
 if(bob.respawnCounter>0){
 bob.respawnCounter-= Gdx.graphics.getDeltaTime();
 } else{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[271]

 bob.lifeState=LifeState.ALIVE;
 bob.respawnBob();
 }
}

If Bob is alive, we update and display him. If he is dead, we start the respawn
countdown. In this state, we keep on decreasing the respawnCounter until it hits 0.
When it hits 0, we change his state back to ALIVE and respawn him:

When you run the game now and collide against any hazard or enemy, you will
notice a delay after which you can see Bob getting resurrected. But, if you notice,
you will see that Bob can still fire the bullet during its DEAD state. This is because we
accept the input even after Bob is dead. To restrict this, add the following code to the
start of the Bob class' shoot() method:

public void shoot(){
 if(this.lifeState==LifeState.DEAD){
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[272]

We don't shoot the bullet if Bob is in the DEAD state. One more check should be added
to the skeletons so that they don't try to follow Bob when he is dead. In the Skeleton
class' update() function, add the following code:

if(GameManager.bob.lifeState==LifeState.ALIVE){
 senseAndFollow();
}

This check should be added to all input functions as well.

Particle effects
In this section, we will learn how to create particle effects using the Particle Editor
tool and use them in the game.

Editor setup and basics
When the player dies, he just disappears for some time and reappears. Let's add an
explosion effect when he hits a hazard or an enemy. There is a nifty tool shipped
with LibGDX called Particle Editor, which makes it easy to create such effects. Let's
see how to run this utility. Head over to https://libgdx.badlogicgames.com/
tools.html to download it.

Click on the Download link below the 2D Particle Editor section. Once you have
downloaded it, you will get a JAR file, which you can double-click to open the utility:

www.it-ebooks.info

https://libgdx.badlogicgames.com/tools.html
https://libgdx.badlogicgames.com/tools.html
http://www.it-ebooks.info/

Chapter 10

[273]

A single particle is represented by an image. The editor allows you to add multiple
particles and play around with their properties, such as velocity, rotation, and
transparency, to achieve various effects, such as smoke, fire, explosions, and so on.
The result of these effects is instantly shown to you in the editor as well.

There are an overwhelming number of options in this tool. I'll just cover what is
needed in this case.

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[274]

The Effect Emitters section
In the bottom-left corner of the screen, you will see the Effect Emitters section.
Basically, an emitter is something that generates particles of a type. If you want
multiple types of particles, you can add a new emitter. All the different properties
in the Emitter Properties section correspond to a single emitter.

For our purpose, we will just use a single emitter. Double-click on the Emitter
column to rename it to Explosion:

The Emitter Properties section
Each emitter has an associated image that represents a particle. If you click on
the Open button by navigating to the Emitter Properties | Image section, you can
use any image to represent a particle. We are going to use the default image included
by the tool:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[275]

Our whole effect is just going to be a manipulation of numbers of this image. Next,
we will take a look at the Count section. There are two options: Min and Max. As
the name suggests, Min denotes the minimum number of particles that will always
be visible on the screen at all times. Max denotes the maximum possible count of the
particles at a given time. We will set Min to 0 and Max to 50:

The next section is the Duration section. This is the total duration of the particle
emission. In this case, where we are using a single emitter, it would be the total
duration of our effect. We will set it to 400 ms or 0.4 sec. On the right-hand side of
the screen, there is a > symbol to the right, which specifies the range of the duration.

If we set it to 400, which means that the duration of the emission of particles will
vary between 400 ms and 800 ms. This means that some particles will be alive for
400 ms, some for 600 ms, some for 800 ms, and so on. Set it to 400 and 600:

In the Angle section, we can set the angle with which the particles are emitted.
Set the High values to 0 and 360 so that the particles are spread out evenly in all
directions as they are emitted. The emission angle will vary between 0 and 360 for
the particles:

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[276]

The Tint section specifies the tint color to be applied to our particles. In the following
screenshot, the upper slider chooses the color, and you can choose the shade with the
two sliders below the first slider. The effective color is shown in the box on the left-
hand side of the screen:

You can have a variation between particle colors during the lifetime of your effect:

For example, if you want to transition between the red and yellow particle colors,
simply click at the end of the first slider, as shown in the screenshot, to get a marker.
You can then set the color of that marker:

As you can see, the colors are interpolated between the first and the last marker.
You can have multiple markers. To delete a marker, double-click on it. For our
purpose, let's keep the color slightly orange and keep only one shade.

