

Godot from Zero to Proficiency (Proficient)

First Edition

––––––––

A step-by-step guide to creating your first 3D Role-Playing Game.

While every precaution has been taken in the preparation of this book, the pub-

lisher assumes no responsibility for errors or omissions, or for damages resulting

from the use of the information contained herein.

GODOT FROM ZERO TO PROFICIENCY (PROFICIENT)

First edition. February 15, 2022.

Copyright © 2022 Patrick Felicia.

ISBN: 979-8201345402

Written by Patrick Felicia.

Table of Contents

Title Page

Copyright Page

Godot from Zero to Proficiency (Proficient)

Chapter 1: Introduction to the RPG Genre, Key Features and Design Concepts

Chapter 2: Creating and Animating the Main Character

Chapter 3: Creating a Dialogue System

Chapter 4: Creating an Inventory System

Chapter 5: Creating a Shop and a Buying System

Chapter 6: Adding Weapons and Protagonists

Chapter 7: Adding a Quest System

Chapter 8: Creating an XP Attribution System

Chapter 9: Creating The Final Level

Chapter 10: Your Next Steps

Thank you

Also By Patrick Felicia

About the Author

Patrick Felicia

Godot from Zero to Proficiency (Proficient)
Copyright © 2022 Patrick Felicia

All rights reserved. No part of this book may be reproduced, stored in retrieval

systems, or transmitted in any form or by any means, without the prior written per-

mission of the publisher (Patrick Felicia), except in the case of brief quotations

embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accu-

racy of the information presented. However, the information contained in this book

is sold without warranty, either expressed or implied. Neither the author and its

dealers and distributors will be held liable for any damages caused or alleged to be

caused directly or indirectly by this book.

• First published: February 2022.

Published by Patrick Felicia

Credits
Author & Editor: Patrick Felicia

About the Author
Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology,

where he teaches and supervises undergraduate and postgraduate students. He

obtained his MSc in Multimedia Technology in 2003 and Ph.D. in Computer Sci-

ence in 2009 from University College Cork, Ireland. He has published several

books and articles on the use of video games for educational purposes, including

the Handbook of Research on Improving Learning and Motivation through Educa-

tional Games: Multidisciplinary Approaches (published by IGI), and Digital Games

in Schools: A Handbook for Teachers, published by European Schoolnet. Patrick is

also the Editor-in-chief of the International Journal of Game-Based Learning

(ĲGBL), and the Conference Director of the Irish Symposium on Game-Based

Learning, a popular conference on games and learning organized throughout Ire-

land.

Support and Resources for this Book
To complete the activities presented in this book you need to download the

startup pack on the companion website (if you are already a subscriber, you just

need to enter the member area - http://learntocreategames.com/member-area/); it

consists of free resources that you will need to complete your projects. To down-

load these resources, please do the following:

• Open the page http://www.learntocreategames.com/books.

• Click on your book (Godot From Zero to Proficiency (Proficient))

• On the new page, please click the link that says “Please Here Click to Down-

load Your Resource Pack”.

This book is dedicated to Mathis

Table of Contents
Chapter 1: Introduction to the RPG Genre, Key Features and Design Concepts

RPG games

RPG features in the game that you will create

The design philosophy behind this book

Chapter 2: Creating and Animating the Main Character

Creating your character

Controlling the character from a script

Modifying the Camera to follow the player

Creating the village

Creating a mini-map

Level roundup

Chapter 3: Creating a Dialogue System

Introduction

Importing the JSON file for the dialogues

Reading the dialogue file

Processing the user's answers

Building a user interface

Linking the code and the JSON file to the user interface

Triggering the dialogue when we are near the NPC

Adding a 3D character for the NPC

Animating the NPC

Level roundup

Chapter 4: Creating an Inventory System

Introduction

Creating classes to store information on the items to be collected

Creating a user interface for the inventory system

Displaying and updating the inventory from the code

Creating objects to be collected for the inventory

Allowing the player to choose the objects to collect

Using an item from the current inventory to increase the players' health

Creating a health bar

Level roundup

Chapter 5: Creating a Shop and a Buying System

Creating a shop

Creating the interface

Creating the user interface for each item available in the shop

Creating scripts to add or remove items

Adding items to the shop

Updating the total and the amount of money left

Linking the shop to the players' gold coins

Saving the items bought to the player's inventory

Level roundup

Chapter 6: Adding Weapons and Protagonists

Adding a weapon

Performing an attack against a stationary target

Adding a flash when the target is hit

Creating intelligent NPCs

Level roundup

Chapter 7: Adding a Quest System

Creating a quest system

Saving quest information in an json file

Creating the game manager

Displaying quest information to the user

Checking the actions performed by the player

Adding a notification system to check achievements

Displaying the XPs on screen

Checking that the player has completed all the tasks and saving data to the

game manager

Level roundup

Chapter 8: Creating an XP Attribution System

Introduction

Creating the interface for the XP attribution system

Level roundup

Chapter 9: Creating The Final Level

Setting-up the level

Level roundup

Chapter 10: Your Next Steps

Thank you

Preface
This book will show you how you can very quickly use GDScript to implement

some advanced features that will improve your games.

Although it may not be as powerful as Unity or Unreal yet, Godot offers a wide

range of features for you to create your video games. More importantly, this game

engine is both Open Source and lightweight which means that even if you have (or

you are teaching with) computers with very low technical specifications, you

should still be able to use Godot, and teach or learn how to code while creating

video games.

This book series entitled Godot From Zero to Proficiency allows you to play

around with Godot’s core features, and essentially those that will make it possible

to create interesting 3D and 2D games rapidly. After reading this book series, you

should find it easier to use Godot and its core functionalities, including program-

ming with GDScript.

This book series assumes no prior knowledge on the part of the reader, and it

will get you started on Godot so that you quickly master all the wonderful features

that this software provides by going through an easy learning curve.

By completing each chapter, and by following step-by-step instructions, you

will progressively improve your skills, become more proficient in Godot, and create

features that will improve your productivity and gameplay.

Throughout this book series, you will create a game that includes environments

where the player needs to find its way out of the levels, escalators, traps, and other

challenges, avoid or eliminate enemies using weapons (i.e., guns or grenades), and

drive a car or pilot an aircraft.

You will learn how to create customized menus and simple user interfaces

using Godot’s UI system, and animate and give artificial intelligence to Non-Player

Characters (NPCs) that will be able to follow the player character using pathfind-

ing.

Finally, you will also get to export your game at the different stages of the

books, so that you can share it with friends and obtain some feedback as well.

Content Covered by this Book
• Chapter 1: Introduction to the RPG Genre, Key Features and Design

Concepts, provides general information about RPGs and the key features that

can be found in this type of game. It also explains the features that you will be

creating in this book, along with the philosophy behind the code covered.

• Chapter 2: Creating and Animating the Main Character, explains how you can

create and animate your main 3D character, add a camera that will follow this

character, as well as a mini-map. You will also create the 3D environment for

your quest.

• Chapter 3: Creating a Dialogue System, explains how to create a dialogue sys-

tem from a JSON file, and how to integrate it seamlessly into your game.

• Chapter 4: Creating an Inventory System, explains how you can create a sim-

ple inventory system and use it to collect, store, and use items that you will

find in your quest. You will also learn to create a health bar.

• Chapter 5: Creating a Shop and a Buying System, shows you how to create a

shop where the player can buy items that will then be added to the inventory.

• Chapter 6: Adding Weapons and Protagonists, explains how you can create

intelligent NPCs that will challenge the player.

• Chapter 7: Adding a Quest System, explains how you can create a quest sys-

tem based on a JSON file to manage the objectives for each of your levels.

• Chapter 8: Creating an XP Attribution System, explains how you can create a

user interface through which players can use their XPs to increase their skills.

• Chapter 9: Creating The Final Level, explains some interesting features that

you can use to increase your game play.

• Chapter 10, Your Next Steps, provides tips on how to extend your RPGs.

• Chapter 11 summarizes the topics covered in this book and also provides

useful information if you would like to progress further with this book series.

What you Need to Use this Book
To complete the project presented in this book, you only need Godot 3.2.4 or a

more recent version and to also ensure that your computer and its operating sys-

tem comply with Godot’s requirements. Godot can be downloaded from the offi-

cial website (http://www.godotengine.org/download), and before downloading,

you can check that your computer fulfills the requirements for Godot on the same

page.

At the time of writing this book, the following operating systems are supported

by Godot for development: Windows, Linux and Mac OS X.

In terms of computer skills, all knowledge introduced in this book will assume

no prior programming experience from you. This book includes programming and

all programming concepts will be taught from scratch. So for now, you only need

to be able to perform common computer tasks such as downloading files, opening

and saving files, being comfortable with dragging and dropping items, and typing.

Who this book is for
If you can answer yes to all these questions, then this book is for you:

1. Are you a total beginner in RPG games?

2. Would you like to become proficient in the core functionalities offered by

Godot?

3. Would you like to teach game programming to students or help your child to

understand how to create games and learn coding in the process?

4. Would you like to start creating great RPG games?

5. Although you may have had some prior exposure to Godot, would you like

to delve more into Godot and understand its core functionalities in more de-

tail?

Who this book is not for
If you can answer yes to all these questions, then this book is not for you:

1. Can you already easily create a 3D RPG with Godot?

2. Are you looking for a reference book on GDScript?

3. Are you an experienced (or at least advanced) RPG developer?

If you can answer yes to all three questions, you may instead look for the next

books in the series. To see the content and topics covered by these books, you can

check the official website (www.learntocreategames.com/books/).

How you will learn from this Book
Because all students learn differently and have different expectations of a

course, this book is designed to ensure that all readers find a learning model that

suits them. Therefore, it includes the following:

• A list of the learning objectives at the start of each chapter so that readers

have a snapshot of the skills that will be covered.

• Each section includes an overview of the activities covered.

• Many of the activities are step-by-step, and learners are also allowed to en-

gage in deeper learning and problem-solving skills through the challenges of-

fered at the end of each chapter.

• Each chapter ends up with a quiz and challenges through which you can put

your skills into practice, and see how much you know.

• The book focuses on the core skills that you need. Some sections also go

into more detail. However, once the concepts have been explained, links are

provided to additional resources, if and where necessary.

Format of each Chapter and Writing Conventions
Throughout this book, and to make reading and learning easier, text formatting

and icons will be used to highlight parts of the information provided, and to make

it more readable.

Special Notes

Each chapter includes resource sections so that you can further your under-

standing and mastery of Godot. These include:

• A quiz for each chapter: these quizzes usually include 10 questions that test

your knowledge of the topics covered throughout the chapter. The solutions

are provided on the companion website.

• A checklist: it consists of between 5 and 10 key concepts and skills that you

need to be comfortable with before progressing to the next chapter.

• Challenges: each chapter includes a challenge section where you are asked to

combine your skills to solve a particular problem.

The author’s notes appear as described below:

The author’s suggestions appear in this box.

Checklists that include the important points covered in the chapter appear as

described below:

• Item1 for a checklist

• Item2 for a checklist

• Item3 for a checklist

How Can You Learn Best from this Book
• Talk to your friends about what you are doing.

We often think that we understand a topic until we have to explain it to friends

and answer their questions. By explaining your different projects, what you

just learned will become clearer to you.

• Do the exercises.

All chapters include exercises that will help you to learn by doing. In other

words, by completing these exercises, you will be able to better understand

the topic and you will gain practical skills (i.e., rather than just reading).

• Don’t be afraid of making mistakes.

I usually tell my students that making mistakes is part of the learning process.

The more mistakes you make, the more opportunities you have for learning.

At the start, you may find the errors disconcerting, or that the engine does not

work as expected until you understand what went wrong.

• Export your games early.

It is always great to build and export your first game. Even if it is rather simple,

it is always good to see it in a browser and to be able to share it with your

friends.

• Learn in chunks.

It may be disconcerting to go through five or six chapters straight, as it may

lower your motivation. Instead, give yourself enough time to learn, go at your

own pace, and learn in small chunks (e.g., between 15 and 20 minutes per

day). This will do at least two things for you: it will give your brain the time to

“digest” the information that you have just learned so that you can start fresh

the following day. It will also make sure that you don’t “burn out” and that you

keep your motivation levels high.

Feedback
While I have done everything possible to produce a book of high quality and

value, I always appreciate feedback from readers so that the book can be improved

accordingly. If you would like to give feedback, you can email me at:

learntocreategames@gmail.com.

Downloading the Solutions for the Book
To download the solutions for this book (e.g., code) you need to download the

startup pack on the companion website (if you are already a subscriber, you just

need to enter the member area - http://learntocreategames.com/member-area/); it

consists of free resources that you will need to complete your projects and code

solutions. To download these resources, please do the following:

• Open the page http://www.learntocreategames.com/books.

• Click on your book (Godot From Zero to Proficiency – Proficient -)

• On the new page, please click the link that says “Please Here Click to Down-

load Your Resource Pack”

Improving the Book
Although great care was taken in checking the content of this book, I am

human, and some errors could remain in the book. As a result, it would be great if

you could let me know of any issue or error you may have come across in this

book, so that it can be solved and the book updated accordingly. To report an

error, you can email me (learntocreategames@gmail.com) with the following infor-

mation:

• Name of the book.

• The page where the error was detected.

• Describe the error and also what you think the correction should be.

Once your email is received, the error will be checked, and, in the case of a

valid error, it will be corrected and the book page will be updated to reflect the

changes accordingly.

Supporting the Author
A lot of work has gone into this book and it is the fruit of long hours of prepa-

ration, brainstorming, and finally writing. As a result, I would ask that you do not

distribute any illegal copies of this book.

This means that if a friend wants a copy of this book, s/he will have to buy it

through the official channels (i.e., your e-store), or the book’s official website:

www.learntocreategames.com/books).

If some of your friends are interested in the book, you can refer them to the

book’s official website (http://www.learntocreategames.com/books) where they

can either buy the book, enter a monthly draw to be in for a chance of receiving a

free copy of the book or to be notified of future promotional offers.

- -

Chapter 1: Introduction to the RPG Genre, Key Features and
Design Concepts

In this section, more information will be provided on the RPG genre, in terms of:

• Features.

• Gameplay.

• Format.

You will also be able to see how you will progressively create these features

throughout this book.

So, after completing this chapter, you will be able to:

• Understand the RPG genre and its key characteristics.

• Understand the features that you will be creating.

• Understand some interesting design concepts that will be used in this book.

RPG games
Role-Playing games often derive from Dungeon and Dragons (tm) table top

games whereby one or several players are required to complete one of several

quests to win the game. While each player starts with specific characteristics such

as strength, dexterity and special abilities, these features will evolve, and the play-

ers' characters will be able to collect loots that can be used to improve their health

or their weaponry. Along their way, players will earn eXperience Points and use

these to improve their skills.

Digital RPGs have used several of these features, including:

• An armed Player Character.

• The ability to collect food and other objects.

• The presence of Non-Player characters with whom they may talk or fight;

these NPCs have a wide range of intelligence and skills.

• Sometimes an end-of-level boss is included.

• Randomly-generated scenes.

• Win XPs and level up.

RPG features in the game that you will create
Creating an RPG game can be time-consuming as they can include multiple lev-

els and great complexity. This book is attempting to make this process easier for

you by helping you to create key components that you can reuse for your games.

Throughout this book, you will learn to do the following:

• Create a 3D character that can navigate through a 3D scene.

• Create objects that you can collect.

• Create an inventory to store these objects.

• The ability to use some of these objects (e.g. food), to improve your charac-

ter's health.

• Provide a weapon to the player character.

Once your character is set up we will then start to work on the environment by

doing the following:

• Create a simple environment using basic shapes.

• Create a mini-map so that it is easier to see where the character is going and

highlight objects of interest.

• Add NPCs.

• Add the ability for the player and the NPCs to engage in battles.

• Add NPCs to whom the player can talk.

• Create a shop where the player can buy new items.

Once all these work properly, we will start to create a quest system whereby you

can set the objectives for the player using a simple JSON file; this means that you

will save yourself some time by just having to modify one file to change the objec-

tives of the quest; we will also create a game manager that will manage the entire

game in terms of what should be added or kept between scenes.

• You will create a village as well as all the houses within using Godot’s built-in

3D editor.

• Your character will be animated and able to use a weapon.

• The player will be able to talk to Non-Player Characters and select questions/

answers so that the outcome of the dialogue depends on their choices.

• The player will be able to collect objects and add these to an inventory.

• You will create a shop with both a 3D and a 2D representation from which the

player can buy items.

• You will add intelligent NPCs that will be able to detect and attack the player.

• You will create a quest system used to define, display and track the objectives

for each level.

• After each level, the player will be able to use their XPs to increase their skills.

The design philosophy behind this book
The idea behind this book is that:

• Creating and modifying your RPG should be made easy.

• All elements in your game should be easily reusable.

• Configuring your quests should be seamless.

• Testing should be made easy.

For this purpose, I have added a few tricks so that: you can create a generic ob-

ject to be collected and then set its type (e.g., gold, or apple) in the Inspector or

create new items to be added to the shop or to be collected easily by creating/

modifying a few lines of code.

All in all, this book will teach you, not only how to create an RPG, but also how

to design your game so that it is easy to expand your code/game without

headaches.

Along the way, you will learn about:

• Character Animation.

• Quest Systems.

• Dialogue Systems.

• GDScript.

• Classes.

• JSON files.

• UI design in Godot.

• Artificial Intelligence.

• And much more.

Chapter 2: Creating and Animating the Main Character

In this section, we will start our RPG by creating and animating the main character.

After completing this section, you should be able to:

• Import and animate 3D characters for your RPG.

• Create a third-person view so that your main character is always in full sight

of the camera.

• Create a mini-map.

Creating your character

To start with, we will set up and animate our main character. For this book, a char-

acter, along with the corresponding animations, has already been created; this

being said, if you'd like to use your own character and animations, please feel free

to do so.

Let's import the main character and the corresponding animations in Godot.

• Please create a new Godot Project (3D Scene).

• Open your resource pack (please see the previous sections on how to down-

load the resource pack).

• Open the folder 3D-characters | akai.

• Drag and drop the files akai.gltf to the folder res:// in the FileSystem tab.

• Create the ground from a Cube: right-click on the node Spatial, select the op-

tion AddChildNode, and select the type CSGBox. This will create a new node

called CSGBox.

• Rename this node ground.

• Using the Inspector, change its position (Transform | Translation) to (0, 0,

0).

• Change its width, height and depth to 100, 1 and 100 respectively.

Now that the ground has been created, we can apply some texture to it:

• Drag and drop the texture pavement.jpg from the resource pack (i.e., from

the folder textures) to the folder res:// in Godot.

• Select the node ground.

• Using the Inspector, create a new Spatial Material by clicking on the down-

ward- fac- ing arrow to the right of the label Material.

• Click on the white sphere to the right of the label Material.

• After expanding the section Albedo, drag and drop the texture pavement.jpg

from the FileSystem tab to the attribute called Texture.

• Once this is done, you can expand the section UV1, and change the scale at-

tribute to (10, 10, 1).

• You should now see that the texture has been applied to the ground.

Now that we have created and textured the ground, we will add our character.

• Please create a new KinematicBody node as a child of the node Spatial, and

rename this new node Player.

• Change the position of the node Player to (0, 0.5, 0).

• Please add a new node of the type CollisionShape as a child of the node

Player.

• Select this new node called CollisionShape.

• Using the Inspector, click on the downward-facing arrow to the right of the

label Shape in the section CollisionShape and select the option New Cylinder

Shape.

• Change the position of the node CollisionShape to (0, 1.5, 0).

• Drag and drop the asset akai.gltf from the FileSystem tab to the Scene view.

• This will create a new node called akai in the Hierarchy Tree (to the left of the

screen).

• Please drag and drop the node akai atop the node Player so that it becomes a

child of the node Player.

• Change the position of the node akai to (0, 0, 0).

• This will make this node a child of the node Player.

• Please rename this node PC (for Player Character).

The node PC that we have imported contains all the animations that we will

need for this game and you can see them by doing the following:

• Right-click on the node PC and select the option Editable Children.

• This should show the children nodes of the node PC.

• Select the node AnimationPlayer, and you should see that the Animation win-

dow is now open.

• If you click on the arrow to the left of the label “Animation”, as described in

the next figure, you should see a list of the animations contained in the node.

• If you want to see these animations in action, make sure that your view is fo-

cused on the character akai, select an animation in the Animation window

(for example, running), and press the Play button, as described in the next

image.

• After pressing the Play button, you should see the character running.

So at this stage, we know that the animations are working properly; so the next

phase will consist in controlling our character through a script.

For now, we will add a camera to the scene so that we can see our character

(that is not yet animated) when we play the scene:

• Please add a node of the type Camera as a child of the node Spatial.

• This will create a new node called Camera.

• Using the Inspector, change the Rotation property of this node to (-90, 0, 0)

and its position to (0, 5, 0).

• You can now play the scene, and you should see the Player Character

appearing just below the camera.

• You can stop playing the scene for now.

Controlling the character from a script

In this section we will animate our character from a script.

• Please select the node Player and add a new script to it (i.e., right-click on the

node Player and select the option to “Attach a Script”). Name this script

manage_player.

• Open this script.

• Add the following code just before the function _ready:

enum {IDLE, WALK, WALK_REVERSE, RUN}

var rotation_increment = .2

var current_state = IDLE

var speed = 1

onready var pc_node = get_node(“PC/AnimationPlayer”)

In the previous ode:

• We create several enums that will be used to identify the current state of the

player character.

• We declare a variable called rotation_increment that will be used to determine

the rotation speed of the player character.

• We declare a variable called current_state that will store the character’s cur-

rent state.

• We define the speed for this character through the variable speed.

• We also create a variable called pc_node that will be linked to the node

AmimationPlayer which contains the animations for the character.

Now that we have defined the key nodes and variables for our player character,

we just need to initialize the animations that we will be using by specifying whether

they should be looping.

• Please add the following code to the script (new code in bold):

func _ready():

pc_node.get_animation("idle").loop = true

pc_node.get_animation("walking").loop = true

pc_node.get_animation("running").loop = true

In the previous code, we specify that all the animations that we will be using

and that are contained in the node AnimationPlayer (i.e., idle, walking, and

running) will be looping over time.

Next, we will specify what should happen in all the states that we have defines

earlier (i.e., what animation should be played and what speed should be used de-

pending on whether the character is walking or running).

• Please add the following function:

func _process(delta):

match current_state:

IDLE:

WALK:

WALK_REVERSE:

RUN:

In the previous code, we define four different states for our character, and the

system will switch to one of them depending on the value of the variable

current_state.

• Please add the following code (new code in bold):

IDLE:

pc_node.play("idle")

WALK:

speed = 1

pc_node.play("walking")

var forward = global_transform.basis.z;

move_and_slide(forward*speed, Vector3.UP)

In the previous code:

• We specify that in the state called IDLE we will play the animation called idle.

• We also specify that in the state called WALK, the speed of the character will

be 1, and that the animation called walking will be played.

• We also move the character forward using the function move_and_slide; the

forward direction used is relative to the character’s z-axis.

Please add the following code (new code in bold):

WALK_REVERSE:

speed = -1

pc_node.play("walking")

var forward = global_transform.basis.z;

move_and_slide(forward*speed, Vector3.UP)

In the previous code, we specify what should happen when the player walks

backward; the code is similar to the one used for the state WALK except that the

speed is now -1.

• Please add the following code (new code in bold):

RUN:

speed = 4.0

pc_node.play("running")

var forward = global_transform.basis.z;

move_and_slide(forward*speed, Vector3.UP)

In the previous code, we specify what should happen when the player character

is running; the code is similar to the one created for the state WALK, except that

the speed is now 4.

Finally, we just need to write the code that will detect the keys pressed so that

the player can walk, run, and turn. But before we create this code, we just need to

map the keys that we will use through the Input Map:

• Please select: Project | Project Settings from the top menu, and then open the

tab Input Map in the new window.

To map a key, you just to type (1) the action in the top-most the field, (2) click

on Add, and then select this action from the list, (3) click on the + sign to the right

of this action, then (4) click on the button labeled “key”, and then type the key

(from your keyboard) that you want to associate with this action, and then press

OK, as per the next figure.

Please do the following:

• Map the up arrow key to the action “move_fwd”.

• Map the down arrow key to the action “move_back”.

• Map the left arrow key to the action “turn_left”.

• Map the right arrow key to the action “turn_right”.

Once this is done, we can return to our script

• Please add the following function to the script (i.e., manage_player):

func _input(event):

if (Input.is_action_pressed("move_fwd")) :current_state = WALK

elif (Input.is_action_pressed("move_back")) :current_state = WALK_REVERSE

else: current_state = IDLE

if (Input.is_action_pressed("turn_left")):

rotate_y(rotation_increment)

if (Input.is_action_pressed("turn_right")):

rotate_y(-rotation_increment)

if (Input.is_key_pressed(KEY_ALT)):

current_state = RUN

In the previous code:

• We use the function _input that is often employed to detect the user’s input.

• If the “move_forward” action is detected then the current state is switched

to WALK.

