
Let’s Build a
Multiplayer
Phaser Game

With TypeScript, Socket.IO,
and Phaser
—
Oscar Lodriguez

Let’s Build a
Multiplayer Phaser

Game
With TypeScript, Socket.IO,

and Phaser

Oscar Lodriguez

Let’s Build a Multiplayer Phaser Game: With TypeScript, Socket.IO, and

Phaser

ISBN-13 (pbk): 978-1-4842-4248-3		 ISBN-13 (electronic): 978-1-4842-4249-0
https://doi.org/10.1007/978-1-4842-4249-0

Library of Congress Control Number: 2018965465

Copyright © 2019 by Oscar Lodriguez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484242483.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Oscar Lodriguez
NIEUW-VENNEP, Noord-Holland, The Netherlands

https://doi.org/10.1007/978-1-4842-4249-0

Dedicated to the hard-working and amazing
developers who have contributed to JavaScript,

TypeScript, Phaser, and Socket.io. Thank you for
your time, dedication, and constant pursuit of perfection,

which have created jobs and presented the gift of
knowledge to the masses across the globe.

https://urldefense.proofpoint.com/v2/url?u=http-3A__Socket.io&d=DwMFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=w4aNXNff6THfiQUzHyKlIzb5VQeQ57BM_fyN2Fzx_Ds&s=d3ChwUKXhv_sOncMfk_vCDu_oF9LcaUhYUY_WTrx5tI&e=

v

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Table of Contents

Chapter 1: �Introduction���1

Who This Book Is For��1

How to Approach This Book���2

What the Heck Are We Building Together?���3

Chapter 2: �Setting Up Our Development Environment���������������������������5

Setting up Our Development Environment���5

Node.js��6

Git���6

The Main Ingredient���7

Editors��7

Running the Project��8

Running the Project in Dev Mode���9

Our Front-End Architecture��9

Our Folder Structure��10

Conclusion���11

vi

Chapter 3: �Orchestrating Our Domain Model���������������������������������������13

The Building Blocks���14

Creating Our First Model��15

The Player Model���16

The Keyboard Model��17

Creating Our Directories���21

Directory Construction���22

Conclusion���24

Chapter 4: �Implementing Our Game Domain Models���������������������������25

About Phaser��25

Talking About Phaser…���27

Finally, Some Code!��27

The Player Model���32

Phaser Arcade Physics���35

The Game Model��40

The Keyboard Model��43

Conclusion���48

Chapter 5: �Seeing It In Action��49

Hooking it All up Together��49

Conclusion���56

Chapter 6: �Projectiles!���57

Pickup��58

Additional Folder Structure���58

Making it to the Big Screen��64

Table of ContentsTable of Contents

vii

Overlap���66

Gimme the Gun!��66

Updating the Game��68

Updating the Keyboard with a Fire!���71

The HUD���74

Conclusion���81

Chapter 7: �Hooking Up Our Server���83

On to the Server Side of Things!��83

Models and Events���84

Models��84

Events���84

Setting up Our Static File Server��86

Socket Connection���88

Back to the Client���98

Marvelous Explosions!���106

Conclusion���109

Chapter 8: �The World Should Remember Your Name�������������������������111

Login��111

Congratulations!���124

Chapter 9: �Bonus! Refactoring & Asteroids���������������������������������������125

Adding More Features��125

Refactoring��125

Asteroids!���130

Conclusion���145

Table of ContentsTable of Contents

viii

Chapter 10: �Further Reading And Discovery�������������������������������������147

Other Phaser Resources��147

�Index��149

Table of ContentsTable of Contents

ix

About the Author

Oscar Lodriguez has been developing

software as a freelancer for close to 13 years.

During this time, he has worked with software

giants such as Adyen, BNP Paribas, ebay,

Bol.com, Schiphol, and Backbase. He has a

bachelor’s degree in computer science and

is a motivated and avid learner who stays up

to date with web industry standards. He has

written three books and speaks regularly at

Golang/JavaScript meet-ups in and around

Holland.  

xi

About the Technical Reviewer

Sumit Jain is an MSc. CS postgraduate and a

PhD in Computer Vision, Computer Graphics

seeker. He is a founder of SummitGames

Digital Entertainment Pvt. Ltd. He is an

expert in technology domain and software

applications and leads the entire software

design and development process. He conducts

workshops as a Speaker/Trainer in game

architecture and programming.

“Game Development, is a process of writing

a book, making a film and developing a

software, all at once.” –Sumit Jain

xiii

Acknowledgments

I would like to thank my partner, Debby Jong, for sticking it out with me

and having faith that all would turn out great in the end, as writing this

book was a challenging endeavor.

I would like to thank Rocco, my dog, for keeping me warm and

providing company by sitting on my lap when I was hacking away at the

keyboard late at night. Even though you are not going to read this, you are

the best friend ever!

I would like to thank the great team at Apress for their pursuit of

perfection. They have really helped me write the best book I could write,

and I have gained so much knowledge based on their feedback.

1© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_1

CHAPTER 1

Introduction
First of all, I would like to thank you for purchasing this book. Writing this

book has been a great experience for me, and I am excited to make this

a valuable resource upon release. Planning, effort, as well as time have

been injected into this project to make it as consumable as possible for

developers with various skill levels. The goal is to provide technical know-

how that instructs on what approaches may be taken when building a

multiplayer game using Phaser, without losing too much quality in the

process. The focus is currently on cleaning up the project and refactoring

where need be.

�Who This Book Is For
Some knowledge of programming is required, as I won’t cover all of the

language features that JavaScript offers. I will ultimately describe inputs

and outputs of functions and why we need to do things a certain way.

How the language and specifications work is something that is better left

to another book, perhaps on Apress. Covering the basics of programming

is something that has been done countless times by other books, schools,

and courses. So to keep things focused, I will do my best to explain things

as we move forward.

Topics regarding computer science will be touched upon briefly,

but moving forward, some fundamentals of computer science are

recommended. This course does require some knowledge of Git—more

2

specifically, Github. The knowledge you will need is how to clone or

checkout a project and switching to a specific branch. Let’s create a kickass

game and learn a lot in the process!

�How to Approach This Book
The material used by the project is best followed as a story. Don’t skip

ahead, as the story builds upon previous code and knowledge to allow you

to have a successful working game in the end.

Skipping any chapter in between would mean you will lose valuable

pieces of code that will make the project functional. If a topic feels like it

does not suit you and you are considering copying and pasting the code in

place, I recommend you give that a second thought.

The best way to learn is to properly digest the material and give it

a meaning of your own. To help solidify your new learned skill, please

experiment with concepts from this book on another project where you are

stuck on a specific topic.

The sample code is found on the accompanied Github repo along with

issues and potential fixes that might arise. The game will have additional

changes outside of this book, this because, TypeScript, Socket.io and

Phaser are both active projects and will contain updates. To keep up with

these updates, use the accompanied online repository https://github.

com/code0wl/Multiplayer-Phaser-game, ever improving and getting

better. It is important to know that the chapters hosted on github will be

one chapter behind yours. This means when you are on Chapter 3,

the branch you will checkout is from Chapter 2. This is because, in this

specific example, Chapter 2 is the last result of your actions and you can

continue with adding new features. I highly recommend checking out the

start branch on the online repository by first cloning https://github.

com/code0wl/Multiplayer-Phaser-game and then checking out the start

branch and building the game from there.

Chapter 1 Introduction

https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game

3

The book is comprised of lots of code. The best way to learn how to

code is to be exposed to it as much and as often as possible. Simply put,

the more you see it, the better chance you have of grasping and solidifying

memory associations to implementation details.

�What the Heck Are We Building Together?
Before starting on any journey or racing off to finish any goal, we must find

out why we are doing it, get motivated, and tackle the tasks that will reach

that outcome we so much desire.

We are set to take over the galaxy, or at least cause a mini-war in it,

with our friends. The game we are building is to incorporate a real-time

multiplayer game where you can race for the pickups and shoot your

friends! There are no game rules attached to this game.

At the end, you will know enough about the implemented logic

to apply your own game rules, such as first to five wins or Facebook

connectivity with real leaderboards. The possibilities here are endless.

The key giveaway is not to build these rules but to give you the

knowledge so can build them yourself. The whole point of learning is using

creativity! I strongly believe in this approach and will include a bonus

chapter of such a business rule to our game to give you a concrete idea.

Learn, build, and destroy! Let’s get started! A online preview version of

the game is found here http://codeowl.tech/game. Use this link to allow

another one of your friend to join so you can play together.

Chapter 1 Introduction

http://codeowl.tech/game

5© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_2

CHAPTER 2

Setting Up Our
Development
Environment
In this chapter we shall focus on getting set up and make sure we cover

all that is needed for developing our game smoothly. The following are

instructions to get you up and running with Node and Git.

�Setting up Our Development Environment
Even though the game seems very simple and easy to code, there are a lot

of moving parts, and it’s good to digest them bit by bit instead of everything

at once. Let’s start with the tail of the dragon, which is the project setup.

If you already have node and git installed on your computer, skip the

installing Node and Git section.

Install a decent code editor that will assist you at developing your game

along the way. I recommend anything from JetBrains or Visual Studio Code

from Microsoft. The good part is that Visual Studio Code is completely

free and works really well out of the box with the technologies we shall be

wielding. Let’s dive into some explanation about Node.js and Git.

6

�Node.js
The authors describe Node as an asynchronous event-driven JavaScript

runtime, perfect for network applications that need to scale.

�Git
The popularity of git has skyrocketed in the recent years as the de facto

distributed version control system, focusing on speed, ease of use, and

efficiency.

Prerequisites for starting this book:

•	 Install Node.js and Git.

•	 Mac, Linux, or Windows users:

•	 Install the latest for your system at https://

nodejs.org/en/download/. Or, if you are tech

savvy, I suggest you download NVM, which is a

Node version manager. This makes it easier for

you to switch between Node versions if you have

a different project that will not allow you to install

another Node version on your system.

•	 To browse on the online repo, you can use Git

to manage your code versioning. This can be

downloaded at Git’s official website (https://git-

scm.com/downloads).

Note  If you are blocked on the where to start section, it means that
you either need to upgrade your Node version or install Git. Installing
Node and Git are some manual steps you will need to perform to get
up and running with this project.

Chapter 2 Setting Up Our Development Environment

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://git-scm.com/downloads
https://git-scm.com/downloads

7

�The Main Ingredient
For ease, I have created a getting started folder branch that includes the

much-needed package.json manifest with all of the dependencies inside.

This also includes an index.html file. When served via our server, this will

request the correct libraries and resources. You can access this branch if

you have checked out the project on Github by running git checkout start

in your terminal while in your project folder.

�Editors
Code editors are also software created by other developers that help

developers to create software. You will need an editor to develop this game

as it allows you to be more efficient at refactoring and getting type hints on

your code. Ultimately, without going into too much detail, they will make

you more productive as a developer and less prone to errors because of

their features.

Feel free to use any common editors of your choosing. I recommend

any of these (Sublime Text, Visual Studio Code, WebStorm, Atom), as they

have good support for TypeScript. I like being a polyglot when it comes to

programming languages, so I am using IntelliJ as my main IDE. It allows

me to jump from TypeScript to Android development. I love that. To

download an IDE or a code editor, just search for its name on your search

engine of choice.

You can clone or fork the starter of this repository on Github

(https://github.com/code0wl/Multiplayer-Phaser-game). Once

you have cloned the repo and assuming you have Git installed on your

computer, checkout the starter branch, as it eases you into the project

and you won’t have to worry about dependency management.

Chapter 2 Setting Up Our Development Environment

https://github.com/code0wl/Multiplayer-Phaser-game

8

�Running the Project
Once all dependencies are installed, it is time to open up your package.

json file and see some handy scripts that are included that make your

development cycle life a tad bit easier. To run the development setup,

observe the following scripts and follow the instructions.

Listing 1-1.  package.json

...

scripts": {

"precommit": "npm run lint",

"lint": "tslint -c tslint.json -p .",

 �"start:dev": "webpack -w --env=dev & tsc -w --noEmit

src/server/server & nodemon src/server/server",

 �"build:release": "webpack --env=prod --optimize-

minimize",

 "prestart": "npm i",

 �"start": "webpack --env=dev && node ./src/server/

server.js"

}

...

Having this insight means we now know a bit more of the process

installed behind the scenes of this game project. Running the command

“npm start” inside the root of the project will boot up the project and serve

it at your localhost port 3000.

Because you ran “npm start” the project installed itself and is running

successfully at the specified port above (port 3000). The project should

have started with a blank screen and the following text “Hi, I am being

served correctly ”. We shall be covering the nitty gritty details of sockets and

explore how they can help us realize this game.

Chapter 2 Setting Up Our Development Environment

9

The following section will explain a bit more about the development

environment.

�Running the Project in Dev Mode
Running the development is straightforward. Using concurrent jobs, we

can run multiple services at once without starting a new terminal or we

can spawn child processes. All of that is magically abstracted away!

$ npm run start:dev. This will set up the dev environment and a watch

script that would detect any changes made to the program and then would

rerender the application with your changes.

�Our Front-End Architecture
Note we are not taking our massive node_modules directory with its

contents into account. Your folder structure should reflect the following

directory tree.

Note  Directories only show directories, not files or subfiles inside of
those directories. The node_modules folder is most likely included in
your build, and that is ok since it is at the root directory. (This is the
same as the public and src directories.)

This illustrates the bare minimum we shall need in order to run code

on the screen.

Note  If you have other files because of your current IDE, that is also
fine. That is your IDE’s way of saving the folder directory as a project
so it can reference the relationships between modules.

Chapter 2 Setting Up Our Development Environment

10

Go ahead and run the project using the dev scripts explained here and

let’s see if your environment is working correctly without any error. Let’s

create a new file called “main.ts” and place it inside of the root folder. Later

this is the main file that will include your entire application as an entry point.

If you have a Java background, you can see it as your static main. If you do

not, it is just the entry file of your application—also known as the shell.

Listing 1-2.  main.ts

document.body.textContent = 'Hi, I am being served correctly';

Given you have your scripts running correctly in the background, you

will see this as a result on your screen.

[image of results on screen]

�Our Folder Structure
Our front-end architecture will be fairly straightforward. Looking at the

directory image, we get a hint as to how everything will look at the end of

the project. This is a good thing. Having a structure with no files inside

makes you think like an architect and might save you a lot of time with

refactoring in the future, when you are trying to figure out what goes

where.

Diving a bit deeper than the surface area, here we have the listing:

•	 public ➤ The bundled application served through our

server

•	 assets ➤ Images and our css

•	 dist ➤ Our bundled JavaScript files

Chapter 2 Setting Up Our Development Environment

11

•	 src ➤ Our project files

•	 client ➤ Client-side logic for our game, including

commands that will update the game-world

•	 server ➤ Code that will run the server and open up

a web socket for us

•	 shared ➤Shared code for both our client and server

�Conclusion
It might seem like a small step. On the contrary, this is a huge step in the

right direction! It means our server is also serving the static folder and

serving the static files correctly to the browser on request.

This wraps up the setting up part. Let’s just keep the momentum going

on through the next chapter. We shall be touching a lot of TypeScript and

general OOP topics in the following chapters.

Chapter 2 Setting Up Our Development Environment

13© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_3

CHAPTER 3

Orchestrating Our
Domain Model
In this chapter we will be creating class diagrams for the following actors in

our game: our game, the player, the phaser engine, and the controls. Code

for this chapter is found on GitHub. (Considering you have the project

running you can then checkout chapter/2 branch.)

The reason we need a domain model is that we want our fun little

game to build upon a healthy, scalable architecture that allows for quick

development iterations with as little to no noise as possible.

In this section we are solely focusing on the modules, models, and

components we shall be creating, as with any project, as time progresses.

We will then think of new features we might want to add to it. Usually,

it’s not us that come with new features; we are always refactoring our own

work and working away technical debt if we do not have a design pattern

or framework we are using. By sketching out our model, we will intimately

grasp our product and form a deeper understanding of its features.