Next, the Transparency section is used to control the transparency of the particles.
Click on the + button to open the chart view. In this view, we can control how a
particular property changes over its lifetime. The x axis represents the time and the
y axis represents the values of that property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[277]

You can add points to the graph by clicking anywhere in the area. The points can be
removed by double-clicking and the lines can be dragged with the mouse. We will
set the graph in such a way that the particles are invisible when they start, get more
opaque, and stay completely opaque in the latter portion of their lifetime. After that,
their opacity decreases and they become transparent as they die:

In the Particle size option, let's keep the High value to 32 and the graph similar to
the transparency one:

Update the Emission, Life, and Velocity options, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[278]

Loading the effect into the game
We need to save the effect now. Click on the Save button and in the next dialog
window, give the file name as explosion.p. Now that we have saved the particle
effect, let's see how to load the effect into our game and display it. First, we need to
copy the effect file to the game.

The effect has an image associated with it. Since we have used the default image
provided by Particle Editor, we don't know its path. You can download the image
file from the code files provided with this book. Create a new folder in your Android
project's assets/data folder and name it effects. Copy the image and the effect file
to this folder:

In the GameManager class, add a variable to represent the particle effect:

public static ParticleEffect explosionEffect;

In the initialize() method, add the following code:

explosionEffect = new ParticleEffect();
explosionEffect.load(Gdx.files.internal("data/effects/explosion.p"
), Gdx.files.internal("data/effects/"));
explosionEffect.scaleEffect(0.2f*GameConstants.unitScale);

Once we have instantiated the effect, we need to load the particular file of the effect
that we created. The load() method takes the path of the effect file as the first
argument and its parent directory as the second. We then scale the effect to get the
appropriate size. To trigger the effect, as we want it after Bob dies, we will update
the killBob() method, as follows:

public void killBob(){
 lifeState=LifeState.DEAD;
 // start respawn counter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[279]

 respawnCounter = respawnDelay;
 // set the effect location at Bob's center
 GameManager.explosionEffect.setPosition(bobSprite.getX()
 +(bobSprite.getWidth()/2), bobSprite.getY()+
 (bobSprite.getHeight()/2));
 GameManager.explosionEffect.reset();
}

We still haven't displayed the effect in the game. To do this, add the following lines
of code to the end of the GameManager class' renderGame() method:

TextManager.displayMessage(batch);

// use main camera while drawing the effect
batch.setProjectionMatrix(GameScreen.camera.combined);
explosionEffect.draw(batch, Gdx.graphics.getDeltaTime());

If you run the game now and run into enemies or hazards, you will see something
like this:

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[280]

This effect can also be applied when the enemies are killed. In the Enemy class'
update() method, add the following lines to the end:

state=State.DEAD;
GameManager.explosionEffect.setPosition(sprite.getX()+(sprite.get
 Width()/2), sprite.getY()+(sprite.getHeight()/2));
GameManager.explosionEffect.reset();

Now, when the bullet hits any enemy, we need to observe the effect:

In this case, we are just moving one explosion effect wherever we want.
This would not work in cases where there are multiple simultaneous effects.
If you're using the same effect in multiple scenarios, you would need to use
object pooling for performance.

The loading screen
We will now learn how to implement a loading screen in the game when we
transition between different levels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[281]

Game states
Usually, when a level is being loaded in games, we are presented with a loading
screen. This is a strategy used in cases where the number of images or initializing
data is so high that it takes some amount of time to load them. This strategy
gives time for the game to load while simultaneously providing a visual cue to
the user that something is happening in the game. In our case, we are going to
asynchronously load assets into the game while showing the loading screen:

In LibGDX, assetManager provides the functionality of loading the assets
asynchronously. We used the finishLoading() blocking method of assetManager
to load all the assets at once. In this case, we will use the update() nonblocking
method to asynchronously load the assets. We have four states in the game:
BASELOADING, BASELOADED, LEVELLOADING, and LEVELLOADED. I have briefly
described each state as follows:

• BASELOADING: Before this state, we queue all the base assets for loading,
which are common to all levels in the game. These include the background
image, texture pack, and the fonts. During this state, we load them. We
display the loading screen in this state.

• BASELOADED: Once all the base assets are loaded, we change the state to
BASELOADED. In this state, we queue the assets that are specific to the
current level for loading. After that, we change the state to LEVELLOADING.