• If the “move_back” action is detected then the current state is switched to

WALK_REVERSE.

• Otherwise the current state is IDLE.

• If the “turn_left” action is detected then the character is rotated clockwise.

• If the “turn_right” action is detected then the character is rotated anti-

clockwise.

• Finally, if the ALT key is pressed, the character is switched to the state RUN.

You can now save your code and play the scene; you should see that the char-

acter can walk, run, and turn as you use the arrow and the ALT keys.

So that the camera is always following the player we will, in the next section cre-

ate some code that will ensure that the camera is always following and looking to-

wards the player character.

Modifying the Camera to follow the player

In this section, we will make sure that the camera is always following the player.

Please do the following:

• Drag and drop the Camera node atop the node Player, so that is it becomes a

child of the node Player.

• Select the Camera node.

• Using the Inspector, change the position of the camera to (0, 5, -4) and make

sure that its rotation attributes are (0, 0, 0) and its scale attributes are (1, 1, 1).

• This is so that the camera is placed above the player (i.e., y = 5) and slightly

behind it (i.e., z = -4).

Note that at this stage the camera is still not focused on the player; so we just

need to make sure that it will always be looking at the player; for this purpose, we

will create a simple script that makes sure that the camera looks at the player,

using a built-in function called look_at:

• Please right-click on the Camera node.

• Select the option “Attach Script” from the contextual menu to create a new

script.

• Call the new script camera_follow_player.

• Open the script and add the following code to it:

func _process(delta):

look_at(get_parent().global_transform.origin,Vector3.UP)

In the previous code:

• We use a built-in function called _process, which is called every frame.

• In this function, we use the function look_at which makes sure that the node

linked to this script (i.e., the camera) looks at a specific target.

• In our code, the target is the parent of the current node: the Player node.

• So effectively, every frame, we make sure that the camera is pointing towards

the player.

You can now save your script and play the scene, and you should see that the

camera is effectively following the player.

Creating the village

In this section, we will start to create the village that the player will navigate to

complete its quests. The village will consist of several houses, and each of them

will be based on a template (i.e., a scene that includes a house built with primitive

shapes).

So first, we will create the template house:

• Please create a new scene: Scene | New Scene | Other | Static Body.

• This will create a new scene with a default node of the type StaticBody.

• Rename this node house.

• Change the position of this node to (0, .5, 0).

• Create a new CSGBox node as a child of the node house.

• Rename this node wall, and check that its width, height and depth are all 2.

• Apply a new blue Spatial Material to this node.

We can now create the roof for this house:

• Please create a new CSGSBox node as a child of the node house and rename

it roof.

• Check that the width, depth, and height of this node are all 2.

• Change its position to (0, .5, 0), its rotation to (45, 0, 0) and its scale to (0.99,

0.7, 0.7).

• Apply a new yellow Spatial Material to this node.

Once this is done, we can start designing the door and windows:

• Please create a new CSGSBox node as a child of the node house and rename

it door.

• Check that the width, depth, and height of this node are all 2.

• Change its position to (-0.95, -0.05, 0) and its scale to (0.1, 0.4, 0.3).

Now that the door has been created, we can complete the house by creating the

windows:

• Please create a new CSGBox node as a child of the node house, and rename

this node window1.

• Check that the width, depth, and height of this node are all 2.

• Change its position to (0.5, 0.1, -0.92) and its scale to (0.3, 0.2, 0.1).

• You can leave this node with the default white color or apply a color of your

choice.

• Duplicate this node and rename the duplicate window2.

• Change its position to (-0.5, 0.1, -0.92).

• Please duplicate the node window2 and rename the duplicate window3.

• Change its position to (-0.5, 0.1, 0.92).

• Finally, duplicate the node window3 and rename it window4.

• Change its position (i.e., window4) to (0.5, 0.1, 0.92).

So, at this stage, you should have a house with walls, a roof, windows, and a

front door. The last thing we need to add to this house is a Collision Shape node,

so that collisions can be detected with other objects (including the Player

Character).

• Please create a new node of the type Collision Shape as a child of the node

house.

• Select this node, and using the Inspector, click on the downward-facing arrow

to the right of the label “Shape”, in the section Collision Section, and select

the option New Box Shape.

Now that a collider has been created for the house, we can start to create the

village.

So now, we will use this template to create the village:

• Please save the current scene as house.tscn.

• Switch back to the previous scene.

• Right-click on the Spatial node, and select the option “Instance Child Scene”.

• In the new window, please type the text house in the search field, select the

scene house.tscn from the result, and press Open.

• This will create a new house node as a child of the node Spatial.

• Change its scale attribute to (3, 3, 3) and also change its position so that it is

slightly above the ground and a few meters away from the player character.

• Duplicate this node seven times, as to obtain eight houses in total in a row,

as illustrated in the next screenshot.

• Duplicate these 8 houses, rotate them about 180 degrees, and place them

opposite from the first row, as illustrated in the next figure.

• Duplicate these 16 houses to create the layout illustrated in the next figure.

––––––––

Next, we will ensure that the player character can't fall off the ground by creating

walls around the village. So please do the following:

• Create a new scene of the type StaticBody.

• This will create a new scene with a default node of the type StaticBody.

• Rename this node wall.

• Change its scale attribute to (50, 2, 1).

• Create a new CSGBox node as a child of the node wall.

• Apply a new Spatial Texture to this node, and use the image wall_picture.jpg

(from the resource pack) for this texture, setting the UV1 | Scale attribute to

(50, 2, 1).

• Add a new node of the type CollisionShape to the node wall.

• Using the Inspector, click on the downward-facing arrow to the right of the at-

tribute Collision Shape | Shape and select the option New Box Shape.

• Save this scene as wall.tscn.

• Switch back to the previous scene (i.e., the main scene).

• Right-click on the node Spatial, and select the option Instance Child Scene.

• Select the scene wall.tscn in the new window and press “Open”.

• This will add a new node called wall to the scene.

• Rename this node north_wall, and change its position to (0, 2.5, 49).

• Duplicate this node (i.e., north_wall), rename the duplicate south_wall, and

change its position to (0, 2.5, -49).

• Duplicate this node (i.e., south_wall), rename the duplicate east_wall, and

change its position to (49, 2.5, 0) and its rotation to (0, 90, 0).

• Finally, duplicate this node (i.e., east_wall), rename the duplicate west_wall,

and change its position to (-49, 2.5, 0).

You can now test the scene and ensure that the village's walls are textured

properly, and also that the player can collide with them.

You can save your main scene as level1 (Scene | Save Scene As).

Creating a mini-map

At this stage, our character can move around freely in the village; this being

said, it would be great to avail of a map and we will create one in this section.

Please do the following:

• Open the main scene (i.e., level1).

• Create a node of the type ViewportContainer as a child of the node Spatial.

• Select the node that you have just created, and, using the Inspector, expand

the section Control | Rect, and change the attributes Position to (750, 0), Size

to (300, 300), and Min Size to (300, 300).

• Add a new node of the type Viewport as a child of the node Viewport-

Container and set its Size attribute to (300, 300).

• Add a new node of the type Camera as a child of the node Viewport and re-

name it mini-map-camera.

• Change the position of this camera to (0, 35, 0) and its rotation to (-90, 0, 0).

• You can now play the scene and you should see the mini-map in the top-right

corner of the screen.

However, you may notice that the map doesn’t move with the player; in addi-

tion, it is quite challenging to identify the location and the direction of the player;

so in this section, we will just ensure that the map is moving with the player and

that an arrow is displayed on screen to represent the direction of the player.

• Please attach a new script called mini-map-camera.gd to the node

mini-map-camera, and add the following code to it:

onready var player = get_node("../../../Player")

func _process(delta):

transform.origin.x = player.transform.origin.x

transform.origin.z = player.transform.origin.z

In the previous code:

• We create the variable player that links to the Player node

• We then use the function _process that is called every frame.

• In this function, we ensure that the x and z coordinates of the camera are the

same as the ones for the Player Character.

Next, we will create an arrow that will be displayed on the mini-map and that

indicates the direction of the player.

• Please create a new 3D scene and save it as top_arrow.tscn.

• In the new scene, there should be a default node called Spatial: please re-

name this node top_arrow.

• Add a node of the type CSGCombiner as a child of the node top_arrow.

• Select this node, and using the Inspector, select the option Subtraction from

the drop-down list to the right of the attribute Operation.

• Add a node of the type CSGBox as a child of the node CSGCombiner.

• Make sure that the height, width, and depth attributes of this node are all 2.

• Change its position to (0, 0, 2.56), its rotation to (0, 45, 90) and its scale to

(0.5, 0.5, 0.5).

• You can also apply a red or green material to it.

• Add a node of the type CSGCylinder as a child of the node CSGBox.

• Change this node’s position to (0, -3.6, -3.6), its rotation to (0, -90, -45) and

its scale to (1.8, 10, 1.8).

• Change its attribute CSGShape | Operation to Subtraction.

• You should notice that the cylinder is now transparent and that an arrow (i.e.,

the result of the subtraction between the original box and the cylinder) is vis-

ible.

• Please save the current scene.

• Open the main scene (i.e., level1).

• Right-click on the node Player, and select the option Instance Child Scene.

• In the new window, select the scene top_arrow.tscn and press Open.

• This will create a new node labeled top_arrow as a child of the node Player.

• Select the node top_arrow and change its position to (0, 20, -2.85).

You can now play the scene and you should see an arrow on the mini-map, as

illustrated in the next figure.

––––––––

Level roundup

Summary

Throughout this chapter you have created and animated your own 3D character;

you have created a 3D environment and templates that can be re-used later on. Fi-

nally, you have created a user interface that includes a mini-map.

Chapter 3: Creating a Dialogue System

This chapter helps you to create a dialogue system whereby the player will be able

to talk to NPCs and select his/her answer based on NPCs' sentences. This will be

done using JSON and branching structures so that the dialogue is dynamic and

also so that it can be amended without a line of code by the game programmer, or

a person with no programming background.

After completing this section, you should be able to:

• Understand how JSON files can be used to create a dialogue system.

• Understand the structure of a JSON-based dialogue system.

• Create dialogues for your own game.

• Save your dialogues in a proper format.

• Read these dialogues when the player interacts with a specific character.

• Provide and detect the options chosen by the player during a conversation.

• Detect when the discussion has ended.

• Create a user interface for the dialogues, with an image of the NPC with

whom the player is talking.

• Make it possible for some NPCs to talk to the player.

• Detect when the player is near a character that s/he can talk to.

Introduction
In this chapter, we will create a dialogue system. This will involve:

• Creating a JSON file that includes all the information about each dialogue

and the possible answers.

• Reading this file.

• Creating a user interface where the dialogue can be displayed.

• Attaching this Dialogue System to a character.

• Detecting when the player collides with this character to be able to start the

dialogue.

• Stopping the navigation for the player and detecting its choices for the con-

versation.

• Detecting when the conversation has ended to hide the user interface and en-

able the user to resume navigation.

Importing the JSON file for the dialogues
First, we will import a JSON file that includes all the information needed for the

dialogues in your game.

• Please create a folder called dialogues inside the folder res:// in Godot (i.e.,

right-click on the folder res:// and select the option New Folder).

• Drag and drop the file dialogues.json from the folder called dialogues in the

resource pack to the folder dialogues in Godot.

• In Godot, right-click on the folder dialogues and then select "Open in File

Manager".

• This will open the file system on your computer.

• Inside this folder double click on the file dialogues.json to open it with your

default text editor. It will look like the following snippet.

{

"Diana":

{

"name":"Diana",

"dialogues":

[

{

"id" : "0",

"content": "Hello Stranger! What brings you here!",

"choices":

[

{"content":"Hi there, would you know where I can find the golden globe?", "tar-

get":"2"},

{"content": "Hi there, are you from here, Im kind of lost?", "target":"1"}

]

},

As you will see:

• The file starts and ends with curly brackets.

• It then includes an object defined by an identifier within double quotes (e.g.,

“Diana”); followed by a colon, followed by opening and closing curly brack-

ets.

• Within these curly brackets, we define the attribute of the object using an at-

tribute/value pair separated by a comma. The name of the attribute is usually

within double quotes, and the corresponding attribute may (if this is a

string) or may not use quotes.

• Some attributes can have sub-attributes.

• For example, in this file we an object called “Diana”.

• This object has an attribute called dialogues which is effectively an array of

objects.

• Each of these objects includes an attribute called id, an attribute called

content, along with an array of choices.

• Each choice includes an attribute called content along with an attribute called

target.

So effectively:

• This file consists of nested nodes marked as dialogues.

• This dialogue is associated with a character called "Diana".

• The conversation will start with the dialogue with the id=0.

• For this dialogue, the player will have two choices.

• Each choice is associated with a target which is the ID of the next dialogue

based on the player's answer.

• For example, if the player selects the second answer which is:

" Hi there, would you know where I can find the golden globe?"

• Then the system will branch to the dialogue with the id=1, and the NPC will

then say:

" Yes, I've been living here for decades, what brings you here? "

• You may notice that answers that end the conversation are marked with the

code target id = -1 which will indicate to the system that the conversation has

ended.

Note that this is a text file, and you can modify it if you wish; the beauty of this

system is that it can be modified by someone with no coding background and the

file can still be used in the game, regardless.

Reading the dialogue file
Now that the format of the file is clearer, we will start to create the necessary

code to read and use this JSON file.

In the next section, we will start to read this file to create a dialogue system. For

this purpose, we will create a new class called Dialogue which stores information

about dialogues in the game between the player and an NPC.

• In Godot, please click on the tab called Script at the top of the window.

• Create a new script called Dialogue.gd in Godot (select File | New Script from

the Script workspace).

• Open the script.

• Note that is script is not linked to any node for now.

• Remove all the code from this script.

• Add the following code:

var name_of_character : String

var message:String

var array = []

var target_for_response = []

In the previous code, since our dialogue system will consist of several dia-

logues, we create a class for which each instance will store information about a

specific dialogue.

• Please save this file (CTRL + S or select the option File | Save available in the

Script workspace).

Once we have defined a structure for each dialogue, we can now create our Dia-

logue System, a class that will be used to read the JSON file and to proceed with

the conversation between the player and NPCs.

• Please create a new script called DialogueSystem.gd.

• Add this code at the beginning of the class (new code in bold):

extends Node

var name_of_character

var dialogues = []

var nb_dialogues:int

var current_dialogue_index:int = 0

var waiting_for_user_input:bool = false

var dialogue_is_active

var characters : Dictionary

var current_character = "Diana"

onready var player = get_node("../Player")

In the previous code, we create several variables: name_of_character will be

used to store the name of the NPC, dialogues (an array) will store all the different

dialogues saved in the JSON file, nb_dialogues will provide the number of dia-

logues for a specific NPC, current_dialogue_index will be used to know the ID of

the current dialogue, and waiting_for_user_input will be used to know whether the

NPC is talking or whether the player is required to make a choice. The variable dia-

logue_is_ac tive will be used to know whether the NPC is currently engaged in a dia-

logue with the player, characters include an array of characters that will be able to

talk to the player, current_character specifies the current character to whom the

script is attached, and finally, the variable player refers to the Player node.

We will now add some code that will make it possible to display the dialogues

on screen; some of it refers to nodes that will be created later in this section.

• Please add the following code just after the one that you have created.

onready var dialogue_panel = get_node("../dialogue_panel")

onready var dialogue_text = get_node("../dialogue_panel/dialogue_text")

onready var dialogue_image = get_node("../dialogue_panel/dialogue_image")

In the previous code, we create variables that will be linked to the user interface

elements that will be created later and that will be used to display the dialogues;

these include the variables dialogue_panel and dialogue_text, dialogue_image.

Now that we have defined the key variables for our dialogue system we will cre-

ate and test a function that will read the JSON file and the related dialogue content.

• Please add the following code to the script:

func read_json_file():

var file = File.new()

file.open("res://dialogues/dialogues.json", file.READ)

var json_data = parse_json(file.get_as_text())

var json = to_json(json_data)

characters = JSON.parse(json).result

In the following code:

• We create a new function called read_json_file.

• We open the file dialogues.json stored in the project folder dialogues.

• The data within is converted to a JSON format and saved inside the variables

called characters.

Please add this code just after the code that you have typed.

for character in characters:

var name = characters[character].name

print ("Name:"+ name)

for dialogue in characters[character].dialogues:

print ("Message: "+ dialogue.content)

print ("-> Option A: " + dialogue.choices[0].content)

print ("-> Option B: " + dialogue.choices[1].content)

for choice in dialogue.choices:

print ("-> Option: " + choice.content)

In the previous code:

• We loop through all the characters included in the file; in our case, there is

information only for the character Diana.

• We define and save the name of each character and we display the content of

each possible dialogue along with the options that will be made available to

the player.

Once this is done, we can test this code by doing the following:

• Please add the following code to the script (new code in bold):

func _ready():

read_json_file()

• Please save your code and check that it is error-free

• Create a new CSGBox node as a child of the Spatial node.

• Rename this box Diana so that the corresponding dialogues are used.

• Add the script DialogueSystem to this object (i.e., right-click on the node

Diana and select the option Attach Script).

You can now play the scene and look at the Console window, and you should

see that the JSON file has been read properly; the dialogues for the character Diana

should appear in the Console window.

Processing the user's answers
Now that we know that the dialogues are loaded properly, we will start to trigger

the dialogues and make it possible for the player to select their answers by typing a

number on their keyboard.

• Please add the following code to the script DialogueSystem.

func _process(delta):

if (dialogue_is_active):

In the previous code, we use the function _process that is called every frame

and we check whether the dialogue is active.

• Please add this code inside the conditional statement that you have just typed

(new code in bold):

if (dialogue_is_active):

if (!waiting_for_user_input):

if (current_dialogue_index != -1):

display_dialogue1_for_character(current_character);

else:

dialogue_is_active = false;

waiting_for_user_input = true;

current_dialogue_index = 0

In the previous code:

• We check whether we are waiting for the user to press a key.

• If this is not the case, we proceed with the following.

• If the current index is not -1 (i.e., if the conversation is not finished yet) we

call the method display_dialogue1_or_character (that we will need to create).

• Otherwise, we reset the variables dialogue_is_active, waiting_for_user_input,

and current_dialogue_index.

• We then wait for the user input.

Note that Godot will display an error message in the Script window, because

we have not yet created the function display_dialogue1_for_character, however, this

message will disappear as soon as we define this function, and this will be done in

the next sections.

We now need to add code to enable the player to select one of the options of-

fered.

• Please add the following code, just after the code that you have typed (new

code in bold).

current_dialogue_index = 0;

else:

if (Input.is_action_just_released("dialogue_choice_1")):

current_dialogue_index = return_target(0);

waiting_for_user_input = false;

if (Input.is_action_just_released("dialogue_choice_2")):

current_dialogue_index = return_target(1);

waiting_for_user_input = false

Note: the first else keyword in the previous code should be at the same level of

indentation as the code

if (!waiting_for_user_input):

In the previous code:

• We check whether the player pressed the key dialogue_choice_1 (for the first

option)

• If that’s the case, we go to the corresponding dialogue by changing the vari-

able current_dialogue_index.

• We specify that we are not waiting for the player's input anymore because it is

the NPC's turn to talk.

• We repeat the last three steps if the player selects the second choice.

We will now create the function return_target; please add the following code:

func return_target(the_choice:int)->int:

var the_target = -1

print("Return target!")

for character in characters:

var name = characters[character].name

if (name == current_character):

the_target = int(characters[character].dialogues[curren-

t_dialogue_index].choices[the_choice].target);

return (the_target)

In the previous code:

• We create a new function called return_target.

• This function, based on the choice selected by the by the player will return

the id of the next part of the dialogue.

• This id is determined based on the JSON file dialogues.json.

Once this is done, we just need to create the method

display_dialogue1_for_character.

• Please add the following method to the class file DialogueSystem.

func display_dialogue1_for_character(the_name:String):

for character in characters:

var name = characters[character].name

if (name == the_name):

print("Message: "+ characters[character].dialogues[cur-

rent_dialogue_index].content)

print("1: "+ characters[character].dialogues[curren-

t_dialogue_index].choices[0].content)

print("2: "+ characters[character].dialogues[curren-

t_dialogue_index].choices[1].content)

waiting_for_user_input = true

• Add the following function:

func start_dialogue():

waiting_for_user_input = false;

dialogue_is_active = true;

• Add this code at the end of the _ready method:

start_dialogue();

• You can comment the following code now (as we have it used in the method

start_dialogue) in the read_json_file method (i.e., select the code and press

CTRL/CMD + K):

for character in characters:

var name = characters[character].name

print ("Name:"+ name)

for dialogue in characters[character].dialogues:

print ("Message: "+ dialogue.content)

print ("-> Option A: " + dialogue.choices[0].content)

print ("-> Option B: " + dialogue.choices[1].content)

for choice in dialogue.choices:

print ("-> Option: " + choice.content)

• You can now save the script and, if you haven't already done so, attach it the

node object called Diana.

Before we can save the scene, we just need to define the actions dialogue_-

choice_1 and dialogue_choice2.

• Please Select: Project | Project Settings | Input Map and map the actions dia-

logue_ choice_1 and dialogue_choice_2 to the keys 1 and 2 respectively.

• Play the scene, and you should see the dialogue in the Console window.

• You can then press the key the keys 1 or 2, and the next part of the dialogue

will be loaded as per the next figure.

Building a user interface
So at this stage, we know that we can create an interactive dialogue between the

player and an NPC; this being said, for our game, we will need to display this dia-

logue through the User Interface (UI), so we will need to create a UI for the dia-

logue including an image for the character, a background, and text fields where the

different sentences and options will be displayed for the player.

• Please create a new node of the type ColorRect as a child of the node Spatial

in the main scene.

• Rename this node dialogue_panel.

• Using the Inspector, expand the section Rect, and change the position (i.e.,

the attribute Rect | Position) to (15, 363) and its size (i.e., the attribute Rect |

Size) to (1000, 200).

• Create a new node of the type RichTextLabel as a child of the node

dialogue_panel, rename this node dialogue_text.

• Using the Inspector, expand the section Rect, and change the position (i.e.,

the attribute Control | Rect | Position) to (0, 0) and its size (i.e., the attribute

Control | Rect | Size) to (1000, 200).

• Finally, create a new node of the type Sprite as a child of the node dialogue_-

panel and rename this node dialogue_image.

• Import the image avatar.jpg from the resource pack (i.e., drag and drop it

from the folder character-pictures in the resource pack to the folder res:// in

Godot).

• Using the Inspector, drag and drop the image avatar.jpg from the File System

tab in Godot to the right of the label Texture in the Inspector.

• Move the image so that it is just above the dialogue box, as per the next pic-

ture.

So that the text can be seen over the background panel, we can change the

color of the background panel:

• Please select the node dialogue_panel, and using the Inspector, click to the

right of the label Color (in the section ColorRect) and pick a black color for

the background.

Linking the code and the JSON file to the user inter-
face

At this stage, the UI has been created and we need to create the code to display

the text there for the dialogue, as well as the image that corresponds to the NPC

that the player is talking to.

• First, please import the image called Diana.jpg from the folder images in the

resource pack and add it, in Godot, to the folder res:// (in the File System

tab).

We can then write the code that will make it possible to display the dialogue on

screen.

• Please open the script DialogueSystem.gd.

• Please add this code to the _process function (new code in bold) in the script

DialogueSystem.gd.

if (dialogue_is_active):

if (!waiting_for_user_input):

dialogue_panel.show()

if (current_dialogue_index != -1):

#display_dialogue1_for_character(current_character);

display_dialogue2_for_character(current_character);

else:

dialogue_is_active = false;

dialogue_panel.hide();

waiting_for_user_input = true;

• Finally add the following function to the class:

func display_dialogue2_for_character(the_name:String):

for character in characters:

var name = characters[character].name

var text_to_display = "["+the_name+"]\n";

if (name == the_name):

text_to_display += "Message: "+ characters[character].dialogues[cur-

rent_dialogue_index].content

text_to_display += "\n-> Option 1: " + characters[character].dialogues[curren-

t_dialogue_index].choices[0].content

text_to_display += "\n-> Option 2: " + characters[character].dialogues[curren-

t_dialogue_index].choices[1].content

dialogue_text.text = text_to_display

waiting_for_user_input = true

In the previous code, the text that was initially displayed in the Console window

is now displayed in the user interface.

• Please check that your code is error-free, and play the scene.

• You should see a window similar to the next figure.

As you select options (i.e., 1 or 2), the corresponding dialogue will appear on

screen and the panel will disappear once the conversation has ended.

Triggering the dialogue when we are near the NPC
So the code is working well, the dialogue is displayed and we can go through

the different options to answer questions from the NPC; however, the last things

we need to do are to display the correct image for the NPC and to trigger this dia-

logue only when the player is close to the NPC, and we will do this in this section.

• Please open the file DialogueSystem.

• Comment the following code in the _ready function. This is because we will

start the dialogue based on a collision with the NPC.

#start_dialogue()

• Open the script manage_player.