After we have done this, we are going to utilize design patterns and

define our objects by setting up interfaces to work it. Personally, I think

this is the only approach to creating a project. Make sure you know exactly

what you are building by mapping out all the separate components first

and see if they all fit together before you even start coding.

14

In the end, you will make mistakes, but because you do not have to

refactor the lot, as a bonus it is a cheaper and faster mistake to make. In

the end because you have a working mental model on paper, it allows us to

iterate over the ideas both then and come implementation time. Our ideas

will have been reviewed multiple times, by ourselves and our peers. Always

remember, get it on paper.

�The Building Blocks
The following sketch (Figure 3-1) is of a simplified version of a class

diagram. It represents classes alongside their methods and properties.

This gives us a better indication of our project as a whole. The goal is

to gain insight and clarity on what we are trying to achieve and if our

methods and properties appear correct. Here is an example of how our

class diagrams will look. Having a bit of background knowledge on UML or

UML-like diagrams will certainly give you more insight. Here is a link to a

good legend for UMLs: https://bellekens.com/2012/02/21/uml-best-

practice-5-rules-for-better-uml-diagrams/?.

Figure 3-1.  Simplified class diagram

Chapter 3 Orchestrating Our Domain Model

https://bellekens.com/2012/02/21/uml-best-practice-5-rules-for-better-uml-diagrams/?
https://bellekens.com/2012/02/21/uml-best-practice-5-rules-for-better-uml-diagrams/?

15

In this example, we can observe the following:

The Game class will contain at least two properties.

•	 Actors

•	 Projectile

The Game class will be able to perform certain operations.

•	 Manage assets

•	 A game update

What these methods do can be mapped out as well. Using the

knowledge we have gained from our first example, we shall be creating our

first diagram, which will have these relational dependencies with each other.

Our approach will be to create all of the models and map them out

separately. After that lay them out like puzzle pieces and build existing

relationships between these models.

You may view it as assembling a piece of IKEA furniture. The first image

you see are the tools you will need (which we discussed in Chapter 1; all of

the pieces that you will need to assemble and the relationship mapping is

done as a pre-step of implementation).

After all, you can only assemble what you are making after you are sure

you have all the parts.

�Creating Our First Model
Since we started with the Game class, let’s keep working with it.

Properties

•	 -actors: Array

•	 -actor: Player

•	 -projectile: Projectile

•	 -game: Phaser.Game

Chapter 3 Orchestrating Our Domain Model

16

Methods

•	 -manageAssets(): void

•	 -properties(): void

•	 -gameUpdate(): void

One thing you will quickly notice is the Game class only has private

member variables and methods. Along with being private, the methods are

all void functions as well, which means they do not return any value. They

just perform a static operation once invoked.

�The Player Model
With no player, you can have no game, but with no game, you will have not

players. Next, let’s look at the next most important class: the Player.

Figure 3-2.  Player class diagram

Chapter 3 Orchestrating Our Domain Model

17

Properties

•	 +player: Phaser.Sprite

•	 +projectile: Projectile

•	 +controls: KeyBoardControl

•	 +playerState: Map

•	 angularVelocity: number

•	 +hud: Hud

Methods

•	 +createPlayer(game): void

•	 +view(): void

•	 -addControls(): void

•	 -attachPhysics(game): void

�The Keyboard Model
To control the player we are going to need some sort of peripheral. We

are only building this game to be used with a keyboard, but you can easily

extend or create more classes of your own that handle any other type of

input. The keyboard is important, as it allows the player to move around

the screen and interact with the gaming world.

Chapter 3 Orchestrating Our Domain Model

18

Properties

•	 +gameControls: Controls

•	 -playerInstance: Player

Methods

•	 +update(): void

•	 Putting it all together

To create the simplest working model of our game, we need to take

some more actions for integrating our game with existing libraries. We

shall be using the powerful Phaser library to advance our game into the

future with its extremely rich features. The reason I have chosen this

framework was based on simplicity, popularity, and flexibility.

Figure 3-3.  Keyboard class diagram

Chapter 3 Orchestrating Our Domain Model

19

The most important part I find is that it includes a whole package of

utilities that help you, as a game developer, to be productive really fast.

Some of these features include a sprite engine, physics to control the

game’s collision, gravity or repulsion actions, animations, particles, and a

handy camera that may or may not follow the player around the screen.

This will make it much easier for you as a developer to add an

awesome feature to an already feature-rich application. Let’s map out our

game engine class, which will be Phaser.

Methods

•	 +preload(): void

•	 +create(): void

•	 +update(): void

The preload, create, and update functions are life cycle methods within

the Phaser framework. Life cycle methods are functions that are called by

the underlying framework (Phaser.js in this case), which runs at a specific

point in time in the framework’s life cycle. So for these methods we are

calling the Phaser library to run on preload (before creating the game), on

create (which creates the game world), and on update (updates the game

world). Both the preload and create functions are called once, while the

update function is called infinite times.

Chapter 3 Orchestrating Our Domain Model

20

Our engine class will not have any properties because it will inherit the

properties from our game. This will give us full access to the parent class

and would be able to create the phaser engine inside of the engine class.

Like this, everything is nicely abstracted away. The Engine class

diagram should then resemble the following image.

Figure 3-4.  Engine class diagram

Chapter 3 Orchestrating Our Domain Model

21

�Creating Our Directories
Now that we have our basic models on paper for our game, let’s start

creating some directories in our project. Personally, I am a big proponent

of starting everything from scratch if the opportunity to learn something

arises. Around 5to 6 years ago, this was ok and reasonable to do.

These days it could cost you a day or even a whole week to get set up if

you are thinking about setting up your own build-street and project from

scratch. Solving NPM and dependency issues is something that is not easy

and increases in complexity the longer the software is in production.

Figure 3-5.  Engine class diagram

Chapter 3 Orchestrating Our Domain Model

22

If you are the curious sort (I hope you are :)), in your directory, open

up the “package.json” file inside while on the start branch and you will see

how much code from the dependency tree is actually needed to make this

a smooth ride. I recommend you hitch a ride and study what I have done

inside of the “start” branch. Once you clone the project by running, check

out the game repository if you have not yet done so.

Listing 3-1.  git clone Command

git clone git@github.com:code0wl/Multiplayer-Phaser-game.git

After that, switch to the start branch

Listing 3-2.  git checkout Branch Command

git checkout start

Note A bout environments: Having the same environment as each
other is a great thing. If anything goes wrong for any reason, it is
easier to debug and reduce engineering complications since our
project not only shares the same structure but the same codebase.

�Directory Construction
The next step we should take after digesting our mental models of our

classes is to create a directory structure. There are two important things

one must consider before mapping out a directory structure that makes

sense not just to us but especially to others.

Chapter 3 Orchestrating Our Domain Model

23

Some good practices for directory structures means semantically

separating your implementation by groups. This means grouping related

implementations or related functionality. A more complex structure might

entail the need to group directories if assets in a directory are being shared

by multiple implementors. A good approach would be to upgrade the

feature in question’s status in the hierarchy and promote it to the same

level as the root implementors. We shall be using a similar strategy in our

structure.

•	 public

•	 assets

•	 dist

•	 src

•	 client

•	 actors

•	 player

•	 controls

•	 engine

•	 game

•	 server

•	 shared (code shared between client and server)

Go ahead and validate if this is the structure inside of the start branch.

We shall continue with the implementation of the code in the following

section.

Chapter 3 Orchestrating Our Domain Model

24

�Conclusion
Having a clear blueprint of what we are building will make it considerably

easier to start thinking in code. Having just made the UMLs, we have

familiarized ourselves with the idea of how the game will function and

where the dependencies may lay. In the upcoming chapter, we can finally

focus on some code.

Chapter 3 Orchestrating Our Domain Model

25© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_4

CHAPTER 4

Implementing Our
Game Domain Models
In this chapter we shall be covering the following: introduction to Phaser.js

and which features we will be utilizing. We will also implement the engine

class along with the Game, Player and Keyboard classes.

We have not been coding yet, but this chapter will change all of that.

We are going to implement the bare minimum to have a working game.

More features will be added to later chapters, as it is nice to see some

results quickly. An introduction to Phaser is also pretty handy to give us a

sense of what it is and why we need it.

�About Phaser
Phaser is an awesome HTML5 game framework that works both on

Desktop and HTML5-capable mobile devices. It’s a framework because

it offers all of the tools you might need to build a game, instead of a small

subset of it.

Phaser ranges from a graphic to a gravity engine. It does so effectively by

incorporating other open-source engines like PIXI (http://www.pixijs.com).

http://www.pixijs.com

26

Being a framework, though, does have its drawbacks. The more

features you include in one such engine also means the person wielding

all that power needs to know all of its features and how to use them

effectively.

Phaser supports all of the following features:

•	 Sprites: A sprite engine that controls rendering
based on images

•	 Scenes and pre-loaders: Ability to tie your applications

to multiple applications

•	 Physics: Allow the game to be more realistic by
adding weight to the world

•	 PIXI: Rendering engine

•	 Animation: Gives an easy API to create amazing

animations, fast

•	 Particle engine: Allow thousands of particles on-screen

for a positive effect

•	 Sanitized camera controls: Makes it easier to allow

the browser to focus on a specific action on the screen

at any time (the player, the enemy, or any specific

location)

•	 Mobile phone: Optimized for speed and allows gestures

to be performed and ties them with actual functions of

the game

•	 Input (keyboard, mouse): Standard and most used

keybindings are already included for you out of the box

•	 Sound: Allows for an easy API to make the game

perform sounds based off of actions

Chapter 4 Implementing Our Game Domain Models

27

The features we shall be using to make our game are the ones in bold.

Learning is done best through exploration and trial-and-error. I definitely

suggest you play around with the other features once you have your space

shooter up and running.

At the end of this book in a bonus chapter we shall allow mobile users

to connect to our game and play as well. That means creating a smaller

interface and being creative with user input.

�Talking About Phaser…
�Finally, Some Code!
In order to create any game using Phaser, we need to set up the phaser

game world so we can make use of the powerful framework. The following

code snippets will show and explain the steps for creating such an engine

for our game.

Listing 4-1.  src/client/engine/phaser-engine.class.ts

export class PhaserSpaceGame extends Game implements LifeCycle

{

 // �The PhaserSpaceGame class will have one attribute,

 // �which is the game itself created by Phaser to power

our complete game with Phaser.

 private game: Phaser.Game;

}

Next we shall add our constructor.

Chapter 4 Implementing Our Game Domain Models

28

Listing 4-2.  src/client/engine/phaser-engine.class.ts

..

constructor() {

 // the game object in our class and passing in 4 arguments

 // width = 1024, height = 768,

 // �Phaser.AUTO will auto detect what the browser is capable

of (usually it's Phaser.CANVAS)

 // �And lastly we pass in the same of our game, which is

space-shooter

 �this.game = new Phaser.Game(1024, 768, Phaser.AUTO,

'space-shooter', {

 preload: this.preload,

 create: this.create,

 update: this.update

 });

}

..

This is definitely where all the magic happens. Once this gaming world

is created by our chosen framework (Phaser.js), we can then leverage all

the benefits the framework has to offer. Phaser needs to create our project

(space-shooter), and once it has called all of the life cycles, it then has the

correct dependencies in place for it to work correctly.

Notice how we are implementing the life cycle interface? Phaser offers

us hooks to run code at specific time and places in our game life cycle.

We will take advantage of these life cycle hooks to populate the engine

with our game. Read more about Phaser’s life cycle here: http://www.

html5gamedevs.com/topic/1372-phaser-function-order-reserved-

names-and-special-uses/.

In the preload method we need to bootstrap the application.

Chapter 4 Implementing Our Game Domain Models

http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/
http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/
http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/

29

Listing 4-3.  src/client/engine/phaser-engine.class.ts

...

public preload(): void {

 // �no need to set credentials for our requests are

happening on localhost

 this.game.load.crossOrigin = 'anonymous';

 // set the game's background to space

 this.game.load.image('space', 'assets/background.jpg');

 // �if any shot is fired with the image laser, register the

bullet graphic

 this.game.load.image('laser', 'assets/bullet.png');

 // load the dust image

 �this.game.load.spritesheet('dust', 'assets/dust.png', 64,

64, 16);

 // load the explosion image

 �this.game.load.spritesheet('kaboom', 'assets/explosions.png',

64, 64, 16);

 // load the power-up graphic

 this.game.load.image('pickup', 'assets/pickup.png');

 // load the ship graphic

 �this.game.load.spritesheet('shooter-sprite',

'assets/ship.png', 32, 32);

}

public create(): void {

 super.properties(this.game);

 super.manageAssets(this.game);

}

Chapter 4 Implementing Our Game Domain Models

30

public update(): void {

 super.gameUpdate(this.game);

}

...

TypeScript encourages the use of interfaces as well as helping us with

types. Let’s include the life cycle interface that Phaser offers us to our

Engine class.

Listing 4-4.  src/client/engine/lifecycle.ts

export interface LifeCycle {

 preload(): void;

 create(): void;

 update(): void;

}

The full code for our engine should look like that in Listing 4-5.

Listing 4-5.  src/client/engine/phaser-engine.class.ts

import { Game } from "../game/game.class";

import { LifeCycle } from "./lifecycle";

export class PhaserSpaceGame extends Game implements LifeCycle {

 private game: Phaser.Game;

 constructor() {

 super();

 �this.game = new Phaser.Game(1024, 768, Phaser.AUTO,

'space-shooter', {

 preload: this.preload,

Chapter 4 Implementing Our Game Domain Models

31

 create: this.create,

 update: this.update

 });

 }

 public preload(): void {

 const game = this.game.load;

 game.crossOrigin = 'anonymous';

 game.image('space', 'assets/background.jpg');

 game.image('laser', 'assets/bullet.png');

 �game.spritesheet('dust', 'assets/dust.png', 64,

64, 16);

 �game.spritesheet('kaboom', 'assets/explosions.png', 64,

64, 16);

 game.image('pickup', 'assets/pickup.png');

 �game.spritesheet('shooter-sprite', 'assets/ship.png',

32, 32);

 }

 public create(): void {

 super.properties(this.game);

 super.manageAssets(this.game);

 }

 public update(): void {

 super.gameUpdate(this.game);

 }

}

Chapter 4 Implementing Our Game Domain Models

32

�The Player Model
Create a new TypeScript file called “player.class.ts” inside of the player

directory.

Listing 4-6.  src/client/actors/player/player.class.ts

export class Player {

 // �create your member variables like we glanced over inside

 // �of our domain the player instance which will be a type of

 // Phaser Sprite

 public player: Phaser.Sprite;

 // The player can be controlled with a keyboard

 // �KeyBoardControl class still does not exist at this point

so your IDE should complain about it not being there

 public controls: KeyBoardControl;

 // �playerState will keep side effects our player will get

 // �during the course of the game. It will nicely embody all

 // of the states in one object

 public playerState: Map<string, boolean | number>;

 // Through Phaser this is used to control the ship's velocity

 // �The math behind this is not going to be done by us, this

 // �is why we decided to go for the usage of Phaser, which

 // will be more of a valuein your career.

 public angularVelocity: number = 300;

}

We are making some assumptions based on our domain models as to

what the player class has and what it does.

Chapter 4 Implementing Our Game Domain Models

33

Here we start with what we know, with utmost certainty, that the player

contains and will be capable of doing. Next we shall add the methods that

we have in our model. We won’t fill out anything yet, but we will map them

out and use our maps as guides for implementation.

Listing 4-7.  src/client/actors/player/player.class.ts

export class Player {

 public player: Phaser.Sprite;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public angularVelocity: number = 300;

 // �Most classes need a constructor method but it is still

optional

 // �In our Player constructor we shall initialize some

 // members with initial values so we could use them

 // throughout our Player class

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: any) {

 // �Once we get information from the server we shall

 // create the player with the correct phaser game instance

 this.createPlayer(this.gameInstance);

 // �We also save a local copy of the player created by

 // �the server so we can reference the correct name and

coordinate

 this.playerInstance = playerInstance;

 // Lastly we shall be needing a place to keep all of our

 // �side effects. This will serve as a common container

 // for all of our player states (ex: number of bullets

 // fired, is the player moving?, etc)

 this.playerState = new Map();

 }

Chapter 4 Implementing Our Game Domain Models

34

 // �We shall need a way to create our players which are

 // �requested through other classes in our game Having a

 // �factory or a centralized way to create a player means

 // that we run little risk of duplicating code

 public createPlayer(): void {

 }

 // Our game will have some sort of loot drop system.