• LEVELLOADING: In this state, we load all the assets for the current level and
display the loading screen.

• LEVELLOADED: Once all the level assets are loaded, the state changes to
LEVELLOADED. In this state, we run the main logic of the game.

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[282]

The following flowchart describes the different states, as follows:

Integrating the screen in the game
Let's add the states to the GameScreen class:

public enum GameState{BASELOADING,BASELOADED,LEVELLOADING,
 LEVELLOADED};

public static GameState gameState = GameState.BASELOADING;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[283]

Since we would be making a lot of changes to our code (addition/removal/updates),
I'll write all the code for updated functions instead of just describing what to change.
First, we will update the loadLevel() function from the GameManager class:

public static void loadLevel(){
 map = assetManager.get(GameConstants.
 levels[currentLevelIndex]);
 setMapDimensions();
 renderer.setMap(map);
 MapUtils.initialize(map);

 enemies.clear(); // remove current level's enemies
 // spawn enemies from the next level
 MapUtils.spawnEnemies(enemies, Width,Height, texturePack);
 door = MapUtils.spawnDoor(mapWidth,mapHeight);

 GameScreen.camera.setToOrtho(false, mapWidth,mapHeight);
 // show specified units horizontally and vertically by the
 camera
 GameScreen.camera.update();
 GameScreen.gameState = GameState.LEVELLOADED;
}

You will notice that the load() method calls assetManager and the blocking
method to load all the assets that have been removed. Here, we are assuming that
all the assets will be loaded prior to this method. Next, rename the loadAssets()
method to queueBaseAssets() and update the code, as follows:

public static void queueBaseAssets(){
 // queue the assets for loading
 assetManager.load(GameConstants.backGroundImage,
 Texture.class);

 assetManager.load(GameConstants.texturePack,
 TextureAtlas.class);
 assetManager.load(GameConstants.fontPath,BitmapFont.class);
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[284]

Here, we are queuing the base assets of our game into assetManager for loading.
This is also the reason why we have removed the finishLoading()blocking
call. We will add two more methods: one to load the level assets and the other
to unload them:

public static void queueLevelAssets(){
 //load the tiled map
 assetManager.load(GameConstants.levels[currentLevelIndex],
 TiledMap.class);
}

public static void unloadLevelAssets(){
 assetManager.unload(GameConstants.levels[currentLevelIndex]);
}

We will also need to add a method, which will be responsible for actually loading the
assets from assetManager:

public static void loadAssets(){
 if(assetManager.update()){
 if(GameScreen.gameState==GameState.BASELOADING){
 GameScreen.gameState=GameState.BASELOADED;
 }
 else {
 loadLevel();
 GameScreen.gameState=GameState.LEVELLOADED;
 }
 }
}

This method is going to be continuously called during render(). Once the
assets are queued for loading, this method is responsible for calling the nonblocking
update() method on assetManager so that it can load the assets incrementally
and asynchronously. The call to the update() method returns false if the assets
are still loading.

When they have finished loading, it returns true. When all the assets for a particular
state are loaded, we move on to the next state. We make the assetManager variable
of the GameManager class public and update the initialize() method, as follows:

public static void initialize(float width,float height){
 GameManager.Height = height;
 GameManager.Width = width;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[285]

 font = assetManager.get(GameConstants.fontPath);
 renderer = new OrthogonalTiledMapRenderer(map, GameConstants.
 unitScale);

 GameScreen.camera.setToOrtho(false, mapWidth,mapHeight);
 GameScreen.camera.update();
 // set the renderer's view to the game's main camera
 renderer.setView(GameScreen.camera);

 texturePack = assetManager.get(GameConstants.texturePack);
 // get the packed texture from asset manager

 // instantiate the bob
 bob = new Bob();
 // load the bob sprite sheet from the packed image
 bobSpriteSheet = texturePack.findRegion
 (GameConstants.bobSpriteSheet);
 // initialize Bob
 bob.initialize(width,height,bobSpriteSheet);

 //load background texture
 backgroundTexture = assetManager.get
 (GameConstants.backGroundImage);
 //set background sprite with the texture
 backgroundSprite= new Sprite(backgroundTexture);
 // set the background to completely fill the screen
 backgroundSprite.setSize(width, height);

 initializeLeftPaddle(width,height);
 initializeRightPaddle(width,height);
 initializeJumpButton(width, height);
 initializeShootButton(width, height);