• Add the following code at the beginning of the script (i.e., before the function

_ready):

onready var dialogue_panel = get_node("../dialogue_panel")

onready var dialogue_box = get_node("../dialogue_panel/dialogue_box")

onready var dialogue_image = get_node("../dialogue_panel/dialogue_image")

var name_of_current_npc_talking:String = ""

var is_talking = false;

In the previous code, we create three variables that are linked to the nodes dedi-

cated to displaying the dialogues. We also create the variable name_of_curren-

t_npc_talking that will hold the name of the NPC talking to the player; finally, we

define a variable called is_talking that will be used to check whether the layer is cur-

rently talking.

• Please add this script to the function _ready in the script manage_player:

dialogue_panel.hide()

• Please add the following function to the script manage_player:

func _physics_process(delta):

for index in get_slide_count():

var collision = get_slide_collision(index)

if (collision.collider.is_in_group("NPC_TALK")):

if (collision.collider.name == "Diana" && !is_talking):

dialogue_image.texture = load("res://Diana.jpg");

collision.collider.start_dialogue()

current_state = IDLE

is_talking = true;

In the previous code:

• We check whether we are colliding with the an object that belongs to the

group NPC_TALK.

• We then check the name of this NPC that the player character is not already

talking.

• In this case, we start the dialogue.

• We make sure that the player character is in the IDLE state while talking.

Please, add this line at the beginning of the function _input_event in the script

manage_player:

if (is_talking): return;

In the previous code, we ensure that we don't process any keys related to the

player's movement during a dialogue.

• Add this new function to the script manage_player:

func end_talking():

is_talking = false

var forward = global_transform.basis.z;

move_and_slide(-forward*1.5, Vector3.UP)

rotate_y(3.14)

In the previous code, we give the control back to the player once the dialogue is

finished, so that s/he can move the player character. We also rotate the player

character so that the player can leave in the opposite direction it arrived without the

need to walk back.

• Please add this code to the function _process in the class script Dia-

logueSystem (new code in bold).

else:

dialogue_is_active = false;

dialogue_panel.hide(); #new code

waiting_for_user_input = true;

current_dialogue_index = 0

player.end_talking();

In the previous code, we notify the script manage_player that the dialogue is

finished.

Finally, we just need to ensure that the collision between the player character

and the NPC is detected by assigning a group to the NPC and also by adding a col-

lider to it.

Please do the following:

• Right-click on the node Diana.

• Select the option “Change Type” from the contextual menu, and select the

node type “StaticBody”.

• Add a node of the type CSGBox to the node Diana.

• Add a node of the type CollisionShape to the node Diana.

• Select this new node (i.e., CollisionShape), and using the Inspector, click on

the arrow to the right of the label Shape, and select the option New Box

Shape.

• Using the tab Node | Groups, assign the group NPC_TALK to the node

Diana.

• Move the node Diana so that it is a few meters away from the player.

• Once this is done, you can play the scene, and move the player character

close to the NPC; as you get closer to the NPC, the dialogue window should

appear, as illustrated in the next figure.

Adding a 3D character for the NPC
At this stage the system is working properly; the next step is to use a 3D char-

acter for the NPC. For this purpose, we will re-use the akai 3D character, apply an

idle animation to it, and also link it to a dialogue system.

• Please drag the animation akai.gltf atop the node Diana, so that it becomes a

child of this node and delete the node called CSGBox that is a child of the

node Diana (i.e., right-click on that node and select the option Delete Node

from the contextual menu).

• The node Diana should now have two child nodes, as illustrated in the next

figure.

• Please select the node CollisionShape that is a child of the node Diana, and

change its scale attribute (i.e., Transform | Scale) to (0.5, 1, 0.5).

• Change the position of the node akai that is a child of the node Diana to (0,

-1.1, 0).

• Test the scene, you should see that after walking near the NPC the dialogue

should start.

Animating the NPC
The last thing we will do is to animate this character using the idle animation

that we have used earlier for the player character.

• Please select the node akai that is a child of the node Diana.

• Attach a new script called manage_talking_npc to the node akai.

• Open this script and add the following code to it (new code in bold):

onready var pc_node = get_node("AnimationPlayer")

func _ready():

pc_node.get_animation("idle").loop = true

func _process(delta):

pc_node.play("idle")

In the previous code, we ensure that animation called idle will be played contin-

uously.

• Please save your script and play the scene, and you should see that the char-

acter Diana is idle.

––––––––

Level roundup
Summary

That's it, you have managed to create your dialogue system from a JSON file;

you created a system whereby dialogues could be stored and read to generate dia-

logues and possible branching scenarios for this dialogue. Finally, you applied this

dialogue to an actual character and implemented a user interface where the player

can see the different possible options in order to conduct a conversation with the

character. Well done!

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are true or false. The answers are available on the next page.

1. A JSON document is a text file.

2. In JSON documents, it is possible to create arrays.

3. In JSON documents, each object cannot have several attributes.

4. It is possible to read a JSON file from GDScript.

5. A node of the type CollisionShape can be used to detect collisions between

the player and other objects.

6. The event body_entered is called whenever a KinematicBody node enters an

Area node.

7. The event body_exited is called whenever a KinematicBody node exits an

Area node.

8. The method file.open can be used to load files from the folder res://.

9. In Godot, a ColorRect node can be created to display a 2D panel on screen.

10. By default, a ColorRect node will fill the size of the screen, unless specified

otherwise.

Solutions to the Quiz

1. TRUE.

2. TRUE.

3. FALSE.

4. TRUE.

5. TRUE.

6. TRUE.

7. TRUE.

8. TRUE.

9. TRUE

10. FALSE.

Checklist

If you can do the following, then you are ready to go to the next chapter:

• Modify a JSON file for the dialogues.

• Understand the structure of a JSON file used

for dialogues.

• Read a JSON file.

Chapter 4: Creating an Inventory System

In this chapter, we will create an inventory system and make it possible for the

player to collect items.

After completing this section, you should be able to:

• Add objects to be collected in the scene.

• Add objects to an inventory.

• Display the inventory.

• Use the objects in your inventory to increase the player's health.

Introduction

In this section, we will create an inventory system whereby the player will be

able to collect and use items.

So in this section, the creation of the inventory system will use the following

steps:

• We will create a class that will be used to store information about the items

that can be collected, such as their name, health benefits (if any), the damage

they can inflict (if any), a description, and the maximum number of the items

that the player can carry.

• We will then create an inventory system that will be used to display all the

items that the player owns on screen; some items will be provided to the

player by default at the start of the game, and some other items will be col-

lected throughout the game by the player.

• We will create a system whereby the player can collect items and update the

inventory accordingly.

• Finally, we will make it possible for the player to use some of the items in the

inventory to increase his/her health.

Creating classes to store information on the items to be collected

So first, let's start with the creation of the class used for each item in the inven-

tory.

• Please switch to the Script workspace (i.e., click on the tab Script at the top of

the Godot window), and create a new script (i.e., File | New Script) called

Item.gd.

• Open the script Item.

• Empty its content (CTRL + A then CTRL + X).

• Add the following line at the beginning of the script:

class_name Item

In the previous code, we are mentioning that this script is a class (that can be

instantiated later).

Once this is done we can start to define the different types of items that we can

collect, by adding the following code at the beginning of the script:

enum item_type {APPLE = 0, MEAT = 1, GOLD = 2, RED_DIAMOND = 3,

BLUE_DIAMOND = 4, YELLOW_DIAMOND = 5,SWORD = 6, BATON = 7}

In the previous code:

• We declare an enum called item_type, which is an enumeration of different

items types all with a name and a corresponding number. Note that enums

are usually defined in base 0 (i.e., first element is 0, second is 1, etc.), so in

theory there was no need to include the numbers as we have above (for learn-

ing purposes) and we could have written the following code as follows:

enum item_type {APPLE, MEAT, GOLD, RED_DIAMOND, BLUE_DIAMOND,

YELLOW_DIAMOND, SWORD, BATON}

• So we will be able to collect apples, meat, gold, red diamonds, blue dia-

monds, yellow diamonds, a sword, or a baton.

Once this is done, we can start to declare the different types of properties for all

of the items to be collected.

• Please add the following code to the beginning of the class, just after the

code that you have just typed.

enum item_family_type { FOOD = 0, LOOT = 1, WEAPON = 3}

In the previous code, we create an enum called item_family_type that defines

three types of families for the items to be collected, namely: food, loot, or weapon.

• Please add the following line, just after the code that you have just typed:

var item_type_names =["APPLE", "MEAT","GOLD","RED_DIAMOND",

"BLUE_DIAMOND", "YELLOW_DIAMOND","SWORD","BATON"]

In the previous code, we declare an array that stores the names of the different

items that can be collected.

• Please add the following just after the code that you have just typed.

var name: String

var description: String

var price:int;

var health_benefits:int

var dammage:int

var type:int

var family_type:int

var nb:int

var max_nb:int

var article:String

In the previous code, we specify that each item will have a name, a description,

a price, possible health benefits, and possible associated damage (i.e., for

weapons). We also specify the items' type and family type (i.e., whether it is food,

loot, or a weapon), how many items of this type have been collected, the maximum

number of items of this type that can be carried by the player, and an article which

will be used when displaying the item’s name (e.g., an apple, a sword, etc.)

Next, we will create a constructor, a method that will be called whenever we

want to instantiate items based on the class Item; this constructor will create an

item based on its type, and also set the item's properties accordingly (e.g., name,

description, etc.).

• Please add the following function after the code that you have just typed.

func _init(the_new_type):

match (the_new_type):

In the previous code:

• We create a method called _init which is a constructor.

• This method will take a parameter which is the type of item to be created.

• We then create a match structure (similar to the switch structure in other pro-

gramming languages) based on the type passed as a parameter.

We will now define how each type of item should be created (or constructed):

• Please add this code within the match structure (new code in bold).

match (the_new_type):

item_type.APPLE:

name = "Apple";

price = 50;

health_benefits = 10;

dammage = 0;

nb = 1;

max_nb = 5;

description = "A juicy apple.";

family_type = item_family_type.FOOD;

article = "an";

item_type.MEAT:

name = "Meat";

price = 50;

health_benefits = 30;

dammage = 0;

nb = 1;

max_nb = 2;

description = "A nice piece of cooked meat, to nurture yourmuscles.";

family_type = item_family_type.FOOD;

article = "some";

In the previous code, we specify the properties of the items of the type apple

and meat; for both these items, we specify their name, their price (that will be used

later in the shop system), their health benefits (how much health points the player

will gain by using them), the damage caused if used (none in our case), how many

these items the player owns whenever it is added to the inventory, the maximum

number of this type of item that the player can carry with him/her, a description of

the item, the family it belongs to, as well as the article that should be used when

describing this item; for example some meat or an apple (this will be used to write

a message whenever the player has found this item).

• Please add the following code just after the code that you have added in the

match structure.

item_type.RED_DIAMOND:

name = "Red diamond";

price = 250;

health_benefits = 0;

dammage = 0;

nb = 1;

max_nb = 10;

description = "A valuable diamond crafted by the best jewelllers with some

known magic properties"

family_type = item_family_type.LOOT;

article = "a";

item_type.YELLOW_DIAMOND:

name = "Yellow diamond";

price = 200;

health_benefits = 0;

dammage = 0;

nb = 1;

max_nb = 10;

description = "A valuable diamond crafted by the best jewelllers with some

known magic properties";

family_type = item_family_type.LOOT;

article = "a";

item_type.BLUE_DIAMOND:

name = "Blue diamond";

price = 100;

health_benefits = 0;

dammage = 0;

nb = 1;

max_nb = 10;

description = "A valuable diamond crafted by the best jewelllers with some

known magic properties";

family_type = item_family_type.LOOT;

article = "a";

item_type.GOLD:

name = "Gold";

price = 100;

health_benefits = 0;

dammage = 0;

nb = 10;

max_nb = 10;

description = "Gold Coins";

family_type = item_family_type.LOOT;

article = "some";

• Please add this code after the previous one:

item_type.SWORD:

name = "Sword";

price = 100;

health_benefits = 0;

dammage = 10;

nb = 1;

max_nb = 1;

description = "A powerful sword that defeats most opponents.";

family_type = item_family_type.WEAPON;

article = "a";

item_type.BATON:

name = "Baton";

price = 50;

health_benefits = 0;

dammage = 50;

nb = 1;

max_nb = 1;

description = "A simple wooden stick that you can handle easily.";

family_type = item_family_type.WEAPON;

article = "a";

type = the_new_type

In the last line of code, we just set the type of the new item created to the type

passed as a parameter to the constructor.

Finally, we will also need to have an image that represents the item created, so

we will create a method that returns an image (or its location) based on the name

and type of the current item so that it can be displayed in the inventory system ac-

cordingly.

• Please add the following function to the script Item.gd:

func get_texture_path():

var tx = ""

if (family_type == item_family_type.WEAPON):

return "res://weapons/" + name.replace(" ","_") +".png"

elif (family_type == item_family_type.FOOD):

return "res://food/" + name.replace(" ","_") +". png "

elif (family_type == item_family_type.LOOT):

return "res://loot/" + name.replace(" ","_") +". png "

else: return ""

In the previous code, based on the type of the current item, we return the loca-

tion of the corresponding image. This code assumes that three folders, weapons,

loot, and food, have been created in the project folder and that all necessary images

have been copied to the corresponding folder, and we will do that in the next sec-

tions.

Creating a user interface for the inventory system

We can now start to create an inventory system whereby the player can avail of

and collect items. This inventory will be displayed on screen whenever the player

wants to see it.

We will now start to design the user interface that displays the inventory, and

we will then create the code that will link the items present in the inventory to the

user interface.

To make things easier, you can temporarily hide the dialogue_panel node.

• Please create a new node of the type Node2D as a child of the node Spatial

and rename this node inventory.

• Add a node of the type ColorRect as a child of the node inventory, and re-

name this new node inventory_panel.

• Using the Inspector, click to the right of the label ColorRect | Color and

change the alpha attribute to 63.

• Using the same node (i.e., inventory_panel), expand the section called Rect in

the Inspector, and change its position to (306, 56), and its size to (700, 300).

• Add a node of the type RicheTextLabel as a child of the node inventory and re-

name this new node inventory_description.

• Select this new node; using the Inspector, expand the section called Rect, and

change its position to (435, 125), and its size to (200, 100).

• Duplicate the node inventory_description and rename the duplicate

inventory_text.

• In the Inspector, expand the section Rect, and change the Position attribute to

(435, 97) and the Size attribute to (200, 40).

• Add a new node of the type Sprite as a child of the node inventory, and re-

name this node inventory_image.

• Select the node inventory_image, change its position (i.e., Transform |

Translation) to (359, 110) and its scale to (0.329, 0.329).

• Finally: create a folder called loot in Godot’s FileSystem, drag and drop the

image blue_diamond.png from the folder images in the resource pack to that

folder, and then drag this image from its folder in Godot to the right of the

label attribute in the Inspector (for the node inventory_image).

Displaying and updating the inventory from the code

Once you have created the interface for the inventory, we can then use the code

to access these different fields.

• Create a new node of the type Node as a child of the node Player.

• Rename this new node inventory_system.

• Attach a new script called InventorySystem to the node inventory_system.

• Open this script.

• Add this code at the beginning of the script.

var player_inventory;

var current_inventory_index = 0;

var is_visible = false;

var path = "../../inventory/"

onready var inventory_text = get_node(path + "inventory_text")

onready var inventory_image = get_node(path + "inventory_image")

onready var inventory_description = get_node(path + "inventory_description")

onready var inventory_panel = get_node(path + "inventory_panel")

In the previous code, we create an array called player_inventory that will be

used to store all the objects that the player owns. We set the inventory_index vari-

able to 0; this variable will specify the current item displayed on screen; the vari-

able called is_visible is used to check whether the inventory is visible on screen.

We create a variable called path that stores the path from the current script to the

inventory node that is used to display the inventory. Finally, we create four vari-

ables inventory_text, inventory_image, inventory_description, and inventory_panel

which are linked to the corresponding nodes.

• Please add the following code to the _ready function.

display_ui(false);

player_inventory = []

var new_item = Item.new(Item.item_type.GOLD)

player_inventory.push_back(new_item)

new_item = Item.new(Item.item_type.MEAT)

player_inventory.push_back(new_item)

player_inventory[1].nb = 300;

In the previous code:

• We call the method display_ui that we have yet to create to empty the text in

all the text field created earlier.

• We create a new item of the type GOLD.

• We add this item to the inventory.

• We repeat the last steps to add meat to the inventory.

• We initialize the array player_inventory.

• We also specify that the player will have 300 gold coins.

Note that the Script window will display an error because we are calling a func-

tion display_ui that we have not defined yet, but this will be done in the next sec-

tions.

Once this is done, we could check that our inventory has been created properly

by creating a simple method that displays its content.

Let's create this method:

• Please add the following method to the class InventorySystem.

func check_inventory():

for i in range(player_inventory.size()):

print(player_inventory[i].item_info());

In the previous code, we go through each item present in the player's inventory

and call the method item_info (that we yet have to create) and that displays infor-

mation about a specific item.

• Please add this method to the class Item.

func item_info()->String:

var info = "name:" + str(name) + ", health benefits:" + str(health_benefits) + ",

dammage:" + str(dammage) + ", nb:" + str(nb) + ", max Nb:" + str(max_nb) + ",

type:" + str(item_type_names[type]);

return info;

• Once this is done, we need to call the method check_inventory from the

_ready method in the class InventorySystem, by adding this line at the end of

the function _ready.

check_inventory();

• For testing purposes, please comment this code in the function _ready that is

in the script InventorySystem.

display_ui (false);

You can now do the following save your code and play the scene: you should

see the following in the Console window.

name:Gold, health benefits:0, dammage:0, nb:10, max Nb:10, type:GOLD

name:Meat, health benefits:30, dammage:0, nb:300, max Nb:2, type:MEAT

Now that we know that the inventory is saving information about our items, it

is time to display this inventory on screen.

• Please remove the comment from this code in the file InventorySystem.

display_ui(false);

The first thing about this inventory is that it should not be displayed until the

player presses the key I. Before or after pressing this key, images and/or text for

this inventory should be hidden. This will be done through a new method called

display_ui that will hide/display the interface.

• Please add the following function to the class InventorySystem.

func display_ui(toggle:bool):

if (toggle):

inventory_text.show();

inventory_panel.show();

inventory_image.show();

inventory_description.show();

else:

inventory_text.hide();

inventory_panel.hide();

inventory_image.hide();

inventory_description.hide();

In the previous code, we pass a Boolean variable to the method that will be

used to determine whether each object that is a child of the object inventory should

be displayed.

Next, we will be dealing with the display of the UI for the inventory based on

the user's input. This will be done in the function _process.

First, we need to check whether the UI is displayed:

• Please add this method to the file InventorySystem.

func _process(delta):

if is_visible:

#some code will be added here in the next section

else:

if (Input.is_action_just_pressed("inventory")): is_visible = true;

In the previous code, we use the variable is_visible (that is initially set to false)

to decide on whether the UI should be displayed. We also check that if the UI is

not currently displayed, it can become visible when the player presses the key

mapped to the action inventory (we will map this key in the next sections).

Next, we need to display the UI and also select which items will need to be dis-

played (i.e., the items that are owned by the player).

• Please add this code to the function _process, within the portion of the code

that deals with when the UI is visible.

display_ui(true)

var current_item = player_inventory[current_inventory_index];

inventory_text.text = current_item.name + "[" + str(current_item.nb) + "]";

inventory_description.text = current_item.description +"\n\n Press [U] to Se-

lect";

inventory_image.texture = load(current_item.get_texture_path());

if (Input.is_action_just_pressed("inventory")):

current_inventory_index +=1

if (current_inventory_index >= player_inventory.size()):

current_inventory_index = 0;

is_visible = false

display_ui(false)

In the previous code:

• We display the UI.

• We specify that the current item to be displayed is the item at the position

current_inventory_index in the inventory.

• We display how many of these specific items are owned by the player.

• We display the description for this type of item, along with a picture.

• We then check whether the key mapped to the action inventory has been

pressed, and we increase the value of the variable current_inventory_index

accordingly so that we can display the next item in the inventory.

• We also ensure that the inventory is not visible once we have gone through

all the items within the inventory.

• For the image: assuming that we have stored the image in the project folder

(we will do that in a few seconds), we navigate to this folder, pick the image

and set it as the image to be displayed for the current item on screen).

• This assumes that we have created the folders weapons, food, and loot in the

folder res:// and that we have copied the image for each possible item in

their folders also.

Let's create these folders and copy these images:

• Please save your code.

• In the FileSystem tab, navigate to the folder called res://.

• Create two folders food and weapons. You have already created the folder

loot so there is no need to do it again here

• Locate the folder called images in the resource pack.

• Drag and drop the image apple and meat from the resource pack (in the fold-

er images) to the food folder that you have created in Godot.

• Drag and drop the images for the diamonds (i.e., green_diamond, red_di-

amond, and yellow_diamond) and gold to the loot folder in Godot. You have

already imported the file blue_diamond so there is no need to do it again

here.

• Drag and drop the images sword and baton to the weapons folder in Godot.

At this stage, we can check that the UI works properly; beforehand, please

uncomment this line in the _ready function in the script InventorySystem so that

the inventory is initially hidden (if you have not already done so).

display_ui(false);

Before we can play the scene, please map the action inventory to the key I using

the Input Map (i.e., Project | Project Settings | Input Map).

You can play the scene and press the I key, and you should see information

about the meat and the gold that the player will own by default; for more testing,

you could modify the file Item.gd, so that the attribute nb is 2 or 3 for the meat, for

example.

You may have noticed that we ask the player to select the object but there is no

mechanism yet in place to do so, and we will cover this feature in the next sections.

Creating objects to be collected for the inventory

While we were able to set up and display an inventory in the previous section,

we will now enable the player to pick up objects and to add them to his/her inven-

tory.

The main steps will be as follows:

• We will detect which objects are available near the player.

• A message will be displayed to the player to indicate that s/he can pick up an

object.

• The players will be able to choose to collect the object; if they decide to do

so, the object will be destroyed from the scene and added to the player's

inventory accordingly; if the player decides not to collect this object, then the

previous message will be hidden, and the player will need to move away from

the object (at least 1 meter away) to be able to try to collect it again. The mes-

sage will automatically be hidden if the player has walked one meter beyond

the object.

First, we will implement a template for the objects that can be collected. This

will save you time when you create your own game, as you will be able to add a

generic object to the scene, and to then, using the Inspector, choose the type of

this object (e.g., apple, meat, etc.).

• Please create a new scene of the type Area (Scene | New Scene | Other Node |

Area).

• This will create a new scene with a default node called Area.

• Please rename this node object_to_collect.

• Add a node of the type CollisionShape as a child of the node

object_to_collect.

• Select this new node and after clicking to the right of the label CollisionShape

| Label in the Inspector, select the option New Box Shape.

• Once this is done, click on the label called BoxShape to the right of the at-

tribute Shape, and set the Extents attribute to (.3, .3, .3).

• Save this scene as object_to_collect.tscn.

• In the same scene, add a node of the type CSGBox as a child of the node

object_to_collect, and change the scale attribute (i.e., Transform | Scale) of

this node to (0.2, 0.2, 0.2). This node is there to help you visualize where the

object to be collected will be in the editor; this being said, its appearance will

be changed using the proper texture at run-time.

Once this is done, we just need to create the script that will handle the collision

with this object.

• Please attach a new script called object_to_be_collected to the node

object_to_collect.

• Add the following code to the script, before the function _ready.

export (PackedScene) var baton

export (PackedScene) var sword

export (PackedScene) var apple

export (PackedScene) var meat

export (PackedScene) var gold

export (PackedScene) var red_diamond

export (PackedScene) var yellow_diamond

export (PackedScene) var blue_diamond;

export(int, "APPLE", "MEAT","GOLD","RED_DIAMOND", "BLUE_DIAMOND",

"YELLOW_DIAMOND","SWORD","BATON") var type

var item;

In the previous code, we create placeholders for the 3D nodes that will be used

to represent the items to be collected. We also define a variable called type so that

these items can be configured by the game designer (you) later on when the level

is set-up. Finally, we define the variable item and its corresponding type.

• Please add this code to the function _ready:

item = Item.new(type)

var new_object_to_collect

new_object_to_collect = baton.instance()

match type:

Item.item_type.BATON:

new_object_to_collect = apple.instance()

Item.item_type.SWORD:

new_object_to_collect = sword.instance()

Item.item_type.APPLE:

new_object_to_collect = apple.instance()

Item.item_type.MEAT:

new_object_to_collect = meat.instance()

Item.item_type.GOLD:

new_object_to_collect = gold.instance()

Item.item_type.RED_DIAMOND:

new_object_to_collect = red_diamond.instance()

Item.item_type.YELLOW_DIAMOND:

new_object_to_collect = yellow_diamond.instance()

Item.item_type.BLUE_DIAMOND:

new_object_to_collect = blue_diamond.instance()

_:

pass

add_child(new_object_to_collect)

new_object_to_collect.global_transform.origin = global_transform.origin

In the previous code, we create a new instance of an Item that will be linked to

the object to be collected. We also instantiate the 3D object that will represent the

object to be collected.