 // �If a player picks up a loot, we shall assign it to the

 // player who picked it up

 public assignPickup(): void {

 }

 // �As changes happen through the game world, the player

 // �view will have to reflect these changes. The view is

 // �nothing more than a graphical representation of our

awesome spaceship

 public view(): void {

 }

 // �Once we instantiate the player we must attach some

controls to it!

 private addControls(): void {

 }

 // �Let's add an extra method to attach physics to our player

 // Physics will be provided by Phaser's arcade implementation

 // and will add a lot of liveliness to our game.

 private attachPhysics(): void {

 }

}

Chapter 4 Implementing Our Game Domain Models

35

Since creating the player is the most trivial, let’s create the logic for this

method first.

Listing 4-8.  src/client/actors/player/player.class.ts

...

// �When Instantiating a new player instance, we shall be needing

// �the game world as an instance. This is so we can inject it

// directly into Phaser's created canvas.

public createPlayer(gameInstance): void {

 // Attach the controls to this player's game world

 this.addControls();

 // Add the player to our world through Phaser.

 this.player = gameInstance.add.sprite(

 100, 100, 'shooter-sprite'

);

 // Set the anchor to center of the sprite

 this.player.anchor.setTo(0.5, 0.5);

 // �To attach physics to our sprite, we need to call this

private class

 this.attachPhysics(gameInstance);

}

...

�Phaser Arcade Physics
Before we go into integrating more of Phaser’s features, Let’s take time to

talk about Phaser’s physics arcade engine. The arcade engine is one of the

simplest implementations of physics inside of the phaser framework. It is

all we shall need to implement our awesome space shooter.

Chapter 4 Implementing Our Game Domain Models

36

It will save us tons of performance and our game will not require a

more complicated/feature-rich physics implementation. To illustrate a

simple difference between Arcade and the p2 engine, consider the image

in Figure 4-1.

Figure 4-1.  src/client/game/game.class.ts

The image on the left is showing the Arcade model, and the image on

the right is showing the more complex p2 engine model. Both are great, p2

is just more detailed, and with Arcade it is more performant as it has less

vector points for the collision body.

It is also much easier to implement and will allow us to see results

much quicker. To make our spaceship aware in the game world, we shall

need to attach Phaser’s physics to it. Let’s go ahead and add this to our

spaceship class. In the next class we shall incorporate these calls to enable

Phaser.js to add physics to any created ship.

Listing 4-9.  src/client/actors/player/player.class.ts

...

// �Pass the game instance so we can to the physics method to

// �give it the correct phaser game instance to work with. Do

// �not worry about this too much since we shall be covering

this in the following models

Chapter 4 Implementing Our Game Domain Models

37

private attachPhysics(gameInstance): void {

 // �using the Phasers game instance method we are attaching

 // to the world and setting the physics mode to arcade

 �gameInstance.physics.enable(this.player, Phaser.Physics.

ARCADE);

 // �Let the player respect the browser edges. If you fly

 �further than the allocated space you will bounce and be

forced back into the game world

 this.player.body.collideWorldBounds = true;

 // �If anything collides against our player, this is the

bounciness setting

 this.player.body.bounce.setTo(10, 10);

 // We are in space so let's set our space body to 0 gravity

 this.player.body.gravity.y = 0;

 // �we do not want our spaceship to just stop out of nowhere

 // �when we stop accelerating. This drag indicates the

 // momentum we bring along when flying around the screen

 this.player.body.drag.set(80);

 // Our max speed

 this.player.body.maxVelocity.set(100);

 // �When another ship collides against us, we want to have a

reaction to that

 // �This means we should be moveable inside of the phaser

framework.

 this.player.body.immovable = false;

}

...

Chapter 4 Implementing Our Game Domain Models

38

That will conclude our player class. The end result should look like that

in Listing 4-10.

Listing 4-10.  src/client/actors/player/player.class.ts

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public angularVelocity: number = 300;

 �constructor(private gameInstance: any, public

playerInstance: any) {

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.addControls();

 this.player = gameInstance.add.sprite(

 100,

 100,

 'shooter-sprite'

);

 this.player.id = "1";

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating',

[1, 0], 60, false);

 this.player.name = "your name";

 this.attachPhysics(gameInstance);

 }

Chapter 4 Implementing Our Game Domain Models

39

 public assignPickup(game, player?): void {

 �this.projectile = new Projectile(game, player.

player);

 �this.playerState.set('ammo', this.projectile.

bulletCount);

 }

 public view(): void {

 this.controls.update();

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.

gameInstance, this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

Chapter 4 Implementing Our Game Domain Models

40

�The Game Model
Our little spaceship needs a world to live in. It’s impossible to shoot your

friends when you do not both live in the same galaxy.

Listing 4-11.  src/client/game/game.class.ts

export class Game {

 // The game world members

 // �The game world will serve as our main application

 // �container. It will be the communication layer between

 // �our server and our client. With that in mind it makes

it a fairly busy class.

 // �first we are going to need a place where we store all

 // of the players on the client-side

 private actors: Array;

 // �Every game should also have a protagonist. Our main

protagonist will be stored like so

 private actor: Player;

 // �The protected member variable will make much more

sense once we have created the Phaser Game engine.

 protected game: Phaser.Game;

}

Let’s now add the methods created in our game. Remember that the

Game will never be instantiated, because the Phaser engine class we

have created first is extending and drawing properties for this class. So

that means we can also set up this class to have nice, compact, protected

methods that can only be implemented in subclasses.

Chapter 4 Implementing Our Game Domain Models

41

Listing 4-12.  src/client/game/game.class.ts

...

protected manageAssets(): void {

 // �Use the manageAssets class control our game

creational lifecycle

 // Which mainly means to turn on our event listeners!

 }

protected gameUpdate(): void {

 // �Our busiest class! The update will be called 60 frames

 // �per second to update our game mode and our

 // �subscriptions mentioned above. Think of it as the

game's heartbeat. Now that everything is in place

 The heart pumps life to all of our organs (modules) 12

}

protected properties(): void {

 Implementing our game domain models

 // �We also should call the properties methods on the

 // �create lifecycle of the engine. This makes it much

 // �easier to set all of our game properties in one

place. Since it is our "game" properties, we should�

 // �either put it in a game.config file or in the game

class directly.

}

...

In the end, our full game class will be much more complicated than

this. But let’s take it one step at a time. It’s better to introduce certain values

first and then take our time to upgrade the already earned knowledge,

instead of everything at once.

Chapter 4 Implementing Our Game Domain Models

42

Listing 4-13.  src/client/game/game.class.ts

export class Game {

 // �since we do not have models yet. To stop your IDE from

complaining

 // �we shall change the types to any for now, until we

have created our

 // game models.

 private actors: Array;

 private actor: any;

 protected game: Phaser.Game;

 protected manageAssets(): void { }

 protected gameUpdate(): void {

 // �If the actor exists in our game. let's update it!

 // �We shall be making the controls in the next

section when we

 // implement our keyboard class

 if (this.actor && this.actor.controls) {

 this.actor.view();

 }

 }

 protected properties(): void {

 // �The properties below are mainly configurations

 // the Phaser framework offers to use.

 // �Since we are making a multiplayer game it's

 // �crucial we are always updating the world.

 // �Removing the disability change means that our

game will always be running, even if we switch

 // from windows whilst using our browsers

 this.game.stage.disableVisibilityChange = true;

Chapter 4 Implementing Our Game Domain Models

43

 // �We have preloaded the space texture, here we are

setting it in

 // our game

 this.game.add.tileSprite(

 0, 0,

 this.game.width,

 this.game.height,

 'space'

);

 this.game.add.sprite(0, 0, 'space');

 // �We want our game to be fast and furious! 60FPS

all the things

 this.game.time.desiredFps = 60;

 // �clear before render will give us better

performance because we

 // have a static background

 this.game.renderer.clearBeforeRender = false;

 // Set the correct physics engine for our game and

 this.game.physics.startSystem(Phaser.Physics.ARCADE);

 }

}

�The Keyboard Model
Finally we shall need a way of controlling our player on the screen. Let’s

go for the easiest one to implement—the input module! Let’s first add

our instance properties of the keyboard, which will be used as our input

module of choice.

Chapter 4 Implementing Our Game Domain Models

44

Listing 4-14.  src/client/controls/keyboard.class.ts

export class KeyBoardControl {

 // �The purpose of the KeyBoardControl class is to

delegate any player

 // �input to here. This keeps our logic in one central

place when it

 // comes to character movement and actions

 // �since we do not have any models yet, create the

gameControls method

 // and set it to any and an empty object

 public gameControls: Controls;

}

Inside of the same directory, we shall create a model for our controls to

help us in the future of what the control object will require.

Listing 4-15.  src/client/controls/keyboard.model.ts

export interface Controls {

 // �Having an interface will help us in the future as it

will hint to us

 // �and other developers what our model is expecting in

the end

 cursors: Phaser.CursorKeys;

 fireWeapon: Phaser.Key;

}

Now we can mainly focus on creating the functionality of the

keyboard itself. Let’s include the methods that will govern the control

of our spaceship. Creating a good API requires a lot of sympathy for the

developers, integrators, and your future self. So it is on us to come with

meaningful and logical names for our methods.

Chapter 4 Implementing Our Game Domain Models

45

Listing 4-16.  src/client/controls/keyboard.model.ts

// add the player class to the imports

import {Player} from '../actors/player/player.class';

// since the keyboard will not be called inside of this file,

let's export it

export class KeyBoardControl {

 public gameControls: Controls;

 // The keyboard class has two dependencies.

 // The game world and the player instance

 �constructor(private gameInstance: any, private

playerInstance: Player) {

 // Add the following definition of our gameControls

 this.gameControls = {

 // �Keep records of the phaser's input keys in our

implementation

 �cursors: this.gameInstance.input.keyboard.

createCursorKeys(),

 // �We do not yet have the fire feature, but it's

good to add the

 // �functionality hook for it already. We are

telling Phaser at

 // this point to react to spacebar input presses.

 �fireWeapon: this.gameInstance.input.keyboard.addKey(

 Phaser.KeyCode.SPACEBAR

)

 }

 }

Chapter 4 Implementing Our Game Domain Models

46

 // �The heartbeat of the keyboard class is being called

outside.

 // �The game-loop created by phaser is responsible for

calling the update

 // �method on every iteration. Which is what we of course

hope, 60fps.

 public update(): void {

 // Wrap any logic here for when the player is alive

 if (this.playerInstance.player.alive) {

 // �Update the player state if the player has fired

a shot

 this.playerInstance.playerState.set('fire', false);

 // Add a const for the player velocity

 // �To avoid a long method path add a small variable

to capture

 // our static element of the player's velocity speed

 const vel = this.playerInstance.angularVelocity;

 // If the player is moving do the following

 if (this.gameControls.cursors.up.isDown) {

 // �Get the current rotation of the player and

allow the

 // �player to move forward within the bounded

acceleration

 // constraints

 �this.gameInstance.physics.arcade.

accelerationFromRotation(

 this.playerInstance.player.rotation,

 100,

 this.playerInstance.player.body.acceleration);

Chapter 4 Implementing Our Game Domain Models

47

 // �Let's update the state if the player is

moving so we can

 // �notify the game world and later the other

players that

 // this current player is currently moving.

 �this.playerInstance.player.animations.

play('accelerating');

 �this.playerInstance.playerState.set('moving',

true);

 } else {

 // �Our ship can only accelerate forward in

space at the

 // �moment, so if the player is not moving at

all, we can set

 // �the acceleration to 0 and reset the moving

state back to

 // �false. This lets the other players and the

game-world know

 // that this spaceship is not moving anymore.

 �this.playerInstance.player.body.acceleration.

set(0);

 �this.playerInstance.playerState.set('moving',

false);

 }

 // Logic for when the player is turning

 if (this.gameControls.cursors.left.isDown) {

 // �Add the negative value to the Angular's

velocity to

 // update the character when turning left.

Chapter 4 Implementing Our Game Domain Models

48

 �this.playerInstance.player.body.angularVelocity

= -vel;

 } else if (this.gameControls.cursors.right.isDown) {

 // Add the value to the Angular's velocity to

 // update the character when turning right

 �this.playerInstance.player.body.

angularVelocity = vel

 } else {

 // �If the user is not turning left, nor right

that means

 // �that the user is currently not turning at

all. So let's

 // set the current degree to 0

 �this.playerInstance.player.body.

angularVelocity = 0;

 }

 }

 }

}

�Conclusion
Awesome! Now that all of the parts are created separately on their

separate islands, let’s hook them together in the upcoming chapter. We are

extremely close to actually seeing something on the screen. Before we get

too eager to see our work, it is good to get intimately associated with the

code. This will give you a better insight into our overall structure and how

you can add your own features.

In the following chapter, we will concentrate on getting a visibly

working program.

Chapter 4 Implementing Our Game Domain Models

49© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_5

CHAPTER 5

Seeing It In Action
It’s that exciting time where we can actually see what we have been created

on screen! In this chapter, we shall be covering how to create relationship

between our implementations by putting all we have done together to

work in unison.

Code for this chapter is found on GitHub (https://github.com/

code0wl/Multiplayer-Phaser-game/tree/chapter/4). This will let you

view what you already should have running locally. If you run “git checkout

chapter/4” in your terminal, you will checkout this chapter of the project.

While we have focused on the previous chapters to get the code into the

right place, this chapter will mostly focus on existing code and how to

make them interact with one another.

�Hooking it All up Together
This is the easy part. TypeScript allows us to use ES15+ imports in our

code. If you are unfamiliar with this concept of “imports,” you can read

more about it here (https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Statements/import). I recommend clicking

and reading a bit more on that even if you are a seasoned developer who

has been working with JS for a couple of years. There are probably some

features you did not know about before.

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/4
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/4
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

50

We should go ahead and review the classes we have created so far and

add some adjustments so they know to create associations with each other

during the compilation phase. Do not worry about which adjustments just

yet, as they will be covered in the code section with their corresponding

descriptions. This is a lot of jargon for: “Let’s add some imports.” Let’s look

at our game final game engine file.

Listing 5-1.  src/client/engine/phaser-engine.class.ts

import { Game } from "../game/game.class";

import { LifeCycle } from "./lifecycle";

export class PhaserSpaceGame extends Game implements LifeCycle

{

 private game: Phaser.Game;

 constructor() {

 super();

 �this.game = new Phaser.Game(1024, 768, Phaser.AUTO,

'space-shooter', {

 preload: this.preload,

 create: this.create,

 update: this.update

 });

 }

 public preload(): void {

 const game = this.game.load;

 game.crossOrigin = 'anonymous';

 game.image('space', 'assets/background.jpg');

 game.image('laser', 'assets/bullet.png');

 game.spritesheet('dust', 'assets/dust.png', 64, 64, 16);

Chapter 5 Seeing It In Action

51

 �game.spritesheet('kaboom', 'assets/explosions.png', 64,

64, 16);

 game.image('pickup', 'assets/pickup.png');

 �game.spritesheet('shooter-sprite', 'assets/ship.png',

32, 32);

 }

 public create(): void {

 super.properties(this.game);

 super.manageAssets(this.game);

 }

 public update(): void {

 super.gameUpdate(this.game);

 }

}

The only addition is that we have added the import to our game class.

This way we tell the phaser engine class to use our game class specifically.

Our game class also has an association with our player class, as it is the

area where our game world and the player interact with one another. Our

game class should reflect what is shown in Listing 5-2.

