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CHAPTER 

I 

The Search for Knowledge 

JJrom Philosophy to Physics 

The scholars of ancient Greece were the first we know of to 
attempt a thoroughgoing investigation of the universe-a system
atic gathering of knowledge through the activity of human reason 
alone. Those who attempted this rationalistic search for under
standing, without calling in the aid of intuition, inspiration, rev
elation, or other nonrational sources of information, were the 
philosophers (from Greek words meaning "lovers of wisdom").• 

Philosophy could turn within, seeking an understanding of 
human behavior, of ethics and morality, of motivations and re
sponses. Or it might turn outside to an investigation of the universe 
beyond the intangible wall of the mind-an investigation, in short. 
of "nature." 

Those philosophers who turned toward the second alternative 
were the natural philosophers, and for many centuries after the 
palmy days of Greece the study of the phenomena of nature 
continued to be called natural philosophy. The modern word that 
is used in its place-science, from a Latin word meaning "to 

• Undoubtedly there were wise men, and even rationalists, before the 
Oreeks, but they are not known to us by name. Furthermore, the pre-Oreek 
rationalists labored in vain, for it was only the Greek culture that left behind 
it a rationalistic philosophy to serve as ancestor to modem science. 

J 
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know"--did not come into popular use until wen into the nine,. 
teenth century. Even today. the highest university degree given· 
for achievement in the sciences is generally that of "Doctor of 
Philosophy... 

The word "natural" is of Latin. derivation. so the temll 
-natural philosophy" stems half from Latin and half from Greet., 
a combination usually frowned upon by purists. The Greek word 
for "natural" is physikos, so one might more precisely speak of 
physical philosophy to describe what we now call science. 

The term physics, therefore, is a brief form of ph�cal philos
ophy or natural philosophy and, in its original meaning. included 
all of science. 

However, as the field of science broadened and deepened,, 
and as the information gathered grew more voluminous, natural 
philosophers had to specialize, taking one segment or another of 
scientific endeavor as their chosen field of work. The specialties 
received names of their own and were often subtracted from the 
once universal domain of physics. 

Thus, the study of the abstract relationships of fonn and 
number became mathematics; the study of the position and move,, 
ments of the heavenly bodies became astronomy; the study of the 
physical nature cf the earth we Jive upon became geology; the 
study of the composition and interaction of substances became 
chemistry; the study of the structure, function. and interrelation,. 
ships of Jiving organisms became biology, and so on. 

The term physics then came to be used to describe the study 
of those portions of nature that remained after the above-men
tioned specialties were subtracted. For that reason the word has 
come to cover a rather heterogeneous field and is not as easy to 
define as it might be. 

What has been left over includes such phenomena as motion,, 
heat, light, sound, electricity, and magnetism. All these are forms 
of "energy" ( a  tenn about which l shall have considerably more 
to say later on),  so that a study of physics may be said to include,, 
primarily. a consideration of the interrelationships of energy and 
matter. 

This definition can be interpreted either narrowly or broadly. 
If it is interpreted broadly enough, physics can be expanded tc 
include a great deal of each of its companion sections of science. 
Indeed, the twentieth century has seen such a situation come 
about. 

The differentiation of science into its specialties is, after all,, 
an artificial and man-made state of affairs. While the level of 
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knowledge was still low, the division was useful and seemed 

. natural. It was possible for a man to study astronomy or biology 
without reference to chemistry or physics. or for that matter to 
study either chemistry or physics in isolation. With time and ac
cumulated information, however, the borders of the specialties 
approached, met, and fuially overlapped. The techniques of one 
science became meaningful and illuminating in another. 

In the latter half of the nineteenth century, physical tech
niques made it possible to determine the chemical constitution and 
physical structure of stars, and the science of "astrophysics" was 
born. The study of the vibrations set up in the body of the earth 
by quakes gave rise to the study of "geophysics." The study of 
chemical reactions through physical techniques initiated and con
stantly broadened the field of "physical chemistry," and the latter 
in turn penetrated the study of biology to produce what we now 
call "molecular biology." 

As for mathematics, that was peculiarly the tool of physicists 
( at first, much more so than that of chemists and biologists) ,  and 
as the search into first principles became more subtle and basic, it 
became nearly impossible to differentiate between the "pure 
mathematician" and the "theoretical physicist." 

In this book, however, I will discuss the field of physics in its 
narrow sense, avoiding consideration (as much as possible) of 
those areas that encroach on neighboring specialties. 

The Greek View of Motion 

Among the first phenomena considered by the curious Greeks 
was motion. One might iqitially suspect that motion is an attribute 
of life; after all, men and cats move freely but corpses and stones 
do not. A stone can be made to move; to be sure, but usually 
through the impulse given it by a living thing. 

However, this initial notion does not stand up, for there are 
many examples of motion that do not involve life. Thus, the 
heavenly objects move across the sky and the wind blows as it 
wills. Of course, it might be suggested that heavenly bodies are 
pushed by angels and that wind is the breath of a storm-god, and 
indeed such explanations were common among most societies and 
through most centuries. The Greek philosophers, however, were 
committed to explanations that involved only that portion of the 
universe that could be deduced by human reason from phenomena 
apparent to human senses. That excluded ang�ls and storm-gods. 

Furthermore, there were pettier examples of motion. The 
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smoke of a fire drifted irregularly upward. A stone released in 
midair promptly moved downward, although no impulse in that 
direction was given it. Surely not even the most mystically-minded 
individual was ready to suppose that every wisp of smoke, every 
falling scrap of material, contained a little god or demon pushing it 
here and there. 

The Greek notions on the matter were put into sophisticated 
form by the philosopher Aristotle (384-322 B.C.).  He maintained 
that each of the various fundamental kinds of matter ( .. elements") 
had its own natural place in the universe. The element '"earth." in 
which was included all the common solid materials about us. had 
as its natural place the center of the universe. All the earthy 
matter of the universe collected there and fonncd the world upon 
which we live. If every portion of the earthy material got as close 
to the center as it possibly could, the earth would have to take on 
the shape of a sphere ( and this, indeed. was one of several lines 
of reasoning used by Aristotle to demonstrate that the earth was 
spherical and not flat) .  

The element "water" had its natural place about the rim of 
the sphere of .. earth." The element "air" had its natural place about 
the rim of- the sphere of "water," and the element .. fire" bad its 
natural place outside the sphere of "air." 

While one can deduce almost any sort of scheme of the unie 
verse by reason alone, it is usually felt that such a scheme is not 
worth spending time on unless it corresponds to "reality"-to 
what our senses tell us about the universe. In this case, observae 
tion seems to back up the Aristotelian view. As far as the senses 
can tell, the earth is indeed at the center of the universe; oceans 
of water cover large portions of the earth; the air extends about 
land and sea; and in the airy heights there are even occasional 
evidences of a sphere of fire that makes itself visible during storms 
in the form of lightning. 

The notion that every form of substance has its natural place 
in the universe is an example of an assumption. It is something 
accepted without proof, and it is incorrect to speak of an assump
tion as either true ·or false, since . there is no way of proving it to 
be either. ( If there were, it would no longer be an assumption.) 
It is better to consider assumptions as either useful or useless, 
depending on whether or not deductions made from them corro
spcnded to reality. 

If two different assumptions, or sets of assumptions, both lead 
to deductions that correspond to reality, then the one that explains 
more is the more useful. 
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On the other hand, it seems obvious that assumptions are the 
weak points in any argument, as they have to be accepted on faith 
in a philosophy of science that prides itself on its rationalism. Since 
we must start somewhere, we must have assumptions. but at least 
let us have as few assumptions as possible. Therefore. of two 
theories that explain equal areas of the universe, the one that begins 
with fewer assumptions is the more useful. Because William of 
Ockham ( 1 300?-1 349?) ,  a medieval English philosopher, em• 
phasized this point of view, the effort made to whittle away at 
unnecessary assumptions is referred to as making use of "Ockham's 
razor." 

The assumption of "natural place" certainly seemed a useful 
one to the Greeks. Granted that such a natural place existed, it 
seemed only reasonable to suppose that whenever an object found 
itself out of its natural place, it would return to that natural place 
as soon as given the chance. A stone, held in the hand in midair, 
for instance, gives evidence of its "eagerness" to return to its 
natural place by the manner in which it presses downward. This, 
one might deduce, is why it has weight. If the supporting hand is 
removed, the stone promptly moves toward its natural place and 
falls downward. By the same reasoning, we can explain why 
tongues of fire shoot upward, why pebbles fall down through 

. water, and why bubbles of air rise up through water. 
One might even use the same line of argument to explain 

rainfall. When the heat of the sun vaporizes water ("turns it into 
air" a Greek might suppose) ,  the vapors promptly rise in search 
of their natural place. Once those vapors are converted into liquid 
water again, the latter falls in droplets in search of their natural 
place. 

From the assumption of "natural place," further deductions 
can be made. One object is known to be heavier than another. The 
heavier object pushes downward against the hand with a greater 
"eagerness" than the lighter object does. Surely, if each is released 
the heavier object will express its greater eagerness to return to its 
place by falling more rapidly than the lighter object. So Aristotle 
maintained, and indeed this too seemed to match observation, for 
light objects such as feathers, leaves, and snowflakes drifted down 
slowly, while rocks and bricks fell rapidly. 

But can the theory withstand the test of difficulties deliberately 
raised? For instance, an object can be forced to move away from 
its natural place, as when a stone is thrown into the air. This is 
initially brought about by muscular impulse, but once the stone 
leaves the hand, the hand is no longer exerting an impulse upon 
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ft. Why then doesn't the stone at once resume its natural motion 
and fall to earth? Why does it continue to rise in the air? 

Aristotle's explanation was that the impulse given the stone 
was transmitted to the air and that the air carried the stone along. 
As the impulse was transmitted from point to point in the air, 
however, it weakened, and the natural motion of the stone asserted 
itself more and more strongly. Upward movement ,lowed and 
eventually turned into a downward movement until finally the stone 
rested on the ground once more. !'Jot ail the force of an arm or a 
catapult could, in the long run, overcome the stone's natural 
motion. ( "Whatever goes up must come down," we still say. ) 

It therefore follows that forced motion ( away from the 
natural place) must inevitably give way to natural motion ( toward 
the natural place) and that natural motion will eventually bring 
the object to its natural place. Once there, since it has no place 
else to go, it will stop moving. The state of rest, or lack of motion, 
is therefore the natural state. 

This, too, seems to square with observation, for thrown ob
jects come to the ground eventually and stop; rolling or sliding 
objects eventually come to a halt;  and even living objects cannot 
move forever. If we climb a mountain we do so with an effort, 
and as the impulse within our muscles fades, we are forced to rest 
at intervals. Even the quietest motions are at some cost, and the 
impulse within every living thing eventually spends itself. The 
living organism dies and returns to the natural state of rest. ("All 
men are mortal.") 

But what about the heavenly bodies? The situation with 
respect to them seems quite different from that with respect to 
objects on earth. For one thing, whereas the natural motion of 
objects here below is either upward or downward, the heavenly 
bodies neither approach nor recede but seem to move in circles 
about the earth. 

Aristotle could only conclude that the heavens and the 
heavenly bodies were made of a substance that was neither earth, 
water, air, nor fire. It was a fifth "element," which he named 
"ether" (a Greek word meaning "blazing," the heavenly bodies 
being notable for the light they emitted ) .  

The natural place of the fifth element was outside the sphere 
of fire. Why then, since they were in their natural place, did the 
heavenly bodies not remain at rest? Some scholars eventually 
answered that question by supposing the various heavenly bodies 
to be in the charge of angels who perpetually rolled them around 
the heavens, but Aristotle could not indulge in such easy explana-
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tions. Instead, he was forced into a new assumption to the effect 
that the laws governing the motion of heavenly bodies were 
different from those governing the motion of earthly bodies. Here 
the natural state was rest, but in the heavens the natural state was 
perpetual circular motion. 

Flaws in Theory 
I have gone into the Greek view of motion in considerable 

detru1 because it was a physical theory worked out by one of 
history's greatest minds. This theory seemed to explain so much 
that it was accepted by great scholars for two thousand years 
afterward; nevertheless it had to be replaced by other theories that 
differed from it at almost every point. 

The Aristotelian view seemed logical and useful. Why then 
was it replaced? If it was "wrong," then why did so many people 
of intelligence believe it to be "right" for so long? And if they 
believed it to be "right" for so long, what eventually happened to 
convince them that it was "wrong"? 

One method of casting doubt upon any theory ( however 
respected and long established) is to show that two contradictory 
conclusions can be drawn from it. 

For instance, a rock dropping through water falls more slowly 
than the same rock dropping through air. One might deduce that 
the thinner the substance through which the rock is falling the 
more rapidly it moves in its attempt to return to its natural place. 
If there were no substance at all in its path ( a vacuum, from a 
Latin word meaning "empty") ,  then it would move with infinite 
speed. Actually, some scholars did make this point, and since they 
felt infinite speed to be an impossibility, they maintained that this 
line of argument proved that there could be no such thing as a 
vacuum. (A catch-phrase arose that is still current: "Nature abhors 
a vacuum.") 

On the other hand, the Aristotelian view is that when a stone 
is thrown it is the impulse conducted by the air that makes it 
possible for the stone to move in the direction thrown. If the air 
were gone and a vacuum were present, there would be nothing 
to move the stone. Well then, would a stone in a vacuum move at 
infinite speed or not at all? It would seem we could argue the 
point either way. 

Here is another possible contradiction. Suppose you have a 
one-pound weight and a two-pound weight and let them fall. The 
two-pound weight, being heavier, is more eager to reach its natural 
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place and therefore falls more rapidly than the one-pound weight. 
Now place the two weights together in a tightly fitted sack and 
drop them. The two-pound weight, one might argue, would race 
downward but would be held back by the more leisurely fall of the 
one-pound weight. The overall rate of fall would therefore be an 
intermediate one, less than that of the two-pound weight falling 
alone and more than that of the one-pound weight falling alone. 

On the other hand, you might argue, the two-pound weight 
and the one-pound weight together formed a single system weig!J. 
ing three pounds, which should fall more rapidly than the two
pound weight alone. Well then, does the combination fall more 
rapidly or less rapidly than the two-pound weight alone? It looks 
as though you could argue either way. 

Such careful reasoning may point out weaknesses in a theory. 
but it rarely carries conviction , for the proponents of the theory 
can usually advance counter-arguments. For instance, one might 
say that in a vacuum natural motion becomes infinite in speed, 
while forced motion becomes impossible. And one might argue 
that the speed of fall of two connected weights depends on how 
tightly they are held together. 

A second method of testing a theory, and one that has proved 
to be far more useful, is to draw a necessary conclusion from the 
theory and then check it against actual phenomena as rigorously as 
possible. 

For instance, a two-pound object presses down upon the 
hand just twice as strongly as a one-pound object. Is it sufficient 
to say that the two-pound object falls more rapidly than the one
pound object? If the two-pound object d isplays just twice the 
eagerness to return to its natural place. should it not fall at just 
twice the rate? Should this not be tested? Why not measure the 
exact rate at which both objects fal l  and see if the two-pound object 
falls at just twice the rate of the one-pound object? If it doesn't. 
then surely the Greek theories of motion will have to be modified. 
If, on the other hand, the two-pound weight does fall just twice as 
rapidly, the Greek theories can be accepted with that much more 
assurance. 

Yet such a deliberate test ( or experiment )  was not made by 
Aristotle or for two thousand years after him. There were two types 
of reasons for this. One was theoretical. The Greeks had had their 
greatest success in geometry, w hich deals with abstract concepts 
such as dimensionless points and straight lines without width. 
They achieved results of great simpl icity and generality that they 
could not have obtained by measuring actual objects. There arose. 
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therefore,. the feeling that the real world was rather crude and 
ill-suited to helping work out abstract theories of the universe. To 
be sure, there were Greeks who experimented and drew important 
conclusions therefrom; for example, Archimedes (287?-212  B.C.) 
and Hero (first century A.D.).  Nevertheless, the ancient and 
medieval view was definitely in favor of deduction from assump
tions, rather than of testing by experimentation. 

The second reason was a practical one. It is not as easy to 
experiment as one might suppose. I t  is not difficult to test the speed 
of a falling body in an age of stopwatches and electronic methods 
of measuring short intervals of time. Up to three centuries ago. 
however, there were no timepieces capable of measuring small 
intervals of time, and precious few good measuring instruments of 
any kind. 

In relying on pure reason, the ancient philosophers were 
really making the best of what they had available to them, and in 
seeming to scorn experimentation they were making a virtue of 
necessity. • 

The situation slowly began to change in the late Middle 
Ages. More and more scholars began to appreciate the value of 
experimentation as a method of testing theories, and here and 
there individuals began trying to work out experimental techniques. 

The experimentalists remained pretty largely without in� 
fluence, however, until the Italian scientist Galileo Galilei ( 1564-
1 642 ) ,  came on the scene. He did not invent experimentation, but 
he made it spectacular and popular. His experiments with motion 
were so ingenious and conclusive that they not only began the 
destruction of Aristotelian physics but demonstrated the necessity. 
once and for all, of experimentalism in science. It is from Galileo 
(he is invariably known by his first name only) that the birth of 
�experimental science" or "modern science" is usually dated. 

• And yet we can regret that the Greek philosophers did not conduct 
cerlain simple experiments that required no instruments. For instance, a sheet of 
thin papyrus falls slowly. The same sheet, crumpled into a small, tight ball. 
drops al a clearly greater speed. Since its weight hasn ·1 changed as a result 
of the crumpling, why the change in the rate of fall? A question as simple as 
this might have been crucial in modifying Greek theories of motion in whal 
we would now �nsider the proper direction. 
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Falling Bodies 

Inclined Planes 

Galileo's chief difficulty was the matter of timekeeping. He 
had no clock worthy of the name, so he had to improvise methods. 
For instance, he used a container with a small hole at the bottom 
out of which water dripped into a pan at, presumably, a constant 
rate. The weight of water caught in this fashion between two 
events was a measure of the time that had elapsed. 

This would certainly not do for bodies in "free fall"-that is, 
falling downward without interference. A free fall from any 
reasonable height is over too soon, and the amount of water caught 
during the time of fall is too small to make time measurements 
even approximately accurate. 

Galileo, therefore, decided to use an inclined plane. A smooth 
ball will roll down a smooth groove on such· an inclined plane at 
a manifestly lower speed than it would move if it were dropping 
freely. Furthermore, if the inclined plane is slanted less and less 
sharply to the horizontal, the ball rolls less and less rapidly; with 
the plane made precisely horizontal, the ball will not roll at all 
( at least, not from a standing start) ,  By this method, one can slow 
the rate of fall to the point where even crude time-measuring 
devices can yield useful results. 

One might raise the point as to whether motion down an 
lO 
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inclined plane can give results that can fairly be applied to free 
fall. It seems reasonable to suppose that it can. If something is 
true for every angle at which the inclined plane is pitched, it should 
be true for free fall as well, for free fall can be looked upon as a 
matter of rolling down an inclined plane that has been maximally 
tipped-that is, one that makes an angle of 90 ' with the horizontal. 

For instance, it can be easily shown that relatively heavy 
balls of different weights would roll down a particular inclined 
plane at the same rate. Thii. would hold true for any angle at which 
the inclined plane was tipped. If the plane were tipped more 
sharply, the balls would roll more rapidly, but all the balls 
would increase their rate of movement similarly; in the end all 
would cover the same distance in the same time. It is fair to 
conclude from that alone that freely falling bodies will fall through 
equal dii.tances in equal times. regardless of their weight. In other 
words. a heavy body will not fall more rapidly than a light body, 
despite the Aristotelian view. 

(There is a well-known story that Galileo proved this when 
he dropped two objects of different weight off the Leaning Tower 
of Pisa and they hit  the ground in a simultaneous thump. Un-

. fortunately. this is just a story. Historians arc quite certain that 
Galileo never conducted \uch an experiment but that a Dutch 
scientist. Simon Ste vi nus ( 1 548-1 620 ) .  did something of the sort 
a few years before Galileo·s experiments. In the cool world of 
science, however, careful and exhaustive experiments. such as those 
of Galileo with inclined planes, sometimes count for more than 
single, sensational demonstrations. ) 

Yet can we really dispose of the Aristotelian view so easily? 
The observed equal rate of travel on the part or balls rolling down 
an inclined plane cannot be disputed, but on the other hand neither 
is it possible to dispute the fact that a soap bubble falls far more 
slowly than a ping-pong ball of the same size, and that the ping
pong ball falls rather more slowly than a solid, wooden ball of the 
same size. 

We have an explanation for this. however. Objects do not fall 
through nothing; they fall through air, and they must push the air 
aside, so to speak, in order to fall. We might take the viewpoint 
that to push the air aside consumes time. A heavy body pressing 
down hard pushes the light air to one side with no trouble and 
loses virtually no time. It doesn't matter whether the body is one 
pound or a hundred pounds. The one-pound weight experiences. 
so little trouble in pushing the air to one side that the hundred
pound weight can scarcely improve on it. Both weights therefore 



f! Understanding Physica 

fall through equal distances in equal times. 0 A distinctly light 
body such as a ping-pong ball would press down so softly that it 
would experience considerable trouble in pushing the air out of the 
way, and it would fall slowly. A soap bubble, for the G811le reason. 
would scarcely fall at all. 

Can this use of air resistance as an explanation be considered 
valid? Or is it just something concocted to explain the failure of 
Galileo's generalization to hold in the real world? Fortunately, the 
matter can be checked. First, suppose that of two objects of 
equal weight one is spherical and compact while the other is 
wide and flat. The wide, flat object will make contact with air over 
a broader front and have to push more air out of the way in 
order to fall. It will therefore experience more air resistance than 
the spherical, compact one, and will fall more slowly, even though 
the two bodies are of equal weight. This turns out to be so, when 
tested. In fact, if a piece of paper is crumpled into a pellet. it falls 
more quickly because it suffers less air resistance. I referred to this 
experiment on page 9 as being one the Greeks might easily 
have performed, and from which they might have discovered that 
there must be something wrong with the Aristotelian view of 
motion. 

An even more unmistakable test would be to get rid of air 
and allow bodies to fall through a vacuum. With no resistance to 
speak of, all bodies, however light or heavy they might be, ought 
to fall through equal distances in equal times. Galileo was con• 
vinced this would be so, but in his time there was no way of creat• 
ing a vacuum to test the matter. In later years, when vacuums could 
be produced, the experiment of causing a feather and a lump of 
lead to fall together in a vacuum, and noting the fact that both 
covered an equal distance in an equal time, became commonplace. 
Air resistance is therefore real and not just a face-saving device. 

Of course. this raises the question of whether one is justified. 
for the sake of enunciating a simple rule. in describing the universe 
in nonreal tenns. Galileo's rule that all objects of whatever weight 
fell through equal distances in equal times could be expRSSed m 
wry simple mathematical form. The rule is true. however. only 
ln a perfect vacuum. which. as a matter of fact,, does not exisL 
(Evea the best vacuums we can create. even the vacuum of inter,, 
stellar space, are not perfect. ) On the other hand, Aristotle's view 

• Actually, there Is a amall dilfcren�; Thi1 dm not MQW up in falls � 
reasonable length, but would become visible if both weights were dropped 
from an airplane. In such case. the lighter weight would be held up a bit and 
lag behind • &rifle. 
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that heavier objects fall more rapidly than light ones is true. at 
least to a certain extent, in the real world. However, it cannot be 
reduced to as simple a mathematical statement, for the rate of 
fall of particular bodies depends not only upon their weight but also 
upon their shapes. 

One might suppose that reality must be held to at all costs. 
However, though that may be the . most moral thing to do. it is 
not necessarily the most useful thing to do. The Greeks themselves 
chose the ideal over the real in their geometry and demonstrated 
very well that far more could be achieved by consideration of 
abstract line and form than by a study of the real lines and forms 
of the world; the greater understanding achieved through abstrao, 
tion could be applied most usefully to the very reality that was 
ignored in the process of gaining knowledge. 

Nearly four centuries of experience since Galileo's time has 
shown that it is frequently useful to depart from the real and to 
construct a "model" of the system being studied; some of the 
complications are stripped away, so a simple and generalized 
mathematical structure can be built up out of what is left. Once 
that is done, the complicating factors can be restored one by one. 
and the relationship suitably modified. To try to achieve the com• 
plexities of reality at one bound, without working through a 
simplified model first, is so difficult that it is virtually never at• 
tempted and, we can feel certain, would not succeed if it were 
attempted. 

It is useless then to try to judge whether Galileo's views are 
"true" and Aristotle's "false" or vice versa. As far as rates of 
fall are concerned there are observations that back one view and 
other observations that back the other. What we can say, however. 
as strongly as possible, is that Galileo's views of motion turned 
out to explain many more observations in a far simpler manner 
than did Aristotle's views. The Galilean view was, therefore, far 
more useful. This was recognized not too long after Galileo's 
experiments were described, and Aristotelian physics collapsed. 

Acceleration 

If we were to measure the distance traversed by a body rolling 
down an inclined plane, we would find that the the body would 
cover greater and greater distances in successive equal time 
intervals. 

Thus, a body might ron a distance of 2 feet in the first second. 
In the next IICCODd it would roll 6 feet, for a total distance of 
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8 feet. In the third second it would roll 1 0  feet, for a total distance 
of 1 8  feet. In the fourth second it would roll 14 feet, for a total 
distance of 32 feet. 

Clearly the ball is rolling more and more rapidly with time. 
This in itself represents no break with Aristotelian physics, 

for Aristotle's theories said nothing about the manner in which 
the velocity of a falling body changed with time. In fact, this 
increase in velocity might be squared with the Aristotelian view, 
for one might say that as a body approached its natural place 
its eagerness to get there heightened, so its velocity would naturally 
increase. 

However, the importance of Galileo's technique was just 
this: he took up the matter of change of speed, not in a qualitative 
way but in a quantitative way. It is not enough to simply say, 
"Velocity increases with time." One must say, if possible, by just 
how much it increases and work out the precise interrelationship 
of velocity and time. 

For instance, if a ball rolls 2 feet in one second, 8 feet in two 
seconds, 1 8  feet in three seconds, and 32 feet in four seconds, it 
would appear that there was a relationship between the total dis· 
tance covered and the square of the time elapsed. Thus, 2 is equal 
to 2X 1 2, 8 is equal to 2 X 22, 1 8  is equal to 2 X 32, and 32 is 
equal to 2 X 42• We can express this relationship by saying that 
the total distance traversed by a ball rolling down an inclined 
plane ( or by an object in free fall ) after starting from rest is 
directly proportional * to the square of the time elapsed. 

Physics has adopted this emphasis on exact measurement 
that Galileo introduced, and other fields of science have done 
likewise wherever this has been possible. (The fact that chemists 
and biologists have not adopted the mathematical attitude as 
thoroughly as have physicists is n? sign that chemists and biologists 
are less intelligent or less precise ,I an physicisJs. Actually, this has 
come about because the systems studied by physicists are simpler 
than those studied by chemists and biologists and are more easily 
idealized to the point where they can be expressed in simple 
mathematical form. ) 

Now consider the ball rolli.,g 2 feet in one second. Its 
average velocity (distance covered in unit time) during that one• 

• When we say that a is "directly proportional" to b, we mean that as & 
Increases, a increases as well. Sometimes, a relationship is such that as b in· 
creases, a decreases. ( For instance, as the price of an object increases, the 
number of sales may decrease. ) We then say that a is "inversely proportional" 
lo b. 
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eecond interval is 2 feet divided by one second. It is easy to 
divide 2 by I ,  but it is important to remember that we must 
divide the units as well, the "feet" by the "second." We can 
eitpress this division of units in the usual fashion by means of 
a fraction. In other words, 2 feet divided by one second can be 

2 feet d Th" b bb . ted •pressed as 1 d' or 2 feet/secon . 1s can e a revia 
secon 

as 2 ft/sec and is usually read as "two feet per second." It Is 
important not to let the use of "per" blind us to the fact that 
we are in effect dealing with a fraction. Its numerator and de
nominator are units rather than numbers, but the fractional quality 
remains nevertheless. 

But to return to the rolling ball . • •  In one second it covers 
2 feet, for an average velocity of 2 ft/sec. In two seconds, it 
covers 8 feet, for an average velocity over the entire interval of 
4 ft/sec. In three seconds it covers 1 8  feet, for an average velocity 
over the entire interval of 6 ft/sec. And you can see for yourself, 
the average velocity for the first four seconds is 8 ft/sec. The 
average velocity, all told, is in direct proportion to the time 
elapsed. 

Here, however, we are dealing with average velocities. What 
is the velocity of a rolling ball at a particular moment? Consider 
the first second of time. During that second the ball has been 
rolling at an average velocity of 2 ft/sec. It began that first 
second of time a: a slower velocity. In fact, since it started at 
rest, the velocity at the beginning (after O seconds, in other 
words) was O ft/sec. To get the average up to 2 ft/sec, the ball 
must reach correspondingly higher velocities in the second half 
of the time interval. If we assume that the velocity is. rising 
smoothly with time, it follows that if the velocity at the begin
ning of the time interval was 2 ft/sec less than average, then 
at the end of the time interval (after one second ) ,  it should be 
2 ft/sec more than average, or 4 ft/sec. 

If we follow the same line of reasoning for the average 
velocities in the first two seconds, in the first three seconds, 
and so on, we come to the following conclusions: at O seconds, 
the velocity is O ft/sec; at one second, the velocity (at that 
moment) is 4 ft/sec; at two seconds, the velocity is 8 ft/sec; 
at three seconds, the velocity is 1 2  ft/sec; at four seconds, the 
velocity is 1 6  ft/sec, and so on. 

Notice that after each second, the velocity has increased by 
exactly 4 ft/sec. Such a change in velocity with time is called 
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an acceleration ( from Latin words meaning "to add speed" ) .  
To determine the value of  the acceleration, we  must divide the 
gain in velocity during a particular time interval by that time 
interval. For instance at one second, the velocity was 4 ft/sec 
while at four seconds it was 1 6  ft/sec. Over a three-second 
interval the velocity increased by 1 2  ft/sec. The acceleration then 
is 12 ft/sec divided by three seconds. (Notice particularly that 
it is not 1 2  ft/sec divided by 3. Where units are involved, they 
must be included in any mathematical manipulation. Here you 
are dividing by three seconds and not by 3 . )  

I n  dividing 1 2  ft/sec by three seconds, we get a n  answer 
in which the units as well as the numbers are subjected to the 

division-in other words 4 ft/sec . This can be written 4 ft/sec/sec sec 
(and read four feet per second per second ) .  Then again, in 
algebraic manipulations a/b divided by b is equal to alb multi• 
plied by 1 /b, and the final result is a/b2• Treating unit-fractions 
in the same manner, 4 ft/sec/sec can be written 4 ftjsec2 (and 
read four feet per second squared ) .  

You can see that i n  the case just given, for whatever time 
interval you work out the acceleration, the answer is always the 
same: 4 ft/sec2• For inclined planes tipped to a greater or lesser 
extent. the acceleration would be different, but it would remain 
constant for any one given inclined plane through all time inter- · 
vals. 

This makes it possible for us to express Galileo's discovery 
about falling bodies in simpler and neater fashion. To say that 
all bodies cover equal distances in equal times is true ; however, 
it is not saying enough, for it doesn't tell us whether bodies 
fall at uniform . velocities, at steadily increasing velocities, or at 
velocities that change erratically. Again, if we say that all bodies 
fall at equal velocities, we are not saying anything about how 
those velocities may change with time. 

What we can say now is that all bodies, regardless of weight 
(neglecting air resistance) ,  roll down inclined planes, or fall 
freely, at equal and constant accelerations. When this is true, 
it follows quite inevitably that two falling bodies cover the same 
distance in the same time, and that at any given moment they 
are falling with the same velocity ( assuming both started falling 
at the same time) .  It also tells us that the velocity increases with 
time and at a constant rate. 
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Such relationships become more useful if we introduce math• 
ematical symbols to express our meaning. In doing so, we intro
duce nothing essentially new. We would be saying in mathematical 
symbols exactly what we have been trying to say in words, but 
more briefly and more general ly. Mathematics is a shorthand 
language in which each symbol has a precise and agreed-upon 
meaning. Once the language is learned, we find that it is only 
a form of English after all. 

For instance, we have just been considering the case of an 
acceleration (from rest ) of 4 ft/sec2

• This means that at the 
end of one second the velocity is 4 ft/sec, at the end of two 
seconds it is 8 ft/sec, at the end of the three seconds it is 1 2  ft/sec, 
and so on. In short, the velocity is equal to the acceleration 
multiplied by the time. If we let v stand as a symbol for "velocity" 
and t for "time," we can say that in this case v is equal to 4t. 

But the actual acceleration depends on the angle at which 
the inclined plane is tipped. If the plane is made steeper. the 
acceleration increases ; if it is made less steep, the acceleration 
decreases. For any given plane, the acceleration is constant, but 
the particular value of the constant can vary greatly from plane 
to plane. Let us not, therefore, commit ourselves to a particular 
numerical value for acceleration, but let this acceleration be rep
resented by a. We can then say: 

v = at (Equation 2-1 ) 

It is important to remember that included in such equations 
in physics are units as well as numerals. Thus a, in Equation 
2-1 ,  does not represei1t a number merely, say 4, but a number 
and its units--4 ft/sec2-the unit being appropriate for accelera
tion. Again, t, for time, represents a number and its units--three 
seconds let us say. In evaluating at, then, we multiply 4 ft/sec2 
by three seconds, multiplying the units as well as the numerals. 
Treating the units as though they were fractions ( in other words. 
as though we were to multiply a/ b2 by b )  the product is 1 2  ft/sec. 
Thus, multiplying acceleration (a) by time ( t )  does indeed give 
us velocity ( v) ,  since the units we obtain, ft/sec, are appropriate 
to velocity. 