Please save your code, and look at the Inspector, you should see that a field

called type has appeared for the section ScriptVariables.

You will also see eight empty fields called baton, sword, apple, meat, gold, red

diamond, red diamond, blue diamond, and yellow diamond. At this stage, these

empty fields correspond to templates/scenes (to be created) that are the 3D rep-

resentations of each of the possible 3D objects to include in the inventory.

––––––––

We will now need to create these templates.

• Please create a new scene of the type CSGBox.

• This will create a new scene with a box called Spatial.

• Change the scale (i.e., Transform | Scale) to this node to (.3, .3, .3).

• Using the section material, create a new Spatial Material and use the image

apple.png (located in the food folder) as a texture for this node (i.e., use the

section Albedo | Texture).

• Click on the downward facing arrow to the right of the label material, as per

the next figure, and select the option to “Edit”.

• In the new window, expand the section called Flag and set the attribute Trans-

parent to On.

• Save this scene as apple.tscn.

• Duplicate this scene seven times (i.e., select the scene on the FileSystem tab

and press CTRL + D or CMD + D) and rename the duplicates: baton.tscn,

sword.tscn, meat.tscn, gold.tscn, blue_diamond.tscn, yellow_diamond.tscn,

green_diamond.tscn.

• Open each of these scenes and modify the texture used for the CSGBox node

to the correct texture (i.e., baton.png, sword.png, etc.).

• Save each scene.

• Please open (or switch to) the scene object_to_collect.

• Select the node object_to_collect.

• Drag and drop the scenes that you have created from the FileSystem tab (i.e.,

apple.tscn, meat.tscn, etc.) to their corresponding placeholders for the script

object_to_be_collected that is linked to the node Area.

• Select the type APPLE.

Once this is done, you can do the following:

• Save the scene.

• Open the main scene (i.e., level1).

• Right-click on the node Spatial, and select the option Instance Child Scene.

• Type the text object_to_collect.tscn in the text field and click on Open.

• This will create a new node called object_to_collect.

• Please move this object above the ground and a few meters away from the

player character, as per the next figure.

• Play the scene and you should see that the apple is now displayed in the

scene as an object to collect.

Next, we will need to detect collisions between the player and the objects to be

collected.

• Please open the script object_to_be_collected.

• Add this function to the script.

func body_entered(body):

pick_up_object1()

In the previous code, we create a function called body_entered that will call the

function pick_up_object1.

Now we just need to make sure that this function is called whenever the player

enters the area defined for the object to be collected.

• Please open the scene object_to_collect.

• Select the node object_to_collect.

• Using the Inspector, select the tab Node | Signals.

• Double-click on the event body_entered.

• In the new window, make sure that the node object_to_collect is selected.

• In the section Receiver Method, please type the text body_entered and click

on “Connect”.

• So effectively, the function body_entered will be called whenever the area de-

fined for the current object has been entered by the player.

We now need to define the method pick_up_object1.

• Please add this function to the script object_to_be_collected

func pick_up_object1():

get_node("../Player").item_to_pickup_nearby = true

var can_pick_up = get_node("../Player/

in-ventory_system").update_in-tory(type,1)

if (can_pick_up):

get_node("../Player").item_to_pickup_nearby = false

queue_free()

In the previous code:

• We create a function called pick_up_object1.

• We notify the player that there is an item nearby to be collected.

• We add the new object to the inventory (if that’ possible) using the function

update_inventory.

• Then when this has been done, we notify the player that the object has been

collected, and the latter is then destroyed.

Before we can test the scene, we just need to add a few more things:

• Please add this code at the beginning of the script manage_player.

var item_to_pickup_nearby

var item_to_pickup

• Finally, please add this function to the script InventorySystem.

func update_inventory(type_of_item:int, nb_items_to_add:int):

var found_similar_item = false

for i in range (0, player_inventory.size()):

if (player_inventory[i].type == type_of_item):

if (player_inventory[i].nb + nb_items_to_add <= player_inventory[i].max_nb):

player_inventory[i].nb += nb_items_to_add;

found_similar_item = true;

break

else: return false

if (!found_similar_item):

var new_item = Item.new(Item.item_type.GOLD)

player_inventory.push_back(Item.new(type_of_item))

player_inventory[player_inventory.size() - 1].nb = nb_items_to_add;

return true;

In the previous code:

• We go through the player's inventory.

• If an item of the same type is already in the inventory, we then check that we

can add this item without going over the limit set for this type of item.

• If that is the case, then the item is added to the inventory which is updated.

• Otherwise, if a similar item was not found in the inventory, we add it to the

inventory.

Please save your code and test the scene, and you should be able to pick up the

item as you collide with it; it should also be added to your inventory (you can press

I to see the inventory).

Allowing the player to choose the objects to collect

As it is, the system works properly and it is possible to collect an item and add

it to the inventory.

Now it would be good to make it possible for the player to accept or refuse to

collect an item. So, in the next sections, we will create a menu that will appear

when the player is near an object to collect and that will provide the options to col-

lect the item if the player wishes to do so.

• Please open the main scene (i.e., level1) and add a new node of the type Label

as a child of the node Spatial and rename this node user_message.

• Change its position (i.e., Rect | Position) to (425, 190) and its size (i.e., Rect |

Size) to (400, 100).

• Add this code at the beginning of the script manage_player.

onready var user_message = get_node("../user_message")

• Add this code to the function _ready in the script manage_player:

user_message.hide()

• Modify the code in the function body_entered in the script object_to_be_-

collected as follows (new code in bold).

func body_entered(body):

#pick_up_object1()

get_node("../Player").item_to_pickup_nearby = true

pick_up_object2()

In the previous code, we simply comment the call to the method pick_up_ob-

ject1 and we add a call to a method named pick_up_object2.

• Please add the following function to the script object_to_be_collected.

func pick_up_object2():

var article;

if (is_a_vowel(item.name [0])): article ="an"

else: article = "a"

var message = "You Just Found " + article + " "+item.name +"\n\n Collect y/n"

get_node("../user_message").show()

get_node("../user_message").text = message

In the previous code, we define the article to be used for the item to be col-

lected and this is done through the function is_a_vowel (that we yet have to de-

fine); for example, we will use "an" if it is an apple, or "some" if it is gold; we then

create a sentence that will be displayed and that offers the player the choice to pick

up or to leave this item.

• Please add the following function to the same script:

func is_a_vowel(the_letter) :

the_letter = the_letter.to_lower()

var is_a_vowel = false

for i in "aeiou":

if (the_letter == i):

is_a_vowel = true

return (is_a_vowel)

In the previous code:

• We create a function called is_a_vowel.

• This function takes a letter as a parameter and checks whether this letter is a

vowel.

• The function returns true (i.e., that the letter passed as a parameter is a

vowel) if this is the case, and false otherwise.

Once the message has been displayed, we just need to check the decision

made by the player.

• Please add the following code to the script object_to_be_collected.

func _process(delta):

if (get_node("../Player").item_to_pickup_nearby):

if (Input.is_key_pressed(KEY_Y)):

pick_up_object1()

elif (Input.is_key_pressed(KEY_N)):

get_node("../user_message").hide()

In the previous code:

• We check that there is an actual object nearby to be collected.

• If that's the case, we check whether the player has pressed the key Y (for Yes)

or N (for No).

• If the player has indicated that s/he wants to collect this item, we call the

function pick_up_object1.

• Otherwise, we just clear the screen from the message.

We now need to check whether the player has walked far away from the object

to be collected.

• Please add the following function to the script object_to_be_collected:

func body_exited(body):

get_node("../Player").item_to_pickup_nearby = false

if (get_node("../user_message").is_visible()):

get_node("../user_message").text = ""

get_node("../user_message").hide()

In the previous code, we just clear the previous message from the interface

once the player has exited the area that was originally defined for the object to col-

lect. In other words, once the player is far away from the object, we don't provide

him/her the option to pick the object up, unless s/he goes back to this object.

Once this has been done, we just need to link the event triggered when the

player exits this area to the function that we have just created as follows:

• Please open the scene object_to_collect.tscn.

• Select the node object_to_collect.

• Using the Inspector, select the tab Node | Signals.

• Double-click on the event body_exited.

• In the new window, please make sure that the node object_to_collect is se-

lected.

• Type body_exited in the field Receiver Method and then press Connect.

Last but not least, we will need to check that it is possible to add an item to the

inventory before we can pick it up:

• Please modify the method pick_up_object1 (new code in bold) in the script

object_to_be_collected.

if (can_pick_up):

get_node("../Player").item_to_pickup_nearby = false

get_node("../user_message").hide()

get_node("../user_message").text = ""

queue_free()

else:

var message = "Sorry, you can't pick up this item"

get_node("../user_message").text = message

In the previous code: if it is possible to add the object to the inventory, we

empty the message previously displayed to the user and we also deactivate the

panel that is used to display the message; otherwise, we display a message that

indicates that the player can't collect this object.

• You can now save your code.

• You can now reactivate the objects dialogue_panel and inventory in the scene

level1.

To perform the test, please play the scene, go towards the apple, collect it (i.e.,

press the key Y after the message asking you whether you want to pick up this ob-

ject is displayed), and then check your inventory that should now include meat,

gold, and the apple that you have just picked up.

To complete the test, you could copy the object object_to_collect five times,

move the duplicates apart, and try to collect all of them, as per the next figure.

As you try to collect the last one, the following message should be displayed:

" You can't pick up this item"

This is because we have specified in the class Item that the maximum number

of apples to be carried is 5, as per the next code snippet.

match (the_new_type):

item_type.APPLE:

name = "Apple";

price = 50;

health_benefits = 10;

dammage = 0;

nb = 1;

max_nb = 5;

You can delete the extra objects to collect once you are happy with your tests.

Using an item from the current inventory to increase the players' health

At this stage, the inventory works well, and you can pick up objects up to a

maximum set for the type of the item selected; if you remember well, we have, in

the class called Item, specified attributes such as health_benefit for each item; the

idea is that for example, you should be able to increase the player's health by using

(i.e., eating) some of the items in the inventory. So in this section, we will add the

possibility for the player to use the different types of food present in the inventory

to increase its health.

For this purpose, we will:

• Create a variable for the player's health.

• Set this variable.

• Increase the health of the player whenever s/he eats food according to the

health benefits associated with this food.

• Display the health levels on screen.

First, let’s define the health of the player.

• Please open the script manage_player.

• Add the following code at the beginning of that script.

export(int, 1,100) var health

In the previous code, we define the variable called health; it will be accessible

through the Inspector and its range will vary from 1 to 100.

We will now add a method to increase the player's health:

• Please add the following function to the script manage_player:

func increase_health(amount:int):

health += amount

if (health >= 100): health = 100

print("Health="+str(health))

In the previous code:

• We create a new function called increase_health.

• In this function, we increase the health.

• We also cap this number to 100.

• We then print the value of the variable health in the Console window.

Finally, please open the script InventorySystem and add the following code in

the function _process (new code in bold).

if (Input.is_action_just_pressed("inventory")):

current_inventory_index +=1

if (current_inventory_index >= player_inventory.size()):

current_inventory_index = 0;

is_visible = false

display_ui(false)

if (Input.is_action_just_pressed("use_inventory")):

if (player_inventory[current_inventory_index].family_type == Item.item_fam-

ily_type.FOOD):

get_node("../../

Player").increase_health(player_invento-

ry[current_inventory_index].health_benefits);

player_inventory.remove(current_inventory_index);

current_inventory_index = 0;

is_visible = false

display_ui(false);

In the previous code:

• We check whether the player has pressed the key U.

• If that's the case, we check that this item is from the group called FOOD.

• If the item selected is part of the FOOD group, we increase the health of the

player; the increase is equal to the health benefit provided by this item and

previously defined in the file Item.

• Once the food has been used (i.e., eaten), we remove it from the inventory.

• We set the current index of the inventory to 0, and we then hide the interface

for the inventory.

You can now save your code and test it as follows.

• Set the health variable to 50 using the Inspector for the object Player.

• Play the scene.

• Display your inventory.

• Select the meat.

• Press the key U to use (i.e., eat) the meat.

• You should see the following message in the Console window.

Health:80

• Pick up and use the apple, and the following message should be displayed as

follows.

Health:90

You should also see that both the apple and the meat have disappeared from

your inventory after they have been used.

Creating a health bar

At this stage, we can see, in the Console window, that the player's health is in-

creasing whenever s/he uses food from the inventory. The next step is to display

the player's health on screen, with a health bar, rather than in the Console window.

This health bar will consist of three parts: a black border, a black background, and

a green color within, as per the next figure.

So, let’s start creating this health bar:

• Please create a new node of the type Node2D as a child of the node Spatial in

the main scene (i.e., level1) and rename this new node health_bar.

• Add a node of the type ColorRect as a child of the node health_bar and re-

name this new node black_bg.

• Select the node black_bg.

• Set its color to black using the section ColorRect | Color in the Inspector.

• Using the Inspector, expand the section Rect, and change the attributes Posi-

tion to (64.5, -0.2) and Size to (100, 20).

• Duplicate the node black_bg, and rename the duplicate green_bar, and

change its color to green using the section ColorRect | Color in the Inspector.

• Create a new node of the type Label as a child of the node health_bar, rename

this new node left_label, and, using the Rect section in the Inspector, change

its position to (7.5, 1.3) and its size to (45, 20). Set the horizontal and vertical

alignment attributes to left and top, respectively and type XX in the Text at-

tribute, so that you can see how the text will look.

• Duplicate the node left_label, rename the duplicate value_label, and using the

Rect section in the Inspector, change its position to (80.5, 1.3) and its size to

(48, 20).

The next step will be for us to control the appearance of the health bar so that

its length reflects the value of the variable health that we have defined for the player

earlier.

• Please attach a new script to the node health_bar and save it as manage_bar.

• Add this code at the beginning of the script.

var value = 0

var label = "Health"

• Modify the function _ready as follows (new code in bold):

func _ready():

get_node("left_label").text = label

update_value()

• Add the following function to the script manage_bar.

func increase_value(amount:int):

value += amount

if (value >= 100): value = 100

update_value()

In the previous code, we increase the value represented by the bar and call the

method update_value.

• Please add the following function.

func update_value():

get_node("value_label").text = str(value)

var scale_factor:float = value/100.0

get_node("green_bar").rect_scale = Vector2(scale_factor,1)

In the previous code, we rescale the node green_bar based on the value of the

variable value and we also update the text displayed within the bar.

• Please add the following function:

func _process(delta):

if (Input.is_key_pressed(KEY_B)):increase_value(10)

In the previous code, that is used for testing purposes, we increase the health

by 10 if the user presses the key B.

Please save your code. Once this is done, you can check that the health bar

works by playing the scene, and pressing twice the letter B on your keyboard; you

should see that the health increases, as illustrated on the next screenshot.

Once you have checked that this is working, you can comment out the code in

the _process function in the class manage_bar as follows.

func _process(delta):

#if (Input.is_key_pressed(KEY_B)):increase_value(10)

pass

In the next section, we will link the health bar that we have just created to the

inventory and the player so that the health is displayed at all times, and also so that

any change in the player's health (e.g., after s/he eats food) is mirrored in the

health bar.

• Please add this function to the script manage_bar.

func set_value(amount):

value = amount

update_value()

• Modify the function increase_health in the file manage_player as follows

(new code in bold).

func increase_health(amount:int):

health += amount

if (health >= 100): health = 100

print("Health="+str(health))

get_node("../health_bar").set_value(health)

In the previous code, we just set the value of the health bar with the value of the

variable health.

• Add this code to the _ready method in the script manage_player.

get_node("../health_bar").set_value(health)

Once this is done, you can test your code:

• Save your code.

• Play the scene.

• At the start your health should be 50%.

• As you use the meat from the inventory, the health should increase to 80.

• And then to 90 if you pick up and use the apple present in the scene.

You can also create a new scene with the object called health_bar (i.e.,

right-click on that node and select the option Save Brach as a Scene). This will be

useful if you want to use a progress bar or a status bar for other elements of your

game; as you may have noticed, the health bar was created so that it is independent

from other parts of your code; in other words, it can be re-used to display the sta-

tus of any other variable.

––––––––

Level roundup

Summary

In this chapter, we have created an inventory system whereby the player can

collect objects and use them to increase its health if need be. Along the way, we

have used a combination of Lists, Triggers, UI elements, and key detection to be

able to list all the items owned by the player and to also be able to detect when a

new object close to the player character can be collected.

So in the end, we built a system with the following characteristics:

• You (the designer) can easily create items and their associated properties by

modifying a script.

• You can add these items to the scene and change their type, if need be, using

the Inspector and the generic object object_to_collect.

• You can specify an image and a 3D representation for each of these items,

and store them.

• The player will be able to pick up an item and use it to increase its health.

• You (the designer) can also reuse the health bar prefab to display other at-

tributes, if you wish.

This system is configurable, which means that you can change the attributes of

any of the items that are to be used in your game, in terms of appearance, health

benefits, etc., very easily; this will make your RPG creation and testing much faster.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are TRUE or FALSE. The answers are available on the next page.

1. In Godot it is possible to access files present in the folder res:// from a

script.

2. The following code will add an object of the type item to the array

player_inventory.

var new_item = Item.new(Item.item_type.GOLD)

player_inventory.push_back(new_item)

1. It is impossible to add or remove elements from an array.

2. The following code will check whether the user pressed the key mapped to

the action “inventory”.

if (Input.is_action_just_pressed("inventory")):

1. The following code will return the size of the array player_inventory.

var size = player_inventory.size()

1. It is possible to change the type of a node in the Hierarchy Tree using the

option “Change Type”.

2. It is not possible to change the color of a node of the type ColorRect.

3. The following code will create a placeholder in the Inspector so that a node

can be dragged and dropped to it.

export (PackedScene) var baton

1. The following code will create a drop-down list in the Inspector from which

the user can select a value/type.

export(int, "APPLE", "MEAT","GOLD","RED_DIAMOND", "BLUE_DIAMOND",

"YELLOW_DIAMOND","SWORD","BATON") var type

1. It is possible to instantiate a scene that has been previously created, using

the option “Instance Child Scene”.

Solutions to the Quiz

1. TRUE.

2. TRUE

3. TRUE.

4. TRUE.

5. TRUE

6. TRUE.

7. TRUE.

8. TRUE.

9. TRUE.

10. TRUE

Checklist

You can move to the next chapter if you can do the following:

• Understand how to create an array

• Understand how to update an array.

• Create a panel using the nodes of the type

ColorRect.

• Display or hide UI elements.

Challenge 1

Now that you have managed to complete this chapter and that you have gath-

ered interesting skills, let’s put these to the test.

• Create two other objects to be collected and added to the inventory: oranges

and tomatoes.

• Create spheres that can be used to represent these items (i.e., orange and red

spheres).

• Find and use images that can be used to represent these items.

• Modify the file called Item to create corresponding enum types and also

modify the function called init.

• Add some apples and tomatoes to the scene and ensure that the player can

add them to their inventory.

Chapter 5: Creating a Shop and a Buying System

This chapter helps you to create a shop system that you can use to implement any

type of shop in your game; this, as for most of the material covered in this book,

will allow you to create a flexible system that you can reuse in all of your games

without having to re-invent the wheel every time.

After completing this section, you should be able to:

• Create a shopping system whereby players can buy items and add them to

their inventory.

• Create a user interface that the player can use to add items to their shopping

basket, calculate the corresponding total, and check that these can be added

based on the amount of money that the player currently has.

• Create a reusable interface with images, buttons, and the associated logic to

process the user's actions.

Creating a shop

In this and the next sections, we will start creating a shop whereby the player

can enter a shop, buy items based on the number of gold coins that s/he owns,

and add these items to his/her inventory after paying. The process will be as fol-

lows; we will:

• Create a user interface for the shop.

• Create a template to be used for each item in the shop.

• Add the ability to add or remove items to and from the shopping bag, ac-

counting for the money that the player has and the total price.

• Add the items to the player's inventory once the purchase is complete.

Creating the interface

Before we start, let's look at the layout of the shop that we are going to create.

As you can see, the interface will consist of:

• A left panel where the items available in the shop are listed.

• A right panel with the total (i.e., updated after items have been selected), the

amount of money left for the player, and a button to pay for the items se-

lected and leave the shop.

• For each item available, there is information that consists of an image, a

label, a price, a quantity, and a plus and minus button to add or remove this

specific item to/from our shopping bag.

• You may notice that the layout of the information provided for each item is

the same, as we will create a template that will be used for every type of item

available.

Creating the user interface for each item available in the shop

First, we will create the UI for each of the items available in the shop. This UI

will look like the next figure.

We will then create a scene from this UI and re-use it for any other items avail-

able in the shop.

Let's proceed:

• Please create a new Node2D scene.

• This will create a new scene with a default node called Node2D.

• Please rename this node shop_item.

• Add a new node of the type ColorRect as a child of the node shop_item and

rename this node item_bg.

• Change its color to grey and, using the section Rect, change its position to (0,

0) and its scale to (150, 109).

• Add a new node of the type Sprite as a child of the node shop_item, and re-

name the new node item_image.

• Import the texture empty_shop_item.jpg from the older images in the re-

source pack to your project.

• Using the section Sprite | Texture in the Inspector, drag and drop the file

empty_shop_item.jpg to the right of the label Texture.

• Change the position (i.e., Transform | Position) of the node item_image to

(76, 52) and its scale (i.e., Transform | Scale) to (0.2, 0.2).

• Add a new node of the type Label as a child of the node shop_item and re-

name it item_label.

• Change its text attribute to Name ($X), change its alignment to Center/Center,

and, using the Rect section in the Inspector, change its position to (6, 5) and

its scale to (140, 14).

• Add a new node of the type Label as a child of the node shop_item and re-

name it item_qty_label.

• Change its text attribute to Qty:30, its alignment to Left/Center, and, using

the Rect section in the Inspector, change its Position to (3, 85) and its Size to

(30, 14).

• Finally, add a new node of the type Label as a child of the node shop_item

and rename it item_qty.

• Change its Text attribute to X, change its alignment to Left/Center, and, using

the Rect section in the Inspector, change its position to (33, 86) and its size to

(10, 14).

Once this is done, we can start to create the buttons that will be used to in-

crease or decrease the quantity for the current item.

• Please add a new node of the type Button as a child of the node shop_item

and rename it plus_button.

• Change its text attribute to +, and, using the Rect section in the Inspector,

change its Position to (48.8, 81.5) and its Size to (20, 20).

• Duplicate the node plus_button, rename the duplicate minus_button, change

its Text attribute to - and change its position to (75.8, 81.5).

At this stage, the interface for the item is complete, and we just need to add a

corresponding image that will replace the white square. We also need to create the

corresponding logic so that pressing on the + or – button increases or decreases

the quantity for this item accordingly.

• Please save this scene as shop_item.tscn.

Creating scripts to add or remove items

In this section, we will create the scripts that will be linked to the + and – but-

tons so that we can increase or decrease the quantity for a specific item.

• Please open the scene shop_item.tscn.

• Select the node shop_item.

• Attach a new script to it, and rename the script shop_item.gd.

• Open the script.

• Add this code at the beginning of the script.

var item_name

var item_price

var item_quantity = 0

var item_index = 0

• Add this code to the function _ready.

update_quantity_label()

• Add these new functions:

func increase_quantity():

if (!can_click()): return

item_quantity += 1

update_quantity_label()

func decrease_quantity():

item_quantity-=1

if (item_quantity < 0): item_quantity = 0

update_quantity_label()

func update_quantity_label():

get_node("item_qty").text = str(item_quantity)

func can_click()->bool:

return true

In the previous code:

• The function increase_quantity increases the quantity of the current item if

the method can_click returns true; it then calls the method update_quan-

tity_label that will update the text for the node item_qty.

• The function decrease_quantity decreases the quantity of the current item if

can_click returns true; it then calls the method update_quantity_label that will

update the text for the node called item_qty.

• Finally, the function update_quantity_label looks for the node item_qty and

updates its text attribute.

• For the time being the method can_click is a stub, as it always returns true;

later on, we will get it to communicate with a shop system that will check for

several attributes, including whether the player has enough funds to purchase

this item.

• Please save your code, and check that it is error-free.

In the next section, we will manage the user interaction with the buttons by de-

tect ing when s/he presses the + or – button and updating the interface accordingly.

• Please select the node plus_button (in the scene shop_item) and, using the

Inspector, open the tab Node | Signals, double-click on the event called

pressed, and link this event to the function called increase_quantity that is in

the script linked to the node shop_item.

• In the same way as in the previous step, please select the node minus_button

(in the scene shop_item), and using the Inspector, open the tab Node |

Signals, double-click on the event called pressed, and link this event to the

function called decrease_quantity that is in the script linked to the node

shop_item.

So at this stage, both buttons have been linked to the pressed events; so press-

ing the buttons plus_button or minus_button will either increase or decrease the

quantity of the current item, respectively.

At this stage, you can play the scene shop_item: as you use the plus and minus

buttons, you should see

how the quantity increases or decreases for this item.