Listing 5-2.  src/client/actors/player/player.class.ts

import {Player} from '../actors/player/player.class';

declare const window: any;

export class Game {

 private actors: Array;

 private actor: Player;

Chapter 5 Seeing It In Action

52

 protected manageAssets(game): void {

 this.actors = [];

 // later will contain all of our game logic code

 this.actor = new Player(game);

 }

 protected gameUpdate(game): void {

 if (this.actor && this.actor.controls) {

 this.actor.view();

 }

 }

 protected properties(game): void {

 game.stage.disableVisibilityChange = true;

 �game.add.tileSprite(0, 0, game.width, game.height,

'space');

 game.add.sprite(0, 0, 'space');

 game.time.desiredFps = 60;

 game.renderer.clearBeforeRender = false;

 game.physics.startSystem(Phaser.Physics.ARCADE);

 }

}

Our game has an engine! That means we can go on and start hooking

up our player to the game world.

Listing 5-3.  src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

export class Player {

 public player: Phaser.Sprite;

 public controls: KeyBoardControl;

Chapter 5 Seeing It In Action

53

 public playerState: Map;

 public angularVelocity: number = 300;

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: any) {

 // �the any type for the player instance will be

resolved soon

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.addControls();

 this.player = gameInstance.add.sprite(

 100, 100, 'shooter-sprite'

);

 this.player.id = '1';

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0],

60, false);

 this.player.name = "Your name";

 this.attachPhysics(gameInstance);

 }

 public view(): void {

 this.controls.update();

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.

gameInstance, this);

 }

Chapter 5 Seeing It In Action

54

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

There is one more step to perform after setting up our keyboard

class. This is to include the “main.ts” file that will serve as our application

entry file. Before we get to the concepts of entry files, let’s make sure our

keyboard class has all the dependencies it needs to work.

Listing 5-4.  src/client/controls/keyboard.class.ts

import {Player} from '../actors/player/player.class';

import {Controls} from './keyboard.model';

export class KeyBoardControl {

 public gameControls: Controls;

 constructor(private gameInstance: Phaser.game,

 private playerInstance: Player) {

 const space = Phaser.KeyCode.SPACEBAR;

 this.gameControls = {

 �cursors: this.gameInstance.input.keyboard.

createCursorKeys(),

 �fireWeapon: this.gameInstance.input.keyboard.

addKey(space)

 }

 }

Chapter 5 Seeing It In Action

55

 public update(): void {

 if (this.playerInstance.player.alive) {

 this.playerInstance.playerState.set('fire', false);

 const vel = this.playerInstance.angularVelocity;

 if (this.gameControls.cursors.up.isDown) {

 �this.gameInstance.physics.arcade.

accelerationFromRotation(

 this.playerInstance.player.rotation,

 100,

 �this.playerInstance.player.body.acceleration);

 �this.playerInstance.player.animations.

play('accelerating');

 �this.playerInstance.playerState.set('moving', true);

 } else {

 �this.playerInstance.player.body.acceleration.set(0);

 �this.playerInstance.playerState.set('moving',

false);

 }

 if (this.gameControls.cursors.left.isDown) {

 �this.playerInstance.player.body.angularVelocity

= -vel;

 } else if (this.gameControls.cursors.right.isDown)

{

 �this.playerInstance.player.body.angularVelocity

= vel;

 } else {

 �this.playerInstance.player.body.angularVelocity = 0;

 }

 }

 }

}

Chapter 5 Seeing It In Action

56

Finally, we discussed a bit about our project entry file. This is the main

application shell whose sole job is to load the application and instantiate

it. The main will import our index, which will import our whole game.

Applications are not that far away from novels. Consider the following

analogy. A book contains the game. The book is the main object, so let’s

call it the main. Inside of the main object, you will have an index that is

aware of all the parts of the book. This will be our “index.ts” file. Let’s start

with the index file.

Listing 5-5.  src/client/index.ts

import {PhaserSpaceGame} from './client/engine/phaser-engine.class';

new PhaserSpaceGame();

Voila! We are all done. We can now see our initial game in action by

running the following in our terminals. Head over to the project directory

with your terminal and run the following command.

Inside of our terminal or prompt, let's run the following command:

"npm start"

�Conclusion
You may now view your game with the following on your localhost port

3000. You can also change the standard port inside of our “server.ts” file.

This way you can manage which port is best suitable for you. It’s pretty cool

that we have our game running, but it hardly feels or seems like a game

at all at this point in time. We should add more game functionality in the

following chapter so we can then show off to our friends!

Chapter 5 Seeing It In Action

57© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_6

CHAPTER 6

Projectiles!
We made it to Chapter 6! This is where we shall add the fun parts to the

game. We shall be setting up the props and also assigning new features to

our existing sprites! We shall also look at how we are allowing the user to

fire her laser beams.

Code for this chapter is found on GitHub or by checking out the

chapter/5 branch. Our spaceship is created and can move around the

screen. Let’s add a new feature that allows our spaceship to shoot! Phaser

comes with a handy ability to shoot/fire feature, as it has a built-in method

that we can call to assist us when adding our weapon.

Let’s set up a Projectile class that implements the idea of something

being launched from our spaceships. We shall only be implementing

the laser projectile. You are here encouraged to build homing seeking

rockets that follow the nearest enemy’s x,y coordinates! To start creating a

projectile class that wasn’t described in our original diagrams, we need to

comprehend first how the projectile will be attained.

The player in this instance will attain the projectile by the means of a

pickup, so the player will touch or fly over the item and then the pickup/

power-up will be assigned to the player. That hints to us that we shall need

a pickup class as well. Let’s start with that. We shall skip in making the

additional UMLs for now. But it is still a really good practice to update it

with our latest features. This will serve as a good source of documentation

for new team members and your future self.

58

�Pickup
A pickup in the gaming world includes items that a user can pickup. They

are also often referred to as “power-ups,” as they enhance the player’s

capabilities for a brief moment and then return the player back to normal.

�Additional Folder Structure
We want to create a folder hierarchy that encapsulates our features like

we understand them in our game. This is not by any means the only

structure but it will help distinguish, before even writing code, what type

of hierarchy you will have in your implementations. Head into the src

directory.

Let’s go ahead and create the following folder structure to give our

feature a bit more shape and existence:

•	 client

•	 props

•	 powers

•	 pickup

•	 projectile

Inside the powers folder, we can create the two classes. The file

“pickup.class.ts” should be in the pickup folder, and the file “projectile.

class.ts” should be in the projectile folder.

•	 pickup

•	 pickup.class.ts

•	 projectile

•	 projectile.class.ts

Chapter 6 Projectiles!

59

We shall be leaving the projectile class empty for now. Inside of the

pickup.class.ts file, let’s implement the following:

Listing 6-1.  src/client/props/powers/pickup/pickup.class.ts

export class Pickup {

 �// We shall need the item we would want to be able to

pickup. This

 �// Item will have to be accessible to other classes as

well, so we shall

 // mark it as public

 public item: Phaser.Sprite;

 constructor(game, coors) {

 �// When generating the pickup, we want to pass two

arguments. One

 �// being the game instance we have created with

Phaser. This is

 // needed to place the item into the phaser world

 �this.item = game.add.sprite(coors.x, coors.y,

'pickup');

 �// Since players can pick up the pickup item in

the game. We will

 �// add physics to the object, to detect if any

other Phaser

 �// objects have collided or overlapped with this

one pickup

 �game.physics.enable(this.item, Phaser.Physics.

ARCADE);

 }

}

Chapter 6 Projectiles!

60

Voila, now we need to assign items that can be picked up. I was

thinking something simple, like a laser that just shoots straight. Also, it

would have an ammunition count. So if the user runs out of ammo, they

would need to pick it up again. Next, we need to populate our projectile

class with functionality so it works as intended. The code section in

Listing 6-2 will provide the code in detail.

Listing 6-2.  src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class';

export class Projectile {

 // member variables

 �// We can make use of Phaser's built-in weapons feature

to keep count

 // and aim direction based on our ship's sprite

 public weapon: Phaser.Weapon;

 // Keeping the current count of the players ammunition

 public bulletCount: number;

 �// Since we need to remove the pickup item from the game

area once the

 �// user has picked it up, we need a reference to the

projectile sprite

 // item

 public pickup: Pickup;

 �// To pass the projectile to the right user, we then

also need a

 // reference of this user in our projectile class

 private player: Phaser.Sprite;

 �// also let's go ahead and keep a reference of the game

instance as well

Chapter 6 Projectiles!

61

 �// as we might need to directly populate our world with

the sprite

 // graphic

 private gameInstance: Phaser.Game;

 public constructor(gameInstance, player?) {

 �// we will be needing to reference the game and the

player we are

 // attaching the weapon on

 }

 public fireWeapon() {

 �// one other requirement is to able to shoot and

rid the galaxy of

 // fowl enemies!

 }

 public renderPickup(coors): void {

 �// last but not least we need to let the

projectile class have

 // its own graphic

 �// apart from being a pickup. This way the player

can visually see

 �// which pickup they are picking up and if they

want it or not

 }

}

That is a good start, we know the private and public members of the

class. That makes it a lot easier for us to now populate the class with our

shooting projectile mechanics.

Chapter 6 Projectiles!

62

Listing 6-3.  src/client/props/powers/projectile/projectile.class.ts

...

// add a default bullet number you would like a pickup to

contain

// distribute. Make it a believable and fair number as games

can be very

// hard to balance correctly.

public bulletCount: number = 10;

public constructor(private gameInstance: Phaser.Game, player?) {

 �// using the built-in weapon manager from Phaser, assign

it to the

 // weapon member and add the following properties.

 this.weapon = this.gameInstance.add.weapon(10, ‘laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

 �// next we do a bit of defensive programming to detect

if there is a

 // player in the constructor

 // we will understand soon why this is necessary, but it

 �// boils down to projectiles existing if a player exists.

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

 }

}

public fireWeapon() {

 // release the cannons!

 this.weapon.fire();

Chapter 6 Projectiles!

63

 �// here we shall update out bullet count after we have

fired

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

}

public renderPickup(): void {

 �// let's render our projectile as a pickup to display it

on the screen.

 this.pickup = new Pickup(this.gameInstance, {x: 12, y: 12});

}

...

Our final implementation of our Projectile class should reflect the code

shown in Listing 6-4.

Listing 6-4.  src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class';

export class Projectile {

 public weapon: Phaser.Weapon;

 public bulletCount: number = 10;

 public pickup: Pickup;

 private player: Phaser.Sprite;

 �public constructor(private gameInstance: Phaser.Game,

player?) {

 this.weapon = this.gameInstance.add.weapon(10, 'laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

Chapter 6 Projectiles!

64

 }

 }

 public fireWeapon() {

 this.weapon.fire();

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

 }

 public renderPickup(): void {

 �this.pickup = new Pickup(this.gameInstance, {x: 12,

y: 12});

 }

}

�Making it to the Big Screen
We are missing one small piece of the puzzle so far—that is, when do we

render the pickup on the screen and to what frequency? To see results

quickly we shall be sending the coordinates directly on the client side

when we instantiate our projectile class. Let’s refresh our memories.

All of the game logic will be in the game.ts file. This means that all of

the modules come together with business rules inside of one area. This

makes it easy to see what the rules of the games are.

For a much bigger project it is best to exclude the implementation and

avoid having everything in one giant file. This also means possibly having

the class and the implementation of the game rules on the same directory

but in separate files.

We shall be doing this in our final chapter when we refactor the lot. For

now let’s keep it simple and implement it directly without any abstractions.

Inside of game.class.ts file we will add the code from Listing 6-5.

Chapter 6 Projectiles!

65

Listing 6-5.  src/client/game/game.class.ts

...

protected manageAssets(game): void {

 this.actors = [];

 this.actor = new Player(game);

 �// create a new instance for our projectile which will

render the pickup

 // graphic as well. We went for a composition approach

 const projectile = new Projectile(game);

 // after the instance has been created, just add water :)

 projectile.renderPickup();

...

By adding the new projectile and having control when and where it

renders, we can place a graphic illustrating the type of power pickup the

player can eventually pickup. We still have a long way to go. We are missing

four fundamental features at the moment.

The first missing fundamental is the player having the ability to

pickup the power. This means we should modify the player class with an

assign pickup method. The second fundamental is a way to tell the game

engine that the player and the pickup have overlapped with each other and

to go ahead and assign the pickup to the player who was lucky enough to

get ammo.

Third, we need to update our keyboard class to allow the user to fire

her cannons while pressing the space bar on the keyboard. The final

fundamental is adding some sort of graphic that the player has picked up

the power up. We shall solve this by implementing a HUD.

The HUD will also show the total number of ammo and the remaining

ammo if the player decides to unleash her cannons. We shall solve the first

one pretty easily thanks to Phaser. Perform this operation with an overlap

method that we shall call during the game loop.

Chapter 6 Projectiles!

66

�Overlap
Phaser’s overlap component, as it is referred to in the documentation,

allows a game objects to validate if it overlaps with the bounds of any other

game world objects.

Phaser offers an extremely handy feature to detect when objects

in our game world have overlapped. We shall be using the colliding

feature as well, but for the pickup in particular. We need the overlapping

functionality.

�Gimme the Gun!
Add a new method, assignPickup, to our player.class.ts file. It should reflect

the code in Listing 6-6.

Listing 6-6.  src/client/actors/player/player.class.ts

// import the projectile class

import {Projectile} from '../../props/powers/projectile/

projectile.class';

export class Player {

 public player: Phaser.Sprite;

 public controls: KeyBoardControl;

 public playerState: Map;

 public angularVelocity: number = 300;

 public projectile: Projectile;

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: any) {

 �// the playerInstance type will be picked up by a

future section

 this.createPlayer(this.gameInstance);

Chapter 6 Projectiles!

67

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.addControls();

 this.player = gameInstance.add.sprite(

 100,

 100,

 'shooter-sprite'

);

 this.player.id = '1';

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0],

60, false); 26

 this.player.name = "Your name";

 this.attachPhysics(gameInstance);

 }

 public assignPickup(game, player?): void {

 �// create a new instance of the projectile and

assign it

 �// immediately to the player who has picked up

the projectile

 �this.projectile = new Projectile(game, player.

player);

 �// update the player state indicating that the

player has ammo in

 �// her possession, let's set the ammo to the

projectile's default

 �// bullet count to make the source of truth at

one place

Chapter 6 Projectiles!

68

 �this.playerState.set('ammo', this.projectile.

bulletCount);

 }

 public view(): void {

 this.controls.update()

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.

gameInstance, this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

�Updating the Game
There needs to be a way we can tell Phaser that we have collision enabled

in our gaming world for it to act on it. The following update to our game.

class.ts file will make sure this is possible (see Listing 6-7).

Chapter 6 Projectiles!

69

Listing 6-7.  src/client/game/game.class.ts

import {Player} from '../actors/player/player.class';

import {Projectile} from '../props/powers/projectile/

projectile.class';

declare const window: any;

export class Game {

 private actors: Array;

 private actor: Player;

 �// promote the const to a member variable to be used

anywhere inside of

 // our game class

 private projectile: Projectile;

 protected manageAssets(game): void {

 this.actors = [];

 this.actor = new Player(game, {x: 20, y:20});

 �// change the const to a member variable so we can

access it

 // everywhere within the Game class

 this.projectile = new Projectile(game);

 this.projectile.renderPickup();

 }

 protected gameUpdate(game): void {

 if (this.actor && this.actor.controls) {

 this.actor.view();

 �// check if there is a projectile in the

game-world first

Chapter 6 Projectiles!

70

 �// or the runtime compiler will crash

because it is not

 // synced with our 60fps game render

 if (this.projectile) {

 // implement the overlap check

 game.physics.arcade.overlap(

 this.projectile.pickup.item,

 this.actor.player,

 (pickup, actor) => {

 // once collided.

 �// Assign a projectile

pickup

 // to our actor

 this.actor.assignPickup(

 game, this.actor

);

 pickup.kill();

 }

);

 }

 }

 }

 protected properties(game): void {

 game.stage.disableVisibilityChange = true;

 �game.add.tileSprite(0, 0, game.width, game.height,

'space');

 game.add.sprite(0, 0, 'space');

 game.time.desiredFps = 60;

Chapter 6 Projectiles!