In any equation in physics, the units on either side of the 
equals sign must balance after all necessary algebraic manipula• 
tion is concluded. If this balance is not obtained, the equation 
does not correspond to reality and cannot be correct. If the 
units of one symbol are not known, they can be determined by 
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deciding just what kind of unit is needed to balance the equation. 
(This is sometimes called dimensional analysis. ) 

With that out of the way, let us consider a ball starting 
from rest and rolling down an inclined plane for t seconds. Since 
the ball starts at rest, its velocity at the beginning of the time 
interval is O ft/sec. According to Equation 2-1 ,  at the end of 
the interval, at time t, its velocity v is at ft/sec. To get the average 
velocity, during this interval of smoothly increasing velocity, we 
take the sum of the original and final velocity (0 + al) and 
divide by 2. The average velocity during the time interval is 
therefore at/2. The distance (d)  traversed in that time must be 
the average velocity multiplied by the time. at/2 X t. We there-
fore conclude that: 

,A _af' 
u - 2 

(Equation 2-2) 

I will not attempt to check the dimensions for every equation 
presented, but let's do it for this one. The units of acceleration 
(a) are ft/sec" and the units of time (t) are sec (seconds). 
Therefore, the units of a� are ft/sec' X sec X sec. which works 

out to r::; or simply ft. Dividing at2 by 2 does not alter Ute 

situation for in this case 2 is a .. pure number,.-that is, it lacks 
units. (Thus if you divide a foot-rule in two, each half has a 
length of 12 inches divided by 2, or 6 inches. The unit is not 
affected.) Thus the units of at212 are ft ( feet).  an appropriate 
unit for distance (d) . 

Free Fall 

As I said earlier. the value of the acceleration (a) of a 
ball rolling down an inclined plane varies according to the steep
ness of the plane. The steeper the plane, the greater the value 
of a. 

Experimentation will show that for a given inclined plane 
the value of a is in direct proportion to the ratio of the height 
of the raised end of the plane to the length of the plane. If you 
represent the height of the raised end of the plane by H, and the 
length of the plane by L, you can express the previous sentence 
in mathematical symbols as a a: HI L. where the symbol ct me'aDS 
"'is directly proportional to." 

In such a direct proportion the value of the expression on 
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one side changes in perfect correspondence with the value of the 
expression on the other. If H!L is doubled, a is doubted; if 
H/L is halved, a is halved; if H/L is multiplied by 2.529, a is 
multiplied by 2.529. This is what is meant by direct proportion• 
ality. But suppose that for a particular value of a, the value of 
H/L happens to be just a third as lllrge. If the value of a is 
changed in any particular way, the value of H!L is changed in 
a precisely corresponding way, so it is still one third the value of 
a. In this particular case then, a is three times as large as H/L 
not for any one set of values but for all values. 

This is a general rule. Whenever one factor, JC, is directly 
proportional to another factor, y, we can always change the rela
tionship into an equality by finding some appropriate constant 
value (usually called the proportionality constant) by which to 
multiply y. Ordinarily, wc don't know the precise value of the 
proportionality constant to begin with. so it is signified by some 
symbol. This symbol is very often k (for "Konstant"-using the 
German spelling) .  Therefore, wc can say that if ;r CIC y, then :r=ky. 

It is not absolutely necessary to use k as the symbol for 
the proportionality constant. Thus, the velocity of a ball rolling 
from rest is directly proportional to the time during which it has 
been rolling, and the distance it traverses is directly proportional 
to the square of that time; therefore, " CIC t and d CIC t'. In the first 
case, however, wc have the special name "acceleration" for the 
proportionality constant, so we symbolize it by a; while in the 
second case, the relationship to acceleration is such that wc sym
bolize the proportionality constant as a/2. Therefore " = at and 
'1 ==  at'/2. 

In the case now under discussion, where the value of the 
acceleration (a) is directly proportional to H/L, it will prove 
convenient to symbolize the proportionality constant by the letter 
g. We can therefore say: 

a =  gH!L (Equation 2-3) 
The quantities H and L are both measured in feet. In divid

ing H by L, feet are divided by feet and the unit cancels. The 
result is that tho ratio H!L is a pure number and possesses no 
units. But the units of acceleration (a) are ft/sec2• In order to 
keep the units in balance in Equation 2-3, it is therefore neces• 
sary that the units of g also be ft/sec2, since H/L can contribute 
nothing in the way of units. We can conclude then that the pro
portionality constant in Equation 2-3 has the units of acceleration 
and therefore must represent an acceleration. 
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We can see what this means if we consider that the steeper 

we make a particular inclined plane, the greater the height of its 
raised end from the ground-that is, the greater the value of H. 
The length of the inclined plane ( L ) does not change, of course. 
Finally, when the plane is made perfectly vertical, the height of 
the raised end is equal to the full length of the plane, so that 
H equals L, and H/L equals 1 .  

A ball rolling down a perfectly vertical inclined plane is 
actually in free fall. Therefore, in free fall, H/L becomes 1 ,  and 
Equation 2-3 becomes: 

a = g  (Equation 2-4) 
This shows us that g is not only an acceleration, but is the 

particular acceleration undergone by a body in free fall. The 
tendency of a body to have weight an" fall tc,ward the eartH is 
the result of a property called gravity ( from the Latin word for 
"weighty") ,  and the symbol g is used because it is the abbrevia
tion of "gravity." 

If the actual acceleration of a body rolling down any particu
lar inclined plane is measured, then the value of g can be obtained. 
Equation 2-3 can be rearranged to yield g = aL/H. For a par• 
ticular inclined plane, the length (L)  and height (H)  of the raised 
end are easily measured, and with a known, g can be determined 
at once. Its value turns out to be equal to 32 ft/sec2 (at least at 
sea level ) .  

Now so far, for the sake o f  familiarity, I have made use of 
feet as a measure of distance. This is one of the common units of 
distance used in the United States and Great Britain, and we are 
accustomed to it. However, scientists all over the world use the 
metric system of measure, and we have gotten far enough into the 
subject, I think, to be able to join them in this. 

The value of the metric system is that its various units possess 
simple and logical relationships among themselves. For instance, 
in the common system, 1 m ile is equal to 1 760 yards, 1 yard is 
equal to 3 feet, and 1 foot is equal to 1 2  inches. Converting one 
unit into another is always a chore. 

In the metric system, the unit of distance is the "meter." 
Other units of distance are always obtained by multiplying the 
meter by 1 0  or a multiple of 1 0. Thanks to our system of writing 
numbers, this means that conversions of one unit to another within 
the metric system can be carried out by mere shifts of a decimal 
point. 
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Furthermore, standardized prefixes are used with set mean• 

ing. The prefix "deci-" always implies 1 / 10 of a standard unit, 
so a decimeter is 1 / 1 0  of a meter. The prefix "hecto-" always 
implies 1 00 times a standard unit, so a hectometer is 1 00 meters. 
And so it is for other prefixes as well. 

The meter itself is 39 .37 inches long. This makes it the 
equivalent, roughly, of 1 .09 yards, or 3 .28 feet. Two other metric 
units commonly used in physics are the centimeter and the kilo
meter. The prefix "centi-" implies 1 / 1 00 of a standard unit, so 
a centimeter is 1 /  l 00 of a meter. It is equivalent to 0.3937 inches., 
or approximately 2/5 of an inch. The prefix "kilo-" implies 1000 
times the standard unit, so a kilometer is equal to 1 000 meters or 
1 00,000 centimeters. The kilometer is 3 9,370 inches !orig, which 
makes it just about 5 / 8  of a mile. The abbreviations ordinarily 
used for meter, centimeter, and kilometer are m, cm, and km. 
respectively. 

Seconds, as a basic unit of time, are used in the metric sys• 
tern as well as in the common system. Therefore, if we want to 
express acceleration in metric units, we can use "IIleters per second 
per second" or m/sec2 for the purpose. Since 3 .28  feet equal 1 
meter, we divide 32 ft/sec2 by 3.28 and find that in metric units 
the value of g is 9 . 8  m/sec2• 

Once again, consider the importance of units. It is improper 
and incorrect to say that "the value of g is 32" or "the value of 
g is 9.8 ." The number by itself has no meaning in this connection. 
One must say either 32 ft/sec2 or 9 .8  m/sec2• These last two values 
are absolutely equivalent. The numerical portions of the expres
sion may be different, taken. by themselves, but with the units 
added they are identical values. One is by no means "more true" 
or "more accurate" than the other; the expression in metric 
units is merely more useful. 

We must know at all times which units are being used. In 
free fall ,  a is equal to g. so Equation 2-1 can be written v = 32t, 
if we are using common units ; and v = 9.8t ,  if we are using metric 
units. In the shorthand of equations. the units are not included, 
so there is always the chance of confusion. If you try to use com
mon units with the equation v = 9.St ,  or metric units with the 
equation v = 32t, you will end up with results that do not corre
spond to reality. For that reason. the rules of procedure must be 
made perfectly pla in .  In this book. for instance, it will be taken 
for granted henceforward that the metric system will be used at 
all t imes. except where I specifically say otherwise. 
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Therefore, we can say that for bodies in free fall, from a start

ing position at rest: 
v = 9.81 (Equation 2-5 ) 
In the same way, for such a body, Equation 2-2 becomes 

d = gt2/2 or: 
d = 4.9t» (Equation 2-6 ) 
At the end of one second, then, a falling body has dropped 

4.9 m and is falling at a velocity of 9 .8 m/sec. At the end of two 
seconds, it has fallen through a distance of 1 9.6 m and is falling at 
a velocity .of 1 9.6 m/sec. At the end of the three seconds, it has 
fallen through a distance of 44. 1 m and is falling at a velocity of 
29.4 m/sec, and so on.• 

• Since this book is not intended as a formal text, I am not presenting you 
with problems to be solved. I hope, nevertheless, that you have had enough 
experience with algebra to see that equations in physics not only present rela
tionships in brief and convenient form. but also make it particularly convenient 
to solve problems--that is. to find the value of a particular symbol when the 
values of the other symbols in the equation are known or can be determined. 
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The Laws of Motion 

Inertia 
Galileo's work on falling bodies was systematized a century 
later by the English scientist Isaac Newton ( 1 642-1 727 ) ,  who 
was born, people are fond of pointing out, in the year of Galileo's 
death. 

Newton's systematization appeared in his book Philosophiae 
naturalis principia mathematica (Mathematical Principles of Nat
ural Philosophy ) published in 1 687. The book is usually referred 
to simply as the Principia. 

Aristotle's picture of the physical universe had been lying 
shattered for nearly a hundred years, and it was Newton who now 
replaced it with a new one, more subtle and more useful. The 
foundations of the new picture of the universe consisted of three 
generalizations concerning motion that are usually referred to as 
Newton's Three Laws of Motion.•  

• Th e  important generalizations o f  science are brief descriptions o f  the 
behavior of the universe that are known to cover all observed cases. It is 
strongly felt that they will also cover all unobserved cases, here or anywhere, 
now or at any time. Such generalizations are sometimes called "laws of nature." 
This is actually a poor phrase because it seems to draw an analogy with man
made law, as something that is imposed and can be repealed, that can bo 
violated at the cost of a penalty, and so on. All such analogies are misleading. 
It would be better therefore to speak of "Newton's generalizations concerning 

23 
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His first law of motion may be given thus: 
A body remains at rest or, if already in motion, remains ho 

uniform motion with constant speed in a straight line, unless it ;,, 
acted on by an unbalanced external force. 

As you can see, this first law runs counterto the Aristotelian 
assumption of "natural place" with its corollary that the natural 
state of an object is to be at rest in its natural place. 

The Newtonian view is that there is no natural place for 
any obj�t. Wherever an object happens to be at restt without any 
force acting upon it, it will remain at rest. Furthermore, if it 
happens to be in motion without any force acting upon it, it will 
remain in motion forever and show no tendency at all to come to 
rest. (I am not defining "force" just yet, but you undoubtedly al· 
ready have a rough idea of what it means, and· a proper definition 
will come eventually; see page 26. ) 

This tendency for motion ( or for rest ) to -maintain itself 
steadily unless made to do otherwise by some interfering force 
can be viewed as a kind of "laziness," a kind of unwillingness to 
make a change. And indeed the first law of motion is referred to 
as the principle of inertia, from a Latin word meaning "idleness" 
or "laziness." (The habit of attributing human motivations or 
emotions to inanimate objects is called "personification." This is 
a bad habit in science, though quite a common one, and I m. 
dulged in it here only to explain the word "inertia." ) 

At first glance, the principle of inertia does not seem nearly 
as self-evident as the Aristotelian assumption of "natural pl�ce." 
We can see with our own eyes that moving objects do indeed tend 
to come to a halt even when, as nearly as we can see, there is 
nothing to stop them. Again, if a stone is released in midair it 
starts moving and continues moving at a faster and faster rate, 

motion." However, everybody calls them the "'laws" or motion, and if I did 
otherwise, I would merely seem eccentric. Nevertheless, by this footnote you 
are warned. 

t In At1stotlc's time the earth was considered a motionless body ftxecl 
at the center of the universe; the notion of '"rest" therefore had a literal mean
ing. What we ordinarily consider "rest" nowadays is a state of being motionless 
with respect to the surface of the earth. But we know (and Newton did, too) 
that the earth itself is in motion about the sun and about itll own axis. A body 
resting on the surface of the earth is therefore not really in a state of rest 
at all. In fact, the whole problem of what is really meant by "rat" and •motion" 
forced a new view of the universe in the form of what is called lhe "theory 
of relativityt advanced by Albert Einstein in 190S. In this boot, bowever, 
we will run into no complications if we accept the feet that by "rest" and 
•motion" we really mean "rest with respc:1:t to ihe earth's surface" and "motioa 
with respect to the earth's surface." 
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even though, as nearly as we can see, there is nothing to set it into 
motion. 

If the principle of inertia is to hold good, we must be willing 
to admit the presence of subtle forces that do not make their 
existence very obvious. 

For instance, a hockey puck given a sharp push along a 
level cement sidewalk will travel in a straight line, to be sure, but 
will do so at a quickly decreasing velocity and soon come to a halt. 
If the same puck is given the same sharp push along a smooth 
layer of ice, it will travel much farther, again in a straight line, 
but this time at only a slowly decreasing velocity. If we experi
ment sufficiently, it will quickly become clear that the rougher 
the surface along which the puck travels, the more quickly it will 
come to a halt. 

It would seem that the tiny unevennesses of the rough surface 
catch at the tiny unevennesses of the hockey puck and slow it up. 
This catching of unevennesses against unevennesses is called 
friction (from a Latin word meaning "rub") ,  and the friction acts 
as a force that slows the puck's motion. The less the friction, the 
smaller the frictional force and the more slowly the puck's velocity 
is decreased. On a very smooth surface, such as that of ice, friction 
is so low that a puck would travel for great distances. If one could 
imagine a horizontal surface with no friction at all, then the 
hockey puck would travel in a straight line at constant velocity 
forever. 

The Newtonian principle of inertia therefore holds exactly 
only in an imaginary ideal world in which no interfering forces 
exist: no friction, no air resistance. 

Next consider a rock held in midair. It is at rest, but the 
instant we let go it begins to move. Clearly, then, there must be 
some force that makes it move, sin_ce the principle of inertia re
quires that in the absence of a force it remain at rest. Since the 
motion of the rock, if merely released, is always in the direction 
of the earth, the force must be exerted in that direction. Since the 
property that makes a rock fall had long been spoken of as 
"gravity," it was natural to call the force that brought about the 
motion gravitational force or the force of gravity. 

It would therefore seem that the principle of inertia depends 
upon a circular argument. We begin by stating that a body will 
behave in a certain way unless a force is acting on it. Then. when
ever it turns out that a body does not behave in that way, we in
vent a force to account for it. 

Such circular argumentation would be bad indeed if we set 
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about trying to prove Newton's first law, but we do not do this. 
Newton's laws of motion represent assumptions and definitions 
and are not subject to proof. In particular, the notion of "inertia" 
is as much an assumption as Aristotle's notion of "natural place." 
There is this difference between them, however: The principle of 
inertia has proved extremely useful in the study of physics for 
nearly three centuries now and has involved physicists in no con• 
tradictions. For this reason ( and not out of any considerations of 
"'truth") physicists hold on to the laws of motion and will con
tinue to do so. 

To be sure, the new relativistic view of the universe advanced 
by Einstein makes it plain that in some . respects Newton's laws 
of motion are only approximations. At very great velocities and 
over very great distances, the approximations depart from reality 
by a considerable amount. At ordinary velocities and distance. 
however. the approximations are extremely good.• 

Fmces and Vecton 
The term force comes from the Latin word for "strength," 

and we know its common meaning when we speak of the ''force 
of circumstance" or the ''force of an argument" or "military 
force." In physics, however, force is defined by Newton's laws of 
motion. A force is that which can impose a change of velocity on 
a material body. 

We are conscious of such forces, usually (but not always) .  
a s  muscular effort. W e  are conscious, iurthermore, that they can 
be exerted in definite directions. For instance, we can exert a 
force on an object at rest in such a way as to cause it to move 
away from us. Or we can exert a similar force in such a way as to 
cause it to move toward us. The forces are clearly exerted in 
different directions, and in common speech we give such forces 
two separate names. A force directed away from ourselves is a 
push: one directed toward mtrselves is a pull. For this reason, a 
force is sometimes defined as "a push or a pull ," but this is ac
tually no definition at all, for it only tells us that a force is either 
one kind of force or another kind of force. 

• It is sometimes said that Einstein's view of the univene -disproved" 
Newton's view. This is 100 simple a view. Actually. Einstein's view is more 
useful over a wider range of circumstances. Under ordinary circumstances, 
howeve• , the Einsie1nian view worb out to be iust about identical with the 
Newtonian view In this book, ordinary circumstance• only will be involved. 
and ii will not be necessary to int roduce relativity 
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A quantity that has both size and direction, as force does, is 
a vector quantity, or simply a vector. One that has size only is a 
scalar quantity. For instance, distance is usually treated as a scalar 
quantity. An automobile can be said to have traveled a distance 
of 1 5  miles regardless of the direction in which it was traveling. 

On the other hand, under certain conditions direction does 
make a difference when it is combined with the size of the distance. 
If town B is 1 5  .miles north of town A, then it is not enough to 

�direct a motorist to travel 15 miles to reach town B. The direction 
must be specified. If he travels 15  miles north, he will get there; 
jf he travels 1 5  miles east (or any direction other than north),  
he  will not. li we  call a combination of  size and direction of dis
tance traveled displacement, then we can say that displacement 
is a vector. 

The importance of differentiating between vectors and scalars 
is that the two are manipulated differently. For instance, in adding 
scalars it is sufficient to use the ordinary addition taught in grade 
school. If you travel 15  miles in one direction, then travel f 5 miles 
in another direction, the total distance you travel is 15 plus 15,  or 
30 miles. Whatever the directions, the total mileage is 30. 

If you travel 15 miles north, then another 15 miles north, the 
total displacement is, to be sure 30 miles north. Suppose, however, 
that you travel 1 5  miles north, then 1 5  miles east. What is your 
total displacement? How far, in other words, are you from your 
starting point? The total distance traveled is still 30 miles, but your 
final displacement is 2 1 .2 miles northeast. li you travel 15 miles 

Scalar and vector 
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north and then 1 5  miles south, you have still traveled 30 miles 
altogether, but your total displacement is O miles, for you are back 
at your starting point. 

So there is both ordinary addition, involving scalars, and 
vector addition, involving vectors. In ordinary addition 1 5  + 1 5  
is always 30; j n  vector addition, 1 5  + 1 5  can b e  anything from 
0 to 30, depending on circumstances. 

Since force is a vector, two forces are added together accord
ing to the principles of vector addition. If one force is applied to a 
body in one direction and an exactly equal force is applied in the 
opposite direction, the sum of the two forces is zero; in such a case, 
even though forces are involved, a body subjected to them does not 
change its velocity. If it is at rest, it remains at rest. In fact, in 
every case where a body is at rest in the real world, we can feel 
certain that this does not mean there are no forces present to set 
it into motion. There are always forces present ( the force of gravi
tation if nothing else ) .  If there is rest, or unchanging velocity, that 
is because there is more than one force present and because the 
vector sum of all the forces involved is zero. 

If the vector sum of all the forces involved is not zero, then 
there is an unbalanced force ( mentioned in my definition of New
ton's first law ) ,  or a net force. Whenever I speak of a force exerted 
on a body, it is to be understood that I mean a net force. 

A particular force may have one of several effects on a moving 
body. The force of gravity, for instance, is directed downward 
toward the ground, and a falling body, moving in the direction of 
the gravitational pull, travels at a greater and greater velocity. 
undergoing an acceleration of 9.8 m/sec2• 

A body propelled upward, however, is moving in a direction 
opposite to that of the force of gravity. Consequently, it seems to be 
dragged backward by the force, moving more and more slowly. It 
finally comes to a halt, reverses its direction, and begins to fall. 
Such a slowing of velocity may be called "deceleration" or "nega
tive acceleration." However, it would be convenient if a particular 
force was always considered to produce a particular acceleration. 
To avoid speaking of negative acceleration, we can instead speak 
of negative velocity. 

In other words, let us consider velocity to be a vector. This 
means that a movement of 40 m/sec downward cannot be con
sidered the same as a movement of 40 m/sec upward. The easiest 
way to distinguish between opposed quantities is to consider one 
positive and the other negative. Therefore, let us say that the 
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downwmd motion la +40 m/flf,C and tho upward ODO Is -40 
m/NC. 

Since a downward fon:e produces a downward acceleration• 
(acceleration being a vector, too), we can express the me of tho 
acceleration due to gravity not as moiety 9.8 m/sec. but as +9.8 
m/sec. 

If a body is moving ut +40 m/s«: (downward. in other 
words). the effect of acceleration is to increase the lize of the 
#igure. Adding two positive numbers by vector addition gives re
. suits similar to those of OI :dmary addition; therefore. after one 
,�nd, the body is moving, +49.8 m/sec. after another second, 
+S9.6 m/sec, and so on. lfl, on the other hand, a body is moving 
at -40 m/sec (upward), t he vector addition of a ,positive quan
tity resembles ordinary subtraction, as far as the figure itself is 
concerned. After one seco11d, the body will be traveling -30.2 
m/sec; after two seconds, - 20.4 m/sec: and after four seconds 
-0.8 m/sec. Shortly after the four.second mark, the body will 
reach a velocity of O m/sec, and at that point it will come to a 
momentary halt. It will then begin to fall, and after five seconds 
its velocity will be +9.0 m/sec. 

As can be seen, the acceleration produced by the force of 
gravity is the same whether the body is moving upward or down
ward, and yet there is something that is different in the two cases. 
The body covers more and more distance each second of its down
ward movement, but less and less distance each second of its 
upward movement. The amount of distance covered per unit time 
can be called the velocity or speed of the body. 

In ordinary speech speed and velocity are synonymous, bUI 
not so in physics. Speed is a scalar quantity and does not involve 
direction. An object moving 16  m/sec north is traveling at the 
same speed as one moving at 16 m/w; east, but the two are 
traveling at different velocities. In fact, it is possible under c:ertaiD 
circumstances to arrange a force so as to cause it to make a body 
move in circles. The speed, in that case, might not change at all. 
but the velocity (which includes direction) would be comtantly 
changing. 

Of the two terms. velocity is much more frequently used by 
physicists. for it is the broader and more convenient term. For 

• We bow from experience lhat If we push u object away from -. D 
moves away from m; If It ia already moving. it - away - npidly. 
In the same way, to stop a moving body we always exert a force la the dinctioa 
opposite to its mollon. Experience tells us &hat the aece1enlioD produced by a 
force it iD lbc ame dlreelioD as lbc force. 
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instance, we might define a force as "that which imposes a change 
in the speed of a body, or its direction of motion, or both." Or we 
might define it as "that which imposes a change in the velocity of 
a body," a briefer but as fully meaningful a phrase. 

Since a change in velocity is an acceleration, we might also 
define a force as "that which imposes an acceleration on a body, 
the acceleration and force being in the same direction." 

Maas 
Newton's first Jaw explains the concept of a force, but some

thing is needed to allow us to measure the strength of a force. H 
we define a force as something that produces an acceleration, it 
would seem logical to measure the size of a force by the size of the 
acceleration it brings about. When we restrict ourselves to one par
ticular body, say a basketball, this makes sense. If we push the 
basketball along the ground with a constant force, it moves more 
and more quickly, and after ten seconds it moves with a velocity, 
let us say, of 2 m/sec. Its acceleration is 2 m/sec divided by 10 
seconds, or 0 .2  m/ sec•. I f  you start from scratch and do not push 
quite as hard, at the end of ten seconds the basketball may be 
moving only I m/ sec ; it will therefore have undergone an accelera
tion of 0. I m/ sec2

• Since the acceleration is twice as great in the 
first case, it seems fair to suppose that the force was twice as great 
in the first case as in the second. 

But if you were to apply the same forces to a solid cannonball 
instead of a basketball, the cannonball will not undergo anything 
like the previously noted accelerations. It might well take every 
scrap of force you can exert to get the cannonball to move at all. 

Again, when a basketball is rolling along at 2 m/sec, y�u can 
stop it easily enough. The velocity change from 2 m/ sec to O m/ sec 
requires a force to bring it about; and you can feel yourself capable 
of exerting sufficient force to stop the basketball. Or you can kick 
the basketball in mid-motion and cause it to veer in direction. A 
cannonball moving at 2 m/sec, however, can only be stopped by 
great exertion, and if it is kicked in mid-motion it will change its 
direction by only a tiny amount. 

A cannonball, in other words, behaves as though it possesses 
more inertia than a basketball and therefore requires correspond
ingly more force for the production of a given acceleration. Newton 
used the word mass to indicate the quantity of inertia possessed by 
a body, and his second law of motion states: 

The acceleration produced by a particular force acting on a 
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body is directly proportional to the magnitude of the force and 
inversely proportional to the mass o/ the body. 

Now I have already explained that when x is  said to be directly 
proportional to y, then X=ky (see page 19).  However, in saying 
that ;r is inversely proportional to another quantity, say i. we mean 
that as z increases x decreases by a corresponding amount and vice 
versa. Thus, if z is increased threefold, x is reduced to 1/3; if z is 
increased elevenfold x is reduced to 1 / 1 1 , and so on. Mathe
matically, this notion of an inverse proportion is most simply ex
pressed as x a: 1/z, for then when z is 3, x is 1/3; when z is doubled 
t� 6, x is halved to 1/6, and so on. We can change the propo!'
tionality to an equality by multiplying by a constant, so that if %  is 
inversely proportional to z, x = k/ z. If x is both directly propor
tional to y and inversely proportional to z. then x = ky/t. 

With this in mind, let's have a represent the acceleration, f 
the magnitude of the force arid m the mass of the body. We can then 
represent Newton's second law of motion as: 

a =  kf (Equation 3-1 ) m 
Let us next consider the units in which we will measure each 

quantity, turning to mass first, since we have not yet taken it into 
account in this book. You may think that if I say a cannonball 
is more massive than a basketball, I mean that it is heavier. Actu
ally, I do not. "Massive" is not the same as "heavy," and "mass" 
is not the same as "weight," as I shall explain later in the book 
(see page 53).  Nevertheless, there is a certain similarity between 
tho two concepts and they are easily confused. In common ex
perience, as bodies grow heavier they also grow more massive, and 
physicists have compounded the chance of confusion by using units 
of mass of a son which nonphysicists usually think of as units of 
weight. 

In the metric system, two common units for mass are the 
gram (gm) and the kilogram (kg). A gram is a small unit of 
mass. A quan of milk has a mass of about 975 grams, for example. 
The kilogram. as you might expect from the prefix, is equal to 
1000 gm and represents, therefore. a trifle more than the mass of 
a quart of milk. 

(In common units, mass is frequently presented in terms of 
•ounces• and j>ounds," these units aJso being used for weight. In 
this book. however, I shall confine myself to the metric system as 
far as possible. and sball use common units, quarts, for example. 
only when they are needed for clarity.) 
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In measuring the magnitude of a force, two quantities must 

be considered: acceleration and mass. Using metric units, accelera
tion is most commonly measured as m/ sec• or cm/ sec2

, while mass 
may be measured in gm or kg. Conventionally, whenever distance 
is given in meters, the mass is given in kilograms, both being com
paratively large units. On the other hand, whenever distance is 
given in the comparatively small centimeters, mass is given in the 
comparatively small grams. In either case, �e unit of time is the 
second. 

Consequently, the units of many physical quantities may be 
compounded of centimeters, grams, and seconds in various coill
binations; or of meters, kilograms, and seconds in various combi
nations. The former is referred to as the cgs system, the latter is the 
mks system. A generation or so ago, the cgs system was the more 
frequently used of the two, but now the mks system has gained in 
popularity. In this book, I will use both systems. 

In the cgs system, a unit force is described as one that will 
produce an acceleration of I cm/ sec" on a mass of I gm. A unit 
force is therefore I cm/sec2 multiplied by I gm. ( In multiplying the 
two algebraic quantities a and b, we can !;Xpress the product simply 
as ab. We manipulate units as we would algebraic quantities, but to 
join words together directly would be confusing, so I will make use 
of a hyphen, which, after all, is commonly used to join words. ) The 
product of I cm/sec2 and I gm is therefore 1 gm-cm/sec2-the 
magnitude of the unit force. The unit of force, gm-cm/sec2, is fre
quently used by physicists, but since it is an unwieldy mouthful, 
it is more briefly expressed as the dyne ( from a Greek word for 
"force") .  --

Now let's solve Equation 3-1 for k. This works out to: 

(Equation 3-2) 

The value of k is the same for any consistent set of values of a, m 
and f, so we may as well take simple ones. Suppose we set m equal 
to l gm and a equal to I cm/sec•. The amount of force that cor
responds to such a mass and acceleration is, by our definition, 1 
gm-cm/sec• (or 1 dyne) .  

Inserting these values into Equation 3-2, we find that: 

le =  l cm/sec• X 1 � _ 1 gm-cm/�¢ 1 1 gm-cm/sec• - 1 gm-cm/sec' 

In this case, at least, k is a pure number. 
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Since k is equal to 1 ,  we find that Equation 3-2 can be writ
ten as ma/f = I. and, therefore: 

f = ma  (Equation 3-3 ) 

provided we use the proper sets of units--that is, if we measure 
mass in gm, acceleration in cm/ sec2

, and force in dynes. 
In the mks system of measurement, acceleration is measured 

in m/sec2 and mass in kg. The unit of force is then defined as that 
amount of force which will produce an acceleration of 1 meter per 
second per second when applied to 1 kilogram of mass. The unit 
force in this system is therefore 1 m/sec2 multiplied by 1 kg, or 
1 kg-m/sec2• This unit of force is stated more briefly as 1 newton, 
in honor of Isaac Newton, of course. Equation 3-3 is still true, 
then, for a second combination of consistent units-where mass is 
measun:d in kg, acceleration in m/sec2

, and force in newtons. 
From the fact that a kilogram is equal to 1000 grams and 

that a meter is equal to 100 centimeters, it follows that 1 kg-m/sec2 

is equal to ( 1000 gm) ( 100 cm)/sec2, or 1 00,000 gm-cm/sec2• 
To put it more compactly, 1 newton = 100,000 dynes. 

Before leaving the second law of motion, · let's consider the 
case of a body subject to no net force at all. In this case we can say 
that f = 0, so that Equation 3-3 becomes ma = 0. But any mate
rial body must have a mass greater than 0, so the only way in which 
ma can equal 0, is to have a itself equal 0. 

In other words, if no net force acts on a body, it undergoes 
no acceleration and must therefore either be at rest or traveling 
at a constant velocity. 

This last remark, however, is an expression of Newton's first 
law of motion. It follows, then, that the second law of motion in
cludes the first law as a special case. If the second law is stated and 
accepted, there is no need for the first law. The value of the first 
law is largely psychological. The special case of f = 0, once ac
cepted, frees the mind of the "common-sense" Aristotelian notion 
that it is the natural tendency of objects to come to rest. With the 
mind thus freed, the general case can then be considered. 

Actwn and Reaction 
A force, to exist, must be exerted by something and upon 

something. It is obvious that something cannot be pushed unless 
something else is pushing. It should also be obvious that something 
cannot push unless there is something else to be pushed. You can
not imagine pushing or pulling a vacuum. 
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A force, then, connects two bodies, and the question arises as 

to which body is pushing and which is being pushed. When a living 
organism is involved, we are used to thinking of the organism as 
originating the force. We think of ourselves as pushing a cannon
ball and of a horse as pulling a wagon, not of the cannonball as 
pushing us or the wagon as pulling the horse. 

Where two inanimate objects are concerned, we cannot be so 
certain. A steel ball falling upon a marble floor is going to push 
against the floor when it strikes and therefore exert a force upon it. 
On the other hand, since the steel ball bounces, the floor must have 
exerted a force upon the ball. Whereas the force of the ball was 
exerted doWRward onto the floor, the force of the floor was exerted 
upward onto the ball. 