Adding items to the shop

In this section we will:

• Create an interface for the shop.

• Add items and the corresponding UIs elements to the shopping basket.

• Make it possible to calculate the total amount/cost for the shopping basket.

First, we will create a house that will be used for the shop:

• Please open (or switch to) the scene level1.

• Please duplicate the scene house.tscn and rename the duplicate shop.tscn.

• Open the scene shop.tscn.

• Rename the node house to shop.

• Select the node roof and change its color to red.

• You can save your scene.

We can now add this shop to the main scene:

• Please open (or switch to) the main scene level1.

• Create a new node of the type Area as a child of the node Spatial, and rename

this new node shop.

• Create a new node of the type CollisionShape as a child of the node shop, and

set a BoxShape for this node: from the Inspector, click to the right of the sec-

tion CollisionShape | Shape, and select the option New Box Shape.

• Create a new node of the type Node as a child of the node shop, and rename

this new node shop_system.

• Right-click on the node shop, select the option Instance Child Scene, and se-

lect the scene shop.tscn.

• This will create a new node called shop: please rename it shop_walls.

• Change the rotation of this node to (0, -90, 0), and its scale to (3, 3, 3).

• Finally, select the node shop, change its y coordinate to 2, and move it along

the x and z axis so that it appears in the middle of the village and so that the

entrance is accessible.

Now that we have created the 3-Dimensional aspect of the shop, and before we

start to implement the logic to manage the shop and to display items, we will start

to create the UI for the shop.

• Please open (or switch to) the main scene (i.e., level1), create a new node of

the type Node2D as a child of the node Spatial, and rename it shop_ui.

• Create a new node of the type ColorRect as a child of the node shop_ui, re-

name it shop_items, set its color to green, its position to (0, 0), and its size

(using the section called Rect) to (723, 578).

• Duplicate the node shop_items, rename the duplicate bag_items, set its color

to blue, its position to (720, 0), and its size (using the section called Rect) to

(420, 578).

• Add a new node of the type Label as a child of the node shop_ui, rename it

shop_label and change its text to SHOP; using the section Custom Fonts,

create a new Dynamic Font (i.e., click to the right of the label Font and select

the option Dynamic Font), set the font as Bebas Neue (i.e., import the font

Bebas Neue from the folder fonts in the resource pack to Godot, and then

drag and drop this font from the FileSystem tab in Godot to the section Font |

Font Data), and set the font-size to 100.

• Place this node at the top of the screen, as per the next figure (you can mod-

ify its font-size and font-style attributes as well, if you wish).

• Duplicate the node shop_label, rename the duplicate shop_total_label,

change its text to TOTAL, and move it at the top of the blue panel.

• Copy the node shop_total_label three times and rename the duplicates

shop_total_value, shop_money_left_label, and shop_money_left_value,

change their text respectively to XXXX, MONEY LEFT, and XXXX, and arrange

them as illustrated in the next figure.

Now that the interface is complete, we will start to add code so that several

items can be added to the shop.

• Please select the node shop_system.

• Add a script to this node and rename the script shop_system.gd.

• Add this code at the beginning of the script.

var shop_items:Array;

export (PackedScene) var shop_item_component;

var shop_item_components:Array

var total_purchase = 0;

var initial_money;

var money_left;

var top_left_x;

var y_top_padding = 100;

In the previous code:

• We create a variable shop_item_component that will be accessible in the In-

spec tor and we will be able to initialize it by dragging and dropping a scene to

this empty slot in the Inspector (i.e., the scene shop_item).

• We also create an array shop_item_components that will be used to store all

the items that will be available in the shop.

• The variable total_purchase will store the total amount of the purchase.

• The variable initial_money will be used to store how much money the payer

has when entering the store.

• The variable money_left will track how much money the player has left after

buying the items so that this money can be put back in its inventory.

• Finally, the variables top_left_x and and y_top_padding will be used to posi-

tion the images used to represent each of the items available in the shop.

This is so that all items are displayed properly on screen (i.e., so that they are

visible).

Now that these variables have been created, we can initialize them:

• Please add the following code to the function _ready:

initial_money = 100;

money_left = initial_money;

top_left_x = 50;

In the previous code, we set the initial money owned by the user to 100, we

specify that the player has not spent any money yet, and we also set the value for

the variable top_left_x.

To set the values for the variable top_left_x, you can place a new node of the

type shop_item (i.e., right-click on the Spatial node, select the option Instance

Child Scene, and select the scene shop_item) in the top left corner of the scene

and check its position; its x and y coordinates can be used for the variable

top_left_x. Because each shopItem instance will be added as a child of shopUI,

their coordinates will be calculated in relation to their parent; as a result, we need

to know the position of the object shopItem relative to shopUI; therefore, before

taking note of its position, we need to make it a child of shopUI. In my case, this

value was 50. If you can't see the object shopItem, please make sure that it is below

the object shopUI in the Hierarchy window.

• Please add this code to the function _ready.

shop_items.push_back(Item.new(Item.item_type.YELLOW_DIAMOND))

shop_items.push_back(Item.new(Item.item_type.BLUE_DIAMOND))

shop_items.push_back(Item.new(Item.item_type.RED_DIAMOND))

shop_items.push_back(Item.new(Item.item_type.MEAT))

shop_items.push_back(Item.new(Item.item_type.APPLE))

In the previous code, we initialize the array called shop_items, and we add

items to it. The function push_back adds each item at the back (i.e., the end) of the

array.

• Please add this new function:

func init():

• Please add this code to the function init.

shop_item_components.push_back(shop_item_component.instance())

shop_item_components.push_back(shop_item_component.instance())

shop_item_components.push_back(shop_item_component.instance())

shop_item_components.push_back(shop_item_component.instance())

shop_item_components.push_back(shop_item_component.instance())

In the previous code, we create 5 instances of the class shop_item_component

that will be use to represent the items available in the shop on screen.

• Please add the following code to the function init.

get_node("../../shop_ui/shop_money_left_value").text = str(initial_money)

for i in range (0, shop_item_components.size()):

setup_shop_item_component(i);

In the previous code, we display the initial money available to the player, we ini-

tialize the items of the array called shop_item_components through the method se-

tup_shop_ component that we need to create. The array shop_item_components in-

cludes a user interface for each item available in the shop.

In the next section, we will create the method setup_shop_component. This

method will determine the position and content of the user interfaces for each

items available in the shop.

• Please add the function setup_shop_component:

func setup_shop_item_component (index:int):

shop_items[index].nb = 0

shop_item_components[index].item_index = index

In the previous code, we create the new function setup_shop_item_component,

we set the initial number of items to 0, and we refresh the corresponding index for

this item in the shopping system.

The items displayed on screen are part of the array shop_item_components and

will effectively be instances of the scene shop_item and show information about

each of the items available in the shop; so they will all have a label, a price, an

image, along with two buttons plus and minus.

• Please add the following code to the same function (i.e.,

setup_shop_item_component):

var width = 150;

var border_around_each_item = 1.05;

shop_item_components[index].name = "shop_item_" + str(index) + shop_item-

s[index].name + "($" + str(shop_items[index].price) + ")";

shop_item_components[index].find_node ("item_label").text = shop_item-

s[index].name + "($" + str(shop_items[index].price) + ")";

get_node("../../shop_ui").add_child(shop_item_components[index])

shop_item_components[index].global_transform.origin = get_node("../../

shop_ui").global_transform.origin

In the previous code:

• We set the width of the items to be displayed on screen to 150.

• We set the space between each item to be displayed on screen to 1.05.

• We then define the name of each item.

• We then select the item (which is a node) and its label that will consist of its

name followed by its price.

• We then add the items that we have just configured as a child of the node

shop_ui.

• Finally, we change the position of the item to be displayed.

Now that each item has been added, we will just specify their position based on

their index and the border that should be added between them:

• Please add the following code to the one you have just typed:

var add_on = shop_item_components[index].global_transform.origin

var x_pos = top_left_x + (index%3)* width*border_around_each_item

var y_pos = y_top_padding + (index/3) * width * border_around_each_item

shop_item_components[index].global_transform.origin = add_on + Vec-

tor2(x_pos, y_pos);

shop_item_components[index].find_node("item_image").texture = load

(shop_items[index].get_texture_path())

In the previous code, we specify the position of each item, along with the path

of the corresponding texture that should be displayed on screen.

• Finally, add this code to the function _ready.

init()

• Please save your code.

• Select the object shop_system (child of the object shop) in the scene level1.

• Drag and drop scene shop_item.tscn from the FileSystem tab to the empty

slot to the left of the label ShopItem Component in the Inspector.

• You can hide or delete the node called shop_item that is already in the scene

if it was added in the previous section to adjust the position of the other

items.

• Play the scene, and you should see the following interface.

You should be able to press the plus and minus buttons for each item and to

update their quantity accordingly.

Updating the total and the amount of money left

At this stage, we just need to be able to update the shopping total and the

money left for the player.

• Please add the following functions to the script shop_system.

func update_total(item_index:int, item_amount:int):

shop_items[item_index].nb = item_amount;

var temp_total:int;

temp_total = calculate_total();

print("Updating Total: index=" + str(item_index)+ "nb items"+str(shop_item-

s[item_index].nb) + "; price:" + str(shop_items[item_index].price))

get_node("../../shop_ui/shop_total_value").text = str(temp_total)

total_purchase = temp_total

money_left = initial_money - temp_total

get_node("../../shop_ui/shop_money_left_value").text= "" + str(money_left)

In the previous code, we calculate the total amount for the shopping cart

thanks to the method calculate_total (that we will create later); we also calculate

how much money is left for the player, and both values are displayed on screen.

• Please add this function to the script shop_system:

func calculate_total()->int:

var temp:int = 0;

for i in range (0,shop_items.size()):

temp += shop_items[i].nb * shop_items[i].price;

return temp;

In the previous code, we go through all the items in the shop and we calculate

the corresponding total based on the number of items selected and their price.

• Please open the script shop_item and add the following code to the function

update_quantity_label (new code in bold).

func update_quantity_label():

get_node("item_qty").text = str(item_quantity)

get_tree().get_root().get_node("Spatial/

shop/shop_system").update_total(item_index, item_quantity);

In the previous code, we just update the total.

• Please add the following function to the script shop_system.

func can_add_items_to_cart(index:int):

if (money_left >= shop_items[index].price && shop_items[index].nb <

shop_items[index].max_nb):

return true

else: return false

In the previous code, before an item can be added to the cart, we check that we

have enough money left to pay for it, and also that we can carry it without going

over the limit specified for this item.

• Please add this code to the function init in the script shop_system.

initial_money = 1000

• Please update the function can_click in the script shop_item (new code in

bold).

func can_click()->bool:

var shop_sysem = get_tree().get_root().get_node("Spatial/shop/shop_system")

return shop_sysem.can_add_items_to_cart(item_index);

#return true

In the previous code, we comment the code that returns the value true, and we

then return true only if the method can_add_items_to_cart returns true for this

item.

You can now test your scene:

• Please save the code.

• Play the scene.

• Your initial amount of money will be 1000.

• As you add items to your cart, you will have less money left and the total will

also increase.

Linking the shop to the players' gold coins

So while the shopping system works, you may notice that the initial money is

set arbitrarily to 1000; as we have seen before the player will collect money

throughout his/her journey, so we will, instead, use this amount whenever the

player enters a shop.

• Please open the script InventorySystem.

• Add this function:

func get_money():

for i in range (0,player_inventory.size()):

if (player_inventory[i].type == Item.item_type.GOLD):

return (player_inventory[i].nb * player_inventory[i].price)

return 0

In the previous code, we identify how much money (gold) the player has in its

inventory.

• Please open the script shop_system.

• Modify the function init as follows.

#initial_money = 1000

initial_money= get_tree().get_root().get_node ("Spatial/Player/

in-ventory_system").get_-money()

money_left = initial_money;

In the previous code, we ensure that the player will use its gold coins (stored in

the inventory) to pay for items purchased in the shop.

• Please open the script Item.gd and ensure that the value of the attribute nb

for the item gold is 10, as per the next code snippet.

item_type.GOLD:

name = "Gold";

price = 100;

health_benefits = 0;

dammage = 0;

nb = 10;

In the next section, we will initialize and display the shop when the player

presses a key, and then, once this is working, the shop will only be displayed when

the player enters the shop in the 3D scene, using a trigger.

• Please open the file shop_system.

• Comment this code in the _ready function.

#init()

• Add this function to the script shop_system.

func _process(delta):

if (Input.is_action_just_pressed("fire1")):

init()

• Save your code.

• Map the CTRL key to the event “fire1” in the Input Manager.

• Play the scene.

• The shop panel should be empty.

• If you press the CTRL key on your keyboard then all the items should appear,

as per the next figure.

• You should be able to add items using the plus buttons.

Once this is working, we could display the shop system only when the player

collides with (i.e., enters) the shop and we will do that in the next section.

• Please open the script manage_player.

• Add this code at the beginning of the script.

var shop_is_displayed:bool;

onready var shop_ui = get_tree().get_root().get_node("Spatial/shop_ui")

• Add this code to the function _ready:

shop_ui.hide()

• Add this function to the script manage_player.

func display_shop_ui():

shop_ui.show()

• Add this new function to the script manage_player.

func entering_shop(body):

if (body.is_in_group("player")):

shop_is_displayed = true

display_shop_ui()

get_tree().get_root().get_node("Spatial/shop/shop_system").init()

speed = 0

In the previous code, we create a function that will be called when the player en-

ters the shop; in this function, we check that the player is entering the shop, we

display the interface for the shop and we then initialize its content.

• Please select the node Player, and using the Inspector and the tab Node |

Groups, set its group to player.

• Select the node shop, select the tab Node | Signals in the Inspector, and dou-

ble- click on the event body_entered.

• In the new window, select the node Player, type the text entering_shop in the

field labeled Receiver Method, and press Connect.

• Finally, please make sure that the attribute Transform | Scale for the node

CollisionShape that is a child of the node shop, is (4, 4, 3.5) so that the colli-

sion shape is around the shop, and so that it is possible to detect collision

between the player and the shop.

You can now play the scene and navigate to the shop, and as soon as you enter

the shop, items should appear on screen.

Saving the items bought to the player's inventory

At this stage, we just need to be able to complete the transaction, get the player

to pay for the items, and leave the shop. For this purpose, we will create a new but-

ton that will be pressed when the player wants to complete the purchase and leave

the shop.

• Please create a new node of the type Button as a child of the node shop_ui,

and rename it pay_button.

• Using the Inspector, change its text to "Pay and Leave".

• Using the section Control | Rect, set its size to (120, 20).

• Move it to the bottom of the panel as per the next figure.

• Select the node pay_button, attach a new script to it and rename the script

pay_script.

• Open the script pay_script and add this function to it.

func leave_shop():

var purchased_items = []

var value_of_gold_coins = Item.new(Item.item_type.GOLD).price

purchased_items = get_tree().get_root().get_node("Spatial/

shop/shop_system").shop_items

var money_left = get_tree().get_root().get_node("Spatial/

shop/shop_system").money_left;

get_tree().get_root().get_node("Spatial/Player/

in-ventory_system").set_money(-ey_left/val-ue_of_gold_-coins);

In the previous code:

• We define the items that have been purchased.

• We define how much money the player has left.

• We set the "wallet" of the player with the money that's left.

Please add this code to the previous function:

get_tree().get_root().get_node("Spatial/Player/

in-ventory_system").ad-d_purchased_item-s(purchased_items);

get_tree().get_root().get_node("Spatial/Player").shop_is_displayed = false;

get_tree().get_root().get_node("Spatial/Player").end_talking()

get_tree().get_root().get_node("Spatial/shop_ui").hide()

In the previous code:

• We add the items purchased to the player's inventory.

• We hide the UI for the shop.

• We call the function end_talking that moves the player away from the shop

and rotates it also so that it is facing outwards.

We now just need to create the functions set_money and add_purchased_item.

• Please open the script InventorySystem.

• Add this function to the script.

func add_purchased_items(purchased_items):

var t:bool;

for i in range (0, purchased_items.size()):

if (purchased_items[i].nb > 0):

t = update_inventory(purchased_items[i].type, purchased_items[i].nb);

In the previous code, all the items that have been purchased are added to the

player's inventory through the method update_inventory.

• Please add this function to the script:

func set_money(new_amount:int):

for i in range (0, player_inventory.size()):

if (player_inventory[i].type == Item.item_type.GOLD):

player_inventory[i].nb = new_amount

In the previous function, we set the money owned by the player.

Next, we need to link the button "Pay and Leave" to the code that we have cre-

ated.

• Please select the node pay_button.

• Using the Inspector, select the tab Node | Signals, double-click on the event

pressed.

• In the new window, select the node pay_button, type leave_shop in the field

Receiver Method, and press Connect.

You can now save your code, play the scene, check your inventory beforehand,

go to the shop, buy a few items, leave the shop and check that you have fewer gold

coins and more items added to your inventory.

If you notice that the text for some of the items (e.g., for the diamonds) is not

displayed fully, you may need to adjust the size of the objects inventory_panel,

inventory_description, or inventory_text.

Level roundup

Summary

In this chapter, we managed to create a shop system whereby the user can buy

items based on the gold that s/he owns, and add them to their inventory. Of

course, this shopping system could be improved, but for now it works well and

makes it possible to implement a simple system to your RPG.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are true or false. The solutions are on the next page.

1. It is possible to create labels using the nodes of the type Label.

2. It is possible to add an item to an array using the method push_back.

3. The following code will change the text of a node of the type Label.

text ="hello";

1. The following code will add the node “new_node” to the node

“parent_node”.

get_node("parent_the_node”).add_child(“new_node”);

1. The following function should return an integer value.

func calculate_total()->int:

1. The event called “pressed” is called whenever a user clicks on a button in

Godot.

2. It is not possible to create a scene and to then add this scene to another

scene, as a child node.

3. The following code will create a loop that will iterate from 0 to the size of the

array called shop_items.

for i in range (0,shop_items.size()):

1. The following code will access the root of the current scene.

get_tree().get_root()

1. The function _process is called every second.

Solutions to the Quiz

1. TRUE.

2. TRUE.

3. TRUE.

4. TRUE.

5. TRUE.

6. TRUE.

7. FALSE.

8. TRUE.

9. TRUE.

10. FALSE (every frame).

Checklist

You can move to the next chapter if you can do the following:

• Create an array.

• Create a panel with ColorRect nodes.

• Create and instantiate scenes.

• Process clicks.

Challenge 1

For this challenge, you will need to:

• Change the objects available in the shop.

• Add new objects to be sold in the shop.

• Create a field where the player can enter (and apply) a discount code.

Chapter 6: Adding Weapons and Protagonists

In this chapter, you will add the ability for the player to engage in battles against

intelligent NPCs.

After completing this section, you should be able to:

• Provide a sword to your main character.

• Add animations for attacks.

• Make it possible for the main character to inflict damage to NPCs.

• Create NPCs that can be idle, patrolling, or attacking the player.

• Create NPCs that follow a path, detect the player, and engage in a battle.

• Amend the health of the player based on the amount of damage inflicted by

enemies.

Adding a weapon

In this section, we will add a sword to the right hand of the main character.

• Please open (or switch to) the scene level1.

• Select the node Player.

• Identify and click on the node Player | PC | walking | Skeleton.

• Add a node of the type BoneAttachment as a child of the node Skeleton

• Change its position to (-25, -9, -128), its rotation to (-76, 118, -33).

• Select the node BoneAttachement, and using the Inspector, click to the right

of the label Bone Name (in the section Bone Attachment), and select the op-

tion right_fore_arm from the drop-down list as illustrated in the next figure.

• Add a node of the type Spatial as child of the node BoneAttachment and re-

name the new node player_weapon.

• Import the object sword.fbx from the resource pack (i.e., drag and drop this

file from the folder 3D-objects in the resource pack to the folder res:// in

Godot).

• Drag the asset sword.fbx from the tab FileSystem atop the node play-

er_weapon in the Hierarchy Tree; this will create a new node called sword as

a child of the node player_weapon.

• Change its position to (-42, -4, 31), its rotation to (0, 180, -180) and its scale

to (100, 100, 100).

• You should now see that the sword is held in the character’s right hand, as

per the next figure.

• As you play the scene, you should now see that the sword is displayed at all

times.

Performing an attack against a stationary target

In this section, we will make it possible for the player to attack a stationary tar-

get; this will involve the following:

• Creating targets with a corresponding groups.

• Detecting when the player's sword hits a target.

• Adding health to the target, decreasing this health when the target is hit, and

finally destroying the target when its health has reached 0.

So let's proceed:

• Please open the script manage_player.

• Add the following code at the beginning of the script (new code in bold):

enum {IDLE, WALK, WALK_REVERSE, RUN, ATTACK_WITH_SWORD}

• Add the following code to the _ready function:

pc_node.get_animation("sword-and-shield-slash").loop = false

• Add the following code to the function _process (within the match structure).

ATTACK_WITH_SWORD:

pc_node.play("sword-and-shield-slash")

yield(pc_node, "animation_finished")

current_state = IDLE

In the previous code, we play the attack animation, we wait until it is complete,

and we then set the character to the IDLE state.

• Please add the following code to the _input function:

if (Input.is_action_just_released("fire1")):

current_state = ATTACK_WITH_SWORD

In the previous code, we check whether the player has just released the key

mapped to the action “fire1”, and in that case, we change the character’s state to

ATTACK_WITH_SWORD.

• Before we can check this feature, please comment the following function in

the script shop_system.

#func _process(delta):

if (Input.is_action_just_pressed("fire1")):

init()

• Please save your code and play the scene. You should be able to press the left

CTRL key to perform an attack.

Now that we know that the attack animation can be triggered, we will create a

target on which the player can train and perform attacks.

• Please create a node of the type Spatial as a child of the node Spatial, rename

the new node target, move it a few meters from the player, and change its y

coordinate to 1.5.

• Add a node of the type StaticBody as a child of the node target.

• Select the node StaticBody, and, using the tab Node | Groups, set its group to

target.

• Add a node of the type CollisionShape as a child of the node StaticBody.

• Select the node CollisionShape, and, using the Inspector, click to the right of

the label Shape (Collision | Shape) and select the option New BoxShape from

the drop-down menu.

• Add a new node of the type CSGBox as a child of the node StaticBody; check

that its size (i.e., width, height, and depth) is (2, 2, 2), and apply a red mate-

rial to it. This shape will be there to represent the target.

• Finally, add a new node of the type CSGMesh as a child of the node

StaticBody, and check that its size (i.e., width, height, and depth) is (2, 2, 2).

This node will be used to display a flash whenever the target has been hit.

• Select the node CSGMesh, and using the Inspector, click to the right of the

label Mesh, and select the option New SphereMesh from the drop-down

menu.

• Click to the right of the label Material and select the option New Spatial Mate-

rial from the drop-down menu.

• Once this is done, click on the cube logo to the right of the label Material.

• This will display additional attributes.

• Please expand the section called Albedo, and click to the right of the label

Color.

• In the new window, set the color to red (i.e., R=255, G=0, B=0), and the alpha

value (i.e., the attribute A) to 0.

Now that the target node has been created, we will create a script that will man-

age the target’s health.

• Please select the node StaticBody (that is a child of the node target).

• Attach a new script to this node and rename the script

manage_target_health.gd.

• Add this code at the beginning of the script.

var health:int = 100

In this code, we set the initial health to 100 for the target.

In the next section, we will create several methods that will be used to decrease

the health of a target or to destroy the target when its health has reached 0.

• Please add this function to the script manage_target_health.

func set_health(new_health:int):

health = new_health

if (health <=0):

health = 0;

destroy_target()

• Add this function.

func get_health():

return health;

• Add this function:

func destroy_target():

var name_of_parent = get_parent().name;

get_parent().queue_free()

• Add this function.

func decrease_health(increment:int):

set_health(health-increment)

Finally, we need to decrease the health of the target whenever it collides with

the players' weapon.

• Please create a new node of the type Area as a child of the node sword.

• Add a new node of the type CollisionShape as a child of the node Area.

• Select this new node, and, using the Inspector, click to the right of the label

Shape and select the option New CapsuleShape.

Once this is done, we will need to create a script that will be called whenever

the sword collides with an object:

• Please attach a new script to the node Area (that this a child of the node

sword), and rename the script detect_target.gd.

• Please open the script detect_target.gd.

• Add the following code to it:

func detect_target(body):

if (body.is_in_group("target")):

if (get_tree().get_root().get_node("Spatial/Player").is_attacking()):

body.decrease_health(10)

In the previous code:

• We check whether the object that the sword is colliding with is part of the

group target.

• If this is the case, we check that the player is actually attacking using the func-

tion is_attacking (that we yet have to create).

• Finally, we decrease the health of the target by 10 using the function de-

crease_health that is available in the script attached to the target.

We now need to link the collision event to the function detect_target, and to

also create the function is_attacking:

• Please add the following code to the script manage_player:

func is_attacking()->bool:

if (current_state == ATTACK_WITH_SWORD): return true;

else: return false;

In the previous code, we return the value true if the character is in the state AT-

TACK _WITH_SWORD and true otherwise.