71

 game.renderer.clearBeforeRender = false;

 game.physics.startSystem(Phaser.Physics.ARCADE);

 }

}

Match up your implementation with this one to reflect the latest

changes. This will ensure our game world is listening for collisions. Next

we need to update our keyboard to let the game know when we want to fire

a projectile.

�Updating the Keyboard with a Fire!
Our keyboard needs a way to communicate with our ship. Let’s implement

that next (see Listing 6-8).

Listing 6-8.  src/client/controls/keyboard.class.ts

import {Player} from '../actors/player/player.class';

import {Controls} from ‘./keyboard.model';

export class KeyBoardControl {

 public gameControls: Controls;

 �constructor(private gameInstance: any, private

playerInstance: Player) {

 const space = Phaser.KeyCode.SPACEBAR;

 this.gameControls = {

 cursors:

 �this.gameInstance.input.keyboard.

createCursorKeys(),

 �fireWeapon: this.gameInstance.input.

keyboard.addKey(space)

 }

Chapter 6 Projectiles!

72

 }

 public update(): void {

 if (this.playerInstance.player.alive) {

 �this.playerInstance.playerState.set('fire',

false);

 �const vel = this.playerInstance.

angularVelocity;

 if (this.gameControls.cursors.up.isDown) {

 �this.gameInstance.physics.arcade.

accelerationFromRotation(

 this.playerInstance.player.rotation,

 100,

 �this.playerInstance.player.body.

acceleration);

 this.playerInstance.player.animations

 .play('accelerating');

 �this.playerInstance.playerState.

set('moving', true);

 } else {

 �this.playerInstance.player.body.

acceleration.set(0);

 �this.playerInstance.playerState.

set('moving', false);

 }

 if (this.gameControls.cursors.left.isDown) {

 �this.playerInstance.player.body.

angularVelocity = -vel;

 �} else if (this.gameControls.cursors.right.

isDown) {

Chapter 6 Projectiles!

73

 �this.playerInstance.player.body.

angularVelocity = vel;

 } else {

 �this.playerInstance.player.body.

angularVelocity = 0;

 }

 // add the ability to shoot

 if (this.gameControls.fireWeapon.isDown) {

 if (this.playerInstance.projectile) {

 �// use the projectile class to

fire the weapon

 �// and update it's internal ammo

count

 �this.playerInstance.projectile.

fireWeapon();

 �// update the player state to

firing, this will

 �// be used as a hook in the near

future for our

 // multiplayer game

 this.playerInstance.playerState

 .set('fire', true);

 �// update the bullet count in the

player

 �this.playerInstance.playerState.

set('ammo',

 �this.playerInstance.

projectile.bulletCount);

 } else {

Chapter 6 Projectiles!

74

 �// update the fire map to false

when the user has

 // finished firing

 this.playerInstance.playerState

 .set(‘fire', false);

 }

 }

 }

 }

}

�The HUD
One more thing is we need to do something for the HUD. The HUD, you

ask…? That is game terminology for a heads up display. It is a graphical

interface that games can implement to display information regarding the

player in the game or the game status. The main key for the HUD is to have

information available without the user having to look away from a specific

focal point. If you are interested in learning more about how a HUD came

about in interfaces, read the wiki page (https://en.wikipedia.org/wiki/

Head-up_display).

We shall build the much-needed HUD to represent the user’s current

ammunition and possibly the user name as well. Create a new directory

under the src/client/hud and then create another file called hud.class.ts.

The HUD will then have the properties in Listing 6-9.

Chapter 6 Projectiles!

https://en.wikipedia.org/wiki/Head-up_display
https://en.wikipedia.org/wiki/Head-up_display

75

Listing 6-9.  src/client/hud/hud.class.ts

export class Hud {

 �// will be used to display visually the current state of

the ammo count

 private ammo: Phaser.Text;

 �// we will add a feature where the user will be able to

add her name

 private name: string;

 �// since we are in outer space, we need readable text.

here we are

 // declaring a type of font and the color it will have

 private style: { font, fill };

 constructor() {

 �// declare the style to be used in the name and

ammo text

 this.style = {

 font: '10px Arial',

 fill: '#ffffff'

 }

}

// Once the user has entered their name, we can grab that value

and add

// the text to the player they have just created

public setName(game, player): void {

 this.name = game.add.text(0, 10,

 player.name.substring(0, 6),

 this.style

);

Chapter 6 Projectiles!

76

 player.addChild(this.name);

 }

// the update method will be used as a hook that will keep

rendering the

 // initial ammo count

 public update(ammo): void {

 this.ammo.setText(`${ammo ? ammo : “}`);

 }

 �// an api is handy if we want to assign ammo to a weapon

and a player.

 �// We shall be making use of this method when the user

picks up the

 // projectile

 public setAmmo(game, player, weapon): void {

 if (this.ammo) {

 this.ammo.setText(“);

 }

 �this.ammo = game.add.text(0, 25, weapon.

bulletCount, this.style);

 player.addChild(this.ammo);

 }

}

Once we have the initial implementation in place, we need to

implement the HUD class inside of the player class. This allows the

player to make use of her name and ammo count to display through the

HUD. Inside of our player class we shall update Listing 6-10.

Chapter 6 Projectiles!

77

Listing 6-10.  src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

// import the Hud class to be used inside of player

import {Hud} from '../../hud/hud.class';

export class Player {

 public player: Phaser.Sprite;

 public controls: KeyBoardControl;

 public playerState: Map;

 public angularVelocity: number = 300;

 �// make the Hud public so we can access its APIs outside

of the player

 // encapsulation

 public hud: Hud;

 public projectile: Projectile;

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: any) {

 ...

 }

 public createPlayer(gameInstance): void {

 �// every player needs a Hud. This way we assign a

hud directly to

 �// the player and have access to read and writing

text for this

 // player

 this.hud = new Hud();

Chapter 6 Projectiles!

78

 �// will have the value of 'your name' We shall

build the real name

 // functionality after we make the hud work

 this.hud.setName(gameInstance, this.player);

 ...

 }

 public assignPickup(game, player?): void {

 �this.projectile = new Projectile(game, player.

player);

 �this.playerState.set('ammo', this.projectile.

bulletCount);

 �// when the user picks up an ammo, we shall want

to update the hud

 // through the api we have created.

 �this.hud.setAmmo(game, player.player, this.

projectile);

 }

 public view(): void {

 this.controls.update();

 �// always check first if we have a projectile

instance on

 // the player or we shall get a nasty null pointer

 if (this.projectile) {

 �// take advantage of the game-loop to update

the ammo

 �// count if the player has been using her

projectiles

 �this.hud.update(this.playerState.

get('ammo'));

Chapter 6 Projectiles!

79

 }

 }

 ...

}

The final class with everything together should look like Listing 6-11.

Listing 6-11.  src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

import {Hud} from '../../hud/hud.class';

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public hud: Hud;

 public angularVelocity: number = 300;

 �constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.hud = new Hud();

 this.addControls();

 this.player = gameInstance.add.sprite(

 this.playerInstance.x,

 this.playerInstance.y,

 'shooter-sprite'

Chapter 6 Projectiles!

80

);

 this.player.id = '1';

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0], 60,

false);

 �// will show up as 'your n' because of our name

shortener function

 // found in the hud class

 this.player.name = 'your name';

 this.attachPhysics(gameInstance);

 this.hud.setName(gameInstance, this.player);

 }

 public assignPickup(game, player?): void {

 this.projectile = new Projectile(game, player.player);

 this.hud.setAmmo(game, player.player, this.projectile);

 �this.playerState.set('ammo', this.projectile.bulletCount);

 }

 public view(): void {

 this.controls.update();

 if (this.projectile) {

 this.hud.update(this.playerState.get('ammo'));

 }

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.gameInstance,

this);

 }

Chapter 6 Projectiles!

81

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

�Conclusion
We need things to shoot at, though. Follow me in the next chapter as

we explore the server side and discover how we shall be adding more

spaceships in the galaxy.

Chapter 6 Projectiles!

83© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_7

CHAPTER 7

Hooking Up Our
Server
In this chapter, we shall be discussing how we are going to set up the server

along with socket communication as our internet protocol between the

server and client. We will then create and register the player through the

server and generate pickups/power-ups with random coordinates for the

player to pick up.

Code for this chapter is found on GitHub (https://github.com/

code0wl/Multiplayer-Phaser-game/tree/chapter/6). We have come a

long way space marine! I am afraid we are just halfway through our long

journey.

�On to the Server Side of Things!
Luckily for us, the server is a place where we can use a fairly clean and

straightforward implementation without a heavy use of frameworks and

libraries. Our implementation is so small, we can arguably keep everything

in one file for simplicity. However, I highly encourage you to create

modules if you use this project as a base for your other projects!

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/6
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/6

84

�Models and Events
�Models
Correctly configuring our application by setting up our events and models

from the start saves us a lot of pain down the road by saving us time from

refactoring and reimplementing our logic. Create a new folder and file

inside of our src directory and call it shared. We can name the file models.ts.

// our spaceship model

export interface SpaceShip {

 // we need a name

 name: string;

 // a way of identifying our vessel

 id: string;

 �// x- and y-coordinates we shall be receiving from the

backend

 x: number;

 y: number;

 // the current amount of ammo the player has

 ammo: number; 15

}

�Events
For our events, we shall be doing the same. Inside of the shared folder

located in src, let’s add a file called events.model.ts to encapsulate our

events model. The reason we need an events model is to create the types

of events we shall be using and where those events originate from. Are

they from the player, game, or the server? This file will keep track of these

constants so we can use them freely in our server and client-side code.

Chapter 7 Hooking Up Our Server

85

Listing 7-1.  src/shared/events.model.ts

// Events produced by our game

export class GameEvent {

 // When someone logs in successfully

 �public static authentication: string =

'authentication:successful';

 // When the game is over

 public static end: 'game:over';

 // When the game started

 public static start: 'game:start';

 // When a pickup or power-up has entered the arena

 public static drop: string = 'drop';

}

// Events produced by the Server

export class ServerEvent {

 public static connected: string = 'connection';

 public static disconnected: string = 'disconnect';

}

// Events produced by the player

export class PlayerEvent {

 // When a enemy joins

 public static joined: string = 'player:joined';

 // When the main character joins

 public static protagonist: string = 'player:protagonist';

 // When we ping all players

 public static players: string = 'actors:collection';

Chapter 7 Hooking Up Our Server

86

 // When a player dies or leaves

 public static quit: string = 'player:left';

 // When a player picks up the loot

 public static pickup: string = 'player:pickup';

 // When one gets hit

 public static hit: string = 'player:hit';

 �// When the player moves we need to update the coordinates

 public static coordinates: string = 'player:coordinates';

}

�Setting up Our Static File Server
Inside of our src directory, create a folder called server. After that, create

a file with the name server.ts. We shall begin by first integrating express.js

into our application. Doing so will run the server. The server then can serve

our static files to the client. You can read more about express.js on their

website (http://expressjs.com). We shall cover a subset of functionality

but it is always nice to know what the framework is capable of.

Listing 7-2.  src/server/server.ts

// Express.js needs the following imports to work correctly. It

is also

// appointed in the order at which it needs the imports to be

declared.

const express = require('express');

const app = express();

const http = require('http').Server(app);

Chapter 7 Hooking Up Our Server

http://expressjs.com

87

// We definitely need a static file server. The fileserver's sole

// responsibility is to serve the public directory we have in

our project.

// The public server will be the artefact of our project.

Everything we

// create will be output in a bundled file with external images

and

// isolated in the public folder

app.use(express.static('public'));

// When the user visits our domain with no sub-domain. We shall

serve them

// our index.html file that contains the game and our login screen.

app.get('/', (req, res) => {

 res.sendfile(`./index.html`);

});

// GameServer class will be responsible to contain the logic of

our socket

// implementation.

class GameServer {

 �// The first and necessary public method we shall need is

a way to

 �// connect to a port. Here we are keeping it simple and

using Express'

 // easy http.listen method.

 public connect(port) {

 http.listen(port, () => {

 console.info(`Listening on port ${port}`);

 });

 }

}

Chapter 7 Hooking Up Our Server

88

// create a new instance of our game server

const gameSession = new GameServer();

// then run the connect method with any port of your choosing.

gameSession.connect(3000);

�Socket Connection
The WebSocket protocol we are going to use allows us to interact between

a web client and a web server with lower overheads, in the process paving

the way for real-time data transfer bidirectionally to and from our server.

We can go on and fill out our server code with how to handle

multiplayer functionality. We shall complete the entire server code in small

digestible segments so we can move on and concentrate on a simple login

screen. This will allow the user to login and display their names under

their corresponding spaceships!

Listing 7-3.  src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/

events.model';

import {SpaceShip} from '../shared/models';

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io')(http);

const uuid = require('uuid');

app.use(express.static('public'));

app.get('/', (req, res) => {

 res.sendfile(`./index.html`);

});

Chapter 7 Hooking Up Our Server

89

class GameServer {

 public connect(port) {

 http.listen(port, () => {

 console.info(`Listening on port ${port}`);

 });

 }

 constructor() {

 �// once we have initialized we shall call the

socket in to start

 �// listening to our events that we have yet have

to create

 this.socketEvents();

 }

 private socketEvents() {

 �// called by our class constructor. We shall

leverage this as the

 �// sole place to call all of our events. It is

nothing more than an

 �// indirection for our event's functionality with

a socket layer.

 �// Here we are declaring that if the client is

connected to the

 �// port we are listening on. We want socket To

fire off a

 // connected event

 io.on(ServerEvent.connected, socket => {

 this.attachListeners(socket);

 });

 }

Chapter 7 Hooking Up Our Server

90

 private attachListeners(socket) {

 �// Attach other events that we are interested in

once we know a

 // user is connected to the assigned port

 }

}

const gameSession = new GameServer();

gameSession.connect(3000);

Next, we will implement the event handlers (see Listing 7-4).

Listing 7-4.  src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/

events.model';

import {SpaceShip} from '../shared/models';

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io')(http);

const uuid = require('uuid');

app.use(express.static('public'));

app.get('/', (req, res) => {

 res.sendfile(`./index.html`);

});

Chapter 7 Hooking Up Our Server

91

class GameServer {

 private dirtyFlag: boolean = false;

 constructor() {

 this.socketEvents();

 }

 public connect(port) {

 http.listen(port, () => {

 console.info(`Listening on port ${port}`);

 });

 }

 private socketEvents() {

 io.on(ServerEvent.connected, socket => {

 this.attachListeners(socket);

 });

 }

 private attachListeners(socket) {

 // Create methods corresponding to our listener class

 this.addSignOnListener(socket);

 this.addMovementListener(socket);

 this.addSignOutListener(socket);

 this.addHitListener(socket);

 this.addPickupListener(socket);

 }

 private addHitListener(socket): void {

 // called when a player gets hit

 }

 private addPickupListener(socket): void {

 // called when loot is picked up

 }

Chapter 7 Hooking Up Our Server

92

 private addMovementListener(socket): void {

 // called when player moves

 }

 private addSignOutListener(socket): void {

 // called when user quits or dies

 }

 private addSignOnListener(socket): void {

 // called when user logs on

 }

}

const gameSession = new GameServer();

gameSession.connect(3000);

Our server fully implemented should reflect the information in

Listing 7-5.