In this and in many other similar cases there would seem to be 
two forces, equal in magnitude and opposite in direction. Newton 
made the generalization that this was always and necessarily true 
in all cases and expressed it in his third law of motion. This is often 
stated very briefly: "For every action, there is an equal and oppo
site reaction." It is for that reason that the third law is sometimes 
referred to as the "law of action and reaction." 

Perhaps, however, this is not the best way of putting it. By 
speaking of action and reaction, we are still thinking of a living 
object exerting a force on some inanimate object that then responds 
automatically. One force (the "action") seems to be more impor
tant and to precede in time the other force ( the "reaction"), 

But this is not so. The two forces are of exactly equal impor
tance (from the standpoint of physics) and exist simultaneously. 
Either can be viewed as the .. action" or the "reaction." It would be 
better, therefore, to state the Jaw something like this: 

Whenever one body exerts a force on a second body, the 8eC• 
ond body exerts a force on the first body. These I ore es are equal 
in magnitude and opposite in direction. 

So phrased, the law can be called the .. law of interaction ... 
The third Jaw of motion can cause confusion. PeopJe tend to 

ask: .. If every force involves an equal and opposite counterforce, 
why don't the two forces always cancel out by vector addition, 
leaving no net force at all?" (If that were so, then acceleration 
would be impossible and the second law would be meaningless.) 

The answer is that two equal and opposite forces cancel out 
by vector addition when they are exerted on the same body. If a 
force were exerted on a particular rock and an equal and opposite 
force were also exerted on that same rock, there would be no net 
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force; the rock. if at rest. would remain at rest no matter how large 
each force was. (The forces might be large enough to crush the · 
rock to powder. but they wouldn't move the rock.) 

The law of interaction. however. involves equal and opposite 
forces exerted on two separate bodies. Thus. if you exert a force 
on a rock. the equal and opposite force is exerted by the rock on 
you; the rock and you each receive a single unbalanced fon:e. If 
you exert a force on a rock and let go of it at the same lime. the 
rock. in response to this single force, is accelerated in the direction 
of that force-that is, away from you. The second force is exerted 
on you, and you in tum accelerate in the direction of that second 
forco-that is, in the direction opposite to that in which the rock 
went flying. Ordinarily. you are standing on rough ground and the 
friction between your shoes and the ground ( accentuated. perhaps. 
by muscular bracing) introduces new forces that keep yoo from 
moving. Your acceleration is therefore masked, so the true effect 
of the law of interaction may go unnoticed. However, if you were 
standing on very smooth, slippery ice and hurled a heavy rock 
eastward, you would go sliding westward. 

In the same way, the gases formed by the burning fuel in a 
rocket engine expand an'd exert a force against the interior walls 
of the engine. while the walls of the engine exert an equal and 
opposite force against the gases. The gases are forced into an ac
celeration downward, so that the walls (and the attached rocket) 
are forced into an acceleration upward. Every rocket that rises 
into the air is evidence of the validity of Newton's third law of 
motion. 

In these cases. the two objects involved are physically sep
arate,. or can be physically separated. One body can accelerate in 
one direction and the other in the opposite direction. But what of 
the case where the two bodies involved are bound together? What 
of a horse pulling a wagon? The wagon also pulls the horse in the 
opposite direction with an equal force. Yet horse and wagon do not 
accelerate in opposite directions. They are hitched together and 
both move in the same direction. 

If the forces connecting wagon and horse were the only ones 
involved. there would indeed be no overall movement. A wagon 
and horse on very slippery ice would get nowhere. no matter how 
the horse might flounder. On ordinary ground, there are frictional 
effects. The horse exerts a force on the earth and the earth exerts 
a counterforce on the horse (and its attached wagon). Conse
quently. the horse moves forward and the earth moves backward. 
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The earth is so much more massive than the horse that its accelera• 
tion backward ( remember that the acceleration produced by a 
force is inversely proportionate to the mass of the body being 
accelerated ) is completely unmeasurable. We are aware only of 
the horse's motion, and so it seems to us that the horse is pulling 
the wagon. We find it hard to imagine that the wagon is also pull• 
ing at the horse. 
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Gravitation 

Combination of Forcell 
Newton had already turned his attention to an important and 
very profound question while still in his twenties. Did the laws of 
motion apply only to the earth and its environs, or did they apply 
to the heavenly bodies as well? The question first occurred to him 
on his mother's farm when he saw an apple fall from a tree• and 
began to wonder whether the moon was in the grip of the same 
force as the apple was. 

It might seem at first thought that the moon could not be in 
the grip of the same force as the apple, since the apple fell to earth 
and the moon did not. Surely, if the same force applied to both, 
the same acceleration would affect both, and therefore both would 
fall. However, this is an oversimplification. What if the moon is 
indeed in the grip of the same force as the apple and therefore 
moving downward toward the earth ; in addition, what if the moon 
also undergoes a second motion? What if it is the combination of 
two motions that keeps the moon circling the earth and never quite 
falling all the way? 

This notion of an overall motion being made up of two or 
more component motions in different directions was by no means 

• It did not hit him on the head, despite the hundreds of cartoons drawn 
by hundreds of cartoonists. 

37 
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an easy concept for scientists to accept. When Nicholas Copernicus 
( 1473-1543) first suggested that the earth moved about the sun 
( rather than vice versa) .  some of the most vehement objections 
were to the effect that if the earth rotated on its axis and (still 
worse) moved through space in a revolution about the sun. it 
would be impossible for anything movable to mnain fixed to the 
earth's surface. Anyone who leaped up in the air would come down 
many yards away. since the earth beneath him would have moved 
while he was in the air. Those arguing in this manner felt that this 
point was so obvious as to be unanswerable. 

Those who accepted the Copernican notion of the motion of 
the earth had to argue that it was indeed possible for an objectto 
possess two motions at once: that a leaping man. while moving 
up and down, could also move with the turning earth and therefore 
come down on the same spot from which he leaped upward. 

Galileo pointed out that an object dropped from the top of 
the mast of a moving ship fell to a point at the base of the mast. 
The ship did not move out from under the falling object and cause 
it to fall into the sea. The falling object. while moving downward. 
must also have participated in the ship's horizontal motion. Galileo 
did not actually try this, but he proposed it as what is today called 
a "thought experiment." · Even though it was proposed only in 
thought, it was utterly convincing; ships bad sailed the sea for 
thousands of years, and objects must have been dropped from 
mast-tops during an those years, yet no seaman bad ever reported 
that the ship had moved out from under the fal1ing object. (And of 
course, we can flip coins on board speeding jets these days and 
catch them as they come down without moving our hand. The coin 
participates in the motion of the jet even while also moving up and 
down.) 

Why then did some scholars of the sixteenth and seventeenth 
centuries feel so sure that objects could not possess two different 
motions simultaneously? Apparently it was because they still pos
sessed the Greek habit of reasoning from what seemed valid basic 
assumptions and did not always feel it necessary to check their 
conclusions against the real universe. 

For instance, the scholars of the sixteenth century reasoned 
that a projectile fired from a cannon or a catapult was potentially 
subject to motions resulting from two causes-first the impulse 
given it by the cannon or catapult, and secondly, its "natural mo
tion" toward the ground. Assuming, to begin with, that an object 
could not possess two motions simultaneously, it would seem neces
sary that one motion be completed before the second began. In 
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other words, it was · felt that the cannonball would travel in a 
straight line in whatever direction the cannon pointed, until the 
impulse of the gunpowder explosion was used up; it would then 
at once fall downward in a straight line. 

Galileo maintained something quite different. To be sure. 
the projectile traveled onward in the direction in which it left the 
cannon. What's more, it did so at constant velocity, for the force 
of the gunpowder explosion was exerted once and no more. (With• 
out a continuous force there would be no continuous acceleration, 
Newton later explained.)  In addition, however, tile cannonball 
began dropping as soon as it left the cannon's mouth, in accordance 
with the laws of falling bodies whereby its velocity downward in• 
creased with a constant acceleration ( thanks to the continuous 
presence of a constant force of gravity ) .  It was easy to show by 
geometric methods that an object that moved in one direction at 
a constant speed, and in another at a speed that increased in direct 
proportion with time, would follow the path of a curve called a 
"parabola." Galileo also showed that a cannonball would have the 
greatest range if the cannon were pointed upward at an angle of 
45 ° to the ground. 

A cannon pointed at a certain angle would deliver a cannon
ball to one place if the early views of the cannonball's motions were 
correct, and to quite another place if Galileo's views were correct 
It was not difficult to show that it was Galileo who was correcL 

Combination of motions 
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Indeed, the gunners of the time may not have dabbled much in 
theory, but they had Jong aimed their weapons in such a way as 
to take advantage of a parabolic motion of the cannonball. • ID 
short, the possibility of a body's possessing two or more motions 
at once was never questioned after the time of Galileo. 

How can separate motions be added together and a resultant 
motion obtained? ·This can be done by vector addition, according 
to a method most easily presented in geometric form. Consider two 
motions in separate directions, the two directions at an angle or. to 
each other. (The symbol a is the Greek letter .. alpha." Greek letters 
are often used in physics as symbols, in order to ease the overload 
on ordinary letters of the alphabet.) The two motions can then 
be represented by two arrows set at angle or, the two arrows having 
lengths in proportion to the two velocities. (If the velocity of one 
is twice that of the other, then its corresponding arrow is twice as 
long. ) If the two arrows are made the sides of a parallelogram, the 
resultant motion built up out of the two component motions is 

• The correct aim, especially nowadays when shells are hurled for miles, 
requires more than !he idealized parabola of Galileo. Many factors of the 
real worl.d-as, for instance. the curvature of the earth's surface, the manner 
in which its speed of rotation varies with latitude. the amount of air resistance 
(which varies with height and temperature) .  the strength and direction of the 
wind, the motion of the object aimed at and the object carrying the cannon 
(if both are ships, for instance) ,  affect the situation. All these effects merely serve 
to modify the parabola, however, and do not affect the basic worth of Galileo•, 
argument, which serves only to presenl a greatly simplified but nevertheless 
vastly useful model of the real situation. 

Parallelogram of forces 

vertical 
camponent 
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represented by the diagonal of the parallelogram, the one that 
lies in a direction intermediate between those of the two compo
nents. 

Given the values of the two velocities and the angle between 
them. it is possible to calculate the size and direction of the re• 
sultant velocity even without the geometric construction, although 
the latter is always useful to lend visual aid. For instance, if one 
velocity is 3 m/sec in one direction, and the other is 4 m/sec in a 
direction at right angles to the first, then the resultant velocity is 
5 m/sec in a direction that makes an angle of just under 37° with 
the larger component and just over 53° with the smaller. 

In the same way, a particular velocity can be separated into 
two component velocities. The particular velocity is made the 
diagonal of a parallelogram, and the adjacent sides of the paral· 
Jelogram represent the component velocities. This can be done in 
an infinite number of ways, since the line representing a velocity 
or force can be made the diagonal of an infinite number of paral
lelograms. As a matter of convenience, however, a velocity is 
divided into components that are at right angles to each other. The 
parallelogram is then a rectangle. 

This device of using a parallelogram can be employed for the 
combination or resolution of any vector quantity. It is very fre
quently used for forces, as a matter of fact, so one usually speaks 
of this device as involving a parallelogram of force. 

The Motion of the Moon 

Now let us return to the moon. It travels about the earth in 
an elliptical orbit. The ellipse i t  describes in its revolution about 
the earth is not very far removed from a circle, however. The moon 
travels in this orbit with a speed that is almost constant. 

Although the moon's speed is approximately constant, its 
velocity certainly is not. Since it travels in a curved path, its direc
tion of motion changes at every instant and, therefore, so does its 
velocity. To say that the moon is continually changing its velocity 
is, of course, to say that it is subject to a continuing accelera
tion. 

If the moon is viewed as traveling at a constant speed along 
a uniformly circular path (which is at least approximately true) ,  
it can be considered to  be changing its direction of motion by pre
cisely the same amount in each successive unit of time. It is there
fore undergoing a constant acceleration and must be subject to a 
constant force, according to Newton's second Jaw of motion. Since 
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the shift in the direction of motion is always toward the earth, the 
acceleration. and therefore the force. must be directed toward the 
earth. 

Certainly. if there is a force attracting the moon to the earth. 
it might well be the same as the force attracting the apple to the 
earth. However. if that were so, and the moon were undergoing a 
constant acceleration toward the earth under the pull of a constant 
force. why does it not fall to the earth as an apple would? 

We can see why if we break the moon's motion into two com• 
ponent motions at mutual right angles. One of the components can 
be drawn as an arrow pointing toward the earth. along a radius 

Motion of the moon 
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of the moon's circular orbit. This represents the motion in response 
to the force attracting the moon to the earth. The other component 
is drawn at right angles to the first and is therefore tangent to the 
circle of the moon's orbit. This tangential motion represents that 
which the moon would experience if there were no force attracting 
it to the earth. The actual motion lies between the two, and the 
tangential component carries the moon to one side just far enough 
in a unit of time to make up for the motion toward the earth in that 
same unit of time. The moon, in other words, is always falling 
toward the earth, but it also "sidesteps." · In a sense, this ''sidestep" means that the earth's surface curves 
away from the moon just as fast as the moon approaches by falling, 
and the distance between earth and moon remains the same. This 
can be made plain if one supposes a projectile fired horizontally 
from a mountaintop on earth with greater and greater velocity 
The greater the velocity, the farther the projectile travels before 
striking the ground. The farther it travels, the more the surface of 
the spherical earth curves away from it, thus adding to the distance 
the projectile covers. Finally, if the projectile is shot forward with 
sufficient velocity. its rate of fall just matches the rate at which the 
earth's surface curves away, and the projectile "remains in orbit." 
It is in this fashion that satellites are placed in orbit, and it is in 
this fashion that the moon remains in orbit. 

In considering the moon's motion, therefore, we need only 
consider that compone.nt which is directed toward the earth, and 
we can ask ourselves whether that component is the result of the 
same force that attracts the apple. Let's first concentrate on the 
apple and see how to interpret the force between it and the earth 
in the light of the laws of motion. 

In the first place, all apples fall with the same acceleration 
regardless of how massive they are. But if one apple has twice 
the mass of a second apple, yet falls at the same acceleration, the 
first apple must be subjected to twice the force, according to _ the 
second law of motion. The force attracting the apple to the earth 
( often spoken of as the weight of the apple) must be proportional 
to the mass of the apple. 

But according to the third law of motion, whenever one body 
exerts a force on a second, the second is exerting an equal and 
opposite force on the first. This means that if the earth attracts the 
apple with a certain downward force, the apple attracts the earth 
with an equal upward force. 

That seems odd. How can a tiny apple exert a force equal 
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to that exerted by the tremendous earth? If it did, one would expect 
the apple to attract other objects as the earth does, and the apple 
most certainly does not. The logical way to explain this is to sup
pose that the attractive force between apple and earth depends 
not only on the mass of the apple but on the mass of the earth as 
well. It cannot depend on the sum of the masses, for when the 
mass of the apple is doubled, the sum of the mass of the apple and 
the earth remains just about the same as before, and yet the force 
of attraction doubles. Instead it must depend upon the product 
of the masses. 

If we multiply the masses, the small mass has just as much effect 
on the final product as the large one. Thus, the mmute quantity a 
multiplied by the tremendous quantity b yields the product ab. 
If a is now doubled, it becomes equal to 2a. If that is multiplied 
by b, the product ts 2ab Thus doubl ing one of tworactors in a 
multiplication, however small that factor may be, doubles the 
product And doubling the mass of the apple doubles the size of 
the force between the apple and the earth 

Furthermore, the apple doc� not measurably attract any other 
object of ordinary size because the product of the masses of two 
ordinary ob1ects 1s an mfinrtesimal fract ion of the product of the 
mass of either ob1ec1 and that of the vast earth. The attractive force 
between two objects of ordinary size is corrc�pondingly smaller, 
and while the force does exist, it is far too small to be noticed in -
the ordinary course of events. 

Since the earth attracts all material objects to itself ( even the 
gaseous atmosphere is held firmly to the planet through gravita
tional force ) it would seem that the force is produced by mass in 
whatever form the latter ·occurs. In that case, the earth need not 
be involved. Any two masses ought to interact gravitationally, and 
if we notice the force only when the earth is involved, that is only 
because the earth itself is the only body in our neighborhood mas
sive enough to produce a graviiational force sufficient to obtrude 
itself on our notice. 

Such is the essence of Newton's contribution. He did not dis
cover the law of gravity merely in the sense that all earthly objects 
are attracted to the earth. (This limited concept is at least as old 
as Aristotle and the word "gravity'' was used in that sense for many 
centuries before Newton. ) What Newton pointed out was that aU 
masses attracted all other masses, so that the earth's attraction was 
not unique. Because Newton maintained thllt there WAS ll gravit4· 
tional attraction between any two material bodies in the universe,. 
his generalization is called the law of universal ,:ravitation. The 
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adjective "universal'' is the most important' word of the phrase.• 

If this were all, we would now be able to decide the size of 
that component of the inoon's motion that is directed toward the 
earth. All bodies on earth fall with the same acceleration, and 
therefore it might be decided that the moon, if it were in the grip 
of the same force, ought to do the same. In one second it ought 
to fall some 4.9 meters toward the earth. Actually, the earthward 
component of the moon's motion is much smaller than that. 

To account for this, one might suppose that the earth's gravi
tational force weakens with distance, and certainly this seems a 
reasonable supposition. It is common experience that many things 
weaken with distance. Such is the case with light and sound, to 
name two common phenomena with which man has always been 
familiar. 

And yet is such weakening supported by experimental evi
dence? At first blush it might seem that it wasn't. A stone dropped 
from a height of 1 00 meters falls with an acceleration of 9.8 
m/sec2

, and one dropped from a height of 200 meters falls with 
the same acceleration. If the gravitational force decreased with 
distance from the earth, ought not the fall from a greater height 
involve a smaller acceleration? In fact, ought not the acceleration 
increase steadily as the stone approached the earth, instead of re
maining constant, as it does? 

But Newton's view was that all bodies attracted all other 
bodies. A falling rock is attracted not only by the portion of the 
earth making up the surface immediately under it, but also by the 
portions deep underneath, all the way to the center and beyond
to the antipodes, 1 2,740 kilometers ( 8000 miles) distant. It should 
also be attracted by portions at all distances to the north, east, 
south, west and points in between. 

It would seem reasonable that for a body like the earth, which 
has nearly the symmetrical shape of a sphere, we could simplify 
matters. The pull from the north would balance the pull from the 
south; the pull from the west would balance the pull from the east; 
the distant pull of the antipodes would balance the nearby pull of 
the surface directly beneath. In consequence, we might suppose 
that the net effect · is that the overall pull of the earth would be 
concentrated exactly at its center.t 

• It is possible to .contrive an exception. If the earth were hollow, there 
would be no net gravitational force within the hollow. A body within the hollow 
would not be attracte.d by the earth. However, this is a highly artificial exception 
that has no practical significance, for any body that is large enough to have 
an important gravitational field· is too large to support a hollow structure. 

t It is so easy to say ·�t would seem reasonable" and end with the happy 
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The radius of the earth is about 6370 kilometers (3960 

miles).  An object falling from a height of 1 00 meters ( 0. 1 kilo
meters) begins its fall, therefore, from a point 63 70. 1 kilometers 
from the earth's center, while one falling from a height of 200 
meters begins its fall from a point 6370.2 kilometers from the 
center. The difference is so insignificant that the gravitational at
traction can be considered constant over that small distance. (Ac
tually, modern instruments can measure the difference in the 
strength of the gravitational field over even such small distances 
with considerable accuracy. ) 

However, the moon's distance from the earth (center to cen
ter) is, on the average, 3 84,500 kilometers { 239,000 miles).  This 
is 60.3 times as far from the earth's center as is an object on the 
earth's surface. With a sixtyfold increase in distance, gravitational 
force might indeed decrease considerably. 

But how much is .. considerably"? 
The earth attracts bodies on every portion of its surface; 

therefore, the gravitational force may be considered as radiating 
outward from the earth in all directions. If the force does this, it 
can be viewed as occupying the surface of a sphere that is inflating 
to a larger and larger size as it recedes from the earth. If a fixed 
amount of gravitational force is stretched out over the surface of 
such a growing sphere, then the intensity of the force at a given 
spot on the surface ought to decrease as the total surface area grows 
larger. 

From solid geometry it is known that the surface area of a 
sphere is directly proportional to the square of its radius. If one 
sphere has three times the radius of another, it has nine times the 
surface area. As distance between two bodies increases, then the 
gravitational force between them ought to be inversely proportional 
to the square of that distance. (This relationship is familiarly 
known as the inverse-square law. Not only gravitation but also 
such phenomena as the intensity of light, the intensity of magnetic 
attraction, and the intensity of electrostatic attraction weaken as 
the square of the distance. ) 

In comparing the motion of the moon to the motion of an 
conclusion tha1 lhe gravitational force of the earth seems ID originate at its 
center. Yet it took the transcendent genius of Newton eighteen ycan to con
vince himself of this fact, and he had to invent Iha& branch of malhematiea now 
known as the e:ilculus. before he could prove it to his own utisfac:tion and 
that of othen. Throughout this book, I 11ay '"'it would seem ffll&Ol1ablc• and 
-;1 is clear• and ·11 is easy to see• when I am reaching conclusions that in 
actual fact were a11ained only through great ingenuity and hard labor. In doing 
so, my con.cience huns-but in an introductory book I have no alternative. 
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apple on the earth's surface, we must remember that the moon fs 
60.3 times as far from the earth's center as the apple is and that 
the gravitational force on the moon is weaker by a factor of 60.3 
times 60.3, or 3636. Whereas an apple falls 4.9 meters in the first 
second of fall, the moon should fall 1 /3636 that distance, or 0.0013 
meters, in a second of fall. ( A thousandth of  a meter is a millimeter, 
so that 0.0013 meters is equal to 1 .3 millimeters.) 

Indeed, astronomical measuremer.1ts show that the moon in its 
course about the earth does indeed dleviate from • straight line 
course by about 1 .3 millimeters in ooe second. This alone would 
have been sufficient to make it strongly probable that the same 
force that held the apple held the moon. However. Newton went on 
to show how gravitational force on a universal scale would account 
for the fac:t that the orbit of the moon about the earth is an ellipse 
with the earth at one focus; that the planets revolved about the sun 
in a similar elliptical manner: that the tides took place u they did; 
that the precession of equinoxes took place. and so on. The one 
simple and straightforward generalization explained so much that 
ii had to be triumphantly accepted by the scientific community. 

A century after Newton's death, the German-English as
tronomer William Herschel ( 1 738-1 822 ) discovered instances of 
far distant stars that revolved about each other in strict accordance 
with Newton's law of universal gravitation. which thus seemed 
universal indeed. Unseen planets were eventually discovered 
through the tiny gravitational effects produced by their otherwise 
unsuspected presence. It is no wonder that Newton's working out 
of the law of universal gravitation is often considered u the greal• 
est single diKOVery in the history of science.• 

The CraoitatioMl Constant 

Newton succeeded In establishing the generalization that 
any two bodies in the universe attract each other with a force 
(F) that is directly proportional to the product of the masses (m 

• Nevenhelca, Newton's generalizarion concemlng gravity II only 1111 
epproximation and is not absolutely correct. Already ii, the IIIKHlinercentb 
century, it was discovered that 1he planet Mercury had anc aman componena 
of ita fflCllion that could noc be captained by Newton's law. It remained unca. 
plained until Alben Einstein advanced his '"Cleneral Theory of Rdarivity• In 
191S. T1lil lllcofy, more advanced. pawerful and controvcnial lllu lhc Special 
Theory el 190.5, involved a broader view of the universe tbaa - llllpliclt la 
NewtOll't laws. In all ordinary cases. the two views were just about tquivalcDI. 
At c:cnaln extrema. however, the two views diverge, anti when aucll extrema 
are tested ii a,ppcara dial Eillllein'a view. rather than Newton·, c:arrla Ibo day. 
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and m') of the bodies, and inversely proportional to the square of 
the distance (d) between them. To convert the proportionality to 
an equality, it is necessary, of course, to introduce a constant. The 
one introduced in this case is usually referred to as the gravitational 
constant and is symbolized as G. Newton's law of universal gravi
tation can then be expressed as: 

F = Gmm' 
d' (Equation 4-1) 

One problem left unsolved by Newton was the value of G. 
To see why it was left unsolved, let's consider the famous case 

of Newton's falling apple and try to substitute values in Equation 
4-1, in the mks system of units. We know the value of the distance 
from the apple to the earth's center and can set d equal to 6,370,-
000 meters. There are ways of measuring the mass of the apple and 
m can be set at, let us say, 0. 1 kilograms. As for the strength of the 
gravitational force (F) between the apple and the earth, it is equal 
(see Equation 3-3 ) to the product of the mass of the apple and the 
acceleration to which it is subjected by the action of gravity, ac
cording to Newton's second law of motion. The value of F, then is 
0.1 kg times 9.8 m/sec', or 0.98 kg-m/sec'. 

This leaves us with two items still undetermined: G, the gravi
tational constant, and m', the mass of the earth. If we knew either 
one, we could calculate the other at once, but Newton knew 
neither, nor did anyone else in his time. 

(You might wonder whether we could not eliminate the 
constant in Equation 4-1, as we did the constant in Equation 
3-3. That, however, was done by a proper choice of units. We 
could do so here by inventing a unit called "earth-unit," for ex
ample, and saying that the earth had a mass of 1 earth-unit. We 
could further invent similar arbitrary units for the mass of the 
apple and the distance of the apple from the center of the earth. 
Such tricks would be of limited value, however. It is unsatisfying 
to be told that the earth has a mass of 1 earth-unit, and that is all 
we would find out in this way. What we want is the mass of the 
earth in terms of familiar objects-that is, in the units of the mks 
system. And for that we must know the value of G in the mks 
system. )  

The law of universal gravitation implies that the value of  G 
is the same under all conditions. Therefore, if we could measure 
the gravitational force between two bodies of known mass, sepa
rated by a known distance, we could at once determine G and 
from that the mass of the earth. 

Unfortunately, the force of gravity is just about the weakest 
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known force in nature. It takes a body with the enormous size of 
the earth to produce enough gravitational force to bring about an 
acceleration of 9.8 m/sec2. The puny forces that can be produced 
by a few pounds of muscle can and do counter all that gravita
tional force whenever we chin ourselves. do pushups, jump up
ward, or climb a mountain. 

For bodies that are large, though less massive than the earth, 
the decline in gravitational force has drastic effects. The earth 
maintains a firm grip on its atmosphere through the force of its 
gravity, but the planet Mars, which has only 1/1 0  the earth's mass, 
can hold only a thin atmosphere. The moon has an enormous mass 
by ordinary standards; nevertheless it is only 1/8 1 as massive as 
the earth and has a gravitational force too weak to hold any 
atmosphere at all. 

Where bodies of ordinary size are concerned, the gravita
tional forces produced are completely insignificant. The mass in a 
mountain exerts a ·gravitational attraction on you, but you are 
aware of no difficulty in stepping away from such a mountain. 

The problem, therefore, is how to measure so weak a force 
as that of gravity. We might speculate on possible ways of measur
ing the gravitational forces between two neighboring mountains, 
but the masses of individual mountains are not much easier to 
determine than the mass of the earth. Furthermore, the moun
tains are of irregular shape and the gravitational force is concen
trated at . some "center," a position that would be difficult to 
determine. 

We would therefore have to measure the gravitational forces 
originating in symmetrical bodies small enough to be handled 
easily in the laboratory, and the measurement of the tiny gravita
tional forces to which such bodies would give rise might well be 
considered too difficult to lie within the realm of the possible. 

The beginning of a solution to the problem came about, how
ever, in the time of Newton himself, thanks to the work of the 
English scientist Robert Hooke ( 1 635-1 703 ) .  

As a preliminary to explaining Hooke's work, let us  keep in  
mind that when forces are applied to a body, that body will 
change its shape as a result. If a plank of wood is suspended across 
two supports, and someone sits down on the center, that plank 
will bend under the load. If a rubber band is pulled at both ends 
in opposite directions, it stretches. If a sponge is clenched in a fist, 
it compresses, and if rotated at each end in opposite directions, 
it will twist. If pushed to the right at one end and to the left at 
the other, without being allowed to rotate, it will shear. 
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All these types of deforming forces can be referred to as 
messes. The deformation undergone by the body under stress 
is a strain. 

When an object undergoes deformation as the n:sult of a 
stress. the original shape may be restored when the atress is re
moved. The wooden plank. after you ICaDd ap. unbends; the 
rubber band. after lhe pun is rdeued. cootracts to its normal siz.e; 
the sponge once meucd from the compreaiw. twisting. or shear
ing force. 11prings back. Again. a steel ball llattens upon striking 
the ground. a buebaU on striking lhe bat. and a golf ball on 
striking the dub. When the deforming force is gone all are spheres 
once more. This tendency to return to the original shape after de
formation under stress is called elasticity. 

TheTe is • limit to the elasticity of any substance. a point 
beyond which stress will produce a permanent deformation. For a 
substance such as wax, 1his point ii easily reached and cw:n light 
stresses will cause a lump ol wax to change its shape permanently. 
( It i� "plastic" rather than elastic. , A wooden plank will break if 
IO<> great a force is exerted on iu unsupported c:cnter. A rubber 
band will 111ap under IOO great a pull. A atcel ball will be per
manently ftattmcd under k>O great a compression. 

HoweYCr, if one worb with forces aot strong enough to sur
pass this limit. one can arriYC. as Hooke did, at a useful generaJiza. 
tion that can be briefly expreucd as follows: 

The 11rain u proportional to the stress. 
This is called Hoolce'1 law. One would expect, frotn Hooke's 

law, that if a force x stretches a spring dlrough a distance y, 
then a force ol 2x will 5tretch iC through a distance of 2y, and a force 
of x/2 will stretch it through a distance of y(l. Suppose then that 
the amount of stretch produced by a ltaown force i5 measured. 
Any force ol unknown size (within the elastic limit) can then be 
measured by simply IIICIIS\lring the strain it produced. 

This principle can be applied to any other form of stress 
that produces an easily measured strain; for instance. it can be ap
plied to the twisting. or tonion. of an elastic rod or fiber. When 
torsion is med IO measure lhe size of an anknown stress by the 
amount of strain produced, lhe set-up is called a torsion balance. 
If an extremely thin fiber ii used, one that can be twisted by very 
small forces, it becomes conceivable that even tiny gravitational 
forces may be measured. 

In 1 798, dae English tcientist Henry Cavendish ( 173 1-1 8 10) 
made use of a delicate torsion balance for just this purpose. 
His torsion balan�e consisted of a light rod suspended at the 
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middle by a delicate wire approximately a yard long. Al each 
end of the light rod was a lead ball about two inchel in diameter. 
Imagine a force applied to each lead ball in opposite dim:tiom 
and at right angles to both the rod and the delicate wire. The wire 
would twist. and extremely small forces would be sufficient to 
produce such .a twist. 

As a preparatory step Cavendish applied tiny forces to deter
mine the amount of twist that would resulL Next, carefully sbiel� 
ing his apparatus from air currents he brought two larger lead 
balls, each about eight inches in diameter, almost in conJaet with 
the small lead balls, but on opposite sides. The gravitational 
force between the lead balls now produced a twist in the fiber 
and from the total angle of twist Cavendish could measure the 
strength of the force between the small and large lead ball. (It 
turned out to be about 1/2,000,000 of a newton.) 

Suppose, we rearrange Equation 4-1 as follows: 

G = Fd2 (Equation 4-2) mm' 

With the value of F determined as I have just described, it is a 
simple matter to measure the mass of the lead balls (m and m') 
and the distance between them (d) , center to center. Once all the 
values of the symbols on the right hand side of the equation are 
known, it is simple arithmetic to calculate the value of G. (Since 
the units of F in the mks system are kg-m/sec2, those of tP are m2, 
and those of mm' are kilograms times kilograms, or kg2; the units 

Cavendish experiment 

wire twisting sl ightly in 
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of G work out, by Equation 4-2, to [ (kg-m/sec2) m2]/kg9, or 
m• /kg-sec1. )  

The best modern determination of G gives i t  a value of 
0.0000000000667 m1/ltg-sec:x, certainly a tiny enough value. It is 
a tribute to Caftndish's pat aalents as an experimenter that in his 
first determination be obtained a value ftty close to this. 

Suppose. now, we arrange Equation 4-1 as follows: 

, FtP m = -
Gm (Equation 4-3 ) 

and try once more to determine the mass of the earth (m' ) .  We 
already have, in the mks system, a value of 0.98 for F, one of 
6,370,000 for d, and one of 0. 1 for m. If we now add the value of 
0.0000000000667 for G, it is simple arithmetic to solve for m', 
the mass of the earth. You can see that m' is equal to (0.98 ) 
( 6,370,000) ( 6,370,000) divided by (0.0000000000667 ) (0. l ) , 
or just about 6,000,000,000,000,000,000,000,000 kilograms. 

Physicists customarily Hpress large numbers as powers of l 0. 
Thus, 1 ,000,000 is usually written 1 0", which signifies the product 
of six I O's. The exponent C for numbers larger than I ) signifies 
the number of O's in the number. It follows that 6,500,000 is 
6.5 X I o•. Negative exponents signify numbers less than I ,  so that 
1 0-• is equal to J • 1 06, or J l l ,000,000 or 0.000001.  Again, 
0.00000235 is 2.35 X 1 0-•. 