 MapUtils.initialize(map);
 TextManager.initialize(width, height, font);

 // instantiate and initialize zombies
 enemies = new Array<Enemy>();

 bullet = new Bullet(width, height, texturePack.
 findRegion("bullet"));
 bullet.state = Bullet.State.DEAD;

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[286]

 // set the tiled map loader for the assetmanager
 assetManager.setLoader(TiledMap.class, new TmxMapLoader
 (new InternalFileHandleResolver()));

 explosionEffect = new ParticleEffect();
 explosionEffect.load(Gdx.files.internal("data/effects/
 explosion.p"), Gdx.files.internal("data/effects/"));
 explosionEffect.scaleEffect(0.2f*GameConstants.unitScale);
}

Once we have determined that the level needs to progress, we first unload all the
assets pertaining to the current level, as they are no longer needed. We update
the level counter so that it points to the next level and queues the next level's
assets to be loaded.

In the GameScreen class, we add two members for the height and width:

float width,height;

Now, update the constructor as follows:

public GameScreen (MainGame game){
 this.game=game;
 // get window dimensions and set our viewport dimensions
 height= Gdx.graphics.getHeight();
 width = Gdx.graphics.getWidth();
 // set our camera viewport to window dimensions
 camera = new OrthographicCamera(width,height);
 // center the camera at w/2,h/2
 camera.setToOrtho(false);

 batch = new SpriteBatch();
 // set our hud camera's viewport to window dimensions
 hudCamera = new OrthographicCamera(width,height);
 // center the camera at w/2,h/2
 hudCamera.setToOrtho(false);

 GameManager.assetManager = new AssetManager();
 TextManager.initializeLoadingFont(width,height);
 GameManager.queueBaseAssets();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[287]

We also need to make some changes to the TextManager class' initialize()
method:

public static void initialize(BitmapFont font){
 TextManager.font = font;
 //set the font color to red
 font.setColor(Color.RED);
 //scale the font size according to screen width
 font.setScale(width/1000f);
}

We will also need to add a member to represent the font for the loading screen:

static BitmapFont loadingFont ; // we draw the text to the loading
 screen using this variable

We add a method to initialize that member:

public static void initializeLoadingFont(float width,float
 height){
 TextManager.width = width;
 TextManager.height= height;

 loadingFont = new BitmapFont();
 loadingFont.setColor(Color.RED);
 loadingFont.setScale(width/300f);
}

Finally, we add a method to render the loading text:

public static void displayLoadingMessage(SpriteBatch batch){
 float fontWidth = loadingFont.getBounds("Loading...").width;
 // get the width of the text being displayed
 float fontHeight = loadingFont.getBounds("Loading...").
 height; // get the width of the text being displayed
 loadingFont.draw(batch, "Loading...", (width/2)-fontWidth/2,
 (height/2) +fontHeight/2);
}

Before the game enters the BASELOADING state, we queue all the base game assets for
loading. The render() method of GameScreen looks like this:

@Override
public void render(float delta) {
 // Clear the screen

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[288]

 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 camera.update();
 switch(gameState){

 case BASELOADING:
 GameManager.loadAssets();
 batch.setProjectionMatrix(hudCamera.combined);
 batch.begin();
 TextManager.displayLoadingMessage(batch);
 batch.end();
 break;

 case BASELOADED:

 //initialize the game
 GameManager.initialize(width, height);
 Gdx.input.setInputProcessor(new InputManager
 (hudCamera)); // enable InputManager to receive
 input events
 GameManager.queueLevelAssets();
 gameState= GameState.LEVELLOADING;
 break;

 case LEVELLOADING:
 GameManager.loadAssets();
 batch.setProjectionMatrix(hudCamera.combined);
 batch.begin();
 TextManager.displayLoadingMessage(batch);
 batch.end();
 break;

 case LEVELLOADED:
 // set the spritebatch's drawing view to the hud
 camera's view
 batch.setProjectionMatrix(hudCamera.combined);

 batch.begin();
 GameManager.renderBackground(batch);
 batch.end();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[289]

 // set the renderer's view to the game's main camera
 GameManager.renderer.setView(camera);
 GameManager.renderer.render();

 batch.begin();
 GameManager.renderGame(batch);
 batch.end();
 break;
 }
}

We basically perform different operations based on the current state. As you can see
from the preceding diagram, in the BASELOADING state, we load the base assets of
the game asynchronously through the loadAssets() method of the GameManager
class. While they are being loaded, we show the loading screen to the user. Once the
loading is complete (assetManager.update() returns true), the state changes to
BASELOADED in the loadAssets() method.