Listing 7-5.  src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/

events.model';

import {SpaceShip} from '../shared/models';

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io')(http);

const uuid = require('uuid');

app.use(express.static('public'));

Chapter 7 Hooking Up Our Server

93

app.get('/', (req, res) => {

 res.sendfile(`./index.html`);

});

class GameServer {

 �// A simple Boolean to detect if the game has already been

started

 private dirtyFlag: boolean = false;

 constructor() {

 this.socketEvents();

 }

 public connect(port) {

 http.listen(port, () => {

 console.info(`Listening on port ${port}`);

 });

 }

 private socketEvents() {

 io.on(ServerEvent.connected, socket => {

 this.attachListeners(socket);

 });

 }

 private attachListeners(socket) {

 this.addSignOnListener(socket);

 this.addMovementListener(socket);

 this.addSignOutListener(socket);

 this.addHitListener(socket);

 this.addPickupListener(socket);

 }

Chapter 7 Hooking Up Our Server

94

 private addHitListener(socket) {

 �// If the player has been hit, we get a player hit

event, including the

 �// player id, notifying the others that this specific

player has

 // been struck

 socket.on(PlayerEvent.hit, (playerId) => {

 socket.broadcast.emit(PlayerEvent.hit, playerId);

 });

 }

 private gameInitialized(socket): void {

 // initialize the game if the first user logs in

 if (!this.dirtyFlag) {

 this.dirtyFlag = true;

 �// Generate pickup loot every 10 seconds so the

players can

 // replenish their ammo

 setInterval(() => {

 �const coordinates = {x: Math.floor(Math.

random() * 1024) + 1, y: Math.floor(Math.

random() * 768) + 1};

 socket.emit(GameEvent.drop, coordinates);

 �socket.broadcast.emit(GameEvent.drop,

coordinates);

 }, 10000);

 }

 }

Chapter 7 Hooking Up Our Server

95

 private addPickupListener(socket) {

 �// If the player picks up an item. Emit the pickup

event to notify

 // the front end

 socket.on(PlayerEvent.pickup, (player) => {

 socket.player.ammo = player.ammo;

 �socket.broadcast.emit(PlayerEvent.pickup,

player.uuid);

 });

 }

 private addMovementListener(socket) {

 // Keep track of the player positions

 socket.on(PlayerEvent.coordinates, (coors) => {

 �socket.broadcast.emit(PlayerEvent.coordinates,

{coors: coors, player: socket.player});

 });

 }

 private addSignOutListener(socket): void {

 // Detect if a player has died or has quit the session

 socket.on(ServerEvent.disconnected, () => {

 if (socket.player) {

 �socket.broadcast.emit(PlayerEvent.quit,

socket.player.id);

 }

 });

 }

Chapter 7 Hooking Up Our Server

96

 private addSignOnListener(socket): void {

 // Detect if a player has joined the session

 �socket.on(GameEvent.authentication, (player, gameSize)

=> {

 �socket.emit(PlayerEvent.players, this.

getAllPlayers());

 this.createPlayer(socket, player, gameSize);

 �socket.emit(PlayerEvent.protagonist,

socket.player);

 �socket.broadcast.emit(PlayerEvent.joined,

socket.player);

 this.gameInitialized(socket);

 });

 }

 private createPlayer(socket, player: SpaceShip,

 windowSize: { x, y }): void {

 �// here is where the magic happens. We create a new

player and add

 // the following properties to her

 socket.player = {

 name: player.name,

 id: uuid(),

 ammo: 0,

 x: this.randomInt(0, windowSize.x),

 y: this.randomInt(0, windowSize.y)

 };

 }

 private get players(): number {

 // a method for collecting the total player length

 return Object.keys(io.sockets.connected).length;

 }

Chapter 7 Hooking Up Our Server

97

 private getAllPlayers(): Array<SpaceShip> {

 �// We need a way to notify all of the players. Using

this method we

 �// can always get all of the current players logged

into our session

 const players = [];

 Object.keys(io.sockets.connected).map((socketID) => {

 �const player = io.sockets.connected[socketID].

player;

 if (player) {

 players.push(player);

 }

 });

 return players;

 }

 private randomInt(low, high) {

 �// for generating random coordinates, we shall be using

this one a

 �// lot as we are generating both random coordinates for

our players

 // and our loot

 return Math.floor(Math.random() * (high - low) + low);

 }

}

const gameSession = new GameServer();

gameSession.connect(3000);

Chapter 7 Hooking Up Our Server

98

�Back to the Client
This, of course, bakes in a lot of new functionality that our game can

muster. Let’s head back and update our initial game file located on the

client side.

Listing 7-6.  src/client/game/game.ts

import {Player} from '../actors/player/player.class';

import {Projectile} from '../props/powers/projectile/

projectile.class';

// import our created events

import {GameEvent, PlayerEvent} from '../../shared/events.

model';

declare const window: any;

export class Game {

 private actors: Array<Player>;

 private actor: Player;

 private projectile: Projectile;

 // create a new socket io session

 constructor() {

 window.socket = io.connect();

 }

 protected manageAssets(game): void {

 this.actors = [];

 �// Once the server has detected that a new player has

joined we

 �// shall notify our client to create a new player for

us on

Chapter 7 Hooking Up Our Server

99

 window.socket.on(PlayerEvent.joined, (player) => {

 this.actors.push(new Player(game, player));

 });

 �// Once you have joined (the protagonist) we need a

special event

 �// for you. This so we can determine that you are the

main player in

 // your world and the others are your enemy

 window.socket.on(PlayerEvent.protagonist, (player) => {

 this.actor = new Player(game, player);

 this.actors.push(this.actor);

 });

 window.socket.on(PlayerEvent.players, (players) => {

 �// If a new player or a returning player joins our

game. We

 �// shall collect all of the players and their

current states and

 �// update their clients with the data. This way

what he is�

 �// seeing is not any different to what others are

seeing

 players.map((player: any) => {

 const enemy = new Player(game, player);

 if (player.ammo) {

 enemy.assignPickup(game, enemy);

 }

 this.actors.push(enemy);

 });

 });

Chapter 7 Hooking Up Our Server

100

 window.socket.on(PlayerEvent.quit, (playerId) => {

 �// If a player dies or quits, we call the following

actions on

 // the actors array.

 �// First we filter who quit or died and then move

to removing

 // them from the game world

 this.actors

 .filter(actor => actor.player.id === playerId)

 .map(actor => actor.player.body.sprite.destroy());

 });

 window.socket.on(GameEvent.drop, (coors) => {

 �// our server will be causing a loot drop every 10

seconds. When

 // this happens we want to act upon it.

 �// if there is already a loot in our world, we

shall remove it

 // before placing the new one.

 if (this.projectile) {

 this.projectile.pickup.item.kill();

 }

 �// create a new loot every 10 seconds and pass the

coordinates

 // sent by the server

 this.projectile = new Projectile(game);

 this.projectile.renderPickup(coors);

 });

Chapter 7 Hooking Up Our Server

101

 window.socket.on(PlayerEvent.hit, (enemy) => {

 �// similar to when a player quits we detect who the

player was

 �// and reload their client so they get brought back

into the

 // game to try again if they dare face you again!

 this.actors

 �.filter(actor => this.actor.player.id === enemy)

 .map(actor => window.location.reload());

 });

 window.socket.on(PlayerEvent.pickup, (player) => {

 �// Once the projectile has been picked up, we shall

assign it to

 // the user that has picked it up

 this.actors

 .filter(actor => actor.player.id === player)

 .map(actor => actor.assignPickup(game, actor));

 // kill the pick for the other players as well

 this.projectile.pickup.item.kill();

 });

 window.socket.on(PlayerEvent.coordinates, (player) => {

 �// This is the heart of our multiplayer game.

Because here we

 �// decided to keep track of all of the other

players actions in

 �// our gameworld, if a new player joins, he or she

needs to be

 �// aware of who is already in the game world and

what their ammo

Chapter 7 Hooking Up Our Server

102

 �// levels are. We in the industry call this the

current state.

 this.actors.filter((actor: Player) => {

 if (actor.player.id === player.player.id) {

 actor.player.x = player.coors.x;

 actor.player.y = player.coors.y;

 actor.player.rotation = player.coors.r;

 // Update the player hud

 if (actor.projectile) {

 actor.hud.update(player.coors.a);

 }

 // detect if the player is shooting

 if (player.coors.f) {

 actor.projectile.fireWeapon();

 }

 if (player.coors.m) {

 �// if the enemy player is moving, we

shall add the

 �// moving animation to their ship. This

way in our

 �// screen we do not see him moving

about without any

 // thrusters!

 �actor.player.animations.

play('accelerating');

 }

 }

 });

 });

 }

Chapter 7 Hooking Up Our Server

103

 protected gameUpdate(game): void {

 �// This method is called through the Phaser engine

class we

 �// created before. This means that it is running an

endless loop to

 �// update in real time what the characters are up to.

Someone needs

 // to keep an eye on them!

 if (this.actor && this.actor.controls) {

 this.actor.view();

 �// During the loop we shall constantly be emitting

the state of

 �// our player. Once we have a change in our

coordinates or if we

 �// are firing, a new event is triggered which will

in turn notify

 �// the server whom will notify the other connected

clients

 window.socket.emit(PlayerEvent.coordinates, {

 x: this.actor.player.position.x,

 y: this.actor.player.position.y,

 r: this.actor.player.rotation,

 f: this.actor.playerState.get('fire'),

 m: this.actor.playerState.get('moving'),

 a: this.actor.playerState.get('ammo')

 });

 �// In the loop we shall also check if the player

collides with

 �// another player. If they do, we shall make the

arcade engine

Chapter 7 Hooking Up Our Server

104

 �// do it's default action, which is to let them

bounce off of

 �// each other because of the player properties we

added when

 // creating the player

 game.physics.arcade.collide(

 this.actor.player,

 this.actors.map(actor => actor.player)

);

 �// If the bullet collides with a player, we need a

way to

 �// tell both the player and the bullet to destroy

themselves.

 �// Here we are matching whether if the fired bullet

collided with an

 �// enemy based on the id of that enemy. If so

destroy both

 �// sprites. Once destroyed they will notify the

server so every

 // client will be updated of the event.

 if (this.actor.projectile) {

 game.physics.arcade.collide(

 this.actor.projectile.weapon.bullets,

 this.actors.map((actor) => actor.player),

 (enemy, projectile) => {

 if (enemy.id !== this.actor.player.id) {

 // make the player explode

 �this.actor.projectile.

kaboom(projectile);

 �// update the server about the

player who has

Chapter 7 Hooking Up Our Server

105

 // been hit and pass along the id

 �window.socket.emit(PlayerEvent.hit,

enemy.id);

 // destroy the sprites in the view

 projectile.kill();

 enemy.kill();

 }

 }

);

 }

 �// this time we shall be using the overlap to

detect if the

 // player has picked up a projectile

 �// first we detect which player it is who has

overlapped with

 // the pickup.

 // then we notify all of the listeners who it was.

 // lastly we destroy the pickup

 if (this.projectile) {

 �game.physics.arcade.overlap(this.projectile.

pickup.item,

 this.actors.map((actor) => actor.player),

 (pickup, actor) => {

 this.actors

 .filter(actorInstance =>

 �actor.id === actorInstance.

player.id

)

Chapter 7 Hooking Up Our Server

106

 .map(actorInstance =>

 �actorInstance.assignPickup

(game, actorInstance)

);

 window.socket.emit(PlayerEvent.pickup, {

 uuid: actor.id,

 ammo: true

 });

 pickup.kill();

 });

 }

 }

 }

 protected properties(game): void {

 game.stage.disableVisibilityChange = true;

 �game.add.tileSprite(0, 0, game.width, game.height,

'space');

 game.add.sprite(0, 0, 'space');

 game.time.desiredFps = 60;

 game.renderer.clearBeforeRender = false;

 game.physics.startSystem(Phaser.Physics.ARCADE);

 }

}

�Marvelous Explosions!
This would mean that we have a semi-functioning game! But remember

how we wanted to kill the player and we have implemented a kaboom

method. Well the player does not have this method yet, so let’s update the

player to be allowed to be destroyed in a marvelous explosion! Inside of

Chapter 7 Hooking Up Our Server

107

our props folder, create a new directory called “explosion.” Inside of the

newly created directory, create a file called explosion.class.ts.

Listing 7-7.  src/client/props/explosion/explosion.class.ts

export class Explode {

 // the explosions property will be a phaser sprite

 private explosions: Phaser.Sprite;

 constructor(gameInstance, projectile) {

 �// let's add the sprite and give it a graphic that

we already have

 // in our start project called kaboom

 �this.explosions = gameInstance.add.sprite(64, 64,

'kaboom');

 �// We also have an animation that will play this

kaboom! :D

 this.explosions.animations.add('kaboom');

 �// We shall need an offset to center the explosion

on our

 //sprites

 this.explosions.reset(projectile.body.x + -20,

 projectile.body.y - 30);

 �// Phaser offers us a play method for animations

to be played and

 �// will commence as soon as the explode class is

created

 �this.explosions.animations.play('kaboom', 15,

false);

 �// after half a second of the animation playing we

shall

Chapter 7 Hooking Up Our Server

108

 �// kill the sprite to release its burden on our

memory

 setTimeout(() => {

 this.explosions.kill();

 }, 500);

 }

}

Back in our projectile class, we want to look at different usages of

projectiles to determine how they impact a certain enemy or object.

Implementing kaboom, which is an explosion with fire in space… hum,

means that all of our ships will destroy the same way, but what if there was

another projectile? Wouldn’t it be awesome if that projectile had another

way of killing our targets? Let’s say a vaporizing ray? With that reasoning in

mind, let’s create the kaboom method in the projectile class (see Listing 7-8).

Listing 7-8.  src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class';

export class Projectile {

 public weapon: Phaser.Weapon;

 public bulletCount: number = 10;

 public pickup: Pickup;

 private player: Phaser.Sprite;

 �public constructor(private gameInstance: Phaser.Game,

player?) {

 �this.weapon = this.gameInstance.add.weapon(10,

'laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

Chapter 7 Hooking Up Our Server

109

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

 }

 }

 public fireWeapon() {

 this.weapon.fire();

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

 }

 public renderPickup(): void {

 �this.pickup = new Pickup(this.gameInstance,

{x: 12, y: 12});

 }

 // our kaboom class is fairly short and straightforward

 public kaboom(projectile) {

 �// all we need is a new class instance with the

following arguments

 new Explode(this.gameInstance, projectile);

 }

}

�Conclusion
To make our game work, we need to add one more thing. There are a lot

of features we are adding quickly, but this is the last one, as it will help our

user identify their spaceship on-screen! Follow me to the next section with

the mission of telling the galaxy your name.

Chapter 7 Hooking Up Our Server

111© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_8

CHAPTER 8

The World Should
Remember Your Name
In this chapter, we shall be discussing –the login screen for acquiring the

user name. The game code for this chapter is found on GitHub (https://

github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/7).

You have rid the galaxy of foes and evil-doers, but there is no way of ever

knowing your name! We are not masked crusaders, we are people and

want credit where it’s due dammit! We need an input field where the

user can enter their name into our game, so we can save it somewhere

and display it under the spaceship. Hmmm. Consider the following

proposition.

�Login
We build a login scene, where the user is met with an input field where

she can type her name. After that, she will then be presented with the

galaxy with her name right under her ship. In this final chapter, we shall be

implementing such a login screen.

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/7
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/7

112

Listing 8-1.  src/client/scenes/login.class.ts

// import our game event model so we can use it to notify when

the user has

// been logged into our game!

import {GameEvent} from '../../shared/events.model';

declare const window: any;

export class LoginScene {

 public formContainer: HTMLDivElement;

 public loginPage: HTMLDivElement;

 public form: HTMLDivElement;

 public loginForm: HTMLFormElement;

 public input: HTMLInputElement;

 public button: HTMLButtonElement;

 private name: any;

 constructor() {

 this.createForm()

 }

 private createForm() {

 �// fairly straightforward DOM manipulation syntax for

our form. Feel

 // free to use this one or create your own sassy form

 this.formContainer = document.createElement('div');

 this.formContainer.className = 'form-container';

 this.loginPage = document.createElement('div');

 this.loginPage.className = 'login-page';

 this.form = document.createElement('div');

 this.form.className = 'form';

Chapter 8 The World Should Remember Your Name

113

 this.loginForm = document.createElement('form');

 this.input = document.createElement('input');

 this.input.setAttribute('type', 'text');

 this.input.placeholder = 'username';

 this.input.id = 'your-name';

 this.input.focus();

 this.button = document.createElement('button');

 this.button.innerText = 'Join game';

 �this.button.addEventListener('click', (e) => this.

createPlayer(e));

 this.loginForm.appendChild(this.input);

 this.loginForm.appendChild(this.button);

 this.loginPage.appendChild(this.form);

 this.form.appendChild(this.loginForm);

 this.formContainer.appendChild(this.loginPage);

 document.body.appendChild(this.formContainer);

 }

 private createPlayer(e): void {

 �// once the player has been created. We want to remove

the login

 // screen and show the game

 e.preventDefault();

 // remove the login screen

 this.toggleLogin();

 // save the name value the user entered

 const name = this.input.value;

Chapter 8 The World Should Remember Your Name

114

 // ship the following payload to the server.

 window.socket.emit(GameEvent.authentication, {name}, {

 x: window.innerWidth,

 y: window.innerHeight

 });

 }

 �// the private method called within our class that

toggles the

 // visibility of our login form

 private toggleLogin(): void {

 this.formContainer.classList.toggle('visible');

 }

}

We will be implementing this login screen also in our “game.ts” file.