Finally, please modify the following code in the script manage_player; you will

need to indent the code that is after the third line (new code in bold):

for index in get_slide_count():

var collision = get_slide_collision(index)

if (collision.collider != null):

if (collision.collider.is_in_group("NPC_TALK")):

In the previous code, we ensure that the collision between the player and the

target is not accounted for when the latter has been removed (i.e., is null).

The full function should then look as the following:

func _physics_process(delta):

for index in get_slide_count():

var collision = get_slide_collision(index)

if (collision.collider != null):

if (collision.collider.is_in_group("NPC_TALK")):

if (collision.collider.name == "Diana" && !is_talking):

dialogue_image.texture = load("res://Diana.jpg");

collision.collider.start_dialogue()

current_state = IDLE

is_talking = true;

• Please select the node Area (that is a child of the node sword), select the tab

Node | Signals, and double-click on the event body_entered.

• In the new window, select the node Area (that is a child of the node sword),

enter the text detect_target in the field Receiver Method, and press Connect.

• You can now test the scene and check that after hitting the target 10 times it

disappears.

Adding a flash when the target is hit

Next, we will add some feedback for when the target is hit; this will involve a

red flash around the target displayed for less than a second; for this purpose, we

will proceed as follows; we will:

• Use the sphere that we have already created as a child of the object target.

• Make it invisible.

• Color this sphere in red whenever the target is hit.

• Progressively make this red sphere transparent again in less than 1 second.

Let's proceed, by controlling the sphere’s appearance through a script:

• Please open the script manage_target_health.

• Add this code at the beginning of the script.

var hit_timer:float;

var hit_flash:bool;

var alpha:float;

• Add this code in the _ready function.

alpha = 0.0

var material;

var the_node = get_node("CSGMesh")

material = the_node.material

material.albedo_color = Color(1,0,0,alpha)

In the previous code, we set the sphere to red, but it is still transparent at this

stage (i.e., alpha = 0);

• Add this code to the function decrease_health.

hit_flash = true;

alpha = 0.5

In the previous code, we specify that the sphere is now semi-transparent, and

that we can start the animation whereby the sphere will progressively disappear by

becoming more and more transparent.

• Please add this function to the script manage_target_health:

func _process(delta):

if (hit_flash):

alpha -= delta

var material;

var the_node = get_node("CSGMesh")

material = the_node.material

material.albedo_color = Color(1,0,0,alpha)

if (alpha <= 0):

hit_flash = false

alpha = 0

In the previous code, we create a timer, whereby the transparency value (i.e.,

alpha) for the red sphere will decrease by 1 every second, or .1 every tenth of a sec-

ond until it reaches 0.

Before you test the scene, please do the following:

• Using the Inspector, please modify (or check) that the scale attribute (i.e.,

Transform | Scale) of the node CSGMesh that is a child of the node target is

(2, 2, 2).

• Click on the cube to the right of the label Material.

• In the new window, expand the section called Flags and set the attribute

Transparent to On.

• Expand the section called Vertex Color, and set the attribute Use As Albedo to

On.

You can save your code and test the scene by hitting the target several times

and you should see a red flash around the target, as per the next figure.

Creating intelligent NPCs

At this stage we can move our character around, pick up objects, and attack a

target; so to increase the challenge for the player, we will start to create NPCs that

will move along a path, detect and also attack the player; the player will also be able

to attack them.

In this section we will proceed as follows; we will:

• Import a 3D character for the NPCs.

• Animate the NPCs.

• Create different states and transitions for the NPCs depending on their types.

• Make it possible for these NPCs to detect and attack the player.

Let's proceed:

• Please create a new scene of the type KinematicBody (Scene | New Scene).

• The new scene will have a default node called KinematicBody.

• Please rename this node npc_guard.

• Please drag and drop the item called akai.gltf from the FileSystem window

atop the node npc_guard, so that this item becomes a child of the node

npc_guard, and rename this new node NPC.

• Add a new node of the type CollisionShape as a child of the node npc_guard.

• Using the Inspector, click to the right of the label Shape and select the option

New CapsuleShape from the drop-down menu.

• Click on the item CapsuleShape to the right of the label Shape.

• This will display information about the CapsuleShape item.

• Please check that the radius is .67 and that the height is 1 for this

CapsuleShape.

• Expand the Transform section in the Inspector for the same node (i.e.,

CollisionShape).

• Modify the position (i.e., the attribute Translation) to (0, 1, 0), the rotation to

(90, 0, 0), and the scale to (0.6, 0.5, 1).

• Finally, add a node of the type CSGMesh as a child of the node npc_guard.

• Select this node (i.e., CSGMesh).

• Change its position (i.e., Transform | Translation) to (0, 1, 0).

• Using the Inspector, right-click to the right of the label Mesh, and select the

option New SphereMesh from the drop-down menu.

• Click on the sphere to the right of the label Mesh, this will display more

information about the new mesh.

• Check that the radius is 1 and that the height is 2.

• Right-click to the right of the label Material, and select the option New Spatial

Material from the drop-down menu.

• Click on the cube to the right of the label Material.

• This will display a list of properties.

• Expand the section called Flags, and set the attribute Transparent to On.

• Expand the section called Vertex Color, and set the attribute Use As Albedo to

On.

• Expand the section called Albedo, and click on the white rectangle to the right

of the label Color.

• In the new window, set the color to red, and the Alpha attribute to 0.

We can now add our NPC to the main scene:

• Please save the current scene as npc_guard.tscn.

• Open (or switch to) the main scene (i.e., level1).

• Right-click on the node Spatial, select the option Instance Child Scene, and

select the scene npc_guard, that we have just created.

• This will create a new node called npc_guard, and you may adjust its y coor-

dinate to .5.

––––––––

Now that we have set up the NPC, it is time to animate it; so in this section, we will

create all the necessary states for the NPC to be able to be idle, to patrol, and to

follow or to attack the player.

First let’s use the idle animation:

• Please open the scene called npc_guard.

• Select the node npc_guard.

• Attach a new script to this node and name this script manage_npc_guard.

• Add is code at the beginning of the script.

enum {IDLE}

var current_state = IDLE

onready var player = get_node("/root/Spatial/Player")

In the previous code:

• We declare an enum that will be used to list the different states for our NPC.

• We set the current state to IDLE.

• We link the variable player to the Player node .

We can now set-up the idle animation.

• Please modify the function _ready as follows:

func _ready():

get_node("NPC/AnimationPlayer").get_animation("idle").loop = true

• Add the function _process as follows:

func _process(delta):

match current_state:

IDLE:

get_node("NPC/AnimationPlayer").play("idle")

• In the previous code, as we have done in earlier sections for the player char-

acter, we play the idle animation while in the state IDLE.

You can now save your code, switch to the scene level1, and play the scene:

you should see the idle animation is playing while the guard is in the IDLE state.

Once you have checked that this is working, we can configure the guard so that

it can patrol.

• Please open the script manage_npc_guard.

• Modify this line (new code in bold):

enum {IDLE, PATROL}

• Add this code before the function _ready.

onready var WP1 = get_node("/root/Spatial//WP1")

onready var WP2 = get_node("/root/Spatial/WP2")

onready var WP3 = get_node("/root/Spatial/WP3")

onready var WP4 = get_node("/root/Spatial/WP4")

var WP_index = 0

var current_WP

var patrol_previous_position

var speed = 1

In the previous code:

• We create the variables WP1, WP2, WP3 and WP4 that will be linked to the

waypoints WP1, WP2, WP3 and WP4 and that we yet have to create.

• We create the variables WP_index and current_WP that will be used to keep

track of the current way point followed by the NPC.

• We also create the variable patrol_previous_position to store the initial posi-

tion of the NPC, along with the variable speed to set the speed of the NPC.

Now that these variables have been created, we can start to set up and initialize

the animations and the state called patrol state.

• Please add the following code to the function _ready.

get_node("NPC/AnimationPlayer").get_animation("walking").loop = true

current_state = PATROL

current_WP = WP1

patrol_previous_position = global_transform.origin

In the previous code:

• We ensure that the walking animation will be looping.

• We set the NPC’s state to PATROL.

• We set the first waypoint to be followed by the NPC.

• We then save the current position.

Now that this has been set-up we can manage the state called PATROL.

• Please add the following code to the function _process in the match section

(the keyword PATROL will need to be as the same level of indentation as the

keyword IDLE)

PATROL:

match (WP_index):

0:current_WP = WP1

1:current_WP = WP2

2:current_WP = WP3

3:current_WP = WP4

get_node("NPC/AnimationPlayer").play("walking")

In the previous code:

• We create a new state called PATROL.

• In that state, we set the current waypoint to be followed based on the value of

the variable current_WP.

• We then play the animation called walking.

Please add the following code just after the previous code (i.e., within the code

for the state PATROL in the function _process):

var distance_to_WP = (current_WP.global_transform.origin - global_trans-

form.origin)

if (distance_to_WP.length() < .5) :

WP_index += 1

if (WP_index > 3): WP_index = 0

var direction = (current_WP.transform.origin - transform.origin).normalized();

move_and_slide(direction.normalized()*speed, Vector3.UP)

look_at(global_transform.origin - direction, Vector3.UP)

In the previous code:

• We calculate the distance between the NPC and the current waypoint.

• If this distance is less than .5 meters we ensure that the NPC starts to follow

the next waypoint.

• The new direction for the NPC is calculated by combining (i.e., subtracting)

the position of the NPC and the position of the waypoint.

• The function move_and_slide is used to move the NPC.

• Finally, we ensure that the NPC is looking forward by using the function

look_at.

Now that the code has been created for the patrolling state, we just need to cre-

ate the waypoints:

• Please save your code.

• Open (or switch to) the main scene (i.e., level1).

• Create a new node of the type CSGSphere as a child of the node Spatial.

• Rename this node WP1, and change its y coordinate to .5.

• Duplicate this node 3 times (CTRL/CMD + D), this will create 3 nodes named

WP2, WP3, and WP4.

• Move each of the waypoints so that they form a path as illustrated in the next

figure

• Make sure that each waypoint is just above the ground.

• Move the NPC close to the first waypoint as per the next figure.

• Play the scene, you should see that the NPC navigates to each waypoint point

after avoiding the houses and the shop.

If you want to hide the waypoints while the game is running, you can also do

the following:

• Select the node WP1.

• Attach a new script called hide_waypoint to this node.

• Add this code to the script (new code in bold):

func _ready():

hide()

• Save the script and attach it to the other waypoints (i.e., WP2, WP3, and

WP4).

So at this stage, the NPC can navigate to the different waypoints that we have

defined; the next phase will consist in enabling the NPC to detect, to chase and to

attack the player. This will be done through the creation of two additional states

(CHASE_PLAYER and ATTACK) along with the ability for the NPC to detect the

player by seeing or hearing him/her.

So let's proceed:

• Please open the script manage_npc_guard.

• Add this code at the beginning of the script (new code in bold).

enum {IDLE, PATROL, CHASE_PLAYER, ATTACK}

• Add this code just before the function _ready.

var ray:RayCast

var param_can_see_player = false

var param_can_hear_player = false

In the previous code:

• We create a variable of the type RayCast that will be used to detect the object

in front of the NPC, including the player.

• We also create two variables param_can_see_player and

param_can_hear_player.

• These variables are used to specify whether the NPC can see or hear the play-

er.

Now that we have declared these variables, we can initialize the ray.

• Please add the following code to the function _ready.

ray = RayCast.new()

ray.enabled = true

add_child(ray)

ray.global_transform.origin += Vector3.UP

ray.cast_to = Vector3(0,0,100)

In the previous code:

• We instantiate a new ray.

• We enable/activate the ray.

• We add the ray to the node attached to the script (i.e., the NPC).

• We make sure that the ray is 1 meter above the ground.

• The ray is pointing 100 meters forward (i.e., along the z-axis).

Now that the ray has been set up, we can use it to detect the player.

• Please add the following code at the beginning of the function _process.

if (global_transform.origin.distance_to(player.global_transform.origin) < 4):

param_can_hear_player = true

else:

param_can_hear_player = false

In the previous code:

• We check whether the distance between the player and the NPC is less than

4.

• If that’s the case the variable param_can_hear_player is set to true.

• Otherwise, the variable param_can_hear_player is set to false.

We can now detect whether the NPC can see the player:

• Please add the following code just after the previous code (i.e., in the func-

tion _process):

if ray.is_colliding():

var obj = ray.get_collider()

if (obj.name == "player"):

param_can_see_player = true

else:

param_can_see_player = false

In the previous code:

• We check whether the ray is colliding with another object.

• If the player is colliding with the ray then the variable param_can_see_player

is set to true.

• Otherwise, this variable is set to false.

Now that the detection has been implemented, we just need to make sure that

the player starts chasing the player whenever it has detected the latter; we also need

to make sure that he NPC, when in the state CHASE_PLAYER, follows the player.

• Please add the following code at the end of the function _process, within the

code for the state PATROL (new code in bold).

move_and_slide(direction.normalized()*speed, Vector3.UP)

look_at(global_transform.origin - direction, Vector3.UP)

if (param_can_see_player or param_can_hear_player): current_state = CHASE_-

PLAYER

• Please add this code at the end of the function _process; the keyword

CHASE_PLAYER will need to be at the same level of indentation as the

keyword PATROL (new code in bold).

if (param_can_see_player or param_can_hear_player): current_state = CHASE_-

PLAYER

CHASE_PLAYER:

var direction = (player.transform.origin - transform.origin).normalized() * 3;

move_and_slide(direction.normalized()*speed, Vector3.UP)

look_at(global_transform.origin - direction, Vector3.UP)

get_node("NPC/AnimationPlayer").play("walking")

In the previous code:

• We create a new state called CHASE_PLAYER.

• The directions of the NPC is calculated based on the position of the player.

• We move the NPC forward (towards the player) ensuring that the NPC is al-

ways facing the player.

You can now save your code and play the scene, and as you get closer to the

NPC, it will start to follow you.

Now that we have ensured that the NPC can detect and chase the player, we

just need to make sure that the NPC attacks the player when its near enough.

• Please add this code before the function _ready in the script

manage_npc_guard.

var param_is_close_to_player = false

• Add this code to the function _ready.

get_node("NPC/AnimationPlayer").get_animation("sword-

and-shield-slash").loop = false

• Add this code at the beginning of the function _process.

if (global_transform.origin.distance_to(player.global_transform.origin) < 2):

param_is_close_to_player = true

else :

param_is_close_to_player = false

• Add this code to the function _process, in the section that corresponds to the

state CHASE_PLAYER (new code in bold):

get_node("NPC/AnimationPlayer").play("walking")

if (param_is_close_to_player):

current_state = ATTACK

Finally, we just need to add the code that defines what the NPC should in the

state called ATTACK.

• Please add this code to the function _process, within the match structure,

ensuring that the keyword ATTACK is aligned with (or at the same level of

indentation as) the keyword CHASE_PLAYER:

ATTACK:

if (!param_is_close_to_player):

current_state = CHASE_PLAYER

look_at(get_node("../Player").global_transform.origin, Vector3.UP)

rotate(Vector3.UP, 3.18)

get_node("NPC/AnimationPlayer").play("sword-and-shield-slash")

In the previous code, we check that the player is still close to the NPC and we

play the attack animation; otherwise, the current state is changed to

CHASE_PLAYER.

You can test the scene and you should see that the NPC starts to attack the

player when the player is within 2 meters.

Note that the NPC has no weapon yet, so we could fix this as follows:

• Please open the scene npc_guard that you have created previously.

• Right-click on the node NPC and select the option Editable Children.

• Select the node Skeleton that is a child of the node NPC.

• Adda a node of the type BoneAttachment as a child of the node Skeleton

• Change its position to (-25, -9, -128), and its rotation to (-76, 118, -33).

• Select the node BoneAttachement, and using the Inspector, click to the right

of the label Bone Name (in the section Bone Attachment), and select the op-

tion right_fore_arm from the drop-down list.

• Add a node of the type Spatial as child of the node BoneAttachment and re-

name the new node npc_weapon.

• If you have not done it already, please import the object sword.fbx from the

resource pack (i.e., drag and drop from the resource pack to the folder

FileSystem).

• Drag the asset sword.fbx from the tab FileSystem atop the node npc_weapon;

this will create a new node called sword as a child of the node

player_weapon.

• Change its position to (-42, -4, 31), its rotation to (0, 180, -180) and its scale to

(100, 100, 100).

You can now save the scene npc_guard, and you should now see that the

sword has been added to the NPC’s right hand in both the scene npc_guard and

the main scene (i.e., level1).

Now that the attacking animation is working, we will ensure that the NPC can

inflict damage to the player every time it’s attacking.

• Please open (or switch to) the script manage_npc_guard.

• Add this code before the function _ready.

var attack_timer:Timer

var can_inflict_damage = true

• Add this code to the function _ready:

attack_timer=Timer.new()

add_child(attack_timer)

attack_timer.wait_time = 1.7

attack_timer.connect(("timeout"),self,"enable_attacking")

In the previous code:

• We create a new timer that will be used to make sure that the NPC can inflict

damage only once per attack.

• The time is added to the current node.

• Its duration will be 1.7 second (the duration of the attack animation).

• Once this time has elapsed, the function enable_attacking will be called.

We can now add the code that will make it possible to inflict damage.

• Please add the following code to the function _process in the section related

to the state CHASE_PLAYER (new code in bold).

get_node("NPC/AnimationPlayer").play("walking")

if (param_is_close_to_player):

current_state = ATTACK

can_inflict_damage = true

• Please add the following code to the function _process in the section related

to the state ATTACK (new code in bold).

get_node("NPC/AnimationPlayer").play("sword-and-shield-slash")

if (can_inflict_damage):

get_node("../Player").got_hit()

attack_timer.start()

can_inflict_damage = false

if (!param_is_close_to_player):

current_state = CHASE_PLAYER

In the previous code:

• We check whether the NPC can inflict damage.

• If that is the case, we call the function got_hit that is part of the script at-

tached to the Player node.

• We then start the timer and set the variable can_inflict_damage; this is so

that the NPC inflicts damage only once during the attack.

• If the NPC is no longer close to the player, then its state is changed to

CHASE_PLAYER.

So now we just need to create the function that enables attacking and another

one to decrease the player’s energy.

• Please add this function at the end of the script manage_npc_guard.

func enable_attacking():

can_inflict_damage = true

• Open (or switch to) the script manage_player.

• Add this code at the beginning of the script.

var nb_lives = 3

var initial_position:Vector3;

• Add this code to the function _ready in the same script.

initial_position = transform.origin

• Add this function to the script:

func got_hit():

health -= 5

if (health <= 0):

health = 100

nb_lives -=1

if (nb_lives == 0): print ("Game Over");

transform.origin = initial_position

get_node("../health_bar").set_value(health)

In the previous code:

• We create the function got_hit.

• In that function we decrease the health of the player by 5.

• If the variable health is lesser than or equal to 0, we set tit to 100, we de-

crease the number of lives by 1, and we move the player to its original posi-

tion.

• For the time-being, if the player has no lives left, we print a message in the

Console window; however, this can be (and will) be changed so that a game-

over screen is displayed instead.

You can now test your scene, and check that upon being attacked by the NPC,

the player’s health decreases, and that it is ultimately moved to its original position

after its health has reached 0.

Now that the NPC's attack is working, we can look into inflicting damage to the

NPC.

• Please open the scene npc_guard, select the node npc_guard, and, using the

tab Node | Groups, set its group to target.

• Save the scene npc_guard.

• Open the script manage_npc_guard.

• Add this code before the function _ready.

var health:int = 100

• Add the following functions at the end of the script.

func decrease_health(increment:int):

set_health(health-increment)

pass

func set_health(new_health:int):

health = new_health

if (health <=0):

health = 0;

destroy_target()

func destroy_target():

queue_free()

In the previous code:

• We create three functions set_health, decrease_health and destroy_target.

• The function decrease_health is called every time the player’s sword collides

with a node that belongs to the group target; when this happens this function

calls the function set_health to decrease the health of the NPC.

• In the function set_health, we set the NPC’s health, and if it has reached 0,

we call the function destroy_target to eliminate this NPC.

For testing purposes, you can change the health of the NPC to 30 by modifying

the following code in the function manage_npc_guard (new code in bold).

var health:int = 30

You can save your code, switch to the main scene (i.e., level1) and play the

scene; as you attack the NPC several times, it will eventually disappear.

The next step is to add a flash whenever the NPC has been hit.

• Please switch to the script manage_npc_guard.

• Add this code before the function _ready.

var hitTimer:float;

var hit_flash:bool;

var alpha:float;

• Add this code to the function _ready.

alpha = 0.0

var material;

var the_node = get_node("CSGMesh")

material = the_node.material

material.albedo_color = Color(1,0,0,alpha)

In the previous code, we ensure that the sphere used for the flash is red and

transparent.

• Please modify this code in the function decrease_health (new code in bold):

func decrease_health(increment:int):

set_health(health-increment)

hit_flash = true;

alpha = 0.5

In the previous code, whenever the NPC is hit, we set the variable hit_flash to

true (so that the fading animation can start for the red sphere) and we also set the

alpha value for the sphere to .5; so, effectively, at the start of the animation, the red

sphere will be semi-opaque and will progressively become fully transparent over

time.

• Please add this code at the end of the function _process (this code needs to

be indented just once so that it is not part of the code related to the state

ATTACK).

if (hit_flash):

alpha -= delta

var material;

var the_node = get_node("CSGMesh")

material = the_node.material

material.albedo_color = Color(1,0,0,alpha)

if (alpha <= 0):

hit_flash = false

alpha = 0

In the previous code, we decrease the transparency of the sphere until it be-

comes fully transparent.

You can now save your scene and check that the red flash appears whenever

the NPC is hit.

––––––––

Level roundup

Summary

In this chapter, we have added a weapon to the player and we made it possible

for the player to engage in battles against relatively intelligent NPCs.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are true or false. The solutions are on the next page.

1. It is possible to add objects to an animated character by using a node of the

type BoneAttachement.

2. The following code will ensure that the animation called walk is looping.

get_animation("animation").loop = true

1. The following code will play the animation called walk.

play_anim("walk")

1. The following code checks whether the key mapped to the action “walk” has

been pressed.

if (Input.is_action_just_released("walk")):

1. It is possible to add a group to a node using the tab Node | Groups.

2. The following function should always return a Boolean value

func is_attacking()->bool:

1. It is possible to change the alpha value and color of a node through

GDScript.

2. It is possible to define different states for an NPC in GDScript using enums.

3. Waypoints can be used to set temporary destinations for an NPC.

4. The function move_and_slide can be used to move a node of the type

KinematicBody.

Solutions to the Quiz

1. TRUE.

2. TRUE.

3. TRUE.

4. FALSE (it checks whether it has been released)

5. TRUE.

6. TRUE

7. TRUE.

8. TRUE.

9. TRUE.

10. TRUE.

Checklist

You can move to the next chapter if you can do the following:

• Create states and switch between these.

• Apply an animation to a state.

• Calculate the distance between objects.

• Add an object to an animated character's

hand.

Challenge 1

For this challenge, you will need to create another type of NPC that can see the

player using raycasts and attack the player then.

Chapter 7: Adding a Quest System

So far, we have managed to create all the components of a quest including a player

character, objects to collect, as well as NPCs that can engage in a battle with the

character. Generally, you would use a combination of these items to create your

quests; however, as you create multiple levels, designing and coordinating the dif-

ferent components of your quest might become tedious; sometimes you may want

to configure the quest without needing to recode or re-invent the wheel. This is

where you will need to use a quest system, a system whereby you can simply con-

figure the player's goals for each level and check that they have been achieved to

move to the next level and attribute corresponding XPs to the player.

This chapter offers exactly this, a simple quest system that makes it possible to

design and monitor the player's achievements based on pre-defined goals.

After completing this chapter, you will be able to:

• Create a quest system.

• Create and modify a text file that stores all the goals for the player for each

level.

• Display this information to the player at the start of each level.

• Automatically notify a game manager when one of these achievements has

been reached.

• Automatically attribute corresponding XPs to the player.

• Load the next level when all goals have been achieved.

• Configure each level easily.

Creating a quest system

In this section, we will create a quest system; so far, we have managed to create

a level where the player can achieve some significant actions including picking

items and adding them to their inventory, defeating enemies (i.e., targets), or talk-

ing to an NPC. In most RPGs, the player will also need to complete quests to gain

experience; a quest is usually comprised of several tasks, and creating a quest man-

ager will make it possible to:

• Set objectives for each level.

• Set several XPs (eXperience Points) to be gained after completing these

tasks.

• Check that the tasks have been achieved and reward the player accordingly.

To achieve this purpose, we will be doing as follows:

• We will create a JSON file that will store, for each level, the different tasks to

be completed, along with the number of corresponding XPs.

• We will then create a game manager and a quest manager that will read this

file and initialize the requirements for the current quest. These tasks will

range from picking-up objects to destroying an enemy, entering an area, or

talking to a specific NPC.

• We will add the different items that the player need to interact with to com-

plete his/her quest (e.g., an NPC that the player can talk to, an area that s/he

can enter, a target that can be destroyed, or an object to be collected).