In the BASELOADED state, we initialize the base game objects, set the InputProcessor,
and queue the current level assets. This state is just a staging state for the
initialization, after which we change it to LEVELLOADING. In this state, we load
the current level's assets and change the state to LEVELLOADED once done.

In the LEVELLOADED state, we run the game's main logic. The state changes to
LEVELLOADING when the next level has to be loaded. That trigger point is set in the
Bob class when Bob collides with the door. We update the Bob class' checkDoor()
method as follows:

public void checkDoor(){
 bobRectangle.set(bobSprite.getX(), bobSprite.getY(),
 bobSprite.getWidth(), bobSprite.getHeight());
 if(GameManager.door!=null && bobRectangle.overlaps
 (GameManager.door)){
 // add a print statement to check collisions
 GameManager.unloadLevelAssets(); // unload previous
 level's assets
 GameManager.currentLevelIndex++; // increase the level
 counter
 GameScreen.gameState = GameState.LEVELLOADING;
 GameManager.queueLevelAssets();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

More Levels and Effects

[290]

When the next level is to be loaded, we unload the previous level's assets as they are
not needed anymore. We increase the level counter and then queue the assets of the
next level for loading. Run the game now to see the loading screen appear just before
level 1 loads and also before level 2 loads:

The loading screen appears for a very short duration of time since we don't have any
heavy assets to be loaded in the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[291]

Summary
This is it. The last section! Although we skipped implementing some of the things,
such as playing sounds, saving high scores, and a menu screen in Dungeon Bob, I am
sure that with the knowledge gained from the previous chapters, you would be able
to implement them with ease. Here are some of the things that I think you can try
implementing in the game, just as food for thought:

• A gameover screen
• A winning screen
• Enemies shooting bullets
• Flying enemies
• Bonus levels

We learned game development concepts while making four games in this book.
I hope you had fun while reading this book and making games. Keep experimenting
and happy coding!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[293]

Index
A
asset management

about 157
AssetManager class 161-164
texture packer 157-160

AssetManager class 161-165

B
background, Whack-A-Mole style game

adding 41, 42
ball throwing, Catch the Ball game

about 73
ball, creating 73
gravity, adding 75
movements, adding 74

basic game screen, Monty Hall simulation
creating 6
Door class, implementing 6, 7
GameManager class, implementing 7-10
Monty class, implementing 10-13

basic game screen, Whack-A-Mole
style game

GameManager class, implementing 37-39
implementing 35
Mole class, implementing 36, 37
WhackAMole class, implementing 39, 40

Bob
chasing 243-247

C
Catch the Ball game

background music, adding 103
ball, throwing 73
collisions, detecting 75

creating 65
high score, maintaining 85
moving basket, creating 66
multiple balls, throwing 78
score, saving 85
screens, implementing 92
sound effects, adding 102

character animation, Dungeon Bob game
about 120
walking Bob 1 120-123
walking Bob 2 124-126

collision detection
about 185
game objects, integrating with

Tiled map 185
realistic physics, adding to game 196

collision detection, Catch the Ball game
about 75
collision with basket 76, 77
collision with ground 75

color, Whack-A-Mole style game
adding 41

core game classes, Monty Hall simulation
Door 6
GameManager 6
InputManager 6
TextManager 6

D
Dungeon Bob game

character animation 120
creating 105
player, creating 105
player, moving 111

www.it-ebooks.info

http://www.it-ebooks.info/

[294]

E
effects, Whack-A-Mole style game

adding 55
mole, stunning 55-57
stun sign, adding to mole 57, 58

enemies
adding, through Tiled 225-228
adding, to game 221-224
motion, adding 230-234

event handling 71

G
game logic, Monty Hall simulation

adding 20
doors, finding with goats 20, 21

game objects, integrating with Tiled map
and camera control

about 185
Bob, integrating 185-189
camera control 190-192
paddles and background, integrating in

game 193-195
game score

displaying 216, 217
game states

about 281
BASELOADED 281
BASELOADING 281
LEVELLOADED 281
LEVELLOADING 281

game states, Monty Hall simulation
CONFIRM 21
END 21
START 21

Gradle 2
Gradle plugin

installing 2

H
hazards

adding 218-220
detecting 209

Hiero
about 88
download link 88

I
installation

Gradle plugin 2
items

collecting 209

L
LibGDX 1, 129
loading screen

game states 281, 282
implementing 280
integrating, in game 282-290

M
map rendering

about 165
basic map rendering 165-170
map objects 176-182
map, reading 171-176

moles, Whack-A-Mole style game
animating 47
jumping up and down 47-51
waiting underground 51, 52