Using such �xponential notation, the value of G is 6.67 
X 1 0-11 m�/kg-sect, and the inass of the earth is 6X 1024 kg. (In 
the cgs system, the value of G is 6 .67 X 1 0-• cm3 /gm-sec2 and the 
mass of the earth is 6 X I 021 gm. ) 
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Weight 

The Shape of the Earth 
By determining the value of G, Cavendish had, in effect, deter
mined the mass of the earth. For this reason, Cavendish is often 
said to have "weighed the earth," but this is not what he had 
done. 

In common language. "Weight" and "mass" are often spoken 
of as though they were the same things. and a body may be spoken 
of as "heavy• or "massive" interchangeably; even physicists some
times fall into the trap. However, consider what weight is. The 
weight of a body is the force with which it is attracted to the earth. 
To repeat, weight is a force and has the units of a force! 

A simple way of measuring the weight of an object is to 
suspend it from a coiled spring. In accordance with Hooke's law 
the force by which the body is attracted to the earth will extend the 
spring, the amount of extension (or strain) being proportional to 
the force (or stress) .  A weight-measuring device of this sort is a 
spring balance. 

The mass of a body, on the other hand, is the quantity of 
inertia it possesses. By Newton's second law m = f/a; it is a force 
divided by an acceleration. Weight, which is a force, must by the 
same law be a mass multiplied by an acceleration. In the case of 

53 
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weight, which is the force of earth's gravitational field upon a body, 
the particular acceleration involved is, naturally, that produced by 
the earth's gravitational field. 

The weight ( w )  of a body, in other words, is equal to the 
mass ( m )  of that body times the acceleration (g)  due to the pun 
of earth's gravity : 

W =  mg (Equation 5-1 ) 

Since the value of g is, under ordinary circumstances, just 
about constant, weight may be said to be directly proportional to 
mass. To say that A is 3 .65 times as massive as B is equivalent 
to saying that under ordinary circumstances A is 3 .65 times as 
heavy. or as weighty, as B. Since the two statements are usually 
equivalent, there is a strong temptation to consider them synony
mous, and there lies the source of confusion between mass and 
weight. 

The confusion is made worse because of the common units 
used for weight. A body with a mass of one kilogram is commonly 
said to have a weight of one kilogram, too.• In the mks system, 
however, the units of m are kilograms ( kg) ,  and the units of g 
are m/serfl. Since weight is equal to mass times gravitational ac• 
celeration (mg) ,  the units of weight are kg-m/sec' or newtons. A 
kilogram of mass therefore exerts (under ordinary circumstances) 
9.8 newtons of force. 

A kilogram of weight (which may be abbreviated as kg(wt.) 
to distinguish it from a kilogram of mass) is, therefore, not equal 
to I kg but to 9.8 newtons. In the cgs system, g is equal to 980 
crn/sec1• The weight of a body with a mass of 1 gm is therefore 1 
gm multipled by 980 cm/sec=. or 980 grn-cmtsec2. Consequently 
I {!ID (wt. ) equals 980 dynes. 

All this may strike you as unnecessarily puristic and refined 
-as making a great deal out of a distinction without a difference. 
After all, if weight and mass always vary in the same way. why 
bother so much aoout which is which? 

The point is that mass and weight do not always vary in the 
same way. They are related by g. and the value of g is not a 
constant under all conditions. 

The gravitational force (F)  exerted by the earth upon a 
particular body is equal to mg, as indicated by Equation 5-1 . It 

• The units of weight ( pound, ounce. (IC. ) were in use long before 
Newton established the concept of mass. The units of weight were borrowed 
end applied to mass, which was a mistake-but one which is now beyond 
retrieval. 
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is also equal to Gmm'/tP. as shown in Equation 4-1 . Therefore 
mg = Gmm' / tP; or dividing through by m ;  

Gm' 
g

=
7 

(Equation 5-2) 

Of the quantities upon which the value of g depends in Equa
tion 5-2, the gravitational constant (G) and the mass of the earth 
(m') may be considered as constanL The value of d, however, 
which is the distance of the body from the center of the eartb is 
certainly not constant. and g varies inversely as the square of that 
distance. 

An object at sea level, for instance, may be 6370 km from the 
center of the earth. but at the top of a nearby mountain it may be 
6373 km from the center, and a stratoliner may take it to a height 
of 6385 km from the center. 

Even if we confine ourselves to sea level, the distance to the 
center of the earth is not always the same. Under the action of 
gravity alone, the earth would be a perfect sphere (barring minor 
surface irregularities )--a fact pointed out by Aristotle--and then 
the distance from sea level to the earth's center would be the same 
everywhere. A second factor is introduced, however, by the fact 
that the earth rotates about its axis. This rotation means, as New
ton was the first to recognize, that the earth cannot be a perfect 
sphere. 

As the earth rotates about its axis, the surface of the earth is 
continually undergoing an acceleration inward toward the center of 
the earth (just as the moon does in revolving about the earth) .  
If this is so, then Newton's third law ( see page 34 ) comes into 
play. The earth's center exerts a constant force on the earth's outer 
layers to maintain that constant inward acceleration as the planet 
rotates; the outer layers must, therefore, by action and reaction, 
exert a force outward on the earth's center. The force directed 
inward is usually called a centripetal force, and the one directed 
outward is called a centrifugal force ( the words coming from Latin 
phrases meaning "move toward the center" and "flee from the 
center," respectively) .  

The two forces are oppositely directed and the result is a 
stretching of the earth's substance. If you were to imagine a rope 
stretching from the earth's surface to the earth's center, with the 
earth's surfaces pulling outward at one end of the rope and the 
earth's center pulling inward at the other end, you would expect 
the rope to stretch by a certain amount; the earth's substance does 
exactly that. 
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If every point on the earth's surface were rotating at the same 
speed, the stretch would be the same everywhere and the earth 
would be perfectly-spherical still. However, the earth rotates about 
an axis, and the nearer a particular portion of the earth's surface 
is to the axis, the more slowly it rotates. At the poles, the earth's 
surface touches the axis and the speed of rotation is zero. At the 
equator, the earth's surface is at a maximum distance from the 
axis and the speed of rotation is highest (just over 1600 kilo
meters an hour) .  

The interacting forces are zero at  the poles, therefore, and 
increase smoothly as the equator is approached. The .. stretch" 
increases, too, and a bulge appears in the earth, which reaches 
maximum size at the equator. Because of this equatorial bulge, the 
distance from the center of the earth to sea level at the equator is 
21 km ( 1 3  miles ) greater than the distance from the center of the 
earth to sea level at either pole. 

The earth, therefore, is not a sphere, but an oblate spheroid. 
To be sure, 2 1  km in a total distance of 6370 km is not 

much, but it is enough to introduce measurable differences in the 
value of g. What with the equatorial bulge and local differences in 

Centrifugal  force and equatorial bulge 
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altitude, there are points in Alaska where the value of g is over 
9.82 m/sec2

, whereas at the equator it is barely higher than 9.78 
m/sec2

• That represents a difference of nearly one-half of one 
percent and is reflected in weight. 

In other words, the weight of an object changes measurably 
from place to place on the earth's surface, as a spring balance 
would show. A man who weighs 200 pounds at the poles would 
weigh 1 99 pounds at the equator. To a chemist or physicist 
interested in the mass of an object (many properties depend on 
the mass) ,  the measurement of weight as a substitute for mass 
would introduce serious inaccuracies. 

What the scientist usually does when he "weighs" an object 
is to make use of a balance consisting of two pans suspended 
from opposite ends of a beam that is pivoted at the center. Objects 
of known weight are placed on one pan, the object to be weighed 
is placed in the other. The known weights are adjusted to the point 
of balance. The force of gravity is then the same on both pans; ( if 
it were greater on one of them, that pan would sink downward while 
the other would rise upward) .  

If the weights are the same on both sides, then mg is the same 
on both sides. However much g might vary from point to point on 
the earth's surface, it is the same for two neighboring balance
pans at one particular point on the earth's surface. Therefore the 
mass ( m) is the same for the objects in both pans. The mass of 
the unknown object is therefore equal to the mass of the weights 
(which is known) . *  

Beyond the Earth 

Naturally, the small changes in the value of g become large 
ones if we alter greatly the distance of the body from the earth's 
center. A further complication is introduced if in removing the 
body to a great distance from the earth we bring it close to some 
other sizable conglomeration of mass. This situation is most likely 
to become important in connection with the moon, for man-made 
objects have already landed there, and living men may be standing 
on the surface of the moon before many years have passed. 

An object on the moon's surface is still within the earth's 
gravitational field, which extends not only to the moon but, in 
principle, through all the universe. However. the moon also has 

, • Mass is not completely constant, by the way. However, the variation in 
majs becomes important only at extreme velocities not likely to be met with 
In ordinary life. 
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a gravitational field. That field is much smaller than the earth's, for 
the moon is much the less massive of the two. Nevertheless, an 
object on the moon's surface is much closer to the moon's center 
than to the earth's center; the moon's gravitational attraction 
would therefore be far greater than that of the distant earth, 
and a man standing on the surface of the moon would be conscious 
of the moon's pull only. 

But the moon's pull on an object on its surface is not the 
same as the earth's pull on an object on its surface. To see how 
the two forces compare, let us refer back to Equation 4-1 ,  
which states that F= Gmm'/tF. This F refers t o  the intensity of 
the earth's pull upon an object upon its surface. The moon's pull 
upon an object upon its surface, we can call F .,. 

Now an object has the same mass whether it is on the surface 
of the earth _or the surface of the moon, so m remains unchanged. 
The value of G is also unchanged, for it is constant throughout 
the universe. The mass of the moon, however, is known to be 1 / 8 1  
the mass (m') o f  the earth. The mass o f  the moon, consequently, is 
m' /8 1 .  The distance from the surface of the moon to its center is 
1737 km or just about 3/1 1 that of the 6370 km distance (d)  from 
the surface of the earth to the center. Consequently, we can set 
the distance of the moon's surface to its center as 3d/ l  l .  

We can now modify Equation 4-1 ,  using the mass and 
radius of the moon to get an expression of the gravitational force 
of the moon for an object on its surface. This is : 

Gni (m'/8 1 )  
F .. =� ( 3d/l l ) :1  

(Equation 5-3 ) 

If we now divide Equation 5-3 by Equation 4-1 ,  we find 
that F .,IF ( the ratio of the moon's gravitational force to that of the 
earth) is equal to 1 /8 1  divided by (3/ 1 1 ) 2

, or almost exactly 
1/6. Thus, _the gravitational force we would experience on the 
moon's surface would be I /6 that to which we are accustomed on 
the surface of the earth. A 1 80-pound man who weighed himself on 
a spring balance would find he weighed 30 pounds. 

But though the weight was decreased so drastically, the mass 
of an object would remain unchanged. This means that the force 
required to accelerate a particular object at a given rate would 
be the same on the moon as on the earth. We could lift a 1 80-
pound friend without much trouble, for the sensation of the effort 
involved in the lift would be like that of lifting 30 pounds on 
earth. We could not, however, lift the man any more rapidly on 
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the moon than on the earth. Now we could manipulate something 
that felt 30 pounds with a certain amount of ease on the earth. 
On the moon, something that felt 30 pounds would have six times 
the "normal'' quantity of mass, and it could only be moved slowly. 
For this reason, maneuvering objects on the moon would give one 
the feel of "slow motion" or of pushing through molasses. 

Again, if we jump on the moon, the force of our muscles 
will be countered by only 1/6 the gravitational force to which 
we are accustomed on the earth. The center of our body will 
therefore rise to six times the height it would on the earth. Having 
reached this unusual height, we would then fall toward the sur
face, but at 1/6 the usual acceleration ( 1 .63 m/sec2) .  This means 
we would seem to fall downward slowly and "like a feather." By 
the time we reached the surface again, however, having dropped 
at 1/6 the usual acceleration for six times the distance, we would 
be landing at just the same velocity that we would be landing at 
from a similar jump ( equal exertion, but reaching a much lower 
height) on the earth. 

To bring ourselves to a halt from that velocity would require 
as much force on the moon as it would on the earth, for it is mass 
that counts in this respect, not weight, and the mass remains un
changed on the moon. If we are seduced by our slow-paced fall 
into thinking we are indeed a feather, and try to land gracefully 
on one big toe, we are likely to break that toe. 

The situation can be made even more radically unusual with
out having to go to the moon. 

The subjective sensation we call "weight" arises from the fact 
that we are physically prevented from responding to the force of 
gravitation with an acceleration. Standing on the surface of the 
earth, we are prevented by the substance of the earth itself from 
an accelerated fall toward earth's center. It is the force exerted 
upon us against the stubborn opposition of the ground we stand 
on that we interpret as "weight." 

If we were falling at precisely the acceleration imposed upon 
us by the gravitational acceleration ( free fall ) ,  we would feel no 
weight. If we were in an elevator that had broken loose and was 
dropping without restraint, or if we were in an airplane that 
was in an unpowered fall, our sensation of weight would be gone. 
We could not press against the floor of the elevator or the air
plane since that floor would be falling as rapidly as we were. 
If we were in midair within the elevator, we could not drop to its 
floor, for the floor would be moving as fast as we were. We 
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would therefore seem to remain floating in midair and to be 
weightless. 

Such examples of free fall are imperfect. Neither an elevator 
nor an airplane could fall for long without coming to disaster and 
ruining the experiment. Furthermore, the falling elevator or air
plane would be slowed somewhat by the resistance of the air it was 
rushing through, and slowed to a greater extent than the man 
within the the elevator or airplane would be slowed by the quiet 
air about him. There would therefore be the sensation of some 
slight weight. 

For the true feeling of free fall, we would need to be beyond 
the major portion of the atmosphere, say at a height of 1 60 km 
or more above the surface of the earth. To keep at that height it 
would be best if there were also a sideways motion that would keep 
one in orbit about the earth, in the same way that a combination 
of inward and sideways forces keeps the moon in . orbit about 
the earth ( see page 42 ) .  

This is exactly the situation in a manned orbiting satellite. 
Such a satellite is in free.fall and can continue in free fall for 
long periods. The astronaut within has no sensation of weight. 
This is not because he is "beyond the pull of earth's gravity" as 
some news announcers maintain. It is only because he is in free 
fall, so the satellite and everything in it are falling at precisely 
the same acceleration. 

The earth itself is in free fall  in an orbit that takes it around 
the sun. Although its mass is huge ( see page 52) ,  its weight is 
zero. Cavendish, therefore, did not "weigh the earth," for he did 
not need to; its weight was understood to be zero from Newton's 
time. What Cavendish did was to determine the earth's mass. 

Even in free fall, where weight is zero, the mass of a particu
lar body remains unchanged. Astonauts building a space station 
will be moving huge girders that will have no weight. They will 
be able to balance such girders on one finger, if girder and finger 
are motionless with respect to each other. If a girder must be set 
in motion, however, or if it is already moving and must either 
be stopped or have its direction of motion altered, the effort will 
be precisely as great as it would be on the earth. A man trapped 
between two girders moving toward each other may well be 
crushed to death by two weightless but not massless objects. 

The distinction between mass and weight, which seems so 
trivial on the surface of the earth, is therefore anything but trivial 
in space, and can easily become a matter of life and death. 
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Escape Velocity 
As an object is dropped from a greater and greater height 

above the ground, it takes longer and longer to fall and strikes the 
ground with a higher and higher velocity. If we use Equations 2-1 
and 2-2 (see page 17- 1 8 ) ,  letting the symbol a in those equations 
be set equal to 9.8 m/sec2 (the acceleration in free fall), we can 
make some easy calculations. A body dropped from a height of 
4.9 meters will strike the ground in one second and be moving, at 
the moment of impact, at 9.8 m/sec. If it were dropped from a 
height of 1 9.6 meters, it would strike after two seconds, moving 
then at 1 9.6 m/sec. If it were dropped from 44. 1 meters, it would 
strike after three seconds, moving then at 29.4 m/sec. 

It would seem that if you could only drop an object from a 
great enough height, you could make the velocity of impact as 
high as you pleased. Certainly this would seem so if the value of 
g were the same for all heights. 

But the value of g is not constant; it decreases with heighL 
The value of g varies inversely as the square of the distance from 
the earth's center. A point 6370 kilometers above the earth's sur
face would be 12,740 kilometers from the earth's center-twice as 
far from the center as a point on the surface would be. The value 
of g at that height would therefore be just l/4 what it is at the 
surface. 

An object falling from an initialstate of rest 6370 kilometers 
above the earth's surface would in rhe ·first second attain a velocity 
of only 2.45 m/sec, instead of the 9.8 m/su: it would attain after 

. a one-second drop in the immediate vicinity of the earth's surface. 
As the body continued to drop and approach the earth, the 

value of g would, of course, iDCieaSe steadily and approach 9.8 
m/sec2 at the end. However, the falling body would not strike the 
earth's surface with as high a velocity of impact as it would have 
done if the value of g had been 9.8 m/r all the way down. 

Imagine a body dropped first from a height of 1000 kilo
meters, then from 2000 kilometers, then from 3000 kilometers, 
and so on. The drop from I 000 kilometers would result in a veloc
ity of impact, Va - If the value of g were constant all the way up, 
then a drop from 2000 kilometers would involve a gain in velocity 
in the first 1 000 kilometers equal to the gain in the second 1000 
kilometers, so the final velocity of impact would be v1 + "• or 2v1• 
However, the upper 1000 kilometers represents a region where g 
is smaller than in the lower 1 000 kilometers. Less velocity is added 
in the upper than in the lower half of the drop, and the final 
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velocity of impact is v, + v •• where v, is smaller than v1• The 
same argument can be repeated all the way up. so a fall from a 
height of 1 0,000 kilometers would result in a velocity of impact of 
v, + v= + v. + v. and so on, up to 111,.. Here each symbol repre
sents the portion of the final velocity contributed by a higher and 
higher 1 000 kilometer region of drop, and the value of each sym
bol is less than that of the preceding one. 

Whenever one is faced with a series of numbers each smaller 
than the one before. there is the possibility of a converging series. 
In such a series, the &um of the numbers never surpasses a certain 
fixed value. the limiting sum, no matter how many numbers 
are added. The best-known case of such a converging series is 
I + 1/2 + 1/4 + 1/8 + 1/16, where each number is hall the one 
before. The &um of the first two numbers is 1 .S;  the sum of the 
first three numbers is l .7S; the sum of the first four numbers is 
1 .87S; the swn of the first five numbers is 1 .9325, and so on. As 
more and more numbers in the series are added, the sum grows 
larger and larger, and approaches closer and closer to 2 without 
ever quite reaching it. The limiting sum of this particular series 
is 2. 

It turns out that the numbers representing increments of veloc
ity resulting from falls from regularly increased heights do indeed 
fonn a converging series. As a body is dropped from a greater 
and greater height. the final velocity of impact does not increase 
without limit; instead it tends toward a limiting velocity it cannot 
surpass. 

This limiting velocity of impact ( v,) depends on the value of 
g and on the radius (r) of the body that is the source of the gravi
tational field. The importance of the radius rests on the fact that 
the larger its value, the more slowly does the value of g fade off 
with distance. Suppose a body has a radius of 1000 kilometers. 
At 10,000 kilometers from its center, a falling body is ten times as 
far from the center as an object on the surface is, and the value of 
g is therefore 1/100 the value at the surface. Suppose that a body 
has a radius of 2000 kilometers, however; at a distance of 10,000 
kilometers from its center. a falling body is then only five times as 
far from the center as an object on the surface is, and the value of 
g is 1/25 the value at the surface. Through all heights, therefore, 
the value of g would decline more rapidly for the small body than 
for the large body, and the final velocity of impact would be leSI 
for the smaller body even though its surface value of g might be 
the same as for the larger body. 



It turns out that: v, = y2gr 
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(Equation S-4) * In the mks system, the value of g is 9.8 m/ser! and that of r is 6,370,000 m, so that 2gr is equal to about 124,800,000 m1/ser!. In taking the square root of this number, we must also take the square root of the unit Since the square root of <fib" is ab, it should be clear that the square root of m1/ser! is m/sec. The square root of 124,800,000 m•/ser! is about 1 1 ,200 m/sec. This limiting velocity of impact is equal to 1 1 .2 km/sec (or just about seven miles per second) . No object, falling to earth from 
rest, could ever strike with an impact of more than 1 1 .2 km/sec. (Of course, if an object such as a meteor happens to be speeding in the direction of the earth, so that its own speed is added to the velocity produced by earth's gravitational field, it will strike with an impact of more than 1 1 .2 km/sec. ) For the moon, with its smaller values for both g and r, the maximum velocity of impact is only 2.4 km/sec (or 1 .S miles per second) . Suppose we now tum the matter around. Instead of a falling body, consider one that is propelled upward. For a body moving upward, g represents the amount by which its speed is diminished each second ( see page 29) . The situation is symmetrically reversed to that of a body moving downward; that is, if a body initially at rest falls from a height h and attains a velocity v at the moment of impact, then a body hurled upward with a velocity v will attain a height h before coming to rest (and beginning its fall back to the earth) .  But a body dropped from any height, however great, can never attain a velocity of impact greater than 1 1 .2 km/sec. This means that if a body is hurled upward with a velocity of 1 1 .2 km/sec or more it will never reach a point of rest and, therefore, never fall back to the earth (barring the interference of gravita• tional fields of other bodies) . The limiting velocity of impact is consequently also the velocity at which a body hurled upward will escape from the earth permanently; it is therefore called the escape velocity. The es.cape velocity at the surface of the earth is 1 1 .2 km/sec and the escape velocity at the surface of the moon is 2.4 km/sec. 

• As this Is an introduction to physics, I shall not always give the derivation 
of the equations used-llince at times these would involve concepts not yet 
explained or mathematical techniques I would prefer not to use. 
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A body that orbits the earth has not escaped from the earth. 
It is falling toward it. and only its sideward motion prevents it 
from finally making impact. A smaller velocity is therefore required 
to place an object in orbit than to cause it to escape from the earth 
altogether. For a circular orbit, the velocity must be equal to v gr, 
where , is the distance of the orbiting body from the earth's center 
and g is the value of the gravitational acceleration at that distance. 
In the immediate vicinity of the earth's surface, this comes out to 
7.9 km/sec (or 4.9 miles per second ) .  Orbiting satellites travel at 
this velocity and complete the 40,000 kilometer circumnavigation 
of the earth in a minimum time of 85 minutes. 

As the distance from the earth's center increases. the value of 
, increases, of course, while the value of g decreases. varying as 
1/r. The variation of vgr (which is the orbital velocity) as dis
tance increases is as v ( 1 /r)  (r)  or v l /r. In other words, the 
orbital velocity of a body varies inversely as the square root of its 
distance from the object around which it is in orbit. 

Thus, the distance of the moon from the earth's center is 
382,400 kilometers. This is 60.3 times the distance from the 
center of a satellite orbiting just above the atmosphere. The orbital 
velocity of the moon is therefore less than that of the satellite by a 
factor equal to the y60.3. The moon's orbital velocity, in other 
words, is 7.9/y60.3, or just about I km/sec. 

Consider. also, a satellite in orbit 42,000 kilometers from 
the earth's center (about 35,600 kilometers above its surface) .  Its 
distance from the earth's center would be 6.6 times that of an 
object on earth's surface. Its orbital velocity would therefore be 
7.9/y6.6, or not quite 3.1 km/sec. The length of its orbit would 
be about 264,000 kilometers, and at its orbital velocity it would 
take the satellite just 24 hours to complete one revolution. It 
would, therefore, jus( keep pace with the surface of the rotating 
earth and would seem to hang motionless in the sky. Such appar
ently motionless satellites serve admirably as communication re-
lays. 
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Momentum 

Impulse 
Let's consider a falling body again. 

An object held at some point above the ground is at rest. If 
it is released, it begins to fall at once. Motion is apparently created 
where it did not previously exist. But the word "created" is a d iffi
cult one for physicists ( or for that matter philosophers )  to swallow. 
Can anything really be created out of nothing? Or is one thing 
merely changed into a second, so the second comes into existence 
only at the expense of the passing into nonexistence of the first? 
Or perhaps one object undergoes a change ( from rest to motion. 
for instance) because, and only because, another object undergoes 
an opposing change ( from rest to motion in the opposite direction, 
for instance) .  In this last case, what is created is not motion but 
motion plus "anti-motion," and if the two together cancel out to 
2et0, there is perhaps no true creation at all. 

To straighten this matter out, let's start by trying to decide 
exactly what we mean by motion. 

We can begin by saying that a force certainly seems to create . . 
motion. Applied to any body initially at rest, say to a hockey puck 
on ice, a force initiates an acceleration and sets the puck moving 
faster and faster. The longer the force acts, the faster the hockey 
puck moves. If the force is constant, then the velocity at any given 

66 
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time is proportional to the amount of the force multiplied by the 
time during which it is applied. The term impulse (I) is applied 
to this product of force (f) and time (t) : 

I = ft (Equation 6-l) 
Since a force produces motion, we might expect that a given 

Impulse (that is, a given force acting over a given lime) would 
always produce the same amount of motion. If this ii IO, however. 
then the amount of motion cannot be considerecl a matter of veloc
ity alone. If the same force acts upon a aecond hockey puck ten 
times as massive as the first. it will produce a smaller acceleration 
and in a given time will bring about a smaller velocity than in the 
first case. The quantity of motion produced by an impulse must 
therefore involve mass as well as velocity . 

. That this is indeed so is actually implied by Equation 6-1. 
By Newton's aec:ond law we know that a force is equal to mass 
times acceleration (/ = ma) .  We can therefore substitute ma for f 
in Equation 6-1 and write: 

I =  mat (Equation 6-2} 
But by Equation 2-t (see page 1 7 ) ,  we know that for any 

body starting at rest the velocity ( v) produced by a force is equal 
to the acceleration (a)  multiplied by time ( t ) ,  so that at = v. If 
we 1ubstitute " for at in Equation 6-2. we have: 

/ ,,. , mv (Equation 6-3 ) 
It is this quantity. mv, mass times velocity, that is really the 

measure of the motion of a body. A body moving rapidly requires 
a greater effort to stop inhan does the same body moving slowly. 
The increase in velocity adds to its total motion. therefore. On the 
other hand, a massive body moving at a certain velocity requires 
a greater effort to stop it than does a light body moving at the 
aame velocity. The increase in mass also adds to total motion. Con
sequently. the product mv has come to be called momentum (from 
a Latin word for '"motion") .  

Equation 6-3 means that a n  impulse (ft) applied to a body 
at rest causes that body to gain � momentum (mv) equal to the 
impulse. More generally. if the body is already in movement, the 
application of an impulse brings about a change of momentum 
equal to the impulse. In brief, impulse equals change of momen
tum. 

The units of impulse must be those of force multiplied by 
those of time, -according to Equation 6-1, or those of mass multi• 
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plied by those of velocity, according to Equation 6-3. In the mks 
system, the units of force are newtons, so impulse may be meas-
ured in newton-sec. The units of mass are kilograms, however, and 
the units of velocity are meters per second, so the units of impulse 
(mass times velocity) are kg-m/sec. However, a newton has been 
defined as a kg-m/sec2. A newton-sec, therefore, is a kg-m• 
sec/sec2, or a kg-m/sec. Thus the units of I considered as ft are the 
same as the units of I considered as mv. In the cgs system, it is easy 
to show, the units of impulse are dyne-sec, or gm-cm/sec, and 
these are identical also. 

Conseroation of Momentum 
Imagine a hockey puck of mass m speeding across the ice at 

a velocity, v. Its momentum is mv. Imagine another hockey puck 
of the same mass moving at the same speed but in the opposite 
direction. Its velocity is therefore -v and its momentum is -mv. 
Momentum, you see, is a vector, since it involves velocity, and not 
only has quantity but direction. Naturally, if we have two bodies 
with momenta in opposite directions, we can set one momentum 
equal to some positive value and the other equal to some negative 
value. 

Suppose now that the two hockey pucks are rimmed with a 
layer of glue powerful enough to make them instantly stick to
gether on contact. And suppose they do make contact head-on. 
When that happens, they would come to an instant halt. 

Has the momentum been destroyed? Not at all. The total 
momentum of the system• was mv + ( -mv) ,  or 0, before the 
collision and o+o, or ( still ) 0, after the collision. The momentum 
was distributed among the parts of the system differently before 
and after the collision, but the total momentum remained un• 
changed. 

Suppose that instead of sticking when they collided (an in
elastic collision) the two pucks bounced with perfect springiness 
(an elastic collision) .  It would then happen that each puck would 
reverse directions. The one with the momentum mv would now 
have the momentum -mv and vice versa. Instead of the sum 
mv+ ( -mv) ,  we would have the sum ( -mv) +mv. Again there 
would be a change in the distribution of momentum, but again the 
total momentum of the system would be unchanged. 

• By a "system" is meant the entire collection of bodies being discussed, 
in this case, the two hockey pucks, considered in isolation from the rest of 
the universe. 
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If the collision were neither perfectly elastic nor completely 

inelastic, if the pucks bounced apart but only feebly, one puck 
might change from mv to -0.2mv, while the other changed from 
-mv to 0.2mv. The final sum would still be zero. 

This would still hold true if the pucks met at an angle, rather 
than head-on, and bounced glancingly. If they met at an angle. 
so their velocities were not in exactly opposite directions, the two 
momenta would not add up to zero, even though the velocities of 
the two pucks were equal. Instead the total momentum of the 
system would be arrived at by vector addition of the two individual 
momenta. The two pucks would then bounce in such a way that 
the vector addition of the two momenta after the collision would 
f!eld the same total momentum as before. This would also be true 
if a moving puck struck a puck at rest a glancing blow. The puck 
at rest would be placed in motion, and the originally moving puck 
would change its direction; however, the two final momenta would 
add up to the original. 

Matters would remain essentially unchanged even if the two 
pucks were of different 11_1asses. Suppose one puck was moving to 
the right at a given speed and had a momentum of mv, while an• 
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other, three times as massive, was moving at the same speed to the 
left and had, therefore, a speed of -3mv. If the two stuck together 
after a head-on collision, the combined pucks (with a total mass 
of 4m) would continue moving to the left-the direction in which 
the more massive puck had been moving-but at half the original 
velocity ( -v/2) .  The original momentum of the system was 
mv + ( -3mv) ,  or -2mv. The final momentum of the system 
was (4m) ( -v/2 ) ,  or -2mv. Again, the total momentum of the 
system would be unchanged. 

And what if momentum is seemingly created? Let us con
sider a bullet initially at rest-and with a momentum, therefore. 
of 0-which is suddenly fired out of a gun and moves to the right 
at high velocity. It now has considerable momentum (mv). How
ever, the bullet is only part of the system. The remainder of the 
system, the gun, must gain -mv by moving in the opposite direc
tion. If the gun has n times the mass of the bullet, it must move in 
the opposite direction with 1/n times the velocity of the speeding 

. bullet. The momentum of the gun (minus the bullet) would then 
be (nm ) ( -v/n) ,  or -mv. ( If the gun were suspended freely 
when it was fired, its backward jerk would be clearly visible. When 
fired in the usual manner its backward motion is felt as "recoil.") 
The total momentum of gun plus bullet was therefore O before the 
gun was fired and O after it was fired, though here the distribution 
of II!Qmentum among the parts of the system varied quite a bit 
before· and after firing. 

In short, all the experiments we can make will bring us to the 
conclusion that: 

The total momentum of an isolated system of bodies remains 
constant. 

This is called the law of conservation of momentum. (Some
thing that is "conserved" is protected, guarded, or kept safe from 
loss. }  

Of  course, i t  is impossible to  prove a generalization by merely 
enumerating isolated instances. No matter how often you experi
ment and find that momentum is conserved, you cannot state with 
certainty that it will always be conserved. At best, one can only 
say, as experiment after experiment follows the law and as no 
experiment is found to contradict it, that the law is increasingly 
probable. It would be far better if one could show the generaliza
tion to be a consequence of another generalization that is already 
accepted. 

For instance, suppose two bodies of any masses and moving 
at any velocities colJide at any angle with any degree of elasticity. 



70 Understanding Physics 
At the moment of collision, one body exerts a force (f) on the 
second. By Newton's third law, the second body exerts an equal 
and opposite force ( -f) on the first. The force is exerted only 
while the two bodies remain in contact. The time ( t )  of contact 
is obviously the same for both bodies, for when the first is no 
longer in contact with the second, the second is no longer in con
tact with the first. This means that the impulse of the first body on 
the second is ft, and that of the second on the first is -ft. 

The impulse of the first body on the second imparts a change 
in momentum mv to the second body. But the iinpulse of the second 
body on the first, being exactly equal in quantity but opposite in 
sign, must impart a change in momentum -mv to the first. The 
changes in momentum may be large or small depending on the 
size of the impulse, the angle of collision, and the elasticity of 
the material ; however, whatever the change in momentum of one, 
the change in the other is equal in size and opposition in direc
tion. The total momentum of the system must remain the same. 

Thus, the law of conservation of momentum can be derived 
from Newton's third law of motion. In actual fact, however, it was 
not, for the law of conservation of momentum was first enunciated 
by an English mathematician, John Wallis ( 1 6 1 6-1703 ) ,  in 1 67 1 ,  
a dozen years before Newton published his Jaws of motion. One 
could, indeed, work it the other way, and derive the third law of 
motion from the law of conservation of momentum. 