• Whenever one of the tasks has been completed, a notification will be sent to

the game manager, corresponding XPs will be given to the player, and the

game manager will check how many of these goals have been completed and

whether they correspond to the initial objectives.

• Finally, once all the objectives have been met, the game manager will load a

scene where the player can use his/her XPs to increase its attributes such as

power, accuracy, or communication.

Saving quest information in an json file

In this section, we will start to create a file that will be used to store information

about each of the quests for your game.

• Please create a new folder called quests, in your project.

• Please import the file called quests.json from the folder quests in the re-

source pack to the folder quests in your project.

• If you open this file from the resource pack, you will see the following code:

{

"Quest1":

{

"name":"XXX",

"stages":

[

{

"id" : "0",

"name": "Training Camp",

"description":"This is a training camp where you will master your skills",

"results":

[

{"action":"Talk to","target":"Diana","xp" : "100"},

{"action":"Acquire a","target":"Apple","xp" : "100"},

{"action":"Enter place called","target":"yellow_house","xp" : "100"},

{"action":"Destroy one","target":"NPC_Guard","xp" : "100"},

]

}

]

}

}

In this file:

• We define the quest called Quest1.

• We define a first stage named "Training Camp" along with its description.

• We then define the different types of actions that the player will need to com-

plete that stage, along with the associated XPs.

You can of course modify this file later.

In the next section, we will create a script called QuestSystem that will be used

to read this file and to create quests accordingly.

Creating the game manager

In this section, we will read the JSON file described previously. The goal will be

to extract information for a specific stage, including its name, its description, as

well as the objectives for the player.

Let's go ahead and create the game manager:

• Please switch to the main scene (i.e., level1).

• Create a new node of the type Node as a child of the node Spatial and rename

the new node game_manager.

• Select the new node game_manager and attach a new script named game_-

man ager.gd to it.

• Open the script game_manager.

• Add this code at the beginning of the script.

var current_stage:int;

var timer_started:bool;

var timer;

var actions;

var targets;

var xps;

var objective_achieved

var xp_achieved

In the previous code, we define the current stage (or level); we define the vari-

ables timer_started and timer that will be used to display a message on screen, as

well as four arrays: an array for the different actions performed by the user

(actions), an array for the objectives of each stage (targets), an array for the xps

associated with each objective (xps), along with a list of Boolean values that corre-

spond to whether each objective has been reached (objective_achieved) and the

number of xp achieved (xp_achieved).

• Please add the following code after the previous code (i.e., just before the

function _ready).

var stage_title

var stage_description

var stage_objectives

var starting_point_for_player

var panel_displayed = true

var display_timer

var start_display_timer

In the previous code, we define the variables that will be used to display infor-

mation about the current stage (i.e., stage_title, stage_description,

stage_objectives, starting_point_for_player), a Boolean variable panel_displayed

and a float variable called display_timer that will be used to time the information

displayed on screen.

• Please add the following code after the code you typed:

var nb_objectives_achieved = 0;

var nb_objectives_to_achieve = 0

var xb_achieved

The previous variables will be used to store how many objectives were reached,

how many were to be reached, as well las the number of xps gained for a specific

stage.

• Add the following code just before the function _ready.

enum possible_actions { do_nothing=0, talk_to= 1, acquire_a = 2, de-

stroy_one= 3,

enter_place_called = 4};

var actions_for_quest;

onready var stage_panel = get_node("../stage_panel")

onready var stage_title_text = get_node("../stage_panel/stage_title")

onready var stage_description_text = get_node("../stage_panel/

stage_de-scrip-tion")

onready var stage_objectives_text = get_node("../stage_panel/

stage_ob-jec-tives")

var quests:Dictionary

In the previous code, we create an enum variable called possible_actions which

is a list of the actions that can be performed by the player; we then declare a list of

actions called actions_for_quest that will include all the actions that the player will

have to perform to complete a stage. Finally, we declare four nodes that will be

used to display information about the current quest (and that we yet have to cre-

ate). We then declare a variable called quests which is an array that will be used to

read the quest(s) from the JSON file.

• Add this code to the function _ready:

nb_objectives_achieved = 0;

actions = []

targets = []

xps = []

objective_achieved = []

actions_for_quest = []

actions = []

xp_achieved = 0

load_quest();

In the previous code, we just initialized the variables that will be used to keep

track of the player's achievements. We then call the method load_quest that we will

define in the next section.

• Please add this function to the same script.

func load_quest():

var file = File.new()

file.open("res://quests/quests.json", file.READ)

var json_data = parse_json(file.get_as_text())

var json = to_json(json_data)

quests = JSON.parse(json).result

stage_objectives = "For this stage, you need to:\n";

In the previous code:

• We initialize the array that will be used to save information about the quest.

• We create a new file that will be used to read the content of the file

quests.json.

• The content of the file quests.json is read and stored in the variable quests.

• We then print a message to introduce the stage’s objectives.

Now that we have written the code to open the JSON file, we just need to read

its content:

• Please add this code to the function load_quest.

for quest in quests:

stage_title = quests[quest].stages[current_stage].name

stage_description = quests[quest].stages[current_stage].description

print ("Stage: "+stage_title)

print ("Description: "+stage_description)

var counter = 0;

for result in quests[quest].stages[current_stage].results:

var action = quests[quest].stages[current_stage].results[counter].action

var target = quests[quest].stages[current_stage].results[counter].target

var xp = quests[quest].stages[current_stage].results[counter].xp

In the previous code, we gather information about the quest and the current

stage, including the stage name and the stage description; we then create a loop

that will go through all the objective for a specific stage including the action, the

target, and the corresponding xp to be gained.

• Please add this code after the previous code (new code in bold):

var xp = quests[quest].stages[current_stage].results[counter].xp

actions.push_back(action)

targets.push_back(target)

xps.push_back(xp)

objective_achieved.push_back(false)

stage_objectives += "\n -> "+str(action) + " " + str(target) + " [" + str(xp) + "

XP]"

nb_objectives_to_achieve += 1

counter += 1;

print(stage_objectives)

In the previous code, for each action found in the file we do the following:

• Each goal consists of an action and a goal (e.g., talk to X, collect Y, reach Z);

so to record a goal, we will need to save both the action (i.e., talk, destroy,

reach, collect, etc.) and a target (e.g., character, location or item).

• As a result, for each goal, we save the corresponding action, its target, and its

associated number of xps in the corresponding list (e.g., the lists actions,

targets, and xps)

• We also specify that, by default, none of the stage's goals are achieved at the

start.

• We then construct the string that will be displayed on screen to the player

and that lists the different objectives.

• Finally, we increase the number of objectives to achieve.

Before we can display this information in the Console window, we just need to

call the function load_quest from the function _ready; so please add this code to

the function _ready:

load_quest()

You can now save your code, and play the scene. As the scene is played, please

look at the Console, and you should see the following message about your quest.

So we have managed to read the JSON file and translate it into a quest, with dif-

ferent required actions and associated xps.

The next step will be to display this information on screen and we will do that

in the next section.

Displaying quest information to the user

At this stage, we can read the JSON file and set up a quest. While the infor-

mation is displayed to the user in the Console window, we will, in this section, dis-

play the information read from the JSON file on screen.

• Please open the script game_manager.gd.

• Add this code to at the end of the script.

func init():

display_quest_info()

func display_quest_info():

stage_title_text.text = stage_title

stage_description_text.text = stage_description;

stage_objectives_text.text = stage_objectives + "\n Press H to Hide/Display this

information";

In the previous code:

• We create the function init; this function calls, in turn, the function

display_quest_info.

• We also create the function display_quest_info.

• This function display the stage’s title, description and objectives.

Finally, add this code to the function _ready.

init()

Next, we will build the interface:

• You can temporarily deactivate/hide the nodes used to display the shop, the

inventory, and the dialogues (i.e., deactivate/hide the nodes shop_ui, dia-

logue_ panel and inventory).

• Please switch to the main scene (i.e., level1).

• Create a new node of the type Node2D as a child of the node Spatial and re-

name the new node stage_panel.

• Create a new node of the type Label as a child of the node stage_panel and

rename it stage_title. Move it to the top of the screen, and, using the

Inspector, change its text to STAGE TITLE, change its vertical and horizontal

alignment to Center, and its size (i.e., Rect | Size) to (300, 40).

• Finally, apply the font BebasNeue to this node (Custom Font | New Dy-

namic Font) and change the font size to 30.

• Duplicate the node stage_title, rename the duplicate stage_description,

change its text to DESCRIPTION and move the new node slightly below the

first node, as per the next figure.

• Duplicate the node stage_description, rename it stage_objectives, change its

text to OBJECTIVES, move it slightly below the node stage_description, and

change its size (i.e., Rect | Size) to (800, 300).

You can now reactivate the objects shop_ui, inventory and dialogue_panel, play

the scene and the UI should look like the next figure.

Next, we will make it possible for the player to hide this information after press-

ing the H key.

• Please add this code to the function Udpate in the file QuestSystem.

• Add this function.

func _process(delta):

if (Input.is_action_just_pressed("hide_objectives")):

panel_displayed = ! panel_displayed

if (panel_displayed): stage_panel.show()

else: stage_panel.hide()

In the previous code, we check whether the player has pressed the key mapped

to the action “hide_obectives” and we then display or hide the panel accordingly.

Now that this is done, we just need to map the action “hide_obectives” to the

key H (i.e., select Project | Project Settings | Input Map).

Checking the actions performed by the player

So far, we are only loading information for the current quest and displaying it

on screen; however, for our game, we'd like to check if the goals have been

achieved for each level; this means translating the required actions into a format/

variable that can be measured in the code.

In other words, we need to translate the goals included in the JSON quest file

so that they can be interpreted in a way that makes it possible to check, program-

matically, whether they have been achieved. For this purpose, we will, for each

objective listed in the JSON file, look for keywords and then match them with an

item from a list of possible and predefined actions (e.g., reach, collect, destroy,

etc.).

• Please open the script game_manager, copy and paste the method load-

_quest and rename the duplicate load_quest2.

• Remove the code that is after the following lines in the function load_quest2:

var action = quests[quest].stages[current_stage].results[counter].action

var target = quests[quest].stages[current_stage].results[counter].target

var xp = quests[quest].stages[current_stage].results[counter].xp

• Add the following code instead within the for loop (new code in bold):

var xp = quests[quest].stages[current_stage].results[counter].xp

var action_for_quest

if (action.find("Acquire",0) >=0):action_for_quest=possible_actions.acquire_a

if (action.find("Talk",0) >=0):action_for_quest=possible_actions.talk_to

if (action.find("Destroy",0) >=0) && action.find("one",0) >=0:

action_for_quest=possible_actions.destroy_one

if (action.find("Enter",0 && action.find("place",0) >=0) >=0):

action_for_quest=possible_actions.enter_place_called

In the previous code, we check if the string that describes the action in the

JSON file includes the word Acquire, Talk, Destroy, or Enter and we set the action

accordingly. This is so that even if you made a typographical error when writing the

goals in the JSON file, it is still possible to identify the action based on a keyword

present in the string. The new actions are based on the enum variable that we have

created earlier on.

• Please add the following code after the previous code:

actions_for_quest.push_back(action_for_quest)

targets.push_back(target)

xps.push_back(xp)

objective_achieved.push_back(false)

print(str(action) + " " + str(target) + "[" + str(xp) + " XP]");

stage_objectives += "\n -> " + str(action) + " " + str(target) + " [" + str(xp) + "

XP]";

nb_objectives_to_achieve +=1

counter+=1

In the previous code, we add a new action, a target, and the corresponding XPs,

and we specify that this goal has not been achieved yet. The rest of the code is the

same as the previous function.

• In the _ready method, replace this code:

load_quest()

...with this code...

load_quest2()

––––––––

Adding a notification system to check achievements

At this stage, while we can now quantify the objectives that need to be achieved

by the player, we need to account for the achievements from the player based on

the objectives for the current level, so we will create a system whereby:

• When an objective has been reached, the game manager will be notified.

• XPs will be allocated accordingly to the player.

• When all objectives have been reached, the player will end the level and be

redirected to a menu where the XPs gained in the level can be used to im-

prove the characters' attributes such as accuracy, power or communication.

Let's create the notification system:

• Please add the following function to the script game_manager.

func notify(var action, var target:String):

print("Notified: Action=" + str(action) + " Target:" + str(target));

for i in range (0, actions_for_quest.size()):

if (action == actions_for_quest[i] && target == targets[i] && !objec-

tive_achieved[i]):

nb_objectives_achieved += 1

xp_achieved += int(xps[i])

objective_achieved[i] = true;

break

In the previous code:

• We create a funtion called notify; it takes two parameters: an action and a tar-

get; we need these to check whether a goal has been reached, since any goal

for a level is identified by an action and a target.

• We then loop through the required actions for a specific level.

• If the parameters passed match a specific goal (i.e., same action and same

target), and that this specific goal has not been achieved yet, we consider that

this objective or goal is now achieved.

• We then add corresponding XPs and specify that this objective no longer

needs to be achieved.

Next, we will need to call this function whenever the player has performed an

action. These actions can include: collecting items, reaching an area, talking to a

character or destroying an object or an NPC. So first, let's detect when the player

collects an object of interest (i.e., an object that should be collected in order to

complete the level).

• Please open the script object_to_be_collected.

• Add this code before the function _ready.

onready var game_manager = get_tree().get_root().get_node("Spatial/

game_manager")

• Add the following code (new code in bold) to the method pick_up_object1.

func pick_up_object1():

get_node("../Player").item_to_pickup_nearby = true

var can_pick_up = get_node("../Player/

in-ventory_system").update_in-tory(type,1)

if (can_pick_up):

get_node("../Player").item_to_pickup_nearby = false

get_node("../user_message").hide()

get_node("../user_message").text = ""

game_manager.notify(game_manager.possible_actions.acquire_a, str(item.-

name));

queue_free()

In the previous code: we notify the game manager whenever an object has been

collected. For this purpose, we call the method notify and pass the name of the ob-

ject collected, along with the type of action just performed by the user (in our case

it is acquire_a).

• Please save your code, play the scene, collect an apple, and the following

message should appear in the Console window.

Notified: Action=2 Target:Apple

If you can see this message, then it means that the notification system works.

Next, we will notify the quest system when the player talks to an NPC.

• Please open the script DialogueSystem.

• Add this code before the function _ready.

onready var game_manager = get_tree().get_root().get_node("Spatial/

game_manager")

• Add this code to it to the function _process (new code in bold).

else:

dialogue_is_active = false;

dialogue_panel.hide(); #new code

waiting_for_user_input = true;

current_dialogue_index = 0

player.end_talking();

game_manager.notify(game_manager.possible_actions.talk_to, name);

In the previous code, similarly to the item collection notification, we notify the

quest system when we talk to a character by passing the name of the character

along with the type of action performed (i.e., talk_to)

Please save your code and play the scene, after talking to the character called

Diana you should see the following message in the Console window:

Notified: Action=1 Target:Diana

Thirdly, we will notify the quest system when the player has defeated or "de-

stroyed" an NPC called npc_guard.

• Please open the script called manage_npc_guard that is attached to the NPC

called npc_guard.

• Add this code before the function _ready.

onready var game_manager = get_tree().get_root().get_node("Spatial/

game_manager")

• Modify the method destroy_target as follows (new code in bold):

func destroy_target():

game_manager.notify(game_manager.possible_actions.destroy_one, name);

queue_free()

Save your code, play the scene, attack the guard several times; after defeating

the guard, the following message should appear in the Console window.

Notified: Action=3 Target:npc_guard

Finally, we will set up the last type of objective which consists in entering a

place called yellow_house.

• Please duplicate the scene house.tscn and rename the duplicate

yellow_house.tscn.

• Open the scene yellow_house.tscn.

• Select the node called “walls” and change its color to yellow.

• Save the scene.

• Once this is done, switch to the main scene (level1).

• Create a new node of the type Area as a child of the node Spatial and call this

node yellow_house.

• Create a new node of the type CollisionShape as a child of the node

yellow_house.

• Select this node and, using the Inspector, change its scale to (4.5, 4, 4.5), cre-

ate a new BoxShape CollisionShape (i.e., click to the right of the label Shape,

and select the option New BoxShape).

• Right-click on the node called yellow_house, choose the option Instance

Child Scene, select the scene yellow_house, and press Open. This will create

a new node called house.

• Please select this node (i.e., house), change its scale to (4, 4, 4).

• Select the node yellow_house, move it so that it doesn’t overlap with other

houses, and change its y coordinate to 2.5.

Now that the yellow house has been created and added we need to create a

script that will be used to detect and process the event whereby the player enters

(or collides with) the yellow house.

• Please select the node yellow_house in the main scene.

• Attach a new script called detect_location to it.

• Add the following code at the beginning of the script.

onready var game_manager = get_tree().get_root().get_node("Spatial/

game_manager")

• Add the following function to the script.

func player_entered(body):

if (body.name == "Player"):

game_manager.notify(game_manager.possible_actions.enter_place_called,

name);

In the previous code, we check that the player is colliding with the yellow

house, and, in that case, we notify the game manager.

• Please select the node yellow_house, and, using the Inspector, select the tab

Node | Signals, and double-click on the event body_entered.

• In the new window, select the node yellow_house from the list of nodes, type

the text player_entered in the field Receiver Method, and press Connect.

• Please save your code, play the scene, and enter the yellow house; you should

see the following message in the Console window.

Notified: Action=4 Target:yelllow_house

• So that the number of xp gained is also known to the player, you can add this

code to the function notify in the script game_manager and play the scene

again (new code in bold).

for i in range (0, actions_for_quest.size()):

if (action == actions_for_quest[i] && target == targets[i] && !objec-

tive_achieved[i]):

print("+" + str(xps[i]) + " XP");

nb_objectives_achieved += 1

Save your code, and play the scene; after colliding with the yellow house the fol-

lowing message should be displayed in the Console window.

Notified: Action=4 Target:yellow_house

+10 XP

Displaying the XPs on screen

So far, the player's achievements are displayed in the Console window, and it

would be better to display them on screen, so we will create a system whereby,

whenever the player reaches a goal, the number of corresponding XPs will be dis-

played on screen for a few seconds before it disappears.

• Please add these functions to the script game_manager

func display_message(var the_message):

get_node("../user_message").show()

get_node("../user_message").text = the_message

var display_timer = Timer.new()

add_child(display_timer)

display_timer.set_wait_time(4)

display_timer.start()

display_timer.connect("timeout",self,"clear_message")

func clear_message():

get_node("../user_message").text = ""

In the previous code:

• We create a new function called display_messge that takes one parameter

(i.e., the text to be displayed on screen).

• We display the node user_message that we ye need to create.

• We display the message.

• We then create a timer that will last for 4 seconds; after that time, the func-

tion clear_message is called.

• The function clear_message just clears the message previously displayed on

screen.

Finally, change this code:

print("+" + str(xps[i]) + " XP");

to

display_message("+" + str(xps[i]) + " XP");

You can now save your code.

Before you can test your code with the guard, please select the node npc_guard

and change its name to NPC_Guard so that it is in line with the name expected as

per the JSON file.

You can now play the scene, enter the yellow house, and you should see the

message +10 XP on screen as per the next figure.

If you decide to also defeat the guard, the same message will be displayed. The

same will happen if you talk to the character Dian or if you collect an apple.

––––––––

Checking that the player has completed all the tasks and saving data to the game

manager

At this stage, we can check whether each of the objectives was achieved and

also set the corresponding number of xps for the player. We just need to check

whether all the tasks have been completed and then redirect the player to a menu

where all the XPs can be used to increase the player character's attributes.

• Please create a new script PlayerInfo.

• Remove all the code from the script.

• Add the following code to the script.

class_name PlayerInfo

var akai;

var dreyar;

var name;

var inventory;

var health = 0

var power = 0

var accuracy = 0

var communication = 0

var xp = 0;

enum player_type { Akai = 0, Dreyar = 1 }

In the previous code:

• We declare a class called PlayerInfo that we will be able to instantiate later.

• We create two variables akai and dreyar that will be linked to a specific type of

NPC, along with a variable called name that will be used for the name of the

character.

• We also define attributes such as health, power, accuracy, communication

and XPs.

• We create an enum that will list the different types of player characters.

Now that these have been created, we can define a function that will be used as

a constructor.

• Please add the following function:

func _init(var the_new_type):

if (the_new_type == player_type.Akai):

health = 100;

power = 40;

accuracy = 40;

communication = 40;

xp = 0;

In the previous code:

• We create a constructor that takes a parameter which will be the type of Player

Character.

• We then create the code to be used in case we want to create an NPC of the

type akai, and we set its attributes accordingly.

• The idea behind this script (or class) is that, as a designer, you may let the

player choose their character for the quest, and also set different attributes

for each character, if need be.

Now that the class PlayerInfo has been created, we will be able to use it in the

game manager, and throughout the game.

• Please add this code in the script game_manager, at the beginning, before the

function _ready.

var player_info = PlayerInfo.new(PlayerInfo.player_type.Akai)

• Add this code at the end of the function notify in the script game_manager

(new code in bold).

func notify(var action, var target:String):

print("Notified: Action=" + str(action) + " Target:" + str(target));

for i in range (0, actions_for_quest.size()):

if (action == actions_for_quest[i] && target == targets[i] && !objec-

tive_achieved[i]):

display_message("+" + str(xps[i]) + " XP");

nb_objectives_achieved += 1

xp_achieved += int(xps[i])

objective_achieved[i] = true;

break

if (nb_objectives_achieved == nb_objectives_to_achieve):

display_message("Stage Complete");

player_info.xp = calculate_total_xp_for_level();

print("XPS for this level"+str(player_info.xp))

In the previous code, we display the message "Stage Complete", and we calcu-

late the XPs using the function calculate_total_xp_for_level (that we yet have to de-

fine).

• Please add this function to the script game_manager.

func calculate_total_xp_for_level():

var total_xp = 0

for i in range (0,actions_for_quest.size()):

total_xp += int(xps[i])

return total_xp

In the previous code, we check the XPs related to each of the goals and add

them up; the total is then returned.

––––––––

Level roundup

Summary

In this chapter, we have created an interesting quest system whereby the objec-

tives for a given level can be written in a JSON file, by the designer or anyone else.

We also created a system through which the objectives of each level are displayed

at the start of the level, along with a notification system that will check if and when

the player has reached all the objectives for the current level.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are true or false. The solutions are on the next page.

1. It is not possible to read a JSON file from Godot.

2. A quest system can be used to identify objectives for a level and check that

they have been achieved.

3. The following code will create an array of enums that can be used to identify

actions.

enum possible_actions { do_nothing=0, talk_to= 1, acquire_a = 2, de-

stroy_one= 3,

1. The function file.open can be used to open and read JSON files stored in

the project.

2. The function push_back can be used to add items to an array.

3. The following node will show the node linked to the variable panel1.

stage_panel.show()

1. Messages to the player can be displayed through a ColorRect node.

2. The function get_tree().get_root() can be used to access the root of the cur-

rent scene.

3. It is possible to duplicate a scene in Godot

4. The following code, will print the name of the node that has just entered the

area linked to this script.

func player_entered(body):

print(body.name)

Solutions to the Quiz

1. FALSE.

2. TRUE.

3. TRUE

4. TRUE.

5. TRUE.

6. TRUE.

7. FALSE (a node of the type Label would be more suitable).

8. TRUE.

9. TRUE.

10. TRUE

Checklist

You can move to the next chapter if you can do the following:

• Create enums.

• Display information on screen.

Challenge 1

For this challenge, you will need to improve the quest system by doing the fol-

lowing:

• Add more objectives to the first level.

• Add the corresponding objects, locations, or NPCs in the scene.

• Check that after completing all the required goals the new scene is loaded.

Chapter 8: Creating an XP Attribution System

This chapter helps you to create an XP attribution system. This means that when-

ever the player has completed a level and won some experience points, s/he will be

able to use them to increase their attributes, in terms of power, accuracy, com-

munication, or any other attributes that you have defined for the player character.

After completing this section, you should be able to:

• Create a user interface.

• Create the logic behind the user interface.

• Control sliders and update data based on the sliders.

Introduction

In this section, we will start to design a system through which the player can

use the xps gained during a specific quest to increase their skills, including power,

accuracy, and communication. This is a very common feature in RPG games, as it

helps to customize the character and help him/her to grow throughout their quest.

––––––––

Creating the interface for the XP attribution system

In this section, we will create the interface for the XP attribution system; it will

consist of a title, a description, as well as labels and sliders for each of the skills.

• Please create a new scene of the type Node2D called attribute_xp.

• Open this scene.

• This is the layout that we will be creating along with the logic to increase val-

ues.

The players will be able to increase some of their features such as power, accu-

racy, or communication, using the associated sliders, given the number of XPs

gained in the previous level. In any case, if all the XPs gained have been used it will

be impossible for the players to increase any of their skills.

• Change the name of the default node Node2D to manage_xp.

• Add a node of the type ColorRect as a child of the node manage_xp.