Let’s do so now! :))))

Listing 8-2.  src/client/game/game.ts

import {Player} from '../actors/player/player.class';

import {Projectile} from '../props/powers/projectile/

projectile.class';

import {GameEvent, PlayerEvent} from '../../shared/events.

model';

declare const window: any;

export class Game {

 public login: LoginScene;

 private actors: Array<Player>;

 private actor: Player;

 private projectile: Projectile;

Chapter 8 The World Should Remember Your Name

115

 constructor() {

 window.socket = io.connect();

 // create the new instance for the login screen

 this.login = new LoginScene();

 }

 ...

}

Since we are now rendering the pickup from the server, we need to

update our projectile class as well. Instead of passing the hard object we

can literally pass in the real coordinates!

Listing 8-3.  src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class';

export class Projectile {

 public weapon: Phaser.Weapon;

 public bulletCount: number = 10;

 public pickup: Pickup;

 private player: Phaser.Sprite;

 �public constructor(private gameInstance: Phaser.Game,

player?) {

 �this.weapon = this.gameInstance.add.weapon(10,

'laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

 }

 }

Chapter 8 The World Should Remember Your Name

116

 public fireWeapon() {

 this.weapon.fire();

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

 }

 public renderPickup(coors): void {

 �// pass in the coors we get from the server through our

game class

 this.pickup = new Pickup(this.gameInstance, coors);

 }

 public kaboom(projectile) {

 new Explode(this.gameInstance, projectile);

 }

}

While we are at it, let’s update our player class to also take the real data

and not the stub we created earlier.

Listing 8-4.  src/client/actors/player/player.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

import {Hud} from '../../hud/hud.class';

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public hud: Hud;

 public angularVelocity: number = 300;

Chapter 8 The World Should Remember Your Name

117

 �constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.hud = new Hud();

 this.addControls();

 // update to include the playerInstance instead

 �this.player = gameInstance.add.sprite(this.

playerInstance.x, this.playerInstance.y,

'shooter-sprite');

 // update to include the playerInstance instead

 this.player.id = this.playerInstance.id;

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0], 60,

false);

 // update to include the playerInstance instead

 this.player.name = this.playerInstance.name;

 this.attachPhysics(gameInstance);

 this.hud.setName(gameInstance, this.player);

 }

 public assignPickup(game, player?): void {

 this.projectile = new Projectile(game, player.player);

 this.hud.setAmmo(game, player.player, this.projectile);

 �this.playerState.set('ammo', this.projectile.

bulletCount);

 }

Chapter 8 The World Should Remember Your Name

118

 public view(): void {

 this.controls.update();

 if (this.projectile) {

 this.hud.update(this.playerState.get('ammo'));

 }

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.gameInstance,

this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

It would be nice if we also added an effect when any item has

entered the game world. This way we discern much easier what has been

changed in our game world. Inside of our props folder, let’s create a new

directory called particle. Inside the new folder create a new file called

“particle.class.ts”.

Chapter 8 The World Should Remember Your Name

119

Listing 8-5.  src/client/props/particle/particle.class.ts

export class Particle {

 �// add a member to the particle class that keeps the

instance of the

 // phaser sprite.

 private particle: Phaser.Sprite;

 �constructor(gameInstance: Phaser.Game, sprite: Phaser.

Sprite) {

 �// we already have graphic and animation waiting, so

let's use that // one.

 this.particle = gameInstance.add.sprite(64, 64, 'dust');

 this.particle.animations.add('dust');

 �this.particle.reset(sprite.body.x + -20, sprite.

body.y - 30);

 this.particle.animations.play('dust', 16, false);

 setTimeout(() => {

 // after the animation we can just kill the sprite.

 this.particle.kill();

 }, 1000);

 }

}

Once the particle class is in place, we need to rationalize where and

when we shall be using it. I think personally it would work well when a new

player has joined the game but also when the server generates a loot drop.

Your final player class will look like this:

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

import {Hud} from '../../hud/hud.class';

Chapter 8 The World Should Remember Your Name

120

import {Particle} from '../../props/particle/particle.class';

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public hud: Hud;

 public angularVelocity: number = 300;

 private particle: Particle;

 �constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.hud = new Hud();

 this.addControls();

 �this.player = gameInstance.add.sprite(this.

playerInstance.x,

 this.playerInstance.y, 'shooter-sprite');

 this.player.id = this.playerInstance.id;

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0], 60,

false);

 this.player.name = this.playerInstance.name;

 this.attachPhysics(gameInstance);

 this.hud.setName(gameInstance, this.player);

 this.particle = new Particle(gameInstance, this.player);

 }

Chapter 8 The World Should Remember Your Name

121

 public assignPickup(game, player?): void {

 this.projectile = new Projectile(game, player.player);

 this.hud.setAmmo(game, player.player, this.projectile);

 �this.playerState.set('ammo', this.projectile.

bulletCount);

 }

 public view(): void {

 this.controls.update();

 if (this.projectile) {

 this.hud.update(this.playerState.get('ammo'));

 }

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.gameInstance,

this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

Chapter 8 The World Should Remember Your Name

122

We now need to add the same particle implementation for both the

projectile and pickup classes.

Listing 8-6.  src/client/props/powers/projectile/projectile.class.ts

import {Explode} from '../../explosion/explosion.class';

import {Pickup} from '../pickup/pickup.class';

import {Particle} from '../../particle/particle.class';

export class Projectile {

 public weapon: Phaser.Weapon;

 public bulletCount: number = 10;

 public pickup: Pickup;

 private player: Phaser.Sprite;

 private gameInstance: Phaser.Game;

 private particle: Particle;

 public constructor(gameInstance, player?) {

 this.gameInstance = gameInstance;

 �this.weapon = gameInstance.add.weapon(this.bulletCount,

'laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

 }

 }

 public fireWeapon() {

 this.weapon.fire();

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

 }

Chapter 8 The World Should Remember Your Name

123

 public renderPickup(coors): void {

 this.pickup = new Pickup(this.gameInstance, coors);

 �this.particle = new Particle(this.gameInstance, this.

pickup.item);

 }

 public kaboom(projectile) {

 new Explode(this.gameInstance, projectile);

 }

}

Do the same for the pickup class by adding the particle inside of the

constructor.

Listing 8-7.  src/client/props/powers/pickup/pickup.class.ts

import {Particle} from '../../particle/particle.class';

import * as Phaser from 'phaser-ce';

export class Pickup {

 public item: Phaser.Sprite;

 private particle: Particle;

 constructor(game, coors) {

 this.item = game.add.sprite(coors.x, coors.y, 'pickup');

 game.physics.enable(this.item, Phaser.Physics.ARCADE);

 this.particle = new Particle(game, this.item);

 }

}

Chapter 8 The World Should Remember Your Name

124

�Congratulations!
Running npm start on your initial directory will launch the game and you

can play and explore by adding new features! The next chapter is all based

on the Phaser community and how you may leverage it to make awesome

game experiences in the near future!

Chapter 8 The World Should Remember Your Name

125© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_9

CHAPTER 9

Bonus! Refactoring &
Asteroids
For the diehards in us who want to learn to add another complex feature,

this one is for you! In the upcoming chapter we shall learn to refactor our

functionality for reusability while implementing comets on the server side.

We shall also render the comets on the client side and update the player

class to implement its own explode method.

�Adding More Features
Let’s add a new feature that adds a new level of threat to our galaxy in the

form of giant asteroids. We shall be keeping our implementation fairly

simple, considering complexity could increase rather quickly.

�Refactoring
Refactoring is a crucial part of software engineering. The reason is we need

software to work within a specific deadline, or we need to build for the

features we are supporting now. After a while, we get to implement new

features or enhance existing functionalities.

126

That’s when it might dawn on us that we might want to do a bit of

refactoring to make a class leaner, cleaner, or more reusable. This is the

case with our explode class that is located directly in the projectile class.

If a comet or a projectile hits our player, we want the ship to explode.

Following this new rationalization, we can go ahead and refactor our

projectile class to look like Listing 9-1.

Listing 9-1.  src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class';

import {Particle} from '../../particle/particle.class';

export class Projectile {

 public weapon: Phaser.Weapon;

 public bulletCount: number = 10;

 public pickup: Pickup;

 private player: Phaser.Sprite;

 private gameInstance: Phaser.Game;

 public constructor(gameInstance, player?) {

 this.gameInstance = gameInstance;

 �this.weapon = gameInstance.add.weapon(this.bulletCount,

'laser');

 this.weapon.fireLimit = this.bulletCount;

 this.weapon.fireRate = 1000;

 if (player) {

 this.player = player;

 this.weapon.trackSprite(this.player, 10, 0, true);

 }

 }

Chapter 9 Bonus! Refactoring & Asteroids

127

 public fireWeapon() {

 this.weapon.fire();

 �this.bulletCount = this.weapon.fireLimit - this.weapon.

shots;

 }

 public renderPickup(coors): void {

 this.pickup = new Pickup(this.gameInstance, coors);

 new Particle(this.gameInstance, this.pickup.item);

 }

}

We moved out the kaboom method, and this will be placed inside of

the player class for controlling how the player would get destroyed if such

an event occurs!

Listing 9-2.  src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

import {Hud} from '../../hud/hud.class';

import {Particle} from '../../props/particle/particle.class';

import {SpaceShip} from '../../../shared/models';

import {Explode} from '../../props/explosion/explosion.class';

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

 public hud: Hud;

 public angularVelocity: number = 300;

 private particle: Particle;

Chapter 9 Bonus! Refactoring & Asteroids

128

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: SpaceShip) {

 this.createPlayer(this.gameInstance);

 this.playerState = new Map();

 }

 public createPlayer(gameInstance): void {

 this.hud = new Hud();

 this.addControls();

 �this.player = gameInstance.add.sprite(this.

playerInstance.x,

 this.playerInstance.y, 'shooter-sprite');

 this.player.id = this.playerInstance.id;

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0], 60,

false);

 this.player.name = this.playerInstance.name;

 this.attachPhysics(gameInstance);

 �// we will have a destroy method for the player that

calls the

 �// explode and kills the player for clean up afterward.

This is

 �// exactly what we want to express if the player

happens to be

 // killed by anything

 this.player.destroy = () => {

 new Explode(this.gameInstance, this.player);

 this.player.kill();

 }

 this.hud.setName(gameInstance, this.player);

 this.particle = new Particle(gameInstance, this.player);

 }

Chapter 9 Bonus! Refactoring & Asteroids

129

 public assignPickup(game, player?): void {

 this.projectile = new Projectile(game, player.player);

 this.hud.setAmmo(game, player.player, this.projectile);

 this.playerState.set('ammo', this.projectile.bulletCount);

 }

 public view(): void {

 this.controls.update();

 if (this.projectile) {

 this.hud.update(this.playerState.get('ammo'));

 }

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.gameInstance,

this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

That should cover the part of our classes in terms of refactoring. We

need to change our “game.class.ts” file to reflect these changes as well, or our

game will just break since it has no idea we just had a refactoring occurrence.

Chapter 9 Bonus! Refactoring & Asteroids

130

�Asteroids!
Navigate to inside of the props folder, and create the following folder called

“asteroid.” Inside of asteroid create a class called “astroid.class.ts”.

Listing 9-3.  src/client/props/asteroid/asteroid.class.ts

export class Asteroid {

 public asteroid: Phaser.Sprite;

 constructor(gameInstance) {

 �this.asteroid = gameInstance.add.sprite(0, -128,

'asteroid');

 this.asteroid.animations.add('asteroid');

 �this.asteroid.animations.play('asteroid', 10, true,

false);

 this.attachPhysics(gameInstance);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.asteroid, Phaser.

Physics.ARCADE);

 this.asteroid.body.collideWorldBounds = false;

 this.asteroid.body.bounce.setTo(0);

 this.asteroid.body.gravity.y = 0;

 this.asteroid.body.drag.set(80);

 this.asteroid.body.maxVelocity.set(100);

 this.asteroid.body.immovable = true;

 }

}

Chapter 9 Bonus! Refactoring & Asteroids

131

As you can see, this is not any new knowledge. We have been doing this

for all the other props and other classes located throughout the project. It’s

an achievement to you that you already know this crucial creation process

of our Phaser sprites. Once we have the class, we need to update our game.

class.ts with the functionality that the asteroids will bring to the table.

Listing 9-4.  src/client/game/game.class.ts

// ...

// import the asteroid class

import {Asteroid} from '../props/asteroid/asteroid.class';

// since our focus is not getting the Window object typed, we

can leave this as any, as it removes the overhead of typing it.

declare const window: any;

export class Game {

 // ...

 // Add a type to a null object called comet

 private comet: Asteroid;

 protected manageAssets(game): void {

 // ...

 �// create a new instance of a comet to match the server

if a new

 // player joined the room

 this.comet = new Asteroid(game);

 �// Add a new method to listen to the create event from

the server so

 �// we can create and sync the asteroid field for all of

the clients

 window.socket.on(CometEvent.create, () => {

 this.comet = new Asteroid(game);

 });

Chapter 9 Bonus! Refactoring & Asteroids

132

 �// once the asteroid exists, we need to update its

coordinates

 �// throughout the game instance. We shall achieve that

with this

 // method, which will get a direct feed from our server

 window.socket.on(CometEvent.coordinates, (coors) => {

 if (this.comet) {

 this.comet.asteroid.x = coors.x;

 this.comet.asteroid.y = coors.y;

 }

 });

 �// lastly we add the destroy so when the asteroid is

out of bounds,

 �// we shall call this method to destroy the comet in

order to

 // instantiate a new one

 window.socket.on(CometEvent.destroy, () => {

 if (this.comet) {

 this.comet.asteroid.kill();

 this.comet = null;

 }

 });

 // ...

 }

 protected gameUpdate(game): void {

 // ...

 �// lastly we need to add a simple detector to see if

the comet has

Chapter 9 Bonus! Refactoring & Asteroids

133

 // collided with any user along its way down the screen

 if (this.comet) {

 game.physics.arcade.collide(this.comet.asteroid,

 �this.actors.map(actor => actor.player), (comet,

actor) => {

 if (actor.id !== this.actor.player.id) {

 �// if the player hit is not our current

player, then

 �// emit the topic and the actor it did

hit for their

 // screen to go back to login and

 // remove all states

 �window.socket.emit(PlayerEvent.hit,

actor.id);

 } else {

 �// otherwise just bring us to the login

screen and

 // remove all states

 window.location.reload();

 }

 });

 }

 // ...

 }

 // ...

}

Since we are already using “comet”-specific events as topics for our

subscription callback using sockets, we can go ahead and update our

models to supports these constants.