Monty Hall simulation
about 4
background, displaying 33
basic game screen, creating 6
core game classes 6
game logic, adding 20
game states 21-23
general workflow 5
restart functionality, implementing 30-32
text messages, displaying 24-30
touch/click input, capturing 13

moving basket, Catch the Ball game
Basket class, implementing 67
basket, moving 70-72
CatchTheBall class, implementing 68-70
creating 66
GameManager class, implementing 67

multiple balls throwing, Catch
the Ball game

about 78
after specific intervals 78-82
optimizing 83-85

www.it-ebooks.info

http://www.it-ebooks.info/

[295]

randomizing 82-85
multiple levels

Bob, respawning 269-272
creating 263
door, adding 263-266
levels, changing 266-269

O
objects

collecting 210-216

P
Particle Editor tool

Effect Emitters section 274
Emitter Properties section 274-277
setup 272, 273

particle effects
creating, with Particle Editor tool 272
loading, into game 278-280

physics
adding, to game 196-198
collision detection 198-204
jump action, implementing 204-208

player, creating in Dungeon Bob game
Bob class, implementing 106
GameManager class, implementing 107
GameScreen class, implementing 108-111

player, moving in Dungeon Bob game
Bob's movement, on desktop 111, 112
Bob's movement, on mobile 115-120
continuous movement 113, 114

polling 71
project

importing 4
prerequisites 1
setting up 1

S
score, Catch the Ball game

custom fonts, using 88, 89
high scores, saving 90, 91
saving 86, 87

scores, Whack-A-Mole style game
keeping 59-61

screens, Catch the Ball game
Back button, catching 101
Back button, implementing 98-100
implementing 92
menu screen, implementing 92-94
screen transitions, implementing 95-98

setup app
download link 2
using 2, 3

shooting capabilities
adding, to Bob 254-260

skeletons 237-241
sounds, Whack-A-Mole style game

adding 62, 63
MP3 format 62
OGG format 62
WAV format 62

star enemy
creating 248-253

T
texture atlas 157
Texturepacker-GUI

about 157
download link 158

texture packing 157
Tiled map editor

about 129
animations, creating 150-153
custom properties, adding to map 141-143
drawing 134-138
erasing 139
images, adding to map 154, 155
installing 130
layers, show/hide 140
map, creating 131
map layers 133
miscellaneous 141
objects, drawing 144-149
opacity of layer, changing 140
setting up 131-133
URL 130

touch/click input, Monty Hall simulation
capturing 13
GameManager class, implementing 13-16
InputManager class, implementing 16-19

www.it-ebooks.info

http://www.it-ebooks.info/

[296]

W
Whack-A-Mole style game

about 35
background, adding 41, 42
basic game screen, implementing 35
color, adding 41
effects, adding 55
holes, implementing 43
input, capturing 53-55
moles, adding in holes 44-46
moles, animating 47
randomness, adding 53
scores, keeping 59-61
sounds, adding 59-63
wait times, randomizing 53

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
LibGDX Cross-Platform
Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Learning LibGDX Game
Development
Second Edition
ISBN: 978-1-78355-477-5 Paperback: 478 pages

Wield the power of the LibGDX framework to create
a cross-platform game

1. Write your game code once and run it on a
multitude of platforms using LibGDX.

2. Learn about the key features of LibGDX
that will ease and speed up your development
cycles.

3. An easy-to-follow, comprehensive guide
that will help you develop games in LibGDX
successfully.

LibGDX Game Development
Essentials
ISBN: 978-1-78439-929-0 Paperback: 216 pages

Make the most of game development features
powered by LibGDX and create a side-scrolling
action game, Thrust Copter

1. Utilize the robust features of LibGDX to easily
create and publish cross-platform 2D and 3D
games that involve complicated physics.

2. Be the best cross-platform game developer with
the ability to create rich interactive applications
on all the leading platforms.