• Using the Inspector, change its color to black, and its size (i.e., Rect | Size) to

(1063, 617) so that it fills up the screen.

• Add a new node of the type Label as a child of the node manage_xp and re-

name this new node stage_title.

• Using the Inspector, change its text to “STAGE COMPLETE”, its vertical and

horizontal alignment to Center, and its size (i.e., Rect | Size) to (300, 40).

• Use the font BebasNeue to set a new dynamic font (i.e., Custom Fonts | New

Dynamic Font) for this node (as we have already done for other Label nodes)

and set the font size to 30 (i.e., Custom Fonts | Font | Settings | Size).

• Move this node (i.e., stage_title) at the very top of the window.

• Duplicate the node stage_title and rename the duplicate stage_description.

• Change the text of the node stage_description to “PLEASE MOVE THE

SLIDERS”.

• Move this node below the node stage_title.

• Duplicate the node stage_description, rename the duplicate

stage_description2, change its horizontal alignment to “Right”, change its text

to XP FOR THIS LEVEL, and move this node to the left of the screen, as per

the next figure.

• Duplicate the node stage_description2, rename the duplicate text_xp, change

its horizontal alignment to “Left”, change its text to XP, and move this node

to the right of the node stage_description2.

• Duplicate the node text_description2, rename the duplicate power_label,

change its text to “Power:”, and move this node below the node

stage_description2.

• Duplicate the node power_label twice, rename the duplicates accuracy_label

and communication_label, change their text respectively to ACCURACY and

COMMUNICATION, and move them below the node power_label.

• Create a new node of the type HSlider as a child of the node manage_xp, re-

name it power_slider, change its size (i.e., Rect | Size) to (169, 16), and move

it to the right of the node power_label.

• Duplicate the node power_slider twice, rename the duplicates accuracy_slider

and communication_slider, and move them to the right of the nodes accura-

cy_label and communicaton_label, respectively.

• The Hierarchy view should look like the following figure:

Now that we have designed the interface, we will create the logic to control the

sliders:

• Please select the node manage_xp, attach a new script to it, and name this

script manage_xp.gd.

• Open the script manage_xp.gd.

• Add the following code at the beginning of the script.

var initial_power = 0

var initial_accuracy = 0

var initial_communication = 0

var initial_xp = 0;

var delta_power

var delta_accuracy

var delta_communication

var delta_xp;

In the previous code, we initialize the variables that will be used to save the ini-

tial, current, and previous (i.e., before a change) values for the attributes power,

accuracy, communication, and XPs. We declare the nodes that will be linked to the

sliders, the initial XP, and the game manager; finally, we declare the variables that

will be used to measure the change (i.e., delta) in power, accuracy, communi-

cation, or XPs after moving a slider.

• Please add this code after the previous code:

var current_power

var current_accuracy

var current_communication

var current_xp;

var previous_power

var previous_accuracy

var previous_communication

var previous_xp

In the previous code, we initialize the current and previous values for each of

the sliders.

• Please add this code after the previous code:

onready var power_slider = get_node("power_slider")

onready var accuracy_slider = get_node("accuracy_slider")

onready var communication_slider = get_node("communication_slider")

onready var power_label = get_node("power_label")

onready var accuracy_label = get_node("accuracy_label")

onready var communication_label = get_node("communication_label")

onready var game_manager = get_node("../game_manager")

onready var initial_xp_text_ui = get_node("text_xp")

In the previous code, we link the variables power_slider, accuracy_slider,

communication_slider, power_label, accuracy_ label, and communication_ label to

the corresponding nodes. We also link the variable game_manager to the corre-

sponding node.

• Please add this function:

func init():

initial_power = 40

initial_accuracy = 40

initial_communication = 40

initial_xp = 50

• Add the following code to the function init.

current_xp = initial_xp

current_power = initial_power

current_communication = initial_communication

current_accuracy = initial_accuracy

initial_xp_text_ui.text = "" + str(initial_xp)

• Add the foloowing code to the fuction init:

power_slider.set_min(initial_power);

power_slider.set_max(initial_power + initial_xp);

accuracy_slider.set_min(initial_accuracy);

accuracy_slider.set_max(initial_accuracy + initial_xp)

communication_slider.set_min(initial_accuracy)

communication_slider.set_max(initial_communication + initial_xp)

power_label.text = "Power(" + str(current_power) +")";

accuracy_label.text = "Accuracy(" + str(current_accuracy) + ")";

communication_label.text = "Communication(" + str(current_communication)

+ ")"

In the previous code:

• We set the minimum and maximum values for the sliders associated with the

attributes for power, accuracy, or communication.

• In this case, it will only be possible to specify values ranging from the initial

power/accuracy/communication to these values plus the initial XP. In other

words, any of the attributes can only be increased by a maximum defined by

the initial number of XPs.

Finally, please add this code to the function _ready (new code in bold).

func _ready():

init()

You can now save your code and play the scene attribute_xp. You should see

that the initial number of XPs is 50.

Next, we will need to check whether the sliders have been moved and to update

the interface accordingly. For this purpose, we will need to create several methods

that do the following:

• Save the current values (before a change) for each attribute.

• Save the values from the sliders.

• Calculate the difference between the new and old values for each attribute.

• Update the value for XPs.

So let's proceed:

• Please open the script manage_xp and add this function.

func save_current_values():

previous_power = current_power

previous_accuracy = current_accuracy

previous_communication = current_communication

In the previous code, we save the current values (before the slider is moved)

for each attribute.

• Please add the next function.

func get_new_values():

current_power = power_slider.get_value()

current_accuracy = accuracy_slider.get_value()

current_communication = communication_slider.get_value()

In the previous code, we obtain and store the values from the sliders related to

the attributes for accuracy, power, and communication.

• Please add the next function.

func calculate_deltas():

delta_power = current_power - initial_power;

delta_accuracy = current_accuracy - initial_accuracy;

delta_communication = current_communication - initial_communication;

delta_xp = delta_accuracy + delta_power + delta_communication;

initial_xp_text_ui.text = "" + str(initial_xp- delta_xp);

In the previous code, we calculate the difference between the old and new val-

ues for each of the attributes, as well as the number of XPs used in this case. We

then update the user interface to display the number of XPs left to be used.

• Please add the next function.

func set_xp(value):

print("Set XP" + str(value))

var current_xp_as_text = initial_xp_text_ui.text;

current_xp = int(current_xp_as_text);

save_current_values()

get_new_values()

if (current_xp == 0):

if (current_power > previous_power): current_power = previous_power;

if (current_accuracy > previous_accuracy): current_accuracy = previous_ac-

curacy;

if (current_communication > previous_communication): current_com-

munication = previous_communication

power_slider.set_value(current_power);

accuracy_slider.set_value(current_accuracy);

communication_slider.set_value(current_communication)

calculate_deltas();

power_label.text = "Power(" + str(current_power) +")";

accuracy_label.text = "Accuracy(" + str(current_accuracy) + ")";

communication_label.text = "Communication(" + str(current_communication)

+ ")";

In the previous code:

• We read the value in the text field from the current XP and parse (i.e., con-

vert) it to a number.

• We call the method save_curent_values and we also read the values from the

sliders by calling the method get_new_values.

• We check whether there are some XPs left to be able to increase the value of

the attributes. If this is not the case (i.e., currentXP == 0), and if the user is

trying to increase one of its attributes, we ensure that the value for each at-

tribute remains unchanged.

• We call the method calculate_delta that will calculate the new values for each

attribute. We then update the corresponding labels.

Once this is done, we just need to make sure that the functions that we have

created are called whenever a slider is moved.

• Please add this code to the function _ready.

power_slider.connect("value_changed",self,"set_xp")

accuracy_slider.connect("value_changed",self,"set_xp")

communication_slider.connect("value_changed",self,"set_xp")

In the previous code, we connect the events triggered when a slider is moved

(i.e., value_changed), to the corresponding function (i.e., set_xp).

• Please play the scene and move the sliders, you should see that the values for

each attribute are updated accordingly in the user interface.

Once you have checked that this is working, we need to save the information

when the player presses the space bar, and also link-up with the actual XP gained

by the player after completing a level (at present the XPs are temporarily set to 50).

• Please add this function to the script manage_xp.

func _process(delta):

if (Input.is_action_just_pressed("validate_space")):

game_manager.player_info.power = current_power

game_manager.player_info.accuracy = current_accuracy;

game_manager.player_info.communication = current_communication

game_manager.player_info.xp = current_xp

hide()

game_manager.increase_stage(1)

game_manager.load_new_scene()

In the previous code, we check whether the key mapped to the action

“validate_space” was pressed, we save the new values for the player's attributes to

the game manager, we increase the index of the current stage (this is so that the

quest manager can load the next level), we hide this XP panel, and we call the func-

tion load_scene.

• Please map the action validate_space to the space bar.

• In the init method, please replace this code:

initial_power = 40

initial_accuracy = 40

initial_communication = 40

initial_xp = 50

• with this code...

initial_power = game_manager.player_info.power

initial_accuracy = game_manager.player_info.accuracy

initial_communication = game_manager.player_info.communication

initial_xp = game_manager.player_info.xp

• Next, please open the script game_manager.

• Add the following two functions.

func increase_stage(var increment):

current_stage += 1

func load_new_scene():

var all_current_level_nodes = get_tree().get_nodes_in_group("level0")

for item in all_current_level_nodes:

item.free()

In the previous code, we load the next scene based on the current stage (the

last level completed before accessing the XP attribution system).

• Please open the script game_manager.

• Change the following code in the function notify:

if (nb_objectives_achieved == nb_objectives_to_achieve):

display_message("Stage Complete");

player_info.xp = calculate_total_xp_for_level();

stage_complete()

• Add this function to the script game_manager.

func stage_complete():

get_node("../manage_xp").init()

get_node("../manage_xp").show()

print("Stage Complete")

print("XPs for Player="+ str(player_info.xp))

print("Loading stage complete scene")

• Add this code to the function _ready.

get_node("../manage_xp").hide()

Once this is done, you can do the following:

• Save the scene attribute_xp.

• Open the main scene (i.e., level1), right-click on the node Spatial (i.e., the

top-most node), select the option Instance Child Scene.

• Select the scene attribute_xp and press Open, this will create a new node

named manage_xp as a child of the node Spatial.

Last but not least, when loading the new scene, we will just remove the node

that belongs to the first scene. This is partly done in the function load_new_scene;

however, we yet have to add a group to the nodes that we don’t want to keep for

the next stage. So please, apply the group level0 to the nodes shop target, and yel-

low_ house using the Inspector (i.e., Nodes | Groups). We can leave the nodes

WP1, WP2, WP3, and WP4 because they will be used for the next level as well.

• You can now save the scene.

• Play the first scene (i.e., level1) and reach all the objectives. You should see

the message "Stage Complete" displayed on screen.

• Then use the XPs to increase your skills, press the SPACE bar, and the scene

should be similar except that the shop and the yellow house should have

been removed.

––––––––

Level roundup

Summary

In this chapter, we have created an XP attribution system whereby the players

can gather XPs during their quest and then use them to improve their skills.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are true or false. The solutions are on the next page.

1. It is not possible to obtain the value of a slider from GDScript.

2. In an RPG it is often possible to use XPs to increase the player character's

skills.

3. It is possible to set the minimum and maximum values for a slider from

GDScript.

4. The event "value_changed " is used to detect whenever the user has moved

a slider.

5. It is possible to change the text (i.e., value) of a node of the type Label from

GDScript.

6. The function set_min can be used to set the minimum value for a slider.

7. The function set_max can be used to set the maximum value for a slider.

8. When using the function print, any variable within the round brackets needs

to be converted to a string/text value.

9. The following code can check whether the key mapped to the action

“validate_space” has been pressed.

if (Input.is_action_just_pressed("validate_space")):

1. The following code will connect the event value_changed for the node pow-

er_s lider to the function set_xp.

power_slider.connect("value_changed",self,"set_xp")

Solutions to the Quiz

1. TRUE.

2. TRUE: it is possible to set the minimum and maximum values for a slider

from GDScript.

3. TRUE.

4. TRUE.

5. TRUE

6. TRUE.

7. TRUE.

8. TRUE.

9. TRUE.

10. TRUE.

Chapter 9: Creating The Final Level

In this chapter, we will create the final level for the game where the player will need

to collect three different diamonds and avoid guards.

Setting-up the level

In this section we will set up the level by doing the following:

• Keep the current scene.

• Remove the elements from this scene that should not be in the second stage

of the mission.

• Add elements that need to present in the second stage of the mission (i.e.,

guards and diamonds).

First, we will tag the objects that only belong to the first level, by adding them

to the group “level0”.

• If you haven’t already done so, please select the nodes shop, target,

NPC_Guard, and yellow_house, and using the Inspector, add the group

“level0” to these nodes.

Next, we need to modify the file quests.json so that we can specify the name

and objectives of the next level.

Please do the following:

• Using your file system (i.e., outside of Godot), navigate to the folder where

the file quests.json is located. To know its location, you can right-click on the

folder res:// in Godot, then select the option “Open in File Manager”, then

open the folder quests, and the file quests.json should be located there.

• Duplicate the file quests.json and rename the duplicate quests_backup.json.

• Open the file quests.json.

• Change this code (i.e., line 10 to line 21):

{

"id" : "0",

"name": "Training Camp",

"description":"This is a training camp where you will master your skills",

"results":

[

{"action":"Talk to","target":"Diana","xp" : "100"},

{"action":"Acquire a","target":"Apple","xp" : "100"},

{"action":"Enter place called","target":"yellow_house","xp" : "100"},

{"action":"Destroy one","target":"NPC_Guard","xp" : "100"},

]

}

... to this code (new code in bold)

{

"id" : "0",

"name": "Training Camp",

"description":"This is a training camp where you will master your skills",

"results":

[

{"action":"Talk to","target":"Diana","xp" : "100"},

]

}

In the previous code, as we just want to test that the second scene is located

after completing all the objectives from the first level, we just use one objective, for

testing purposes, to speed up the testing process; so effectively, after talking to the

character Diana, the XP panel will be displayed, and after allocating XPs to improve

different skills, the player should be taken to the second mission.

Next, we need to specify the objectives for the second mission.

• Please add the following code to the file quests.json (new code in bold) after

the third last closing curly bracket.

}

,

{

"id" : "0",

"name": "The Thief ",

"description":"Avoid the guards and Collect 3 Diamonds",

"results":

[

{"action":"Acquire a","target":"Yellow diamond","xp" : "100"},

{"action":"Acquire a","target":"Red diamond","xp" : "100"},

{"action":"Acquire a","target":"Blue diamond","xp" : "100"},

]

}

]

In the previous code, we specify that for the second mission, the player will

need to collect three diamonds (i.e., a yellow diamond, a red diamond, and a blue

diamond).

• Please save the file.

At this stage, we have specified the elements that need to be removed from the

current scene, along with the objectives for the first and second mission.

Next, we need to make sure that once the player has leveled up its XPs, the new

mission is loaded; to do so, we will just reload the objectives from the JSON file

and display them as follows:

• Please open the script game_manager and add this code to the function load-

_new_scene (new code in bold).

for item in all_current_level_nodes:

item.free()

load_quest2()

display_quest_info()

panel_displayed = true

stage_panel.show()

In the previous code, we call the function load_quest2 to load the mission’s

objectives, and we also display the quest’s information.

• Please save your code. You can test the scene; after talking to the character

Diana, the XP attribution panel system should be displayed, and after allo-

cating XPs and pressing the space bar, you should see the level again, but

this time with new instructions, and without the yellow house, or the initial

NPC.

The next steps is to add the elements that will be part of the new mission,

namely: the three diamonds and the guards that will be patrolling.

First, let’s add the diamonds:

• Please duplicate the node object_to_collect (that you have created earlier)

three times, rename them red_diamond, yellow_diamond, and blue_diamond,

and using the Inspector, change their attribute Type (in the section Script

Variables) to RED_DIAMOND, YELLOW_DIAMOND, and BLUE_DIAMOND,

respectively.

• Once this is done, move these three nodes apart and make sure that they are

above the ground as per the next figure.

• Apply the group level1 to all these nodes using the Inspector.

• Hide these nodes by clicking on the eye item to the right of their names in the

Hierarchy tree.

Next, we will display these items only when we have reached the mission where

they should appear.

• Please open the script game_manager.

• Add this code to the function load_new_scene.

var all_nodes_to_display = get_tree().get_nodes_in_group("level" + str(cur-

rent_stage))

for item in all_nodes_to_display:

item.show()

In the previous code, we display the nodes that should appear in the scene for

the current stage.

• Using the Inspector, please add the group level0 to the node

object_to_be_collected.

• Open the script object_to_be_collected.

• Change the following code (new code in bold)

func body_entered(body):

pick_up_object1()

get_node("../Player").item_to_pickup_nearby = true

if (is_in_group("level"+str(game_manager.current_stage)) or is_in_-

group("level0")):

pick_up_object2()

In the previous code, we ensure that the options to collect an item only appears

if that item belongs to the current level (i.e., level 0 for the apple, and level 1 for the

diamonds).

Next, we will make sure that an end-of-game screen is displayed when the play-

er has completed all the missions defined in the JSON file.

• Please open the script game_manager.gd.

• Add the following code at the beginning of the script.

var nb_quests = 1

• Add the following function to the script game_manager.gd.

func count_nb_quests():

var file = File.new()

file.open("res://quests/quests.json", file.READ)

var json_data = parse_json(file.get_as_text())

var json = to_json(json_data)

quests = JSON.parse(json).result

for quest in quests:

nb_quests += 1

In the previous code, we go through the JSON file and count the number of

missions within.

• Please add the following function to the script game_manager:

func load_end_screen():

get_tree().change_scene("res://end_of_game.tscn")

• Please add the following code to the function _ready.

count_nb_quests()

• Open the script manage_xp.

• In the function _process remove the code after the call to the function hide:

#game_manager.increase_stage(1)

#game_manager.load_new_scene()

• Add this code instead (new code in bold):

hide()

if (game_manager.current_stage == game_manager.nb_quests-1):

game_manager.load_end_screen()

else:

game_manager.increase_stage(1)

game_manager.load_new_scene()

In the previous code, once the player has saved its xps, s/he will be taken to the

next mission or to the screen for the end of the game, if all missions have been

completed.

• Finally, please create a new 2D scene called end_of_game.tscn, which in-

cludes a label centered on the middle of the screen that says “Game Over”.

You can now save your changes, switch to the main scene, play the scene, and

check that after completing all the missions, the Game Over screen is displayed.

Last but not least, we will add several NPCs that will patrol, and chase the play-

er.

• Please duplicate the node NPC_Guard three times.

• Move the duplicates apart so that, for example, they form a row or a line.

• Select each duplicate, and using the Inspector and the tab Node | Group,

delete (i.e., select level0 and press the bin icon) the group level0 and add the

group level1 to these nodes.

• Add this code in the script manage_npc_guard, at the beginning of the func-

tion _ready.

var current_stage = "level"+str(game_manager.current_stage);

if (!is_in_group(current_stage)): hide()

In the previous code, we check that the NPCs are displayed only for the level

they belong to.

• Finally, please add this code at the beginning of the function _process in the

script manage_npc_guard.

if (!is_visible()): return

In the previous code, if the NPC is not visible (i.e., not to be included in the

current scene) we ensure that is not moving.

That’s it; you can now save your scene and check that, in the second level, the

three NPCs patrol, and chase the player whenever they detect him/her.

Level roundup

Summary

In this chapter, we completed our last level and we also included additional fea-

tures that should make the game more challenging.

Checklist

If you can do the following, then you are ready to go to the next chapter:

• Show or Hide nodes based on their group.

• Modify the file quests.json to create new

levels for the quest.

• Detect when the player has managed to

complete all the quests.

Challenge 1

For this challenge, you will need to:

• Create a new level.

• Modify the file quests.json to include new objectives.

• Add the necessary objects to the level.

• Test the level.

Chapter 10: Your Next Steps

This chapter will show you how you can expand the code that you have created to

improve your RPG.

Create objects
Create more objects to be used and collected

• Open the file Item.gd and add your own objects.

• Set a family for this object (or create a new object family).

• Add the corresponding image to the folders food, loot, or weapons.

• Add a corresponding scene to the folder res://.

Add the objects to your scene

• Duplicate the node object_to_collect.

• Set its type using the Inspector.

Add characters

• Duplicate the node NPC_Guard and set the scene where it should appear by

changing its group.

Add a shop

• Instantiate the shop in the main scene.

• Modify the method init in the file shop_system to add different types of items

to the shop.

––––––––

Create new quests
Update the file quest.json

• Open the file called quest.json.

• Copy/paste the information from an existing quest.

• Modify the attribute stage_id.

• Modify the section results to specify the goals for a specific level along with

the corresponding XPs.

• For the quest goals, make sure that you use the right keywords for each ac-

tion (e.g., "acquire", "talk", "destroy", or "enter").

Add objects for each scene

• Add nodes to the main scene.

• Set the group for these nodes accordingly.

Create new dialogues
Update the file dialogues.json

• Copy paste the dialogue for an existing character in this file.

• Change the attribute "character name"

• For each dialogue, modify the question and the possible answers.

• Add an image for this NPC (with the same name as the one in the JSON file)

in the folder res://.

Create and add the corresponding 3D character

• Create a 3D character and rename it using the same name as the one pro-

vided in the file dialogues.json

• Add an animation to this character if need be.

• Add the script dialogue_system to it.

––––––––

Use new skills
Update the skills attribution system

• Create labels and sliders for new skills (e.g., speed).

• Modify the file manage_xp to add the corresponding variables.

• Add similar variables to the game_manager and the file PlayerInfo.

• Use this skill for the player (e.g., to increase its speed).

Add status bars for the player's skills

• Duplicate the node health_bar.

• Add it as a child of the node Spatial.

• Rename this node and associate it to a different attribute (e.g., power, speed,

etc.).

• Access and modify the aspect of the bar using a script; for example:

get_node("../health_bar").set_value(health)

Add more challenge
Make the NPCs more challenging

• Increase the number of NPCs.

• Increase the health of each NPC using the Inspector.

• Add vision to the NPCs using ray-casting.

Thank you

I would like to thank you for completing this book. I trust that you are now com-

fortable with RPG creation and that you can create your very own RPG efficiently. If

you have enjoyed the book, please leave an honest review on your favorite e-store,

this would mean the world to me.

So that the book can be constantly improved, I would really appreciate your

feedback and hearing what you have to say. So, please leave me a helpful review in

the e-store where you bought the book letting me know what you thought of the

book, and also send me an email (learntocreategames@gmail.com) with any sug-

gestions you may have. I read and reply to every email.

Thanks so much!!

- Pat

- -

Also by Patrick Felicia

Beginners' Guides

A Beginner's Guide to 2D Platform Games with Unity

A Beginner's Guide to 2D Shooter Games

A Beginner's Guide to Puzzle Games

C# from Zero to Proficiency

C# Programming from Zero to Proficiency (Introduction)

C# Programming from Zero to Proficiency (Beginner)

Getting Started

Getting Started with 3D Animation in Unity

Godot from Zero to Proficiency

Godot from Zero to Proficiency (Foundations)

Godot from Zero to Proficiency (Advanced)

Godot from Zero to Proficiency (Beginner)

Godot from Zero to Proficiency (Intermediate)

Godot from Zero to Proficiency (Proficient)

JavaScript from Zero to Proficiency

JavaScript from Zero to Proficiency (Beginner)

Quick Guides

A Quick Guide to c# with Unity

A Quick Guide to Procedural Levels with Unity

A Quick Guide to 2d Infinite Runners with Unity

A Quick Guide to Artificial Intelligence with Unity

A Quick Guide to Card Games with Unity

Ultimate Guides

The Ultimate Guide to 2D games with Unity

Unity 5 from Proficiency to Mastery

Unity from Proficiency to Mastery (C# Programming)

Unity from Proficiency to Mastery

Unity from Proficiency to Mastery (Artificial Intelligence)

Unity from Zero to Proficiency

Unity from Zero to Proficiency (Foundations): a Step-by-step Guide to Creating

your First Game

Unity from Zero to Proficiency (Beginner)

Unity from Zero to Proficiency (Intermediate)

Unity from Zero to Proficiency (Advanced)

Unity from Zero to Proficiency (Proficient)

Standalone

Becoming Comfortable with Unity

Watch for more at Patrick Felicia’s site.

About the Author

Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology,

where he teaches and supervises undergraduate and postgraduate students. He

obtained his MSc in Multimedia Technology in 2003 and PhD in Computer Sci-

ence in 2009 from University College Cork, Ireland. He has published several

books and articles on the use of video games for educational purposes, including

the Handbook of Research on Improving Learning and Motivation through Educa-

tional Games: Multidisciplinary Approaches (published by IGI), and Digital Games

in Schools: a Handbook for Teachers, published by European Schoolnet. Patrick is

also the Editor-in-chief of the International Journal of Game-Based Learning

(ĲGBL), and the Conference Director of the Irish Symposium on Game-Based

Learning, a popular conference on games and learning organized throughout Ire-

land.

Read more at Patrick Felicia’s site.