At - this point you might feel that if the physicist proves the 
conservation of momentum from the third law of motion, and then 
proves the third law of motion from the conservation of momen
tum, he is actually arguing in a circle and not proving anything at 
all. He would be if that were what he is doing, but he is not. 

It is not so much a matter of "proving" as of making an 
assumption and demonstrating a consequence. One can begin by 
assuming the third law of motion and then showing that the law 
of conservation of momentum is a consequence of it. Or one can 
begin by assuming the law of conservation of momentum and 
showing that the third law is the consequence of that. 

The direction in which you move is merely a matter of con
venience. In either case, no "proof' is involved and no necessary 
"truth." The whole structure rests on the fact that no one in nearly 
three centuries has been able to produce a clearcut demonstration 
that a system exists. or can be prepared, in which either the third 
law of motion or the law of conservation of momentum is not 
obeyed. Such a demonstration may be made tomorrow, and the 
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foundations of physics may have to be modified as a consequence; 
but by now it seems very unlikely* that this will happen. 

And yet it may be that with a little thought we might think 
of cases where the law is not obeyed. For instance, suppose a bil
liard ball hits the rim of the billiard table squarely and rebounds 
along its own line of approach. Its velocity v becomes - v after the 
rebound, and since its mass remains unchanged, its original mo
mentum mv has become -mv. Isn't that a clear change in mo
mentum? 

Yes, it is, but the billiard ball does not represent the. entire 
system. The entire system includes the billiard table that exerted 
the impulse that altered the billiard ball's momentum. Indeed, 
since the billiard table is fixed to the ground by frictional forces 
too large for the impact of the billiard ball to overcome, it includes 
the entire planet. The momentum of the earth changes just enough 
to compensate for the change in the momentum of the billiard ball 
However, the mass of the earth is vastly larger than that of the 
billiard ball, and its change in velocity is therefore correspondingly 
smaller-far too small to detect by any means known to man. 

Yet one might assume that if enough billiard balls going in 
the same direction were bumped into enough billiard tables, at 
long, long last, the motion of the earth would be perceptibly 
changed. Not at all! Each rebounding billiard ball must strike the 
opposite rim of the table, or your hand, or some obstacle. Even if 
it comes to a slow halt through friction, that will be like striking 
the cloth of the table little by little. No matter how the billiard ball 
moves it will have distributed its changes in momentum equally 
in both directions before it comes to a halt, if only itself and the 
earth are involved. 

A more general way of putting it · is that the distribution of 
momentum among the earth and all the movable objects on or near 
its surface may vary from time to time, but the total momentum, 
and therefore the net velocity of the earth plus all those movable 
objects (assuming the total mass to remain constant) ,  must remain 
the same. No amount or kind of interaction among the components 
of a system can alter the total momentum of that system. 

And now the solution to the problem of the falling body with 
which I opened the chapter is at hand. As the body falls it gains 
momentum (mv ) ,  this momentum increasing as the velocity in
crease$. The system, however, does not consist of the falling body 

• Please remember that "unlikely" does not mean ''impossible." / 
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alone. The gravitational force that brings about the motion in
volves both the body and the earth. Consequently, the earth must 
gain momentum ( -mv) by rising to meet the body. Because of 
the earth's huge mass, its upward acceleration is vanishingly small 
and can be ignored in any practical calculation. Nevertheless, the 
principle remains. Motion is not created out of nothing when a 
body falls. Rather, both the motion of the body and the anti
motion of the earth are produced, and the two cancel each other 
out. The total momentum of earth and falling body, with respect 
to each other, is zero before the body starts falling, is zero after 
it completes its fall, and is zero at every instant during its 
fall. 

Rotational Motion 

So far, I have discussed motion as though it involved the 
displacement of an object as a whole through space with the dif
ferent parts of the object maintaining their mutual orientation un
changed. This is translational motion ( from Latin words meaning 
"to carry across") .  

I t  i s  possible, however, for a body not t o  be displaced through 
space as a whole, and yet still be moving. Thus, the center of a 
wheel may be fixed in place so that the wheel as a whole does not 
change its position; nevertheless, the wheel may be spinning about 
that center. In similar fashion, a sphere fixed within a certain 
volume of space may yet spin about a fixed line, the axis. This 
kind of motion is rotational motion ( from the Latin word for 
"wheel" ) .  ( It is, of course, possible for a body to move in a 
combination of these two types of motion, as when a ·baseball 
spins as it moves forward, or when the earth rotates about its axis 
as it moves forward in its orbit about the sun. ) 

Rotational motion is quite analogous to translational mo
tion, but it requires a change of viewpoint. For instanc::e, we are 
quite used to thinking of the speed of translational motion in 
terms of miles per hour or centimeters per second. Furthermore, 
we take it for granted that if one part of a body has a certain 
translational velocity so has every other part of the body. The tail 
of an airplane, in other words, moves forward just as rapidly as 
its nose. 

In the case of rotational motion,  matters are different. A 
point on the rim of a turning wheel is moving at a certain speed, 
a point closer to the center of the wheel is moving at a smaller 
speed, and a point still closer to the �nter Is moving at a still 
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SQ.taller speed. The precise center of a turning wheel is motion
less. To say that a turning wheel moves at so many centimeters 
per �d is therefore meaningless, unless we specify the exact 
portion of the wheel to which we refer, and this can be most incon
venient. 

It would be neater if we could find some method of measuring 
rotational speed that would apply to the entire rotating body at 
once. One method might be to speak of the number of revolu
tions in a unit time. Though various points on the wheel might 
move at various speeds, every point on the wheel comple:.es a 
revolution in precisely the same period, since the wheel rotates 
"all in one piece." We might therefore speak of a wheel or any 
rotating object as having a speed of so many revolutions per 
minute (usually abbreviated as rpm ) .  

O r  we might divide one revolution into 360 equal parts called 
degrees and abbreviated as a zero superscript ( 0 ) .  In that case I 
rpm would be equal to 360 ° per minute, or 6 ° per second. As 
the wheel sweeps out those degrees, a line connecting the center 
of the wheel with a point on its rim marks out an angle. A speed 
given in revolutions per minute or degrees per second is therefore 
spoken of as angular speed. 

It is possible for rotational· motion to take· place in one of 
two mirror-image fashions. As viewed from a fixed position, a 
wheel may be observed to be rotating clockwise-that is, in the 
same sense that the hands of a clock move. It could, on the other 
hand, move counterclockwise-that is, in the opposite sense to 
the moving clockhand. * Therefore, we can speak of angular 
velocity as indicating not only speed but direction as wen. (Veloci
ties involved in translational motion can be spoken of as 
linear velocity, since movement is then along a line rather than 
through an angle. ) 

Physicists use another unit in measuring rotational velocity: 
the radian, This is an angle that marks out on the rim of a circle 
an arc that is just equal in length to the radius of the circle. 
The circumference of the circle is ,, times the length of the 

• It is Important to specify "from a fixed position," for clockwise ancl 
counterclockwise are not absolute terms. A wheel may seem · to be turning 
clockwise to you, but if you move to the opposite side and view it, it will then 
seem to be turning counterclockwise. The same is true if you speak of transla• 
tional motion as being "left" or "right," or -ioward" or "away." Those are terms 
that have meaning only with reference to your own position. However, if you 
speak of -north," "south," "east," or "west," those are terms that are fixecS 
with respect to the earth ancl do not depend on your own position. 
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diameter• and Is therefore 2-r times the length of the radius. The 
circumference must therefore also be 2r times the length of the 
arc marked out by one radian. The entire circumference is marked 
out in one revolution. so one revolution equals 2r radians or 
360°. It follows that one radian equals 360° /2,.. or, since .,. equals 
3. 1 4 1 59, one radian is about equal to 57.3°. 

Angular velocity is often symbolized by the Greek Jetter 
.. ("omega"), since this is the equivalent in Greek of the Latin 
letter v usually used for linear velocity. 

For any given point on a rotating body, angular velocity can 
be converted to linear velocity. The linear velocity depends not 
only on the angular velocity but also on the distance (r) of the 
point in question from the center of rotation. If the distance is 
doubled for the same angular velocity, the linear velocity of the 
point is doubled. We can say then that : 

(Equation 6-4) 

This equation is precisely correct when .. is measured in 
radians per unit of time. For instance, if the angular velocity is 
one radian per second, then in one second a given point any
where on the wheel sweeps out an arc equal to its distance from 
the center, and v=r. If .. equals 2 radians per second then v=2r, 
and so on. 

If we were measuring .. in revolutions per unit of time, then 
Equation 6-4 would have to read v = 21rr .. , and if we were 

• The Greek letter • ( Mpi")  is used to represent the ratio of the circum
ference (c)  of a circle to its diameter (d) ; in other words, c/d = ... Although 
every circle may have a different value for c and for d. the ratio of the two, 
r:td, is always the same for all circles. Therefore. -r is a constant, and it is 
approximately equal to 3. 1 4 1 59. 

Size of the radian Angular velocity 
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measuring it in degrees per unit time. it would have to read 
v = rw/51.3. This is an example of how a unit that may, at first 
blush, seem to have an odd and inconvenient sire can yet tum 
out to be useful because it allows relationships to be expressed 
with maximum simplicity. 

TOTque 
It takes a force to set a body at rest into translational motion. 

Under certain conditions a force can set a body at rest into ro
tational motion instead. Suppose, for instance, you nailed a long, 
flat rod loosely to a wooden base at one end. H you pushed the 
rod, it would not move as a whole, in a translational manner, 
because one end is fixed. Th.-: rod would instead begin to make a 
rotational movement about the fixed end. 

A force that gives rise to such a rotational movement is 
called a torque (from a Latin word meaning "to twist") .  To con
tinue the use of Greek letters for rotational motion, a torque may 
be symbolized by the Greek letter T ("tau") ,  which is the equivalent 
of the Latin t (for "torque," obviously) .  

A given force does not always give rise to the same torque 
by any means. In the case of the rod just mentioned, the amount 
of torque depends on the distance from the point at which the 
force is applied to the fixed point. A force applied to the fixed 
point will not itself produce a torque. As one recedes from that 
point a given force will produce a more and more rapid rotation 
and will therefore represent a greater and greater torque. In fact, 
the torque is equal to the force (/) multiplied by the distance (r) : 

.,. = fr (Equation 6-5) 
In the past, torque has been referred to as the moment of force. 
but this phrase is now quite out of fashion. 

Nor need a torque be produced only where a portion of a 
body is fixed in space; one can be produced even if the entire 
body is free to move. 

Consider a body possessing mass but consisting of but a 
single point. Such a body can only undergo translational motion. 
A rotating body, after all, spins about some point (or line ) ;  if 
that point is all that exists, then there is nothing to spin and only 
linear motion is possible. It is to such point-masses that the laws 
of motion can be made to apply most simply. 

In the real universe, however, there are no point-masses. All 
real massive bodies have extension. Nevertheless, it can be shown 
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that in some ways such real bodies behave as if all their mass were 
concentrated at some one point. The point at which this seeming 
concentration is found is the center of mass. Where a body is 
symmetrical in shape, and where it is either uniform in density 
or has a density that changes in symmetrical fashion, the center 
of mass is at the geometrical center of the body. For instance, 
the earth is an essentially spherical body; while it is not uni
formly dense, it is most dense at the center, and this density falls 
off equally in alJ directions as one approaches the surface. The 
earth's center of mass therefore coincides with its geometric 
center, and it is toward that center that the force of gravity is 
directed. 

The concept of the center of mass can explain several things 
that might otherwise be puzzling. According to Newton's first 
law of motion, a moving object will continue moving at constant 
velocity unless acted upon by some outside force. Suppose that 
a shell containing an explosive is moving at constant velocity 
through space and that at a certain point it explodes. Fragments 
of the shell are hurled in all directions, and the various chemical 
products of the explosion also expand outward. This explosion 
is an internal force, however, one produced within the system in 
question, and it should have no effect on the motion of the system, 
according to the first law; Yet the various fragments of the shell 
are no longer traveling at the original velocity. Do Newton's laws 
of motion break down? 

Not at all. The laws apply to a system as a whole, and not 
necessarily to one part or another taken in isolation. As a result 
of the explosion the system has changed its shape. But has 
it changed its center of mass? The center of mass might be 
viewed as the "average point" of the body. If one portion 
of the shell hurls outward in one direction, it is balanced by an
other portion hurled in the opposite direction. To be more pre
cise, the vector sum of all the momenta in one direction must be 
equal to the vector sum of all the momenta in the opposite di· 
rection, acconling to the law of conservation of momentum. This 
can be shown to imply that no matter how the body changes shape 
through internal forces. the center of mass remains where it would 
have been if. no change of shape had occurred. In other words, 
the center of mae of the system moves on at constant velocity 
regardless of the explosion that hurled bits of the system this way 
and that. 

If a body were under the influence of a gravitational force 
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and following a parabolic path, its sudden explosion would not 
prevent the center of mass from continuing smoothly in that 
parabolic path even though the individual fragments moved all 
over the lot. (This implies no interference by forces outside the 
system. li fragments strike other bodies and are halted, the motion 
of the center of mass changes. Again, the effect of air resistance 
on the multitude of particles after explosion may not be the same 
as the effect upon the single shell before explosion; this may change 
the motion of the center of mass. ) 

Suppose next that a body is falling toward the earth. Every 
particle of the body is being pulled by the force of gravity, but 
the body behaves as if all that force were concentrated at one 
point within the body; that point is the center of gravity. If the 
body were in a uniform gravitational field, the center of gravity 
would be identical with the center of mass. However, the lower 
portion of a body is somewhat closer to the center of the earth 
than is the upper, and the lower portion is therefore more strongly 
under gravitational influence. The center of gravity is consequently 
very slightly below the center of mass; therefore, while the differ
ence under ordinary conditions is so small as to be easily neglected, 
it is better form not to interchange the two phrases. 

The concept of the center of gravity is useful in considering 
the stability of bodies. Imagine a brick resting on its narrowest 
base. If it is tipped slightly and then released, it drops back to 
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its original position. If it is tipped somewhat more and then re
leased, it drops back again. As it is tipped more and more, how
ever, there comes a point when it flops over onto one of its other 
bases. At what point does this flop-over come? 

We can view the gravitational force as pulling upon the 
center of gravity of the brick, and upon that point only. As long 
as the center of gravity is located directly over some portion of 
the original base, the effect of the gravitational pull is to move 
the brick back upon that base once the tipping force is removed. 
If the brick is tipped so much that the centu of gravity is located 
directly over some point outside the original base, the brick drops 
onto the base over which the point is now located. 

Naturally, the wider the base in comparison with the height 
of the center of gravity, the greater the degree of tipping required 
before the center of gravity moves beyond that base--the more 
stable the body, in other words. A brick resting on its broadest base 
is more stable than one resting upon its narrowest base. 

A cone resting on its pointed end may be so adjusted that its 
center of gravity will be directly above that point. It will then 
remain in balance. The slightest movement, however, the smallest 
breath of air, will move the center of gravity beyond the point 
in one direction or another, and down it will flop onto its side. 
A juggler keeps objects balanced upon points or, more accurately. 
upon very small bases, by moving his own body in such a way as 
to bring the base under the center of gravity again every time 
the center of gravity moves out of position. 

Where a body is not unifonn in density, its center of gravity 
is not located at its geometrical center but is displaced toward the 
denser portions. An object that is particularly dense in its lower
most portion ("bottom-heavy") has an unusually low center of 
gravity. Even a large degree of tipping will not bring that low 
center of gravity beyond the line of the base. and on being re
leased the object will return to its original position. On the othu 
hand, an object that is particularly dense in its uppermost portion 
("top-heavy") has an unusually high center of gravity and will 
flop over after but a. slight degree of tipping. Since our common 
experience is with objects of reasonably uniform density, we arc 
generally surprised at the refusal of a bottom-heavy object to fall 
over (like those round-bottomed clu1drcn's toys that spring up 
again even wbco forced down to their side), or ai the ease with 
which a top-heavy object topples. 

Let us now return to our point-mass which undergoes only 
translational � If we imagine a force directed against a real 
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body in such a way as to intersect its center of mass, then tha� 
real body behaves as a point-mass does and undergoes a purely 
translational motion. Thus, a falling body is subjected to the pull 
of gravity directly upon the center of gravity (usually equivalent 
to the center of mass) .  Therefore (provided a torque is not 
applied to the body at the moment · of its release and that the 
effect of wind and air resistance is neglected) ,  a body will fall 
in a purely translational manner. 

If, however, a force is applied to a body in such a way as 
to be directed to one side or another of the center of mass, a 
torque is produced as well. Such bodies, even when forced into 
translational motion by the force, undergo rotational motion also. 
The manner in which footballs, baseballs and similar objects 
spin as they move is well known to all of us. It is so difficult to 
center the force upon the center of mass that it is virtually im
possible to keep them from spinning. 

Naturally, the further the force from the center of mass, the 
greater is the rotational motion compared with the translational 
motion. A coin standing on edge can be flicked into a spin by 
snapping a finger against its rim, and it will tum very rapidly while 
moving forward only slowly. 

It is thought that the stars and planets originated by accretion 
and that small fra�ents struck the growing nuclei of the bodies. 
Astronomers have labored to devise schemes whereby these col
liding bodies would be shown as tending to strike more often to 
one side of the center of mass than the other, setting up torques 
that do hot average out to zero. Thus heavenly bodies, however 
they may move translationally, also rotate about some axis. 

Conseroation of Angular Momentum 

There is rotational inertia as well as the more familiar trans
lational inertia. If a wheel is rotating about a frictionless axis, it 
will continue to rotate at a constant angular velocity unless an 
outside torque Is exerted upon it. 

The application of a torque will induce an acceleration .in 
the angular motion. This angular acceleration can be represented 
by a, the Greek letter •a1pha,.. which is the equivalent of the 
Latin a. The units of angular acceleration are · radians per second 
per second or radians/sec2• Just as linear velocity is equal to 
angular velocity times distance from the center of rotation (see 
Equation 6-4) so, by the same line of reasoning, linear accelera-
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tion (a) is equal to angular acceleration (a) times distance from 
the center (r),  or: 

(Equation 6-6) 

By the second law of motion, we know that force is equal 
to mass times linear acceleration (f = ma) .  Combining this with 
Equation 6-6, we can substitute ra for a, and have: 

f=mra (Equation 6-7 ) 

We have already decided that torque ( .. ) is equal to force 
times distance from the center (fr) . This was expressed in Equa
tion 6-5 on page 75. Substituting the value for f given in Equa
tion 6-7, we have: 

T= (mra) (r) = mra (Equation 6-8) 

Now according to the laws of motion as applied to transla
tion, the ratio of the force to the acceleration (f /a) is the mass 
(m) ( see Equation 3-3, on page 33 ) .  What if we take the 
analogous ratio in angular motion-that is, the ratio of the torque 
to the angular acceleration (T/a ) ?  By rearranging Equation 6-8, 
we can obtain a value for such a ratio: 

!: = mr a (Equation 6-9) 

In rotational motion, therefore, the quantity mr (mass times 
the square of the distance from the center of rotation)  is 
analogous to mass alone ( m )  in translational motion. This in
troduces interesting differences in the two types of motion. 

Consider a body moving in a straight line and made up of 
a thousand subunits of equal mass. The force required to stop the 
motion of this body in a given period of time depends only on 
the total mass. It does not depend on how the subunits are dis
tributed-whether they are packed closely together, arranged in 
a hollow sphere. in a cubical array, in a straight line or anything 
else. Only the total mass counts, and the manner in which the sub
units are distributed does not change the total mass. 

In rotational motion. however. it is not mass alone that 
counts but mass times the square of the distance from the point 
(or line) about which the rotation is taking place. Consider a 
rotating sphere, for instance. made up of a thousand subunits of 
equal mass. Some of the subunits are close to the axis and some 
are far away from the axis. Those close to the axis have a small 
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,, and therefore a small mr2, while those far from the axis have a 
large r, and therefore a large mr2. The body as a whole has some 
average mr, which is called the moment of inertia, and this is 
often symbolized as I. The torque required to stop the rotating 
sphere in a given period of time depends not upon the mass of the 
sphere but its moment of inertia. 

The value of the moment of inertia depends on the distribu• 
tion of the mass and can be changed without altering the total 
mass. Il instead of a solid sphere we made up a hollow sphere of 
the same subunits, some of the subunits previously close to the axis 
would now be located far from the axis. On the other hand, no 
subunits would have been moved closer to the axis. The average 
, would increase and the moment of inertia (the average mr) 
would increase considerably even though the total mass had not 
changed. It would require a much larger torque to stop a spinning 
hollow sphere in a given period of time than it would to stop a 
solid sphere of the same mass spinning at the same angular 
velocity. 

Thus, gyroscopes and fly-wheels in which it is desired to 
maintain as even an angular velocity as possible, despite torques 
of one sort or another, are constructed to have rims as massive 
as possible and interiors as light as possible. The accelerations 
produced by given torques are then reduced to a minimum be
cause the moment of inertia has been raised to a maximum. 

It is not surprising, considering the analogies between ro
tational and translational motions. that experiment shows such a 
thing as a law of conservation of angular momentum. By analogy 
with the law of conservation of momentum in translational motion. 
this additional law might be stated: 

The total angular momentum of an isolated system of bodies 
remains constant. 

But how would we define angular momentum? Ordinary 
translational momentum is mv, mass times velocity. For angular 
momentum. we must substitute moment of inertia (I) for mass, 
and angular velocity (•) for translational velocity. Angular 
momentum. then. is equal to , ... 

Again, however, the moment of inertia (the average value 
of mr) can be altered without altering the total mass, and this 
produces curious effects. 

Suppose. for instance. that you are standing on a frictionless 
·turntable that has been set to spinning; you are holding your arms 
extended, a heavy weight in each hand. 
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The axis of rotation is running down the center of your 
body from head to toe, and the mass of your extended arms is fur
ther from that axis than is the rest of you. The weights in either 
hand are further still. Consequently, your arms and the weights 
they carry, being associated with large values of ,, contribute 
greatly to the mr average and give you a much higher moment 
of inertia than you might ordinarily possess. 

Suppose next that while spinning you lower your arms to 
your side. The mass content of your arms and the weights they 
carry is now considerably closer to the axis of rotation, and 
without any change in total mass, the moment of inertia is greatly 
decreased. If the moment of inertia (I)  is decreased, the angular 
velocity ( .. ) must be correspondingly increased to keep the angu
lar momentum (101) constant. ( In other words, if you are interested 
in having the product of two numbers always equal 24, then if 
you start with 8 times 3 and reduce the 8 to 4, you must increase 
the 3 to 6, to have the new numbers, 4 times 6, still equal 24. )  

This, indeed, is what happens. The turntable suddenly in
creases its rate of spin as you bring your arms to your side. The 
rate decreases again promptly if you extend your arms once more. 

A figure skater makes use of the same device on ice. At first, 
as rapid a spin as possible is produced with arms extended. The 
arms are then brought down, and the body spins on the point of 
one skate with remarkable velocity. 

A body that possesses only angular momentum cannot trans
mit an unbalanced translational momentum to another body, for 
it has none to transmit. To be sure, the turning wheels of an 

Conservation of angular momentum 
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automobile send it forward and give it translational momentum. 
There, however, an equal momentum is given the earth in the � 
posite direction. The two translational momenta add up to zero. 
No motorist who has ever tried to drive on ice will dismiss that 
fact. Once friction has decre� to the point where little or no 
momentum can be transmitted to the earth, the car will itself gain 
little or no momentum, and the wheels will spin vainly. 
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Work and Energy 

The Leoer 
Laws of conservation are popular with scientists. In the first 
place. a conservation law sets limits to possibilities. In considering 
a new phenomenon, it is convenient to be able to rule out all. 
explanations that would involve a violation of one of the con
servation Jaws (at least until it is found that nothing short of a 
violation will do) . It is then easier to work with the possibilities 
that remain. 

In addition, there is an intuitive feeling that one will not be 
able to get something for nothing. It therefore seems proper and 
orderly to ,uppose that the universe possesses a fixed amount of 
something or other (such as momentum) and that while this may 
be distributed among the different bodies of the universe in various 
ways, the total amount may neither be increased nor decreased. 

Consequently, if we observe a situation in which it appears 
that in some respect something is obtained for nothing, a search 
is quickly begun for some other factor in the situation which 
decreases in compensation. It may prove that it is the two factors 
combined in some fashion that are conserved. In the case of angu
lar momentum, for instance, the moment of inertia can be changed 
at will and can seemingly be made to appear out of nowhere or 
disappear into nowhere. The angular velocity, however. always 

84 
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changes in the opposite sense at once, and it is the product of 
the moment of inertia and the angular velocity that is conserved. 

Another case of this sort arises from a consideration of the 
lever. This is any rigid object capable of turning about some 

· fixed point called the fulcrum. As a practical example we might 
consider a wooden plank resting upon a sawhorse--the former 
being the lever, the latter the fulcrum. 

If the fulcrum is directly under the lever's center of gravity, 
the lever will remain balanced, tipping neither this way nor 
that. Since the lever, like any other object, behaves as though 
all its weight were concentrated at the center of gravity, it can 
then be supported, as a whole, on the narrow edge of the fulcrum. 
If the lever is of uniform dimensions and density, the center of 
gravity is at the geometrical center, and it is there that the fulcrum 
must be placed, as in the well-known children's amusement device, 
the seesaw. 

If a downward force is applied to any point on the lever, 
the force times the distance of its point of application from the 
fulcrum represents a torque (see page 75 ) ,  and the lever takes 
on rotational motion in the direction of the torque. 

Suppose though that a downward force is at the same time 
applied to the lever on the other side of the fulcrum. If the second 
force is equal to the first and is applied at the same distance from 
the fulcrum, the two torques are equal in size but not in direction. 
The torque on one side of the fulcrum tends to set up a clockwise 
rotation; the one on the other side tends to set up a counterclock
wise rotation. If one torque is symbolized as T, the other must be 
- T. The two torques add up to zero and the lever does not move. 
It remains in balance. 

(On the other hand, if the force is exerted downward on one 
side of the fulcrum and upward on the other, then both produce 
a motion in the same direction : both clockwise or both counter
clockwise. The torques are then both of the same sign and add up 
to either 2T or - 2T. Such a doubled torque is a couple, and it 
naturally is easier to move a lever about a fulcrum by means of a 
couple than by means of a single torque. It is a couple we use 
when we wind an alarm clock or manipulate a corkscrew. ) 

The torques used in connection with levers are often weights 
that are resting on the ends of the balance, or they are on pans 
suspended from those ends. We can say that two equal weights 
will leave a lever in balance ·if they are placed on opposite sides 
of the fulcrum and at equal distances from it. 

This, in fact, is the principle of the "balance." A balance 
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has two pans of equal weight suspended from the ends of a hori
zontal rod that pivots about a central fulcrum. If an object of 
unknown weight is placed in one pan, combinations of known 
weights can be put in the other till the two pans balance. We then 
know that the unknown weight is equal to the sum of the known 
weights in the other pan. (As explained on page 57, this actually 
serves to measure mass as well as weight. ) 

Because of its use in the balance, a lever subjected to equal 
and opposite torques is said to be in equilibrium (from Latin 
words meaning "equal weights" ) ,  and this expression has come 
to be applied to any system under the stress of forces that 
produce effects that cancel out and leave the overall condition 
unchanged. 

For a lever to be in equilibrium it must be subjected to equal 
and opposite torques, and this may be true even if the forces ap
plied are unequal. Consider a downward force (f) applied on one 
side of a lever at a given distance (r) from the fulcrum. The 
torque would be fr. Next consider a downward force twice as large 
(2/) applied to the other side of the fulcrum but at a distance only 
half that of the first (-r/2 ) .  (The distance is here given a nega• 
tive sign because it is in the opposite direction from the fulcrum, 
as compared with the first ) .  This second torque is ( 2/) ( -r/2),  
or  - fr. The two torques are equal and opposite, and the lever re• 
mains in equilibrium. 

If the forces are produced by unequal weights resting on the 
ends of the lever, it is easy to see that the center of gravity of the 
system must shift toward the end with the greater weight. To 
maintain equilibrium, the fulcrum must be directly under the new 
position of the center of gravity. When this is done, it will be 
found that its position is such that the product of one weight and 
its distance from the fulcrum will be equal to the product of 
the other and its distance from the fulcrum. 

Thus if two children of roughly equal weight are on a seesaw, 
they are right to sit at the ends. If cine child is markedly heavier 
than the other, he should sit closer to the fulcrum. The two should 
so distribute themselves, in fact, that their own center of gravity 
plus that of the seesaw remains directly above the fulcrum. ( It 
is also possible, in the case of some seesaws. to shift the board 
and adjust the position of the fulcrum. ) 

Because of the fact that torques rather than forces must be 
equal in order to produce equilibrium. a lever can be put to good 
use. Suppose a 250-ki logram weight (equ ivalent to a force of 
about 2450 newtons ) is placed I meter from the fulcrum. Next 



Work and Energy 81 

suppose that 10 meters from the fulcrum on the other side of the 
lever a man applies a downward force of 245 newtons (the 
equivalent of a 25-kilogram weight ) .  The torque associated with 
the force ( 25 X 10) is equal and opposite to that of the torque 
produced by the weight on the other side of the lever ( 250 X 1 ) .  
The lever i s  then placed in equilibrium and the heavy weight is 
supported by the light force. If the man applies a somewhat greater 
force ( one that is still considerably less than that produced by 
the weight on the other side) ,  the lever overbalances on his own 
side. 

A man is not so much conscious of torque as of force (more 
exactly, of muscular effort ) . He knows that he cannot apply suffi
cient force directly to the 250-kilogram weight to lift it. By"making 
use of thelever, however, he can do the job with a force one-tenth 
that required for direct lifting. By adjusting the differences prop
erly, he could make do with a force one-hundredth, one-thou
sandth, or indeed any fraction of that required for direct lifting. 
The usefulness of the lever as a method of multiplying man's lift-
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ing ability is evidenced by the very word "lever," which comes from 
a Latin word meaning "to lift." 

No doubt even primitive man had stumbled upon this "prin
ciple of the lever," but it was not until the time of the Greek 
mathematician Archimedes ( 287-2 1 2  e.c. ) that the situation was 
analyzed scientifically. So well did Archimedes appreciate the 
principle of the lever and its use in unlimited multiplication of 
force that he said, with pardonable bombast, "Give me a place 
to stand on and I will move the world." 

Any device that transfers a force from the point where it is 
applied to another point where it is used, is a machine (from a 
Latin word meaning "invention" or "device" ) .  The lever does this, 
since a force applied on one side of the fulcrum can lift a weight 
on the other side; it does this in so uncomplicated a fashion that 
it cannot be further simplified. It is therefore an example of a 
simple machine. Other examples of simple machines are the in
clined plane, and the wheel and axle. Some add three other simple 
machines to the list : the pulley, the wedge, and the screw. How
ever, the pulley can be viewed as a sort of lever, the wedge con
sists of two inclined planes set back to back, and the screw is an 
inclined plane wound about an axis. 

Virtually all the more complicated machines devised and used 
by mankind until recent times have been merely ingenious com
binations of two or more of these simple machines. These machines 
depend upon the motions and forces produced by moving bodies 
through direct contact. As a result, that branch of physics that 
deals with such motions .and forces is called mechanics. 

That branch of mechanics that specifically deals with motion 
is called dynamics, while that branch that deals with motions in 
equilibrium is called statics ( from a Greek word meaning "to cause 
to stand" ) .  Archimedes was the first great name in the history 
of statics because of his work with the lever. Galileo, of course, 
was the first great name in the history of dynamics. 

One force that does not seem to be the result of direct contact 
of one body upon another is gravitation. Gravitation seemingly 
exerts a force from a distance and produces a motion without 
involving direct contact between bodies. Such "action at a dis
tance" troubled Newton and many physicists after him. Expedients 
were worked out to explain this away, and gravitation was in
cluded among the mechanical forces. Thus, the study of the 
motions of .the heavenly bodies that result from and are controlled 
by gravitational forces is called celestial mechanics. 
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Multiplying Force 
A machine not only transfers a force, it can often be used 

to multiply that force, as in the example of the lever described 
above. Yet this multiplication of force should be approached 
with suspicion. How can one newton of force do the work of ten 
newtons just by transmitting it through a rigid bar? Such generosity 
on the part of the universe is too much to expect, as I pointed 
out at the beginning of the chapter. Something else must be lost 
to make up for it. 

If we consider the lever lifting the 250-kilogram weight by 
use of a force equivalent to only 25 kilograms of weight, we can 
see in the accompanying diagram that we have two similar tri
angles. The sides and altitude of one are to the corresponding sides 
and altitude of the other as the distance of the weight from the 
fulcrum is to the distance of the applied force from the fulcrum. 

In other words, if we apply a force at a point ten times as far 
from the fulcrum as the weight is, then to lift the weight a given 
distance, we must push down through a distance ten times as great. 
There is the answer! In lifting a weight by means of a lever, we 
may adjust distances from the fulcrum in such a way as to make 
use of a fraction of the force that would be required without the 
lever, but we must then apply that fractional force through a 
correspondingly greater distance. The product of the force mul
tiplied by the distance remains the same at either end of the 
lever. 