Chapter 9 Bonus! Refactoring & Asteroids

134

Listing 9-5.  src/shared/events.model.ts

export class GameEvent {

 �public static authentication: string =

'authentication:successful';

 public static end: 'game:over';

 public static start: 'game:start';

 public static drop: string = 'drop';

}

export class CometEvent {

 public static create: string = 'comet:create';

 public static destroy: string = 'comet:destroy';

 public static coordinates: string = 'comet:coordinates';

}

export class ServerEvent {

 public static connected: string = 'connection';

 public static disconnected: string = 'disconnect';

}

export class PlayerEvent {

 public static joined: string = 'player:joined';

 public static protagonist: string = 'player:protagonist';

 public static players: string = 'actors:collection';

 public static quit: string = 'player:left';

 public static pickup: string = 'player:pickup';

 public static hit: string = 'player:hit';

 public static coordinates: string = 'player:coordinates';

}

The last step we should take is to update our server to make the

appropriate calls.

Chapter 9 Bonus! Refactoring & Asteroids

135

Listing 9-6.  src/server/server.ts

// ...

import {

 CometEvent,

 GameEvent,

 PlayerEvent,

 ServerEvent

} from './../shared/events.model';

class GameServer {

 // ...

 private gameHasStarted: boolean = false;

 // check if the comet is already in the game instance

 private hasComet: boolean = false;

 private gameInitialized(socket): void {

 if (!this.gameHasStarted) {

 this.gameHasStarted = true;

 �// once the game has started for the first time,

called the

 �// create comet class which takes two arguments.

The socket

 �// instance and the interval we want to check if we

need to add

 // a new comet/asteroid to our game

 this.createComet(socket, 1000);

 // ...

 }

 }

Chapter 9 Bonus! Refactoring & Asteroids

136

 private createComet(socket, interval: number) {

 �// here we have an interval that loops every 1 second

to check if we

 // need to add a comet to our game

 setInterval(() => {

 if (!this.hasComet) {

 �// if there isn't a comet, add one! Then notify

all of the

 �// channels that we have added this comet.

Later we update

 // the comet coordinates

 this.hasComet = true;

 socket.emit(CometEvent.create);

 socket.broadcast.emit(CometEvent.create);

 this.updateComet(socket);

 }

 }, interval);

 }

 private updateComet(socket) {

 �// double-check to see if we do have a comet. Bit of

defensive programming

 if (this.hasComet) {

 �// Generate random numbers, but always make sure

these are

 �// offscreen, or the user will see a comet for a

split-second

 // on-screen and then disappear to the correct spot.

 �let asteroidCoordinates = this.

generateRandomCoordinates();

Chapter 9 Bonus! Refactoring & Asteroids

137

 �// Move the comet offscreen based on the sprite's

initial height

 asteroidCoordinates.y = -128;

 const update = setInterval(() => {

 �// after 25 milliseconds we update the comet's

x- and y-values

 �// to illustrate an animation in time. This

allows for

 �// smooth scrolling from the top to the bottom

of the screen.

 asteroidCoordinates.y += 1;

 asteroidCoordinates.x -= 1;

 �// broadcast to the clients about the right

coordinates

 �socket.emit(CometEvent.coordinates,

asteroidCoordinates);

 socket.broadcast.emit(

 CometEvent.coordinates,

 asteroidCoordinates

);

 �// in this loop we shall be checking if we need

to ever

 �// destroy the comet as well. This makes it

more efficient

 �// for us as the life cycle is all in one place.

 �this.destroyComet(asteroidCoordinates, socket,

update)

 }, 25);

 }

 }

Chapter 9 Bonus! Refactoring & Asteroids

138

 �private destroyComet(asteroidCoordinates, socket, update):

void {

 �// if we detect that the comet is out of bounds. We

then move in to

 �// change the comet boolean to false. This will be

caught by our

 �// interval trigger to create a new one, and we reset

the boolean

 // value to true.

 if (asteroidCoordinates.x < -128) {

 this.hasComet = false;

 �// update the clients with the destroy method for

them to remove

 // their sprites accordingly.

 socket.emit(CometEvent.destroy);

 socket.broadcast.emit(CometEvent.destroy);

 �// clear the update interval to free up memory and

also to not

 �// have two or more different streams of asteroids

being

 �// generated, we only want one of these. Not

removing the

 �// interval will result in the server mismatching

with the

 �// client and the client flickering between the

newly created

Chapter 9 Bonus! Refactoring & Asteroids

139

 // instances of comets. A buggy experience indeed

 global.clearInterval(update);

 }

 }

 // ...

}

Nice! If all went according to plan, you now have killer asteroids/

comets or giant rocks of doom waiting to crush your little ship as soon

as you touch them! We can better distinguish our player from the enemy

players as well in our game.

Let’s add a special sprite for the protagonist, which is the blue ship we

have. But since every player from their perspective will be a protagonist, it’s

good to have control of who will get the blue or the red ship! Grab the player.

class.ts file and let’s make the following modifications (see Listing 9-7).

Listing 9-7.  src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class';

import {Projectile} from '../../props/powers/projectile/

projectile.class';

import {Hud} from '../../hud/hud.class';

import {Particle} from '../../props/particle/particle.class';

import {SpaceShip} from '../../../shared/models';

import {Explode} from '../../props/explosion/explosion.class';

export class Player {

 public player: Phaser.Sprite;

 public projectile: Projectile;

 public controls: KeyBoardControl;

 public playerState: Map<string, boolean | number>;

Chapter 9 Bonus! Refactoring & Asteroids

140

 public hud: Hud;

 public angularVelocity: number = 300;

 private particle: Particle;

 // add the type argument here as well!

 constructor(private gameInstance: Phaser.Game,

 public playerInstance: SpaceShip, type) {

 // pass the type as a value

 this.createPlayer(this.gameInstance, type);

 this.playerState = new Map();

 }

 �// We shall pass the type argument to the creation of the

player through

 // this method

 public createPlayer(gameInstance, type): void {

 this.hud = new Hud();

 this.addControls();

 �// modify the sprite form we shall be taking with a

type argument

 �this.player = gameInstance.add.sprite(this.

playerInstance.x,

 this.playerInstance.y, type);

 this.player.id = this.playerInstance.id;

 this.player.anchor.setTo(0.5, 0.5);

 �this.player.animations.add('accelerating', [1, 0], 60,

false);

 this.player.name = this.playerInstance.name;

 this.attachPhysics(gameInstance);

Chapter 9 Bonus! Refactoring & Asteroids

141

 this.player.destroy = () => {

 new Explode(this.gameInstance, this.player);

 this.player.kill();

 }

 this.hud.setName(gameInstance, this.player);

 this.particle = new Particle(gameInstance, this.player);

 }

 public assignPickup(game, player?): void {

 this.projectile = new Projectile(game, player.player);

 this.hud.setAmmo(game, player.player, this.projectile);

 this.playerState.set('ammo', this.projectile.bulletCount);

 }

 public view(): void {

 this.controls.update();

 if (this.projectile) {

 this.hud.update(this.playerState.get('ammo'));

 }

 }

 private addControls(): void {

 �this.controls = new KeyBoardControl(this.gameInstance,

this);

 }

 private attachPhysics(gameInstance): void {

 �gameInstance.physics.enable(this.player, Phaser.

Physics.ARCADE);

 this.player.body.collideWorldBounds = true;

 this.player.body.bounce.setTo(10, 10);

 this.player.body.gravity.y = 0;

 this.player.body.drag.set(80);

Chapter 9 Bonus! Refactoring & Asteroids

142

 this.player.body.maxVelocity.set(100);

 this.player.body.immovable = false;

 }

}

We are one step closer to having real enemies! It’s not ethical to shoot at

our own colored banners!

Listing 9-8.  src/client/game/game.class.ts

// ...

export class Game {

 protected manageAssets(game): void {

 �// modify your player create scripts to have a ship

type.

 window.socket.on(PlayerEvent.joined, (player) => {

 �this.actors.push(new Player(game, player, 'shooter-

sprite-enemy'));

 });

 // and here!

 window.socket.on(PlayerEvent.protagonist, (player) => {

 �this.actor = new Player(game, player, 'shooter-

sprite');

 this.actors.push(this.actor);

 });

 // here three!

 window.socket.on(PlayerEvent.players, (players) => {

 players.map((player: any) => {

 �const enemy = new Player(game, player,

'shooter-sprite-enemy');

Chapter 9 Bonus! Refactoring & Asteroids

143

 if (player.ammo) {

 enemy.assignPickup(game, enemy);

 }

 this.actors.push(enemy);

 });

 });

 // ...

 }

}

Last, but definitely not least, we are going to touch the engine class

in order to add the evil sprite! This way we can distinguish between evil

enemy ships and ourselves. This would also work for the other player. You

will then appear red on her screen and blue on your own.

Listing 9-9.  src/client/engine/phaser-engine.class.ts

import { Game } from "../game/game.class";

import { LifeCycle } from "./lifecycle";

export class PhaserSpaceGame extends Game implements Life Cycle {

 private game: Phaser.Game;

 constructor() {

 super();

 �this.game = new Phaser.Game(1024, 768, Phaser.AUTO,

'space-shooter', {

 preload: this.preload,

 create: this.create,

 update: this.update

 });

 }

Chapter 9 Bonus! Refactoring & Asteroids

144

 public preload(): void {

 const game = this.game.load;

 game.crossOrigin = 'anonymous';

 game.image('space', 'assets/background.jpg');

 game.image('laser', 'assets/bullet.png');

 game.spritesheet('dust', 'assets/dust.png', 64, 64, 16);

 �game.spritesheet('kaboom', 'assets/explosions.png', 64,

64, 16);

 game.image('pickup', 'assets/pickup.png');

 �game.spritesheet('shooter-sprite', 'assets/ship.png',

32, 32);

 // add the new evil sprite!

 �// Feel free to use any graphic you have and place it

inside of the

 �// assets folder with the name mentioned below. If you

cannot

 �// think of anything, you can use the provided sprite

in the main

 // branch of this github repository.

 game.spritesheet(

 'shooter-sprite-enemy',

 'assets/ship-enemy.png', 32, 32

);

 }

 public create(): void {

 super.properties(this.game);

 super.manageAssets(this.game);

 }

Chapter 9 Bonus! Refactoring & Asteroids

145

 public update(): void {

 super.gameUpdate(this.game);

 }

}

�Conclusion
That concludes our adventure in space for this time. In the next chapter,

we finish off the ride with some souvenirs from the world and places you

can keep leveling up your skills. Changes and updates will happen just on

the free github repo. Check for the latest features added to the game by

starring the repo so you will automatically track and watch for changes.

The latest addition added was the ability to destroy the asteroid once it has

been fired!

The book’s final code and repo are found on the following link:

https://github.com/code0wl/Multiplayer-Phaser-game.

Chapter 9 Bonus! Refactoring & Asteroids

https://github.com/code0wl/Multiplayer-Phaser-game

147© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_10

CHAPTER 10

Further Reading
And Discovery
Congratulations and I hope you have learned a lot by following me through

this short book. Use this as a guide or a template if you are interested in

creating more multiplayer games out there. Following me on Twitter and

github will give me more energy to help others with the knowledge I have

gained in my career. Thank you for your support, and I really appreciate

you for taking the time to read and hopefully learn from this material.

My upcoming book will be covering the same material but using the

newly created Phaser 3 framework. I will be making a completely different

game, but it will also be a multiplayer game.

�Other Phaser Resources
Here is a comprehensive list of materials that have helped me and others

keep up-to-date with Phaser. Having these in your arsenal will make you

build much better, more technically sound games if you are using the

Phaser framework!

If you are stuck or need help with anything, please just create an issue

on the github page of the game and I or the community around this book

will help resolve that (https://github.com/code0wl/Multiplayer-

Phaser-game/issues).

https://github.com/code0wl/Multiplayer-Phaser-game/issues
https://github.com/code0wl/Multiplayer-Phaser-game/issues

148

The online repo of this game:

•	 https://github.com/code0wl/Multiplayer-

Phaser-game

Awesome github repo:

•	 https://github.com/Raiper34/awesome-phaser

Phaser’s personal shop:

•	 https://phaser.io/shop

Phaser tutorials:

•	 https://phaser.io/learn/official-tutorials

Phaser examples:

•	 https://phaser.io/examples

Interphase:

•	 https://phaser.io/interphase

Chapter 10 Further Reading And Discovery

https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/Raiper34/awesome-phaser
https://phaser.io/shop
https://phaser.io/learn/official-tutorials
https://phaser.io/examples
https://phaser.io/interphase

149© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0

Index

A, B
Arcade model, 36, 38–39
Asteroid

class creation, 130–131
comet specific events, 133–139
engine class, 143–145
game class, 131–133, 142–143
player class, 139–141

C
Client side, game, 98–106
Comet specific events, 133

D
Development setup

code editors, 7
dev mode, 9
folder structure, 10–11
front-end architecture, 9–10
installing Git, 6
installing Node.js, 5–6
project, dev mode, 9
project, run, 8–9

Directory
construction, 23
creation, 21–22

Domain model
game class, 15–16
keyboard class, 17, 19
player class, 16–17

E
Explosion

class creation, 107–108
projectile class, 108–109

F
Front-end architecture, 9–10

G
Game engine file

import index, 56
imports, code, 50–51
keyboard class

code, 54–56
player class

code, 51–52, 54
Game model, 40–41, 43
Git, 6, 7

clone command, 22
Github, 2, 7

https://doi.org/10.1007/978-1-4842-4249-0

150

H, I, J
Heads up display (HUD)

definition, 74
player class, 76, 78–81
properties, 74–75

K
Kaboom method, 106, 127
Keyboard model, 17, 19, 46

control object, 44
game-loop creation, 46–48
input module, 43

L, M
Login screen

game.ts, 114–115
implementation, 111–114
particle class, 118–119
particle implementation,

pickup classes, 123
particle implementation,

projectile classes, 122–123
pickup code, 115–116
player class, 116–118

N, O
Node.js, 6

P, Q
Particle class, 118
Phaser, 1

Arcade model, 36–39
creating engine, 27–29
definition, 25
engine, 13
engine code, 30–31
features, 26–27
multiplayer game, 147–148
resources, 147

Pickup, 58
Player model, 16–17, 32–35
Projectile class

game class code, 64–65
implementation code, 63–64
mechanics, 61–62
pickup class, 58–59
pickup code, 60–61
player model, code, 66–68
updating game model, 68–71
updating keyboard model,

code, 71–73

R
Refactoring, 125

kaboom method, 127
player class, 127–129
projectile class, 126–127

Index

151

S
Server

events, 84–86
models, 84
socket connection, 88–97
static file setting, 86–88

Shell, 10
Socket connection, 88

T, U, V
TypeScript, 7, 30, 49

W, X, Y, Z
WebSocket protocol, 88

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Who This Book Is For
	How to Approach This Book
	What the Heck Are We Building Together?

	Chapter 2: Setting Up Our Development Environment
	Setting up Our Development Environment
	Node.js
	Git

	The Main Ingredient
	Editors
	Running the Project
	Running the Project in Dev Mode

	Our Front-End Architecture
	Our Folder Structure
	Conclusion

	Chapter 3: Orchestrating Our Domain Model
	The Building Blocks
	Creating Our First Model
	The Player Model
	The Keyboard Model
	Creating Our Directories
	Directory Construction
	Conclusion

	Chapter 4: Implementing Our Game Domain Models
	About Phaser
	Talking About Phaser…
	Finally, Some Code!

	The Player Model
	Phaser Arcade Physics
	The Game Model
	The Keyboard Model
	Conclusion

	Chapter 5: Seeing It In Action
	Hooking it All up Together
	Conclusion

	Chapter 6: Projectiles!
	Pickup
	Additional Folder Structure

	Making it to the Big Screen
	Overlap
	Gimme the Gun!

	Updating the Game
	Updating the Keyboard with a Fire!
	The HUD
	Conclusion

	Chapter 7: Hooking Up Our Server
	On to the Server Side of Things!
	Models and Events
	Models
	Events

	Setting up Our Static File Server
	Socket Connection
	Back to the Client
	Marvelous Explosions!
	Conclusion

	Chapter 8: The World Should Remember Your Name
	Login
	Congratulations!

	Chapter 9: Bonus! Refactoring & Asteroids
	Adding More Features
	Refactoring
	Asteroids!
	Conclusion

	Chapter 10: Further Reading And Discovery
	Other Phaser Resources

	Index