3. Develop a 2D side scrolling game, Thrust
Copter, add physics, and try to convert it to
3D while working on interesting LibGDX
experiment.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Libgdx Cross-platform Game
Development Cookbook
ISBN: 978-1-78328-729-1 Paperback: 516 pages

Over 75 practical recipes to help you master
cross-platform 2D game development using
the powerful Libgdx framework

1. Gain an in-depth understanding of every
Libgdx subsystem, including 2D graphics,
input, audio, file extensions, and third-party
libraries

2. Write once and deploy to Windows, Linux, Mac,
Android, iOS, and browsers.

3. Full of uniquely structured recipes that help
you get the most out of Libgdx.

HTML5 Game Development with
ImpactJS
ISBN: 978-1-84969-456-8 Paperback: 304 pages

A step-by-step guide to developing your own 2D
games

1. A practical hands-on approach to teach you
how to build your own game from scratch.

2. Learn to incorporate game physics.

3. How to monetize and deploy to the web and
mobile platforms.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Monty Hall Simulation
	Setting up
	Prerequisites
	Installing the Gradle plugin
	Using the setup app
	Importing projects

	Introduction to the game
	General flow of the game
	Summary of classes

	Making the initial screen
	Implementing the Door class
	Implementing the GameManager class
	Implementing the Monty class

	Taking input
	Updating the GameManager class
	Implementing the InputManager class

	Adding game logic
	Finding doors with goats
	Adding game states

	Displaying text and implementing restart
	Displaying text
	Implementing restart
	Displaying the background

	Summary

	Chapter 2: Whack-A-Mole
	Making the initial screen
	Implementing the Mole class
	Implementing the GameManager class
	Implementing the WhackAMole class

	Adding some color
	Adding the background
	Implementing the holes
	Adding moles in holes

	Animating the mole
	Jumping up and down
	Waiting underground

	Adding randomness and taking input
	Randomizing wait times
	Taking input

	Adding more effects
	Stunning the mole
	Adding the stun sign

	Keeping scores and adding sounds
	Keeping scores
	Adding sound effects

	Summary

	Chapter 3: Catch the Ball
	Making a moving basket
	Implementing the Basket class
	Implementing the GameManager class
	Implementing the CatchTheBall class
	Moving the basket

	Throwing the ball
	Making the ball
	Adding movement
	Adding gravity

	Detecting collisions
	Colliding with the ground
	Colliding with the basket

	Throwing multiple balls
	Throwing the balls after specific intervals
	Randomizing and optimizing

	Keeping the score and maintaining the high score
	Keeping the score
	Custom fonts
	Saving high scores

	Implementing screens
	Implementing the menu screen
	Implementing screen transitions
	Implementing the Back button
	Catching the Back button

	Adding sound effects and music
	Adding sound effects
	Adding background music

	Summary

	Chapter 4: Dungeon Bob
	Creating the player
	Implementing the Bob class
	Implementing the GameManager class
	Implementing the GameScreen class

	Moving the player
	Bob's movement on desktop
	Continuous movement
	Bob's movement on mobile

	Character animation
	Walking Bob 1
	Walking Bob 2

	Summary

	Chapter 5: Using the Tiled Map Editor
	Installation and basics
	Installing and setting up Tiled
	Map layers and drawing

	Miscellaneous
	Custom properties
	Drawing objects
	Tile animations and images

	Summary

	Chapter 6: Drawing Tiled Maps
	Asset management
	Texture packer
	The AssetManager class

	Rendering maps
	Basic map rendering
	Reading the map
	Map objects

	Summary

	Chapter 7: Collision Detection
	Scaling objects and adding a secondary camera
	Integrating Bob
	Camera control
	Integrating game objects

	Physics and collision
	Adding physics
	Collision detection – 1
	Collision detection – 2
	Jumping

	Summary

	Chapter 8: Collectibles and Enemies
	Collecting items and detecting hazards
	Collecting objects
	Displaying the score and adding hazards

	Enemies
	Adding enemies
	Adding enemies through Tiled
	Enemy motion

	Summary

	Chapter 9: More Enemies and Shooting
	Skeletons and chasing
	Skeletons
	Chasing Bob

	Shooting and stars
	Stars
	Shooting

	Summary

	Chapter 10: More Levels and Effects
	Multiple levels
	Adding the door
	Changing levels
	Respawning Bob

	Particle effects
	Editor setup and basics
	The Effect Emitters section
	The Emitter Properties section
	Loading the effect into the game

	The loading screen
	Game states
	Integrating the screen in the game

	Summary

	Index