Force and distance 25 kg ' 
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This turns out to be true of any machine that seems to multi• 

ply a force. The smaller force performs the task that would re
quire a larger force without the machine, but always at the cost 
of having to be exerted through a correspondingly longer distance. 
The product of force and distance in the direction of the force 
is called work and is usually symbolized as w, so that : 

w = fd (Equation 7-1 )  

In a sense, work is an unfortunate term to use in this con
nection. Anyone will agree that lifting a weight through a distance 
is work, but in the common use of the term matters are not con
fined to this alone. In the common language, work is a tenn 
applied to the product of any form of exertion. To sit quietly in 
my chair for half an hour and think of what I am going to say 
next in this book may strike me as being hard work, but it involves 
no action of a force through a distance and is not work to a 
physicist. Again, to stand in one place and hold a heavy suitcase 
seems hard work, but since the suitcase doesn't move, no work 
is being done on it. If one walks along with the suitcase, there is 
still no work being done on it, for although it is moving ( horizon. 
tally ) ,  it is not moving in the direction of the (vertical ) force 
that keeps it from falling. 

Nevertheless, the term work, signifying a force multiplied 
by the distance through which a body moves in the direction of 
the force, is ineradicably established and must be accepted. 

The units of work are those of force multiplied by those of 
distance. In the mks system, the unit of work is the newton-meter, 
and this is named the joule (pronounced "jool")  after an English 
physicist whom I will have occasion to mention later. In the cgs 
system, the unit of work is the dyne-centimeter, which is called 
the erg ( from a Greek word meaning "work" ) .  Since a newton 
is equal to 1 00,000 dynes and a meter to 1 00 centimeters, a 
newton-meter is equal to 1 00,000 times 1 00 dyne-centimeters. In 
other words, one joule is equal to l 0,000,000 ergs. 

Since force is a vector quantity, it might seem that work, 
which is after all the product of a force and a distance, might also 
be a vector; and that one might speak of a given amount of work 
to the right and the same amount of work to the left as being 
equal and opposite. This is not so, however, as we will find if we 
consider the units of work once more. 

A newton is defined as a kilogram-meter per second per 
second, or kg-m/sec=. If a joule is a newton-meter, then it is also a 
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kilogram-meter-meter per second per second, or a kg-m2/sec9. 
This last can be written kg- (m/sec)2• But m/sec (meters per 
second) is a unit of velocity, and this means that the unit of work 
is equal to the unit of mass times the square of the unit of velocity, 
or w = mv2

• 

It is true that velocity is a vector quantity, therefore one 
might speak of -v and +v, but the unit of work involves the 
square of the velocity. The square of a positive number ( +v) 

,,( + v) and the square of a negative number ( -v) ( -v) are 
;,:both positive ( +v2), as we know from elementary algebra. Con
rsequently, the square of the velocity involves no differences in 
· :signs, and a unit that includes the square of the velocity is not 

a vector unit (unless it contains vector units other than velocity, 
of course) .  

We conclude then that work 'is a scalar quantity. 
Returning to the lever, we see that the work involved in rais

ing a boulder with a lever is the. same as that involved in raising 
a boulder without a lever, but that the distribution of work be
tween force and distance differs. The same is true ·where an in
clined plane is the device used. 

Let us say it is necessary to raise a SO-kilogram barrel 
through a height of two meters onto the back of a truck. Since a 
kilogram of weight exerts a downward force .of 9.8 newtons, a 
total upward force of 490 newtons is required to lift the barreL 
To exert 490 newtons of ' force through a distance of two meters 
in the direction of the force is to do 980 joules of work. 

Suppose instead that we lay a sloping plank from the ground 
to the truck so that the plank makes an angle of 30° with the 
ground. Under those conditions, the length of the plank ·from 
ground to truck is just twice the vertical height from ground to 
truck, or four me�ers. The force required to roll the barrel up the 
plank is 295 newtons,. just half the force required for direct lift-

Inclined plane 

490 t newtons 

2 meters 
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ing. That half-force is exerted through double-distance, however, 
and 980 joules of work is still done. 

The gentler the slope of the inclined plane, the smaller the 
force required to move the barrel and the longer the distance 
through which it must be moved. The inclined plane dilutes force 
-as it diluted velocity for Galileo-by diluting gravitational force 
(see page 10) . Neither the inclined plane, nor the lever, nor any 
machine, dilutes work. If we stick to work, rather than force, we 
never get something for nothing. 

But if we gain nothing on work, why bother? The answer 
is that even if we gain nothing directly, we may gain by altering 
the distribution between force and distance. If it is a question of 
lifting, by our unaided effort, 250 kilograms two meters directly 
upward, we must give up. We cannot lift it a meter, a centimeter, 
or anything at all ; we cannot budge it. To move the equivalent of 
50 kilograms through ten meters is possible, however, especially 
if we work slowly; in this way we can do the same work (50 X 10)  
that would have been impossible under the previous conditions 
(250 X 2 ) .  To lift the equivalent of five kilograms through 100 
meters may be tedious, but it is quite easy. 

Again, if we were asked to shinny up a rope suspended from 
the roof of a five-story building, we might well decide it to be be,. 
yond our capacity unless we were in excellent physical shape. 
However, a quite ordinary man can lift his weight to a fifth-story 
roof, if he goes up by way of a ramp, which is an inclined plane 
that enables him to use less force to lift his body-at the expense 
of moving it through a longer distance. 

It is sometimes convenient to do the opposite: expend extra 
force in order to gain distance. Thus, a great deal of force is ex� 
erted upon the pedals of a bicycle. This is transmitted to a point 
on the rear wheel near the hub. The spokes of the wheel then act 
as levers (with the hub the fulcrum) ,  so a much smaller force is 
applied to the rim of the wheel which, however, moves through 
a correspondingly larger distance. 

The bicycle is therefore a machine that enables the body to 
convert force into distance (without changing the total work 
done) more efficiently than it could without the bicycle. It is for 
this reason that a man on a bicycle can easily outrace a running 
man, although both are using their leg muscles with equal effort. 

The definition of work as the product of a force and the 
distance through which it acts, says nothing about the time it takes 
to act. Men usually find it preferable to accomplish a particular 
amount of work in a short time rather than in a long time and are 
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therefore interested in the rate at which work is done. This rate 
is spoken of as power. The units of power are joules/sec in the 
mks system and ergs/sec in the cgs system. 

A very common unit of power which fits into neither system 
was originated by the Scottish engineer James Watt ( 1736-1819) .  
He had improved the steam engine and made i t  practical toward 
the end of the eighteenth century, and he was anxious to know 
how its rate of work in pumping water out of coal mines com
pared with the rate of work of the horses previously used to oper
ate the pumps. In order to define a horsepower he tested horses 
!O see how much weight they could lift through what distance 
"nd in what time. He concluded that a strong horse could lift 
1 50 pounds through ll height of 220 feet in one minute, so OM 
horsepower was equal to 150 X 200/1, or 33,000 foot-pounds/ 
minute. 

This inconvenient unit is equal to 745.2 joules/sec. or 7,452,• 
000,000 ergs/sec. A joule/sec is defined as a watt in James Watt's 
honor, and so we can also say that one horsepower is equal to 
745.2 watts. The watt, however, is most commonly used in electri
cal measurements. In mechanical engineering (at least in Great 
Britain and the United States) it is still horsepower all the way. 
The power of our automobile engines. for instance. is routinely 
given in horsepower. 

Mechanical Energy 
It is neat and pleasant to see that the work put into one end 

of a lever is equal to the work coming out of the other end, and 
we might fairly suspect that there was such a thing as "conserva• 
tion of work." 

Unfortunately, such a possible conservation law runs into a 
snag almost at once. After all, where did the work come from 
that was put into the lever? If one end of tlie lever was manipu
lated by a human being who was using the lever to lift a weight. 
the work came from that done by the moving human arm. 

And where does the work of the moving arm come from? 
A man sitting quietly can suddenly move his arm and do work 
where no work had previously seemed to exist. This runs counter 
to the notion of conservation in which the phenomenon being 
conserved can be neither created nor destroyed. 

If one is anxious to set up a conservation law involving work, 
therefore, one might suppose that work, or something equivalent 
to work, could be stored in the human body ( and perhaps in 
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other objects) and that this work-store could be called upon at 
need and converted into visible, palpable work. 

At first blush such a work-store might have seemed to · be 
particularly associated with life, since Jiving things seemed filled 
with this capacity to do work, whereas dead things, for the most 
part, lay quiescent and did not work. The German philosopher 
and scientist Gottfried Wilhelm Leibnitz ( 1 646-1 7 1 6 ) ,  who was 
the first to get a clear notion of work in the physicist's sense, chose 
to call this work-store vis viva (Latin for "living force") .  

However, i t  i s  clearly wrong to suppose that work i s  stored 
only in living things; as a matter of fact, the wind can drive ships 
and running water can turn millstones, and in both cases force is 
being exerted through a distance. Work, then, was obviously 
stored in inanimate objects as well as in animate ones. In 1 807, 
the English physician Thomas Young ( 1773-1 829) proposed 
the term energy for this work-store. This is from Greek words 
meaning "work-within" and is a purely neutral term that can 
apply to any object, living or dead. 

This term gradually became popular and is now applied to 
any phenomenon capable of conversion into work. There are 
many varieties of such phenomena and therefore many forms of 
energy. 

The first form of energy to be clearly recognized as such, 
perhaps, was that of motion itself. Work involved motion (since 
an object had to be moved through a distance) ,  so it was not 
surprising that motion could do work. It was moving air, or wind, 
that drove a ship, and not still air; moving water that could tum 
a millstone, and not still water. It was not air or water that con
tained energy then, but the motion of the air or water. In fact, 
anything that moved contained energy, for if the moving object, 
whatever it was, collided with another, it could transfer its momen
tum to that second object and set its mass into motion; it would 
thus be doing work upon it, for a mass would have moved through 
a distance under the urging of a force. 

The energy associated with motion is called kinetic energy, 
a term introduced by the English physicist Lord Kelvin ( 1 824-
1 907 ) in 1 856. The word "kinetic" is from a· Greek word mean
ing "motion." 

Exactly how much kinetic energy is concained in a body 

/
\ moving at a certain velocity, v? To determine this, let us assume 

� 
that in the end we are going to discover that there exists a con
servation law for work in all its forms-stored and otherwise. In 
that case, we can be reasonably confident that if we find out how 
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much work it takes to get a body moving at a certain velocity, 11, 
then that automatically will be the amount 'of work it can do on 
some other object through its motion at that velocity. In short. 

·
. 

that would be its kinetic energy. 
To get a body moving in the first place takes a force, and 

that force, by Newton's second law, is equal to the mass of the 
moving body multiplied by its acceleration :  f = ma. The body 
will travel for a certain distance, d, before the acceleration brings 
it up to the velocity, v, which we are inquiring into. The work 
done on the body to get it to that velocity is the force multiplied 
by the distance. Expressing the force as ma we have: . , J.,1-

w = mad d .,. . Svah . t; Jr_1.<.1� -= 5�t,,11, <Eq�iti�n 1-2> 
i..<J4b tv 1-,,..·r,,,fttt 

Now much earlier in the book, in discussing Galileo's ex• 
periments with falling bodies, we showed that 11=at-that velc» 
ity, in other words, is the product of acceleration and time. This 
is easily rearranged to: t = 11/a. We also pointed out in discussing 
Galileo's experiments that where ·there is uniform acceleration. 

d=4at2, where d is the distance covered by the moving body. 

If, in place of t in the relationship just given, the quantity v/a 
is substituted, we have: 

d = ! a (!)2 = ! v9 (Equation 7-3) 2 a 2 a 

Let us now substitute this value for d in Equation 7-2. which 
becomes: 

l mar I 
w = 2  -a- = 2  mv' (Equation 7-4) 

This is the work that must be done upon a body of mass m 
to get it to move at a velocity v, and it is therefore the kinetic 
energy contained by tbe body of that mass and with that velocity. 
If we symbolize kinetic energy as e1:, we can write: 

1 
et = 2 

mv' (Equation 7-5) 

I have already pointed out that work has the units of mass 
multiplied by those of velocity squared and, as is clear from Equa
tion 7-5, so has kinetic energy. Therefore, kinetic energy_can,,be . 
measured in joules or ergs, as can work: Jrn:!�e_d__._ all fo��-of 
energy cAn1re: rtri:1i�§fej1JnJ��se���it� . . .  ,. -- - - . 

We might now imagine that we can set up a conservation 
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law in which kinetic energy can be converted into work and vice 
versa, but in which the sum of kinetic energy and work in any 
isolated system must remain constant. Such a conservation law 
will not, however, hold water, as can easily be demonstrated. 

An object thrown up into the air has a certain velocity and 
therefore a certain kinetic energy as it leaves the hand ( or the 
catapult or the cannon) .  As it climbs upward, its velocity de
creases because of the acceleration imposed upon it by the earth's 
gravitational field. Kinetic energy is therefore constantly disap
pearing and, eventually, when the ball reaches maximum height 
and comes to a halt, its kinetic energy is zero and has therefore 
entirely disappeared. 

One might suppose that the kinetic energy has disappeared 
because work has been done on the atmosphere, and that there
fore kinetic energy has been converted into work. However, this 
is not an adequate explanation of events. for the same thing would 
happen in a vacuum. 

One might next suppose that the kinetic energy had disap
peared completely and beyond redemption, without the appear
ance of work, and that no conservation law involving work and 
energy was therefore possible. However, after an object has 
reached maximum height and its kinetic velocity has been re
duced to zero, it begins to fall again, still under the acceleration 
of gravitational force. It falls faster and faster, gaining more and 
more kinetic energy, and when it hits the ground (neglecting 
air resistance) it possesses all the kinetic energy with which it 
started. 

Rather than lose our chance at a conservation law, it seems 
reasonable to assume that energy is not truly lost as an object 
rises upward, but that it is merely stored in some form other than 
kinetic energy. Work must be done on an object to lift it to a 
particular height against the pull of gravity, even if once it has 
reached that height it is not moving. This work . must be stored 
in the form of an energy that it contains by virtue of its position 
with respect to the gravitational field. 

Kinetic energy is thus little by little converted into "energy 
of position" as the object rises. At maximum height, all the kinetic 
energy has become energy of position. As the object falls once 
more, the energy of position is converted back into kinetic energy. 
Since the energy of position has the potentiality of kinetic energy, 
the Scottish engineer William J. M. Rankine ( 1 820-1 872 ) sug
gested, in 1 853,  that it be termed potential energy, and -this sug
gestion was eventually adopted. 
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To lift a body a certain distance (d) upward, a force eqijal 
to its weight must be exerted through that distance. The force 
exerted by a weight is equal to mg, where m is mass and g the 
acceleration due to gravity ( see Equation 5-1 on page 54) . If 
we let potential energy be symbolized as e, then, we have: 

e� = mgd (Equation 7-6) 
If all the kinetic energy of a body is converted into Potential 

energy, then the original et is converted into an equivalent e,, 
or combining Equations 7-5 and 7-6: 

1 
2 mv2 = mgd 

or simplifying, and assuming g to be constant. 
v2 = 2gd = 1 9.6d (Equation 7-7) 
From this relationship one can calculate ( neglecting air 

resistance) the height to which an object will rise if the initial 
velocity with which it is propelled upward is known. The same 
relationship can be obtained from the equations arising out of 
Galileo's experiments with falling objects. 

Kinetic energy and Potential energy are the types of energy 
made use of by machines built up out of levers, inclined planes 
and wheels, and the two forms may therefore be lumped together 
as mechanical energy. As long ago as the time of Leibnitz it was 
recognized that there was a sort of "conservation of mechanical 
energy," and that ( if such extraneous factors as friction and air 
resistance were neglected) mechanical energy could be visualized 
as bouncing back and forth between the kinetic form and the 
potential form, or between either and work, but not (taken in 
all three forms) as appearing from nowhere or disappearing into 
nowhere. 

The Conseroation of Energy 
Unfortunately, the "law of conservaton of mechanical en

ergy," however neat it might seem under certain limited circum
stances, has its imperfections, and these at once throw it out of 
court as a true conservation law. 

An object hurled into the air with a certain kinetic energy, 
returns to the ground without quite the original kinetic energy. A 
small quantity has been Jost through air resistance. Again, if an 
elastic object is dropped from a given height, it should { if mechani-
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cal energy is to be truly conserved) bounce and return to exactly 
its original height. This it does not do. It always returns to some
what Jess than the original height, and if allowed to drop again 
and bounce and drop again and bounce, it will reach lower and 
lower heights until it no longer bounces at all. Here it is not only 
the air resistance that interferes but also the imperfect elasticity 
of the body itself. Indeed, if a lump of soft clay is dropped, its 
potential energy is converted to kinetic energy, but at the mo
ment it strikes the ground with a nonbouncing splat that kinetic 
energy is gone--and without any re-formation of potential energy., 
To all appearances, mechanical energy disappears in these cases. 

One might argue that these losses of mechanical energy an� 
due to imperfections in the environment. If only a frictionless sys
tem were imagined in a perfect vacuum, if all objects were com
pletely elastic, then mechanical energy would be conserved. 

However, such an argument is quite useless, for in a true 
conservation law the imperfections of the real world do not affect 
the law's validity. Momentum is conserve<!, for instance, regard

• -less of friction, air resistance, jmperfect elastici� or any other 
\ departure from the ideal. R�cl:u"v e,l,;,1 ; J.,4tr�· M·l !, ,ft'\-.'<Y1.' ,1j•'r-j 

If we still want to seek a conservation law that will involve 
work, we must make up our minds that for every loss of mechani
cal energy there must be a gain of something else. That something 
else is not difficult to find. Friction, -one of the most prominent 
imperfections of the environment, will give rise to heat, and if the 
friction is considerable, the heat developed is likewise considerable. 
(The temperature of a match-head can be brought to the ignition 
point in a second by rubbing it against a rough surface. ) 

Conversely, heat is quite capable of being turned into me
chanical energy. The heat of the sun raises countless tons of water 
vapor kilometers high into the air, so that all the mechanical 
energy of falling water (where as rain, cataracts or quietly flow
ing rivers) must stem from the sun's heat. Futhermore, the eigh
teenth century saw man deliberately convert heat into mechanical 
energy by means of a device destined to reshape the world. Heat 
was used to change water into steam in a confined chamber, and 
this steam was then used to turn wheels and drive pistons. (Such 
a device is, of course, a steam engine. ) 

It seemed clear, therefore, that one must add the phenome
non of heat to that of work, kinetic energy and potential energy, 
in working out a true conservation law. Heat, in short, would have 
to be considered another form of energy. 

But if that is so, then any other phenomenon that could give 
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rise to heat would also have to be considered a form of energy. An 
electric current can heat a wire and a magnet can--give rise to an 
electric current, so both electricity and magnetism are forms of \ energy. Light and sound are also forms of energy, and so on. '� �J.-, 

If the conservation law is to encompass work and all forms £, .J } 
of energy ( not mechanical energy alone) ,  then it had to be shown 
that one form of energy could be converted into another quanti
tatively. In other words, in such energy-conversions all energy must 
be accounted for; no energy must be completely lost in the proc--
ess, no energy created. 

This point was tested thoroughly over a period of years in 
_ the 1 840's by an English brewer named James Prescott Joule 

( 1 8 1 8-1 889 ) ,  whose hobby was physics. He measured the heat 
produced by an electric current, that produced by the friction of 
water against glass, by the kinetic energy of turning paddle wheels 
in water, by the work involved in compressing gas, and so on. In 
doing so, he found that a fixed amount of one kind of energy was 
converted into a fixed amount of another kind of energy, and that 
if energy in all its varieties was considered, no energy was either 
lost or created. It is in his honor that the u1;1it of work and energy 
in the mks system is named the "joule." 

In a more restricted sense, one can consider that Joule proved 
that a certain amount of work always produced a certain amount 
of heat. Now the common British . unit of work is the "foot-pound" 
-that is, the work required to raise one pound of mass �hrough 
a height of one foot against the pull of gravity. The common 
British unit of heat is the "British thermal unit" ( commonly ab
breviated "Btu") which is the amount of heat required to raise 
the temperature of one pound of water by 1 ° Fahrenheit. Joule 
and his successors determined that 778 foot-pounds are equivalent 
to 1 Btu, and this is called the mechanical equivalent of heat. 

It is preferable to express this mechanical equivalent of heat 
in the metric system of units. A foot-pound is equal to 1 .356 
joules, so 778 foot-pounds equal 1 055 joules. Furthermore, the 
most common unit of heat in physics is the calorie, which is the 
amount of heat required to raise the temperature of one gram of 
water by 1 ° Centigrade.• One Btu is equal to 252 calories. There
fore, Joule's mechanical equivalent of heat can be expressed as 
1055 joules equal 252 calories, or 4. 1 8  joules = 1 calorie. 

Once this much was clear, it was a natural move to suppose 
that the law of conservation of mechanical energy should be con-

• There will be more to say about Fahrenheit degrees, Centigrade degrees, 
calories. and other items of the sort later in the book; see chapters 1 3  and 14. 
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verted into a law of conservation o.f energy, in the broadest sense 
of the word-including under "energy," work, mechanical en
ergy, heat, and everything else that could be converted into heat. 
Joule saw this, and even before his experiments were far advanced, 
a Gennan physicist named Julius Robert von Mayer ( 1 8 1 4-1 878 ) 
maintained it to be true. However, the law was first explicitly 
stated in form clear enough and emphatic enough to win accept
ance by the scientific community in 1 847 by the German physicist 
and biologist Hermann von Helmholtz ( 1 82 1-1 894 ) ,  and it is 
he who is generally considered the discoverer of the law. 

The law of conservation of energy is probably the most fun
damental of all the generalizations made by scientists and the one 
they would be most reluctant to discard. As far as we can tell it 
holds through all the departures of the real universe from the ideal 
models set up by scientists; it holds for living systems as well as 
nonliving ones; and for the tiny world of the subatomic realm as 
well as for the cosmic world of the galaxies. At least twice in the 
last century phenomena were discovered which seemed to violate 
the Jaw, but both times physicists were able to save matter by 
broadening the interpretation of energy. In 1 905, Albert Einstein 
showed that mass itself was a form of energy; and in 1 93 1 ,  the 
Austrian physicist Wolfgang Pauli ( 1 900- 1 95 8 )  advanced the 
concept of a new kind of subatomic particle, the neutrino, to 
account for apparent departures from the law of conservation of 
energy. 

Nor was this merely a matter of saving appearances or of 
patching up a law that was springing leaks. Each · broadening of 
the concept of conservation of energy fit neatly into the expanding 
structure of twentieth-century science and helped explain a host 
of phenomena; it also helped predict ( accurately) another host 
of phenomena that could not have been explained or predicted 
otherwise. The nuclear bomb, for instance, is a phenomenon that 
can only be explained by the Einsteinian concept that mass is a 
form of energy. 
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Vibration 

Simple Harmonic Motion 

The law of conservation of energy serves to throw light on 
a type of motion that we have not yet considered. 

So far, the motions that have been discussed, whether trans
lational or rotational, have progressed ( unless d isturbed) in one 
direction continuously. It is, however, also possible for motion 
to progress alternately. first in one direction. then in another, 
changing direction sometimes after long intervals and sometimes 
after short intervals-even very short intervals. Such an alternate 
movement in opposite directions is called a vibration or vibratory 
motion ( from a Latin word meaning "to shake") .  

This type of motion is very common, and we are constantly 
aware of the swaying or trembling of branches and leaves in the 
wind, for instance; or of the rapid trembling of machinery in oper
ation, such as that of an automobile with its motor idling; even 
of the chattering of our teeth or the shaking of our hand under 
conditions of cold or of nervous tension. 

The form of vibration that first came under scientific scrutiny 
was that of a taut string when plucked. Such strings were used 
in musical instruments known even to the ancients; the plucked 
strings give rise to musical sounds for reasons involving the vibra. 
tory motions lent by the vibrating strings to the air itself ( see the 

101 
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chapters on sound beginning on page 1 48 ) . The first to study such 
vibrations was the ancient Greek mathematician and philosopher 
Pythagoras of Samos ( sixth century B.c. ) .  His interest lay entirely 
in the relationship of these vibrat ions to music, and as a result, 
vibratory motion is frequently cal led harmonic motion. 

Most vibratory motion is of a complicated nature and does 
not readily lend itself to easy mathematical analysis. The particu• 
lar type exemplified by the taut, vibrating string is, however, an 
exception. It can be analyzed with comparative ease and is there• 
fore called simple harmonic motion ( sometimes abbreviated 
SHM) . 

In simple harmonic motion, it has been found that Hooke's 
law ( see page 50) holds at every stage of the movement. If we 
pull a taut string out of its original equilibrium position, the 
amount of the displacement from that equil ibrium position is pro• 
portional to the force tending to restore it to the equilibrium posi
tion. 

If the string is released after being pulled to the right, let us 
say, the restoring force accelerates i t  in the direction of the 
equilibrium position . In other words, the string snaps back to 

{ equil ibrium, moving faster and faster as it does so. 
As it approaches the equil ibrium positie>n, its d isplacement 

from that position becomes continually less, and the restoring 
force becomes continually less in proportion . As the restoring force 
decreases so, naturally, does the acceleration it imparts; therefore, 
although the string moves more and more rapidly as it approaches 
the equilibrium position, the rate of gain of velocity becomes less 
and less. Finally, when it has reached the equil ibrium position 

I the restoring force has become zero and so has acceleration. The 
}, string can gain no more velocity and its rate of motion is at a 

maximum. 
But although it is no longer gaining velocity it is moving 

rapidly, and it cannot remain at equilibrium position, but must 
move past it. Only a force can stop it once it is moving (Newton's 
first law ) ,  and at equilibrium position there is no force to do so. 
As it goes past the point of equilibrium to the left, however, it is 
displaced once more, and a restoring force comes into being again; 
this force produces an acceleration that serves to diminish its 
velocity of movement ( which is now in the direction opposed to 
the force) .  As the string continues to move leftward, the dis
placement and the restoring force continue to increase, and the 
velocity diminishes at a faster and faster rate until it reaches zero. 
The string is now motionless at a point of maximum ·leftward 
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displacement that is equal to the original extent of the rightward 
displacement. 

Under the influence of the restoring force, the string moves 
to the right again, passes through the equilibrium position, and 
out to the original maximum rightward displacements. Then it 
goes back to the left, then back to the right, and so on. 

If there were no air resistance and no friction at the points 
where the string is held taut, the maximum displacements to left 
and right would always be the same and the vibration would con

, tinue indefinitely. As it is, the vibrations do not, after all, quite 
reach the maximum, but with each rightward (or leftward) mo-

• tion attain a point of displacement not quite equal to the point 
reached at the previous motion in that direction. The vibrations 
are "damped" and slowly die out. 

In all cases of simple harmonic motion, the crucial fact is 
that velocity changes smoothly at all times, never abruptly. Suppose 
one imagines a falling body passing through the surface of the 
earth and the solid substance of the planeL The gravitational 
force upon it would grow continually less as more and more of 
the substance of the planet lay above the falling body and less 
and less below it. The body would accelerate as it fell, but by 
a smaller and smaller amount. By the time it reached the center 
of the earth, there would be no force upon it at all (at that point) ,  
and its velocity would be at a maximum. It would then pass beyond 
the earth's center and begin to emerge through the opposite por
tion of the planet, its velocity decreasing as the gravitational 
force grew larger and larger, until it emerged from the surface 
at the antipodes and rose as high above it as it had been (on the 
other side) in the beginning. It would then repeat this movement, 
returning to its original position, then to the opposite position, 
and SO OfbTbiS, tpo, 

r
uld be �an

�
x�m

· .. 
)e of �mple harmonic 

motion. tV &,- , =: G "' ""  :l Z.<;-· • 
1n actual Act, however, the · amn� body is interrupted by 

the surface of the earth, and its velocity· is abruptly changed at 
the moment of contact with that surface. The resultant series of 
bounces, while an example of a vibratory or harmonic motion, is 
not a simple harmonic motion. 

The Period of Vibration 
A particular point of interest in any vibratory motion is the 

time it takes to move from the extreme point on one side to the 
extreme point on the other and back. The time taken to complete . 
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this motion ( or any particular motion, for that matter) is the 
period of that motion.• 

Whenever a motion goes through a series of repetitive submo. 
tions, each with a period of its own, the motion is said to be a 
periodic motion, particularly when the individual periods are 
equal. Motion about a circle or any closed curve can be viewed 
as made up of successive returns to an original point with each 
single movement about the curve;  it is hence a series of repetitive 
submotions and may be a periodic motion. A vibration also repre
sents a series of returns to an original point, though by way of a 
forward-and-back motion rather than by motion in a closed curve, " 
and a vibration .:an also be a periodic motion. 

·· · 

To determine the period of a vibrating object, even when it 
is vibrating in accordance with the laws governing simple har
monic motion, is rather complicated if the vibration is dealt with 
directly. In such a vibration, neither velocity nor acceleration is 
constant, but both are changing with position at every instant. 
One therefore searches for a way of representing a vibration by 
means of some sort of motion involving a constant acceleration. 

This can be done by switching from vibration to another 
form of periodic motion-that of motion in a circle. An object 
can be pictured as moving in a circle under constant inward ac
celeration, and hence as moving along the circumference of the 
circle at a constant speed. 

If the circle in question has a radius of length a. then its 
circumference is 21ra. If the point is moving at a speed v, then 
the time, t, it takes to make a complete revolution ( the period of 
the circular motion ) is: 

2,,-a t =- 
i• (Equation 8-1 ) 

Now if we imagine the circle casting a shadow edge-on upon 
the wall, its shadow will be that of a straight line. The point 
moving about the circle will seem in the shadow to be moving 
back and forth on the straight line. As the point moves once about 
the circle, the point on the shadow will seem to move once back 
and forth upon the straight line. The period of the motion about 
the circle ( Equation 8-1 ) will also be the period of the shadow
vibration. 

• Th� word "p;riod" comes from Greek words meaning "round path• 
or �circle," because the first motion to interest mankind from the standpoint 
of the time it took was, of course, the apparent circular motion of the sun 
across the sky from one sunrise to the next. 
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At either extremity of the shadow-line, the point will seem 

to be moving very slowly, for its motion on the circle will be more 
or less at right angles to the shadow-line, and there will be very 
little sideways motion. (And only sideways motion will show up 
on the shadow. ) As the point travels into intermediate parts of 
the circle, more and more of its motion is sideway and less and 
less toward or away from the line, so the point on the shadow-line 
seems to move faster and faster the further it is from the extremity. 
At the very center, the point on the circle is moving quite parallel 
to the line and all its motion is sideway. At the center: of the 
shadow line, therefore, the point seems to be moving fastest. The 
mo.lion of the point on the shadow-line seems to resemble that of 
a body in simple harmonic motion and, indeed, the motion can 
be shown to be that of a body in simple harmonic motion. Con• 
sequently, Formula 8-1 represents the period (t)  of a simple 
harmonic motion. 

Equation 8-1 still represents a difficulty for it involves v, a 
velocity, and while the point travels about the circle at uniform 
speed, it moves on the shadow-line with a constantly changing 
one. We must, therefore, find something to substitute for v, if we 
can. 

In any simple harmonic motion, the maximum velocity 
comes at the midpoint, between the two extremes. A body under
going such motion is then at equilibrium position, where it would 
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remain if it were at rest. It has no energy of position at that point, 
and whatever energy it has is all energy of movement, or ( see 
page 94) kinetic energy. As the object moves away from its 
equilibrium position, it loses velocity and therefore loses kinetic 
energy. However, it moves into a position it would not take up 
but for the kinetic energy, and so it gains energy of position, or 
(see page 96) potential energy. At the extreme position, the 
body comes to a momentary halt, and all its energy is in the form 
of potential energy. A body in simple harmonic motion demon
strates a periodic shift from kinetic energy to potential energy 
and back again, and (barring the damping effect of friction aha 
air resistance) is an excellent example of a conservation of me
chanical energy. 

Now I have already said that, by Hooke's law, the restoring 
force on a body undergoing simple harmonic motion is propor
tional to its displacement from equilibrium position. That is f = 
kd, where f is the restoring force and d is the displacement. The 
restoring force is least at the position of equilibrium (which is 
at the center of our straight-line shadow) .  There . is no displace• 
ment at that point and the force is equal to 0. The restoring force 
is at a maximum at the point of maximum displacement, which is, 
of course, at the extremity of the straight-line shadow. That ex
tremity is a distance of a ( the radius of the circle that casts the 
straight-line shadow) from the center, or equilibrium position, 
so the force at its maximum is equal to ka. 

As the body moves from equilibrium position to the ex
tremity, it moves against a force that begins at O and increases 
smoothly to ka, and the average force against which it moves is 
therefore ka plus O divided by two, or ka/2. 

The work done on the body to bring it from its equilibrium 
position to the extremity is equal to force times the distance 
through which the force is exerted. This comes to ka/2 times a, 
or ka' /2. At the extreme point, all this work is stored as potential 
energy, and therefore the maximum potential energy of the body 
moving under the conditions of simple harmonic motion is ka' /2. 

At the same time, the maximum k inetic energy of the body 
comes at the equilibrium point where all the potential energy has 
been converted into motion and where velocity reaches a maxi
mum. The kinetic energy is then equal to mv'/2, where m is the 
mass of the body and v its maximum velocity. 

Since .the potential energy and the kinetic energy are inter
converted constantly during simple harmonic motion, without 



Vih1'ation 107 significant loss, the maximum potential energy and the maximum kinetic energy must be equal, so: mv"/2=kd/2 (Equation 8-2) We can easily rearrange this equation to: 
; = / ; (Equation 8-3) 

�.··. We can substitute y'm/k for a/v in Equation 8-1 and we hav,e: 
t = 271" /: (Equation 8-4) 
This is an astonishing result, for the period of simple harmonic motion turns out to depend only on the mass of the moving body and on the proportionality constant between stress and strain. Both can easily be determined for a particular body, and the period can then be calculated at once. The period, it should be noted, does not depend on the velocity of the body moving in simple harmonic motion, nor on the amount by which it is displaced from equilibrium position, since both v and a have disappeared from Equation 8-4. This means that if a string is pulled out from its equilibrium position by a certain amount, it will attain a certain maximum velocity at mid-point of its swings and will have a certain period of vibration. If it is pulled out a greater distance, or a lesser distance, it will gain a greater maximum velocity, or a lesser one, respectively; in either case the change in velocity will be just enough to make up for the change in distance of displacement, so the period will remain the same. This constant period of vibration offers mankind a great boon; it is a means of measuring time quite accurately by counting vibrations, even damped vibrations. In theory, any periodic motion makes this possible. The first periodic motion to serve mankind as a timepiece was the earth itself, for each tum of the planet on its axis marks off one day and night and each tum of the planet about the sun marks off one cycle of seasons. Unfortunately, the earth's movements do not offer a good means of measuring times of less than a day. During ancient times, mankind made use of nonperiodic motions broken up into (as was hoped) equal parts. These included the motion of a shadow along a background, the movement of 
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sand through a narrow orifice, the dripping of water through an 
orifice, the shrinking of a burning candle, and so on. All that was 
obtained in this fashion were rather poor approximations of equal 
times; not until the mid-seventeenth century was it possible to 
tell time to closer than an hour or so, or to measure units of time 
less than an hour with any reasonable accuracy. 

It was not until periodic motions with short periods of vibra
tion were put to use that modern time-telling devices became 
possible-and with them, to a very large extent, modem scienc�. 

The Pendulum 

Galileo himself suffered greatly from the .inability to measure 
short intervals of time accurately. (He made use of his pulse on 
occasions, and though this was a periodic phenomenon, it was 
not, unfortunately, a very steady one. ) Nevertheless, although he 
was himself not to benefit directly from it, he was the first to dis
cover a periodic motion that was eventually to be put to use for 
the purpose of time-telling. 

In 1 583, Galileo was a teen-age medical student at the Uni
versity of Pisa and one day went to the cathedral to pray. Even his 
devotion to prayers (and Galileo was always a pious man) could 
not keep his agile mind from working. He could not help but 
notice the chandelier swaying in the draft. At times, thanks to 
the vagary of the wind, it swayed in large arcs, at times in smaller 
ones, but it seemed to Galileo that the period of swing was always 
the same, regardless of the length of the arc. He interrupted his 
prayers and checked this conjecture by timing the swing against 
his pulse. 

Back at his quarters, Galileo went on to set up small ex
perimental "chandeliers" by suspending heavy weights ( "bobs") 
from strings attached to the ceiling and letting them swing to and 
fro. ( Such suspended weights are called pendulums from a Latin 
word meaning "hanging" or "swinging") . _  Galileo was able to 
show that the period of swing did not depend on the weight of the 
bobs, but only upon the square root of the length of the string. 
In other words, a pendulum with a string four feet long would 
have a period twice as long as one with a string one foot long. 

Consider the pendulum, now. If the bob is suspended ver
tically from its support, it will remain motionless. That is its 
equilibrium position. If, however, the bob is pulled to one side, 
the pull of the string forces it to move in the arc of a circle so 
that it is raised to a higher level. If it is now released, the pull of 
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gravity will cause it to move downward with an accelerating 
velocity, back along the arc of the circle to the bottommost 
position. 

The gravitational force that brings about this fall is only 
that part not balanced by the upward pull of the string. As the bob 
drops, .the string becomes more and more nearly vertical and 
balances more and more of the gravitational force. The unbalanced 
gravitational force constantly decreases as the bob drops, and the 
acceleration to which the bob is subjected also decreases. When 
the bob is at the bottom of the arc, the pendulum is perfectly 
vertical and the string balances all the gravitational pull. There is 
no unbalanced gravitational pull at that point and no acceleration. 
The bob is moving at maximum velocity. 

Because of inertia, the bob passes through the point of equi
librium and begins to mount the arc in the other direction. Now 
there is an unbalanced gravitational force that slows its motion. 
The higher it climbs the greater the unbalanced gravitational force 
and the more quickly is the motion of the bob slowed down; Even
cually its motion is slowed to zero and it reaches a maximum dis
placement. Down it comes again, through the equilibrium point, 
to a maximum displacement on the other side, and so on. 

This Is very much like the discription of simple hannonic 
motion (see page 102), except that where the plucking of :. string 
involves motion back and forth in a straight line, that of the 
pendulum involves motion J)ack and forth along a circular arc. 
'This in itself would not seem to be an essential difference, since 
there seems no reason why there should not be vibratory · rota
tional _motion as well as vibratory translational motion; indeed 
there are cases of both varieties of simple harmonic motion. 
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But is the pendulum truly one of them? In all cases of simple 
hannonic motion such as the vibration of a string, the twisting 
and untwisting of a wire, the up and down movement of a stretched 
string, and the opening and closing of a spirally coiled spring, 
the restoring force lies within the material itself; it is the product 
of its elasticity. In the case of the pendulum, the restoring force 
lies outside the system in the form of an unbalanced gravitational 
pull. This may well introduce a fundamental difference. To check 
on .whether the pendulum swings according to simple harmonic 
motion, .we must see whether the restoring force of gravity :is 
indeed proportional to the amount of displacement, which is what 
would be required if Hooke's law (characteristic of simple har
monic motion) is to hold. 

Let us begin with the displacement. This is the length of 
the circular arc through which the pendulum has moved in reach
ing a particular position. The length of this arc depends both on 
the length (/) of the string and on the size of the angle (8) • 
through which it moves. The displacement (D)  is, in fact, equal to 
the length of the string times the angle through which the weight 
moves: 

D :.:  IB (Equation 8-5) 

Now what about the restoring force? That depends upon the 
force of gravity, of course. The full pull of gravity, directed down
ward, would be equal to mg ( see page 54) ,  where m is the mass 
of the bob and g is the gravitational acceleration. t However, the 
bob is not being pulled directly downward, but to one side. It 
moves as though it were sliding down an inclined plane that changes 
its slope at every point. 

The situation is similar to that on page 1 8, where we were 
also involved with inclined planes. Imagine the bob of a pendulum 
at a certain point of its movement, where the suspending string 
makes an angle 6 with the vertical. At that point, the bob is acting 
as though it were sliding down an inclined plane that made a 

• The Greek letter. '"theta" (8)  is often used to represent angles. 
t Actually, the string also has a mass. however l ight that may be. so there 

Is mass distributed all along the line of the pendulum from the bob up to the 
very support. At each point in the string there is a l ittle bit of mass suspended 
by a different length of string. This is also true of the bob itself, d ifferent 
portions of which are different distances from the point of support. Ideally, a 
pendulum should consist of n massive bob with zero volume attached by a 
weightless string to the point cl support. Such a device Is an ideal or simple 
pendulum, which naturally doesn't ex ist in the actual world. However. by using 
a dense bob and a l ight siring. a real pendulum can be made lo approach the 
properties of a simple pendulum. 
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tangent to the arc of swing at that point. We could draw such an 
inclined plane as part of a right triangle. The inclined plane would 

· have a length L and would be at a height H above the horizontal 
line. The angle made by the inclined plane to the horizontal could 
be shown by ordinary geometry to be equal to the angle of displace
ment, and it, too, can be marked as 6. 

As on page 19, the maximum gravitational force would 
have to be multiplied by the ratio of H to L, so the restoring force 
(F) would be equal to mg(H/L). The ratio of H to L is usually 
thought of as the sine• of angle 6, and is symbolized as "sin 6.'' 
We can therefore represent the restoring force as: 
� r :· F = mg(sin8) (Equation 8-6) 

The ratio of the restoring force to the displacement in the 
case of the swinging pendulum is therefore (combining Equations 
8-5 and 8-6) : 

F mg(sin 8) 
D = 16 (Equation 8-7) 

Now the question is whether this ratio is a constant, as it 
must be if the swinging pendulum is to be considered an example 
of simple hannonic motion. The mass (m ) of the bob and the 

• The ratio of one side of a right triangle 1IO another n.ries according to 
the size of the angles of the right triangle. For a given angle, these ratios are 
fixed, and each Is given a name of its own. Since 1uch ratios arc studied in 
that branch of mathematics called '"trigonometry• ('"the measurement of tri• 
angles" Is the meaning of the Greek term from which that expression is de
rived), such ratios arc called trigonometric /unctions. Sines are an example of 
a trigonometric: function. We don't have to go into these in detail. Suffice it to 
say that it is easy to obtain tables that will give the sine, or any of various 
other trigonomelri; functions. for angles of any size. 
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length of the string (/)  do not change as the pendulum swings, 
and the value of g is constant for any given point of the earth's 
surface, so the quantity mg/I may be considered constant. It re
mains only to determine whether the quantity ( sin 6)/9 is likewise 
constant. If it is, we are set. 

Unfortunately, the ratio is not constant. As we can easily 
determine, the sine of 30� is 1/2, while the sine of 90° is I .  The 
angle has tripled, in other words, while the sine of the angle has 
only doubled. This means that ( sin 9 )/9 i5 not a constant, that the 
restoring force of a pendulum is not proportional to the displace
ment, and that the swinging of a pendulum is not an example of 
simple harmonic motion. . '-

Nevertheless, if the ratio ( sin 6 )  /0 is not constant, it is 
nevertheless almost constant for small angles of I 0° or Jess. There
fore, if the pendulum swings back and forth in moderate arcs, it 
is almost an example of simple harmonic motion. 

In fact, for small angles ( sin 8) /8 is not only constant, it is 
about equal to unity. For that reason ( provided we remember 
that we are dealing with pendulums swinging through small arcs 
only ) ,  we can eliminate ( sin 0 ) /8 in Equation 8�7 and write: 

F mg 
D - 1  (Equation 8-8 ) 

where the symbol - signifies .. is approximately equal to." 
( You may wonder why we are willing to bother with an ap

proximate equality when science should concern itself with exact 
relationships The answer is that by being satisfied with an ap
proximation, we can treat the pendulum as an example of simple 
harmonic motion and make certain other calculations quite simple, 
if not quite exact. )  

For instance, we have already determined that the period ( t) 
of an object undergoing simple harmonic motion is equal to 
211"\/mlk (see Equation 8-4 ) .  

The symbol k represents the ratio of the restoring force to 
the displacement for which, in the case of the pendulum, we have 
found a value in Equation 8-8, where it is set approximately equal 
to mg/I. Combining Equations 8-4 and 8-8 ( and retaining the 
symbol for approximate equality)  we can state that the period of 
a moderately swinging pendulum is: 

t= 2,,. · rm ..,. 21r · f!.. (Equation 8-9) 'V -;;g11 'V g 
As you see •. the period of a moderately swinging pendulum is 
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independent of the mass of the bob and depends ( at least to a very 
close approximation) upon the square root of the length of the 
string-as Galileo had determined by experiment back in the 
sixteenth century. 

The presence of g, the acceleration due to gravity, is of great 
importance. If we solve Equation 8-9 for g, we obtain:  

4w2l 
g = 7  (Equation 8-10 )  

_, This gives us a far easier method for measuring g than by 
tpring to measure the velocity of free fall directly. The length of 
a pendulum is easily determined, and so is its period. The use of 
pendulums in Newton's time showed the manner in which g varied 
slightly with latitude and added experimental proof to Newton's 
suggestion that the earth was an oblate spheroid (see page 5 6 ) .  

Since the period o f  a moderately swinging pendulum i s  vir
tually constant, it can also be used to measure time. If a pendulum 
is connected to geared wheels in such a way that with each oscil
lation of the pendulum the wheel is pushed forward just one notch, 
the motion can then easily be scaled down in such a way as to 
push one pointer around a dial in exactly one hour ( the minute 
hand) and another pointer around the same dial in exactly twelve 
hours ( the hour hand ) .  The addition of weights can keep the 
pendulum going so that the effects of friction and air resistance do 
not damp its motion to zero. 

In his old age, Galileo had a vision of this application of his 
youthful discovery, but it was first brought to fruition by the Dutch 
scientist Christian Huygens ( 1 629- 1 695 ) in 1 673. Huygens 
even allowed for the imperfections of the pendulum. He showed 
how to take into account the fact that an actual pendulum is not 
a simple pendulum but has a bob of finite volume suspended from 
a string or rod of finite mass. He also showed that if a pendulum 

. swung in a curve that was not the arc of a circle but the arc of a 
rather more complicated curve called a cycloid, the period would 
then be truly constant. He showed, furthermore, how the pendu
lum could be made to swing in such a cycloidal arc. 

Since his time, ingenious methods have also been used to take 
into account the fact that the length of a pendulum (and therefore 
its period as well ) changes slightly with changes in temperature. 

Other examples of simple harmonic motion can also be used 
to measure time. Hooke (of Hooke's law) devised the "hair
spring;'' a fine spiral spring which can be made to expand and 
contract in simple harmonic motion. The fine spring is driven by 
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the uncoiling of a larger .. main-spring" that is periodically tightened 
by mechanical windi�g. Such hair-springs are used in wristwatches, 
where there is obviously no room for a pendulum and where (even 
if room existed ) the movements of the arm would throw a pendu
lum into confusion at once. 

In recent years. the vibrations of the atoms moving within 
molecules in accordance with the rules of simple harmonic motion 
have been used to measure time. Such "atomic clocks" are far 
more regular and accurate than any clock based on supra-atomic 
phenomena can be. 
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Liquids 

Pressure 
So far I have assumed that the "bodies" which have been 

. under discussion are .solid-that is� that they are more or less rigid 
and have a definite shape. They resist any force tending to alter 
or deform that shape (though if the force increases without limit, 
a point is eventually reached where even the most rigid solid shape 
will deform or break).  Solids behave all-in-a-piece, so if part of 
a solid moves. all of it moves. and in such a way as to maintain 
the shape. 

There are bodies, however, which do not have a definite shape 
and do not resist deformation. If a stretch or shear, even a small 
one, is exerted upon them, they alter shape in response. In particu
lar, they will respond to the force of gravity and alter their shapo 
in such a way as to reduce their potential energy to a minimum. 
In response to gravity, such bodies will move downward and flatten 
out as much as possible; in so doing, they will take on the shape 
of any container in which they might be. If the container is open 
at the top and is tipped, or if an opening is made at the bottom, 
the material will pour out, under the influence of gravity, to take 
up a new position of still lower potential energy on the table-top, 
the floor or in a hole. It is this ability to pour or flow that gives 

115 



JIB Undemanding Physics 
such bodies the name � fluids (from a Latin word meaning "to 
flow"). 

Fluids fall into two classes. In one crass, the downward force 
of gravity is paramount. so the fluid. wlu1e taking on the shape 
of the container, collects in the lowermost portions and does not 
necessarily fill it. Such fluids have a definite volwne, if not a 
definite shape. and are called liquids (also from a Latin word 
meaning "to flow"). Water is. of course, the most familiar liquid. 

In the other class of fluids, the downward force of gravity 
Is countered by other effects to be discussed in later chapters.;;,ln 
this class there is a certain concentration toward the bottom of a 
container but not enough to notice under ordinary conditions. ()n 
the whole. such a fluid spreads itself more or less evenly through 
a confined space and has no definite volume of its own. Such fluids 
without either a definite shape or a definite volume are gases.• 
Air is the most familiar gas. 

I will take up each, variety of fluid separately and wm begin 
with liquids. 

The weight of an object, as I explained earlier, is a down
.ward force exerted by that object in response to the gravitational 
pull. In the case of solids, this force makes itself evident through 
whatever portion of its nether surface makes contact with another 
body. Since the nether surface is usually rough (even if only on 
a microscopic scale) the force is uneven. being exerted at those 
points where contact is actually made and not at others where 
contact is not made. For this reason, it is usually convenient to 
speak only of the &otal downward force exerted by a solid body, 
and this is indeed done when we speak of its weight. 

In the case of a liquid, however, tbe contact between its nether 
surface and the object it rests upon is quite 111100th and evenly 
distnbuted, so rhat all portions receive their equal share. t For 
fluids, therefore. it becomes convenient to speak of weight ( or, 
more properly, force) per unit area. This force per unit area is 
termed pressure. 

It is common to use as a unit of pressure .. pounds per square 

• The word •gas• was coined about 1600 by • Flemish chemist. Jan 
Baptista van Hefmont ( 1'77-1644), who supposedly derived It from the 
Oreek word ·chaos." 

t If we pl auffic:lently aubmlc:rosc:opic. unemtne11 does ahow up, to be 
aurc. This is ba:llusc maner Is not really amtinuous but Is composed of discrete 
particles called atoma. We don"I have to worry about lhil right now. but 
will consider it later (see page 143 ). 
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inch" (sometimes abbreviated "psi" ) where pounds are a unit of 
weight in this connection and not. units of mass. 

In the metric system the proper units of pressure are newtons 
per square meter in the mks system, and dynes per square centi
meter in the cgs system. Since a newton equals 100,000 dynes 
and a square meter equals 1 0,000 square centimeters, 1 new
ton/m1 is the equivalent of 1 00,000 dynes per 1 0,000 square 
centimeters, or 1 0  dynes/cm2• Translating into metric units, one 
pciund per square inch is equal to 6900 newtons/m2; and one gram 
per square centimeter is equal to 98 newtons/m2 • .  

1 Suppose we consider a square centimeter of the bottom of 
a<container filled with liquid to a height n. The pressure ( dyncs 
/cm2 ) depends on the weight of liquid resting on that square 
centimeter. The weight depends, in part at least, upon the volume 
of the column, one square centimeter in cross-sectional area and 
n centimeters high. The volume of that column is n cubic centi
meters. · 

It does not follow, however, that in knowing the volume of a 
substance we also know its weight. It is common knowledge that 
the weight of a body of given volume varies according· to the 
nature of the substance making up the body. We are all ready to 
admit, for instance, that iron is "heavier" than aluminum. By that, 
of course, is meant that a given volume of iron is heavier than the 
same volume of aluminum. ( If we remove this restriction to equal 
volumes, we will be faced by the fact that a large ingot of aluminum 
is much heavier than an iron nail. ) 

For any object the weight per unit volume is its density, and 
in the metric system the units of density are usually expressed 
as grams (of weight ) per cubic centimeter, or kilograms (of 
weight ) per cubic meter. We should, therefore, say that iron is 
"denser," rather than "heavier," than aluminum. 

If the height of a column of liquid resting upon a unit area 
determines its volume, and the density of that liquid gives the 
weight of a unit volume, then the total weight on the unit area, 
or pressure ( p ) ,  is equal to the height of the liquid column (h)  
multiplied by its density (d )  : •  

p = hd (Equation 9-1 } 

• This assumes that the density does not vary along the height of the 
column. and as far as liqu ids a re concerned. any variation of density with 
depth is small enough to be ignored for small pressures. This will not be so 
for gases ( see page 14S ). 
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The pressure of a liquid on the bottom of a container there

fore depends only upon the height and density of the liquid, and 
not upon the shape of the container or the total quantity of liquid 
in the container. This means that the various containers shown 
in the accompanying figure, with bottoms of equal areas but with 
different shapes and containing different quantities of liquid, will 
have their bottoms placed under equal pressure. 

It is easy to see that the container with the expanded upper 
portion ought to experience the same pressure at the bottom, for 
the weight of the additional liquid is clearly supported by i�e 
upper horizontal portion of the container. It may seem not at all 
logical, however, that the container with the contracted · upper 
portion should also experience the same pressure at the bottom. 
The missing liquid (not present because of the contraction) has 
no weight to contribute to the pressure. How then does the pres
sure remain as great as if the missing liquid were there? 

To explain that, we must realize that pressure is exerted 
differently iri liquids as compared with �lids. A solid resists the 
deforming influence of its own weight. A large pillar of marble may 
rest solidly on a stone floor and transmit a great deal of pressure 
to that floor, but it will itself remain unmoved under its own 
weight. The pillar will not, for instance, belly out in the middle, 

Pressure and shape 
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and if we place our hands on the side of the pillar we will be aware 
of no pressure thrusting out sideways. 

Imagine, however, a similar pillar made of water. It could not 
remain in existence for more than a fraction of a second. Under 
the force of its own weight it would belly outward at every point 
and collapse. If a pillar of water is encased in a restraining cylinder 
of aluminum, the outward-bellying tendency of the water will 
evidence itself as a sidewise force. If a hole is punched in the 
aluminum cylinder, water will spurt out sidewise under the in
fluence of that force. This same line of reasoning would show that 
11, liquid would exert a pressure against a diagonally slanted wall 
with which it made contact. 

A fluid, indeed, exerts pressure in all directions and particu
larly in a direction perpendicular to any wall with which it may 
make contact. The amount of pressure exerted at any given point 
depends upon the . height of liquid above that particular point. 
Thus if a hole is punched in a cylindrical container of water, 
the liquid will spurt out with more force if the hole is near the 
bottom (with a great height of liquid above) than if it is near the 
top (with but a small height of liquid above) .  

I n  the container with a contracted upper portion, then, there 
is a pressure of the fluid up against the horizontal section, as in
dicated in the diagram. The amount of this pressure depends upon 
the height of the liquid above that horizontal section. By Newton's 
third law, the upper horizontal section exerts an equal pressure 
down upon the liquid. The downward pressure of the horizontal 
section is equal to that which would be produced by the missing 
liquid if it were there, and so the pressure at the bottom of the con
tainer remains the same. 

Buoyancy 
The generalization concerning pressure, made use of in the 

previous section, was first clearly stated by the French mathema
tician Blaise Pascal ( 1 623-1 662 ) and is therefore often referred 
to as Pascal's principle. 

This can be expressed as follows : Pressure exerted anywhere 
on a confined liquid is transmitted unchanged to every portion of 
the interior and to all the walls of the containing vessel ; and is 
always exerted at right angles to the walls. 

This principle can be used to explain the obse-rved fact 
that if a container of liquid contains two or more openings, to 
which are connected tubes of various shapes into which the liquid 
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can rise, and if enough liquid is present  in the container so that 
the level will rise into those tubes, the liquid will rise to the same 
height in each .•  

To explain this, let us  consider the case of  a container with 
two openings and let us imagine a porous vertical partition divid
ing the container between the two openings. The pressure against 
the partition from the left would depend on the height of the 
liquid on the left, while the pressure from the right would depend 
on the height of the liquid on the right. If the liquid column is 
higher on the left, the pressure from the left is greater than that 
from the right, and there is a net pressure from left to right. 
Liquid is forced through the partition in that direction , so that the 
height of the liquid on the left decreases and . that on the right 
increases. When both heights are equal there is no net pressure 
either left or right, and therefore no further motion. 

This effect is part of folk knowledge, as is witnessed by the 
common saying that "water seeks its own level." 

Notice that I am taking for granted here that liquids will 
move, or flow, in response to a force, and this is actually so. The 
laws of motion apply to fluids as well as to solids, and the study of 
mechanics includes, in its broad sense, forces and motions in
v,,lving fluids as well as solids. However, it is quite common to 
restrict the use of the term "mechanics" to solid bodies. The 
mechanics of liquids is then given the special name hydrodynamics 
(from Greek words meaning "the motions of water" ) ,  and the 
rr.echanics of gases is cal led pneumatics ( from the Greek word for 
"air" ) .  These may be grouped together as fluid mechanics. 

It is not only the weight of the liquid itself that can be trans-

• This is noc lltrictly true because of capillary action. but this wiU be 
taken up later (see page 129 ) .  

Water finds its level 
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mitted to every part of the liquid as a pressure. Any applied force 
can be so transmitted. 

For instance, suppose a liquid completely fills a container 
with two necks, each neck being stoppered by a movable piston 
which we can assume to be weightless. Suppose, furthermore, 
that the necks are of different width, so the piston in the larger 
neck has a cross-sectional area of 1 0  cm1 while that in the smaller 
one has a cross-sectional area of only l cm1• 

Now imagine that a force of one dyne is exerted downward 
on the smaller piston. Since the area of the smaller piston is 1 
cm2

, the pressure upon it as a result of the applied force is 1 
dyne/cm2

• In accordance with Pascal's principle, this pressure is 
transmitted unchanged through the entire body of liquid and, per
pendicularly, to all the walls. It is transmitted, in particular, per
pendicularly to that portion of the wall represented by the larger 
piston. As the small piston moves downward, then, the lar,ge piston 
moves upward. 

The upward pressure against the larger piston must be the 
same as· the downward pressure against the smaller piston, 1 dyne 
/cm2• The area of the larger piston is, however, 1 0  cm2; The 
total force against the larger piston is therefore 1 dyne/cm' multi
plied by 10 cm•, or 1 0  dynes. The total force has been multiplied 
tenfold and the weight which the original force would have been 
capable of lifting has also been multiplied tenfold. It is by 
"hydraulic presses" based on this effect that heavy weights can be 
lifted with an expenditure of but a reasonable amount of force. 

all! 
Are we in this way getting something for · nothing? Not at 

Suppose we press down on the sma!I piston ( 1  cm2 in area) 

Hydraul ic press 
1 dyne 10 dynes 

t 
� 

t 
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1 dyne/cm2 
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and make it move a distance 1 cm. The volume of liquid it has 
displaced is I cm2 multiplied by I cm, and this comes to one cubic 
centimeter ( I  cm3 ) .  The larger piston ( 10 cm2 in area) can only 
move upward·a sufficient distance to make room for the displaced 
1 cm8 of liquid. The distance required is I cm3 divided by 
I O  cm2, or 0.1  cm. Thus the situation is the same as it was for the 
lever ( see page 8 9 ) .  The force has been multiplied tenfold, 
yes, but the _distance through which the force has been exerted has 
been reduced to one-tenth. The total work (force times distance) 
obtained from the hydraulic press is the same, if we neglect such 
things as friction, as the total work put into it. 

The pressure of a liquid will be transmitted not only to the 
walls of a container but also ( perpendicularly) to the surfaces of 
any solid object within the liquid. Imagine a cube of iron sus
pended in liquid so that the top and bottom surface of the cube 
are perfectly horizontal and the other four surfaces are perfectly 
vertical. The pressure against each of the four vertical surfaces 
depends on . the height of l iquid above them, which is the same for 
all. For the vertical surfaces, then, we have equal pressures 
arranged in opposing pairs. There is, consequently, no net side
ways pressure in any direction. 

But what if we consider the two horizontal surfaces, the one 
on top and the one on bottom? It is clear that there is a greater 
height of liquid above the lower surface than above the upper one. 
There is therefore a comparatively great upward pressure against 
the lower surface and a comparatively small downward pressure 
against the upper surface. As a result, a net upward force is 
exerted by the liquid upon \he submerged object. (This is most 
easily reasoned out in the case of the solid cube, but it can be 
shown to hold for a solid of any shape or, for that matter, for a 
submerged drop of liquid or bubble of gas. ) This upward force of 
liquids against submerged objects is called buoyancy. 

How large is this buoyant force? Consider a solid body 
dropping into the liquid contents of a vessel. The solid must 
make room for its own volume by pushing aside, or displacing, an 
equivalent volume of liquid, and the liquid revel in the vessel rises 
sufficiently to accommodate that displaced volume. 

It therefore follows that the submerging solid is exerting a 
downward force on the liquid, a force large enough to balance 
the weight of the solid's own volume of liquid. By Newton's third 
law, it is to be expected that the liquid will in turn exert an up
ward force on the solid equivalent to the weight of that same 
quantity of liquid. 
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The original weight of the submerged body is equal to its 

volume ( V) times its density (D ) .  The weight of the displaced 
liquid is equal to its volume ( which is the same as the volume 
of the submerged solid, and hence also V) times its density (d) . 
The weight of the body after submersion ( W) is equal to its 
original weight minus the weight of the displaced water : 

W = VD - Vd (Equation 9-2) 

Solving for D, the density of the submerged solid, we have: 

D - W + V d 
(Equation 9-3) -

V 

The weight of the immersed body ( W) can be directly 
measured, the volume of the displaced fluid ( V) is obtained at 
once from the rise in water level and the cross-sectional area of 
the container, and the density of the fluid (d) is also easily meas
ured. With this data in hand, the density of the immersed body can 
be calculated easily from Equation 9-3. 

This method of measuring density was first made use of by the 
Greek mathematician Archimedes in the third century B.C. The 
story is that King Hiero of Syracuse, having received a gold 
crown from the goldsmith, suspected graft. The goldsmith had, the 
king felt, alloyed the gold with cheaper silver and had pocketed 
the difference. Archimedes was asked to tell whether this had 
been done, without, of course, damaging the crown. 

Archimedes knew that a gold-silver alloy would have a smaller 
density than would gold alone, but he was at a loss for a method 
of determining the density of the crown. He needed both its 
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weight and its volume for that, and white he could weigh it easily 
enough, he could not estimate the volume without pounding it 
into a cube or sphere or some other shape for which the volume 
could then be worked out by the geometry of the time. And 
pounding the crown would have been frowned on by Hiero. 

The principle of buoyancy is supposed to have occurred to 
Archimedes when he lowered himself into a full bathtub and 
noted the displaced water running over the sides. He ran naked 
through the streets of Syracuse ( so the story goes) shouting, 
"Eureka! Eureka!" ( "I've got it! I've got it!") .  By immersing 
the crown in water and measuring the new weight . together with 
the rise in water level, and then doing the same for an equal weight 
of pure gold, he could tell at once that the density of the crown 
was considerably less than that of the gold ; the goldsmith was 
suitably punished. The principle of buoyancy is sometimes called 
Archimedes' principle as a result. 

If an immersed body has a greater density than that of the 
fluid in which it is immersed, then D is greater than d, and VD is 
naturally greater than Vd. From Equation 9-2, we see that in that 
case the weight ( W) of the immersed body must be a positive 
number. The weight of the body is decreased, but it is still larger 
than zero and falls through the fluid. (Thus a solid iron or alumi
num object will fall through water. ) 

However, if the immersed body has a smaller density than 
that of the fluid, then D is smaller than d, VD is smaller than V d, 
and the immersed body has a weight that is a negative number. 
With a negative weight ( so to speak ) ,  it moves upward rather 
than downward in response to a gravitational field. (Thus a piece 
of wood or a bubble of air submerged in water will "fall upward'' 
if left free to move. } 

A solid body less dense than the fluid that surrounds it will 
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float, partly submerged. on the surface of the fluid under condi· 
tions where the weight of water it displaces is equal to its own 
original weight; in such a case, its weight in water is zero, and it 
neither rises nor falls. The solid body floats when it has displaced 
just enough water (Jess than its own volume) to equal its own 
original weight. 

It is not to be supposed though that became a steel ship floats 
the density of steel is less than that of water. It is not the steel of 
the ship alone that displaces water. The ship is hoUow, and as it 
sinks into the water the enclosed air displaces water just as the 
steel does. The density of the steel-plus-enclosed-air is less than the 
density of water, though the density of steel alone most certainly 
is not, and so the steel ship floats. 

The force of buoyancy, by the way, is not a matter of cal
culations and theory alone; it can easily be felt. Lift a sizable rock 
out of the water and its sudden gain in weight as it emerges into 
the air can be staggering. Float a sizable block of wood on a water 
surface and try to push it down so that it will be completely sub
merged. and you will feel the counterforce of buoyancy most 
definitely. 

Cohesion and Adhesion 

Solids, as I said at the beginning of the chapter, act all-in-a
piece. Each fragment of a solid object clings firmly to every other 
fragment, so if you seize one comer of a rock and lift, the entire 
substance of the rock rises. This sticking-together is called co
hesion (from Latin words meaning "to stick to") .  

Fluids have nothing like the kind of  cohesion that exists in 
solids. If you dip your hand into water and try to lift a piece of 
it in the hopes that the entire quantity will rise out of its con-

Surface tension, 
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tainer, you will only get your fingers wet. Nevertheless, one should 
not conclude from this that the force · of cohesion in liquids is 
completely absent. The force is much smaller in most liquids than 
in solids, but it is not entirely zero. This is most clearly seen at 
the surface of a liquid. 

In the body of a liquid, even a short way below the actual sur
face, a given portion of the liquid is attracted by cohesive forces 
in all directions equally by the other portions of. the liquid that 
surround it. There is no net unbalanced force in any particular 
direction.•  At the surface of the liquid, however, the cohesive 
forces are directed only inward toward the body of the liquid and 
not outward where there is no liquid to supply cohesive forces. 
(Most often, there is only air on the other side of the liquid surface, 
and the attractive forces between air and the liquid are so small 
that they can be ignored. ) The resultant of this semisphere of co
hesive forces about a particle of liquid in the surface is a net 
inward force exerted perpendicularly from that surface. 

To keep liquid in the surface against this inward force re• 
quires work, so the surface represents a form of energy of position 
or potential energy. This particular form is usually called surface 
energy. 

Such surface energy is distributed over an area of surface, 
so its units are those of work per area. In the mks system this 
would be joules per square meter (joules/m2) ,  and in the cgs 
system it would be ergs per square centimeter (ergs/cm2 ) .  In the 
case of surface energy, the cgs system is the more convenient and 
is generally used. One erg is equal to one dyne-cm or 1 g-cm2 /sec" 
so 1 erg/cm2 is equal to 1 (g-cm2/sec2)/cm2• If we cancel one 
of the centimeter units, this becomes 1 (g-cm/sec")/cm, or 1 
dyne/cm, and as a matter of fact the units of surface energy are 
most often presented with the last-named unit, dynes per centi
meter. 

Left to itself, surface energy reduces to a minimum in a way 
analogous to that in which gravitational potential energy is re
duced whenever a ball high in the air falls to the ground, or in 
which a column of liquid flattens and spreads out if the container 
is broken. A small quantity of liquid suspended in air will take up 
the shape of a sphere, for a sphere has for its volume the smallest 
area of surface, therefore, surface energy is then reduced to a 

0 In solids, the various panicles eomtituting the substance are lined up 
in fixed and orderly positions ( rather than moving about freely as in liquids). 
For that reason, the cohesive forces between neighboring particles In solids are 
oriented in definite directions and are very noticeable. 
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minimum. Such a sphere of liquid is, however, distorted into a 
"tear-shaped" object by the unbalanced downward pull of gravity. 
H it is falling through air, as a raindrop does, for instance, it will 
be flattened at the bottom through the upward force of air resist• 
ance. The smaller the droplet of liquid, the smaller the relative 
effects of gravity and air resistance, and the more nearly spherical 
it is. Soap bubbles are hollow, liquid structures that are so light 
for their volume (because of enclosed air) that the forces of 
gravity ( unusually low in this case) and of air resistance ( unusu
ally high) cancel each other. · Soap bubbles therefore drift about 
slowly and show -themselves to be virtually perfect spheres. 

A sizable ., quantity of liquid flattens out. The necessity· of 
minimizing the gravitational potential energy rises superior .to that 
of minimizing the surface potential energy, and the surface of an 
undisturbed pail of water (or pond of water) seems to be a plane. 
Actually, it is a segment of a sphere, but a large one; one that has 
a radius equal to that of the earth. Look at the Pacific Ocean on a 
globe of the earth and you will see that its surface almost forms a 
semisphere. 

H energy in any form is added to a liquid, some may well 
go into increasing the surface energy by extending the surface area 
beyond its minimum. Thus, wind will cause the surface of an ocean 
or lake to become irregular and therefore increase in surface area. 
The surface in a glass of water will froth if the glass is shaken. 

Because the surface is stretched into a larger area by such an 
input of energy, and because it pulls back to the minimum when 
the energy input ceases, the analogy between the liquid surface 
and an elastic skin under tension ( a very thin film of stretched 
rubber, for instance) is unmistakable. The surface effects are there
fore frequently spoken of as being caused . by surface tension. 
rather than by surface energy. 

The same sort of cohesive forces that act to hold different 
portions of a liquid together, via surface tension, act also to hold 
a portion of a liquid in contact with a portion of a neighboring 
solid. In the latter case, where the attractive force is between solid 
and liquid (unlike particles) rather than between liquid and itself 
(like particles) ,  the phenomenon is called adhesion (also, like 
cohesion, from Latin words meaning "to stick to").  Adhesive 
forces may be as great as, or even greater than, cohesive forces. 
In particular, the adhesion of water to clean glass is greater than 
the cohesion of water to itself. 

This has an effect on the shape of the liquid surface of water 
in a glass container. Where the water meets the glass, the attrac-
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tion of the glass for water is large enough to overcome water's 
cohesive forces. As a result, the water surface rises upward so as 
to increase the water-glass contact (or "interface") as much as 
possible at the expense of the weaker water-water forces. If there 
were no countering forces, water would rise to the top of the con
tainer and over. However, there is the countering force of gravity. 
There comes a point where the weight of the raised water, added 
to the cohesive forces of water, just balances the upward pull of 
the adhesive forces, and a point of t:quilibrium is reached after 
the water level has been raised by a moderate degree. 

If the container is reasonably wide, this upward-bending of 
the surface is restricted only to the neighborhood of the water
glass contact. The water surface in the interior remains flat. Where 
the container is a relatively narrow one, however, the surface of 
'the liquid is all in the region of water-glass contact, and the liquid 
surface is then nowhere plane; instead it forms a semisphere bend
ing down to a low point in the center of the tube. Viewed from the 
side, the surface resembles a crescent moon and. indeed, it is 
spoken of as a meniscus (Greek for "l ittle moon" ) .  

Cohesive forces may well be larger than adhesive forces in 
particular cases. For instance, the cohesive forces in liquid mercury 
are much larger than those in water; they are also larger than 
the adhesive forces between mercury and glass. If we look at 
mercury in a glass tube, we see that at the interface where mercury 
meets glass, the mercury pulls away from the glass. reducing the 
mercury-glass interface. The mercury meniscus in such a tube 
bends downward at the edges and rises to a maximum height at the 
center of the tube. The same is true even for water if the glass 
container has a coating of wax. since the adhesive forces between 
water and wax are less than the cohesive forces within water. 

If water is spilled onto a flat surface of glass, it will spread out 
into a thin film so as to make the greatest possible contact, adding 
to the total adhesive force at the expense of the weaker cohesive 
force. The water. in other words, wets the glass. Mercury, how
ever, when spilled on glass (or water on a waxed surface) ,  makes 
as little contact with the glass as possible, drawing itself into a 
series of small gravity-distorted spheres. and adding to the total 
cohesive force at the expense of the weaker adhesive force. Mercury 
does not wet glass. and water does not wet wax. In all these events, 
the effect is to reduce the total surface energy (that of the liquid/air 
interface plus that of the liquid/solid interface) to a minimum. 

Where a water-containing tube attached to a water reservoir 
is narrow. the rise in water !evil brought about by the upward force 
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of adhesion is considerable, and the water rises markedly above its 
"natural level"•(see page 120). 

It is possible to calculate what the raised height (h) of the 
water level must be in a particular tube. Adhesion is a fonn of 
surface tension (which we can represent as the Greek letter 
"sigma," 17) acting around the rim of the circle where water meets 
the glass of the tube. This circle has a length of 2rr, where r is the 
radius of the tube. The total upward force brought about by ad
hesion is therefore the surface tension of the water-glass interface, 
17 dynes/cm, multiplied by the length of the circle where water and 
glass meet, 2rr cm, so that the total force is 2,m, dynes. 

Countering this upward force is the downward force of 
gravitation, which is equal to the weight (mg dynes, see page 54) 
of the raised water. The mass of the column of water raised by 
adhesion is equal to its volume (v) times its density (d). Substitut
ing vd for m, we see that the weight of the water is vdg dynes. 
Since the raised column of water in the tube is in the fonn of a 
cylinder, we can make use of the geometrical formula for the 
volume of a cylinder and say that the volume of the raised water 
is equal to the height of the column (h)  multiplied by the cross
sectional area ( wr ) ,  where r is the radius of the column. Substitut
ing wrh for v, we see that the weight of the water is 1rrhdg dynes. 

When the water in the narrow tube has been raised as high 
as it will go, the upward adhesive force is balanced by the down
ward gravitational force, so we have: 

2,,.,17 = 1rrhdg 
Solving for h: 

h = 217 rdg 

(Equation 9-4) 

(Equation 9-5) 

The acceleration due to gravity (g) is fixed for any given 
point on the earth; and for any particular liquid, the surface tension 
(u} and the density (d) are fixed for the particular conditions of 
the experiment. The important variable is the radius of the tube 
(r) . As you see, the height to which a column of water is drawn up
ward in a narrow tube is inversely proportional to the radius of 
the tube. The narrower the tube, the greater the height to which 
the liquid is lifteu. Consequently, the effect is most noticeable in 
tubes (natural or artificial ) of microscopic width. These are capil
lary tubes (from a Latin expression meaning "hair-like") ,  and the 
rise of columns of water in such tubes is called capillary action. It 
is through capillary action that water rises through the narrow 
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interstices of a lump of sugar or a pie� of blotting paper, and it is 
at least partly through capillary action that water rises upward 
through the narrow tubes within the stems of plants. 

Again, if we know the value of the density of a liquid and the 
extent of its rise in a tube of known radius (both rise and radius 
being easily .measured), it follows that since the value of g is also 
known, !be value of the surface tension (c,) can be calculated 
from Equation 9-.S. 

In the case of mercury, where the -adhesive forces with glass 
are exerted downwards, the level is pulled below the "natural 
level." The degree to which the level is lowered is increased as the 
radius of the tube is decreased. 

Viscosltg 
We are accustomed to the notion of friction as a force that 

is exerted opposite to that which brings about motion when one 
solid moves in contact with another. Such friction tends to slow. 
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and eventually stop, motion unless the propulsive force is vigorously 
maintained. 

There is also friction where a solid moves through a fluid, as 
when a ship plows through water. For all that water seems so 
smooth and lacking in projections to catch at the ship, the ship 
once set in motion will speedily come to a halt, its energy absorbed 
in overcoming the friction with the water, unless the propulsive 
force is vigorously maintained there, too. 

This friction arises from the fact that it is necessary to expend 
energy to pull the water apart against its own cohesive forces in 
order to make room for the· ship or other object to pass through. 
The energy expended varies with the shape of the object moving 
through the fluid. If the fluid is pulled apart in such a way as to 
force it into eddies and other unevennesses of motion ( turbulence), 
the energy expended is multiplied and the motion stops the sooner; 
to prevent a stop the propulsive force must be increased. If, instead, 
the fluid is pulled apart gradually by the forward edge of the moving 
object and allowed to come together even more gradually behind. 
so turbulence is held at a minimum, the energy expended is reduced 
considerably, and the force required to maintain motion is likewise 
reduced. A "streamlined shape" consisting of a bluntly curving 
fore and a narrowly tapering rear is the "teardrop" shape of water
drops falling through air, and of fish, penguins, seals, and whales 
moving through water. It is used in human devices. too, where 
motion through a liquid medium with maximum economy is 
desired--such use was enforced by hit-and-miss practice long be
fore it was explained by theory. 

The friction between a moving solid and a surrounding liquid 
increases with velocity. Thus, an object falling through water is 
accelerated by the gravitational pull against the resistance of 
friction with the water. However, as the velocity of the falling body 
increases, the resisting friction increases. too; the force of gravity. 
of course, remains constant. Eventually, the resisting force of 
friction increases to the point where it balances the force of gravity, 
so acceleration is then reduced to zero. Once that happens, the 
body falls through the liquid at a constant_ terminal velocity. 

We ourselves are easily made aware of the friction of solids 
moving through liquids. Anyone trying to walk while waist-deep in 
water cannot help but be. _conscious of the unusual consumption 
of energy required and of the "slow-motion" effect. 

The friction makes itself evident even when the liquid itself 
is the only substance involved. When a l iquid moves, it does not 
move aU-in-one-piece as a solid does. Instead, a given portion will 
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move relative to a neighboring portion, and an "internal friction" 
between these two portions will counter the motion. Where the 
cohesive forces that impose this internal friction are low, as in 
water, we are not ordinarily very conscious of this. Where they are 
high, as in glycerol or in concentrated sugar solutions, the fluid 
pours slowly; so slowly indeed that, accustomed as we are to the 
comparatively rapid water flow, we tend to grow impatient with 
it. The internal friction is higher at low temperatures than at high 
temperatures. The folk-saying "as slow as molasses in January" 
points up our impatience. 

A slowly-pouring liquid is said to be "viscous," from the 
Latin word for a sticky species of birdlime that had this property. 
The internal friction that determines the man.ner in which a liquid 
will pour is called the viscosity. There are liquids that are so 
viscous that the pull of gravity is not sufficient to make them flow 
agairu:t the strong internal friction. Glass is such a liquid and its 
viscosity is such that it seems a solid to the ordinary way of 
thinking.* 

To consider the measurement of viscosity, imagine two 
parallel layers of liquid, each in the form of a square of a given 
area a and separated by a distance d. To make one of these squares 
move with respect to the other at velocity v against the resisting 
internal friction requires a force /. It turns out that the relationship 
among these properties can be expressed by the following equation; 

fd va "-' '1 (Equation 9-6) 

where ., (the Greek fetter "eta") is a constant at a given tempera
ture and represents the measure of viscosity. 

The unit of viscosity can be determined from Equation 9-6. 
The expression fd in the numerator of the fraction in Equation 9-6 
represents force multiplied by distance, or work. The unit of work 
in the cgs system is dyne-cm or grn-cm'/sec'. The expression 
va in the denominator of the fraction represents volume (centi
meters per second ) multiplied by area ( square centimeters) .  The 
unit of va, therefore, is ( cm/sec ) (cm' ) or cm'/sec. 

• That glass is not a solid. despite its seeming so. is evidenced by its 
lack of cenain properties chdracteristic of solids. Glass does not have a crystal
line structure, for instance. or a sharp melting point. Even so. the case of glass 
is evidence enough that the d ist inction between a solid and a l iquid is not 
11s clear-cul as might be expected from the most common examples of eilhet'. 
Indeed, most differences and distinct ions in science are anificial human con
ventions imposed on a very complicated universe. and such distinctions cannoc 
help but become fuzzy if viewed with sufficient auentiori to detail. 
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To get the unit of viscosity in the cgs system, we must there
fore divide the unit of fd by that of va. It turns out that (gm-cm2

/ 

sec2 ) / ( cm3 /sec) works out by ordinary algebraic manipulation to 
gm/cm-sec, or grams per centimeter-second. One gm/cm-sec 
is defined as one poise in honor of the French physician Jean Louis 
Marie Poiseuille ( 1 799-1 869 ) ,  who in 1 843 was the first to study 
viscosity in a quantitative manner. (As a physician, he was pri
marily interested in the manner in which that viscous fluid, blood, 
moved through the narrow blood-vessels. ) 

The poise is too large for convenience in dealing with most 
liquids, so the centipois.e ( one-hundredth of a poise) and even the 
millipoise (one-thousandth of a poise) are commonly used. Thus, 
the viscosity of water at room temperature is just about one centi
poise. At the same temperature, the viscosity of diethyl ether ( the 
common anesthetic) is 0.23 centipoises, or 2.3 millipoises, while 
the viscosity of glycerol is about 1500 centipoises, or 1 5  poises. 

The motion of a fluid has an effect upon its pressure. Imagine 
a column of water flowing through a horizontal tube of fixed 
diameter. The water is under pressure or it would not be moving, 
and the pressure ( force per unit area ) is the same at all points, 
for the water is flowing at the same velocity at all points. This 
could be demonstrated if the pipe were pierced at intervals and a 

Bernou l l i ' s  princip le  
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tube inserted into each orifice. The water would rise to the same 
level in each tube. 

But suppose the pipe had a constricted area in the middle. 
The same volume of water would have to pass through the con
stricted area in a given time as would have to pass through an equal 
length of unconstricted area. If that were not the case, water would 
pile up at the entrance to the constriction, which, of course, it does 
not. ( If the constriction were narrow enough to prevent flow alto
gether, flow would stop, and the volume of water passing through 
a given section would be O cm3 /sec in the constricted and uncon
stricted areas alike. ) 

But in order for the same volume of water to pass through the 
constricted and unconstricted areas in a given time the flow of 
water must be more rapid through the constricted area (just as the 
wide slowly-flowing river becomes a tumbling torrent when passing 
through a narrow gorge) . Since the velocity of water increases as 
it enters the constricted area, it is subject to an acceleration, and 
this must be brought about by a force. We can most easily find such 
a force by supposing a difference in pressure. If the pressure in 
the unconstricted portion is greater than that in the constricted por
tion, then there is a net force from the unconstricted portion ( high 
pressure )  toward the constricted portion ( low pressure) ,  and the 
liquid is indeed accelerated as it enters the constriction. 

Furthermore, when the liquid leaves the constriction and 
enters a new unconstricted area, its velocity must decrease again. 
This involves an acceleration again, and there must be a force in 
the direction opposite to the flow in order to bring about such a 
slowing of velocity. However, if the new unconstricted area is a 
region of high pressure again, such a force can be accounted for. 

In short, it can be concluded as an important generalization 
that the pressure of a liquid ( or a fluid, generally) falls as its 
velocity increases. This is called Bernoullz"s principle, after the 
Swiss mathematician Daniel BernouJii ( 1 700-1 782 ) ,  who was the 
first to study the phenomenon in 1 738 and who, on that occasion. 
invented the term "hydrodynamics." 



C H A P T E R  10 
Gases 

Density The properties of liquids, described in the previous chapter, are important in connection with a fundamental question concerning the ultimate composition of matter, a question that was of great interest to scientists as long ago as the time of the ancient Greeks. Matter can be subdivided indefinitely, as far as the eye can see. A piece of paper can be tom in half, in quarters, and in eighths-and still remain paper. A drop of water can be divided into two smaller drops or into four still smaller drops-and still remain water. Can such a subdividing process be continued.forever? Is matter continuous even to ultimate smallness? There was no way in which the ancient thinkers could test this in actual practice, and they resorted to logical arguments based on what they considered first principles. Some, notably Democritus of Abdera (fifth century B.C. ) ,  maintained that matter could not be  subdivided forever, but that eventually a small portion was reached that could not possibly be broken down further. This he called "atomos" (meaning "uncuttable") ,  and we now speak of his views as representing 
atomism, or an atomic theory. Other Greek philosophers, notably Aristotle, argued 

135 



136 Understanding Physics against this notion, however, adducing reasons that made the idea of atoms seem illogical. By and large, the non-atomistic view won out and remained the prevalent belief of scientists for two thousand years. If one confined oneself to the study of the proierties of solids, one could scarcely help but be sympathetic to the Aristotelian view, for there is nothing about a solid that would make it seem logical to consider it to be composed of a conglomeration of small particles. If it were, we would have to suppose the particles to be stuck firmly together, since solids acted all-in-onepiece. And if we are going to suppose that particles are stuck firmly together, why not discard the particles altogether and suppose the solid to be all one piece of continuous matter in the first place? Where liquids are concerned, the situation is quite different. By the very fact that liquids do not move all-in-one-piece, it might reasonably be suggested that they are composed of separate particles. A mass of tiny metal spheres or a heap of powder would take on the overall shape of any container in which they were placed, and they would pour as a fluid would. If the particles were rather sticky, they would pour like a viscous fluid. In fact, many of the properties of liquids could be explained . nicely by supposing them to consist of sub-submicroscopic particles which attract each other somewhat. Surface tension could be explained in this fashion, for instance. However, all the properties that make liquids suggest atomism more effectively than solids do, are further intensified in gases. And in actual fact, it was the study of gases through the seventeenth and eighteenth centuries that finally forced scientists to reverse the early decision in Aristotle's favor and to take up again, at the start of the nineteenth century, the longdiscarded view of Democritus. Gases differ from liquids most clearly and obviously, perhaps, with respect to density. In comparison with liquids, gases are thin and rarefied. The density of water is 62.43 pounds per cubic foot in the English system. Using metric units, it is one gram per cubic cen,timeter (1 gm/ cm")* in th� cg'll�ystem and a thousand kilograms per cubic meter (5,000 kg/m") in the mks system. The least dense liquid at room temperature or below is liquidhydrogen, while the densest is mercury. The former hasa density of0.07 gm/gm•, the 
• 'Ibis ls no coincidence. In setting up tho metric system In the 1790's, tho 

French originators defined tho gram as tho weight of a cubic centimeter of 
water under set conditions of temperature. 
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latter a density of 1 3 .S46 gm/cm1• (At elevated temperatures some 
metals such as platinum would melt to liquids with densities as 
high as 20 gm/cm8. )  

The density of solids fans for th e  most part within this range. 
too. The lightest solid, solid hydrogen, has a density of 0.08 
gm/cm3, while the heaviest, the metal osmium, has one of 22.48 
gm/cm8• 

Such densities can be expressed in allied fashion as specific 
gravity, a term dating back to the Middle Ages. Specific gravity 
may be defined as the ratio of the density of a substance to the 
density of water. In other words, if the density of mercury is 1 3.S46 
gm/cm8 and that of water is 1 gm/cm•, then the specific gravity 
of mercury is ( 1 3.546 gm/cm8 ) / ( 1  gm/cm') ,  or 13.546. 

Because the density of water is 1 gm/cm•, the specific gravity 
comes out numerically equal to the density in the cgs system, but 
you must not be misled by this apparent equality, for there is an 
important difference in the matter of units. In dividing a density 
by a density, the units (gm/cm•, in the case cited in the previous 
paragraph) cancel, so that the figure for specific gravity is a 
dimensionless number. 

The units cancel when specific gravity is calculated, no matter 
what system of units is used for the densities. In the mks system, 
the densities of mercury and water are, respectively, 1 3,546 
kg/m8 and 1 ,000 kg/m1• By taking the ratio, the specific gravity of 
mercury is 1 3.546, as before. In the English system of units, the 
densities of mercury and water are 845.67 pounds per cubic foot 
and 62.43 pounds per cubic foot, and the ratio is still 1 3.S46. 

The convenience of a dimensionless number is just this then: 
it is valid for any system of units; 

The specific gravity of gases is much less than that of either 
liquids or solids. The most common gas, air, has a specific gravity 
of 0.0013  under ordinary conditions. The lightest gas, hydrogen, 
has under ordinary conditions a specific gravity of 0.00009. An 
example of a very dense gas is the substance uranium hexafluoride, 
which is a liquid at ordinary temperatures, but if heated gently is 
converted into a gas with a specific gravity of 0.03 1 .  

Thus, under ordinary conditions, even the densest gases are 
less than half as dense as even the least dense liquids or solids, 
while a common gas such as air has only about 1/700 the density 
of a common liquid such as water, and only about 1 /2000 the 
density of common solids such as the typical rocks that mak& up 
the earth's crust. 
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Gas Pressure 

Gases share the fluid properties of liquids but in an attenuated 
form, as is to be expected considering the difference in density. 
For instance, gases exhibit pressure as well as liquids do, but gas 
pressure is considerably smaller for a given height of fluid. A 
column of air a meter high will produce a pressure at the bottom 
only 1/700 that of a column of water a meter high. 

Nevertheless we live at the bottom of an ocean of air many 
miles high. Its pressure should be considerable and it is; it is equiva
lent to the pressure produced by a column of water ten meters high. 
This pressure was first measured by the Italian physicist Evangelista 
Torricelli ( 1 608-1 647 ) in 1 644. 

Torricelli took a long tube, closed at one end, and filled it 
with mercury. He then upended it in a dish of mercury. The 
mercury in the tube poured out of the tube, of course, in response 
to the downward pull of gravitational force. There was a counter
force, however, in the form of the pressure of the atmosphere 
against the mercury surface in the dish. This pressure was trans• 
mitted in all directions within the body of the mercury ( Pascal's 
principle, see page 1 1 9 ) .  including a pressure upward into the tube 
of mercury. 

As the mercury poured out of the tube, the mass of the 
column, and therefore the gravitational pull upon it, decreased 
until it merely equalled the force of the upward pressure due to the 
atmosphere. At that point of balancing forces, the mercury 'no 
longer moved. The mercury column that remained exerted a 
pressure ( due to its weight) that was equal to the pressure of the 
atmosphere (due to its weight ) .  The total weight of the atmosphere 
is, of course, many millions of times as large as the total weight of 
the mercury, but we are here concerned with pressure which, be it 
remembered, is weight ( or force) per unit area. 

It turns out that the pressure of the atmosphere at sea level 
is equal to that of a column of mercury just about 30 inches (or 
76 centimeters) high; Torricelli had, in effect, invented the barom
eter. Air pressure is frequently measured, particularly by meteorol
ogists, as so many inches of mercury or centimeters of mercury, 
usually abbreviated in Hg or cm Hg, respectively. • It is natural to 
set 30 in. Hg or 76 cm Hg equal to 1 atmosphere. A millimeter of 
mercury (mm Hg) has been defined as l torricelli, in honor of the 
physicist. so one atmosphere is equal to 760 torricellis. 
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Air pressure may also be measured as weight per area. In that 
case, normal air pressure at sea level is 14.7 pounds of weight per 
square inch, or 1 033 grams of weight per square centimeter 
(gm[w]/cm') .  Expressed in the more formal units of force per 
area, one atmosphere is equal to 1 ,01 3,300 dynes/cm2

• One million 
dynes per square centimeter has been set equal to one bar ( from a 
Greek word for "heavy") ,  so one atmosphere is equal to 1 .0 1 33 
bars. 

Naturally, if it is the pressure of the atmosphere that 
balances the pressure of the mercury column, then when anyone 
carrying a barometer ascends a mountain, the height of the column 
of mercury should decrease. As one ascends, at least part of the 
atmosphere is below, and what remains above is less and less. The 
weight of what remains above, and therefore its pressure, is lower 
and so is the pressure of the mercury it will balance. 

This was checked in actual practice by Pascal in 1 65 8. He 
sent his brother-in-law up a neighboring elevation, barometer in 
hand. At a height of a kilometer, the height of the mercury column 
had dropped by ten percent, from 76 centimeters to 68 centimeters. 

Furthermore, the atmosphere is not evenly distributed about 
the earth. There is an unevenness in temperature that sets up air 
movements that result in the piling up of atmosphere in one place 
at the expense of another. The barometer reading at sea level can 
easily be as high as 31 in. Hg or as low as 29 in. Hg. (In the 
center of hurricanes, it may be as low as 27 in. Hg. ) These 
"highs" and "lows" generally travel from west to east, and their 
movements can be used to foretell weather. The coming of a h igh 
(a rising barometer) usually bespeaks fair weather, while the 
coming of a low (a falling barometer) promises storms. 

For all that air pressure is sizable in quantity ( the value, 
14.7 pounds of weight per square inch, is most easily visualized 
by a person used to the common measurements in the United 
States ) it goes unnoticed by us. For thousands of years, men 
considered air to be weightless. ( We still say "as light as air" or 
"an airy nothing.") 

The reason for this is that air exerts its pressure in all direc
tions, as all fluids do. An empty balloon, although supporting 
the full pressure of miles of air, will rest with its mouth open and 
its walls not touching, for the air within it has an outward pres
sure equal to the inward pressure of the air outside. Place the 
balloon in your mouth, however, and suck out the air within so 
that the inward push of the air outside is no longer balanced. Now 
the walls of the balloon will be pushed hard together. 
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The same factors apply to human beings. The air in our 

lungs, the blood in our veins, the fluid in our bodies (and living 
tissue is essentially a thick, viscous fluid ) is generally at air 
pressure and delivers a pressure outward equal to that of the 
atmosphere inward. The net pressure exerted on us is zero, and 
we are therefore unaware of the weight of the air. 

If we submerge ourselves in water, the pressure from with
out rapidly increases, and it cannot be matched by pressure from 
within without damage to our tissues. It is for this reason that an 
unprotected man, such as a skin diver, is severely limited in the 
depth to which he can penetrate, regardless of how well equipped 
with oxygen he may be. On the other hand, forms of life adapted 
to the deeps exist at the extremest abyss of the ocean, where the 
water pressure is over a thousand atmospheres. Those life forms 
are as unaware of the pressure (balanced as it is from within ) ,  
and as unhampered by it, as we are by air pressure. 

Once it was recognized that air had weight and produced a 
pressure, it was also quickly recognized that this could easily be 
demonstrated provided it were not balanced by an equal pressure 
from within. In other word�. 1t seemed desirable to be able to 
remove the air from within a container, producing a vacuum 
(a Latin word meaning "empty" ) so that the air pressure from 
without would remam unbalanced by any appreciable pressure 
from wnhin. Torricelli had formed the first man-made vacuum 
( inadvertently ) when he had upended his tube of mercury. The 
column of mercury, as 1t poured out, left behmd a volume of 
nothingness (except for thin wisps of mercury vapor ) ,  and this 
is still called a "Torricellian vacuum ." 

Just a few years later, in 1 650, the German physicist Otto 
von Guericke ( 1 602-1 686 )  invented a mechanical device that 
little by little sucked air out of a container. This enabled him to 
form a vacuum at will and to demonstrate the effects of an un
balanced air pressure. Such air pressure would hold two metal 
hemispheres together against the determined efforts of two eight
horse teams of horses (whipped into straining in opposite direc
tions ) to pull them apart. When the air was allowed to enter the 
hemispheres once more, they fell apart of their own weight. 

Again, air pressure gradually forced a piston into a cylinder 
being evacuated, even though fifty men pulled at a rope in a vain 
attempt to keep the piston from entering. 

In other respects, too, a gas like air has fluid properties in 
an attenuated form. It exhibits buoyancy, for instance. We our
selves displace a volume of air equal to our own volume, and the 
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effect is to cause a I SO-pound man to weigh some three ounces 
less than he would in a vacuum. This is not enough to notice 
ordinarily, of course, but for objects of very low densities the 
effect is very noticeable. 

This is particularly true for substances ( such as certain 
gases) that are lighter than air. Hydrogen gas, for instance, has 
only 1 / 1 4  the density of air. In consequence, hydrogen penned 
within a container is subjected to an upward force like that of wood 
submerged in water ( see page 1 24 ) .  If the container is light 
enough, it will be carried upward by this upward force. If 
enough hydrogen is involved, the force will be sufficient to also 
carry upward a suspended gondola containing instruments or even 
men. The first such "balloons" were launched in France in 1783. 

When there is relative motion between a solid and a gas 
there is friction, as there is between a solid and a liquid-though 
again the effe.._<:t is much smaller where a gas rather than a liquid 
is involved. The friction with gas ("air resistance") is enough, 
however, to slow the velocity of projectiles to the point where it 
must be allowed for if an artilleryman is to a:.n correctly. Air 
resistance also prevents a complete and perfect interchange of 
kinetic and potential energy by dissipating some of the energy as 
heat ( see page 97 ) .  

The downward force of the gravitational field i s  proportional 
to the total mass of the body, while the upward force of air resist• 
ance is proportional to the area of contact of the moving body with 
air m the direction of its motion. For compact and relatively heavy 
bodies, such as stones, bricks and lumps of metal. the gravita
tional force is high, while the contact with air is over a relatively 
limited area so that air resistance is low. In such cases motion is 
close enough to what it would be in a vacuum for Galileo to 
have been able to draw correct conclusions from his experiments. 

For light bodies, the gravitational force is relatively low. If 
such bodies are also thin and flat ( as leaves or feathers are, for 
instance ) ,  they present a relatively large area to the air, and air 
resistance is relatively high. In such cases, air resistance almost 
balances the gravitational 'force, and these light bodies therefore 
fall slowly ( they would fall quickly in a vacuum ) ;  this slow rate of 
fall fooled the ancient Greek observers into believing there was an 
intrinsic connection between weight and the rate of free fall .  

There is a lemlinal velocity reached in motion through air 
under the inftuence of a COIIIStant force such as gravity, since air 
resistance .does not remain constant but increases with the velocity 
o.f aa object through air. A£ velocity increases, air resistance 
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eventually balances the gravitational force. For heavy, compact 
objects this terminal velocity is very high. but for light, flat 
objects it is quite low. Snowflakes quickly reach their low tenninal 
velocity and accelerate no further though they fall for miles. If a 
compact object is suspended from a light flat one, the two objects 
together reach a far lower terminal velocity than the compact 
object would by itself, and this is why a parachute makes jt pos
sible to fall safely from great heights. 

Again. there is a Bernoulli effect for gases as well as for 
liquids, and air pressure drops as the velocity of moving air in
creases. A jet of. air moving across an orifice covers that orifice 
\Vith a low-pressure area (or a "partial vacuum"). If a tube con• 
nected with the orifice dips into a liquid under normal atmospheric 
pressure, that liquid is pushed up the tube and is blown out in a 
fine spray. 

When a baseball or a golf ball spins In the air, one side 
spins with the motion of the air flowing past the ball as it moves; 
the other side spins against the motion. The side that spins against 
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the motion has a greater velocity relative to the . air, and the air 
pressure is leu in that direction. The ball is pushed in the direc
tion of lower pressure. so that the baseball curves in its flight ( usu
ally desirable, if it is the pitcher throwing the ball),  while tho 
golf ball "hooks'" or "slices" ( usually undesirable) .  

Where high velocity through air must be maintained with a 
minimum of force, streamlining is importanL This importance in
creases with velocity, since air resistance also docs. Thus, a horse 
and wagon need display no streamlining and automobiles need 
display very little. (A trend toward extreme automobile stream
lining initiated in the late l 930's was a matter of appearance 
rather than necessity, and was abandoned. ) 

Airplanes, however, must be streamlined. and in reaching 
supersonic speeds it was not so much higher power that had to be 
developed, but the proper design for minimizing air resistance. 
Furthermore, airplane wings ( themselves streamlined) are so do. 
signed that the air must move over a greater distance above than 
below, and so must move more rapidly above than below. This. 
by Bernoulli's principle, means there is less pressure above than 
below, and therefore a net upward force ( "lift" ) that helps support 
the plane. 

Boyle's Law 

The properties of gases are of crucial importance with respect 
to the possibly atomic nature of matter. If matter is nonatomic, then 
variations in density must be caused by the intrinsic differences in 
the density of matter itself. Every bit of it, however small, must bo 
as dense as every other bit. There would be no holes or empty 
space in matter, as there would be if the matter consisted of atoms. 

If matter consisted of atoms. there might be space between the 
atoms, a space containing only vacuum. Matter might be made 
less dense, then. by pulling the atoms apart in some fashion so as 
to increase the proportion of empty space within a given volume. 
Conversely. matter might be made more dense by pushing the 
atoms together to reduce the proportion of empty space. 

Indeed, it might seem that the density of a particular sub
stance could be changed in just this fashion by heating or cooling. 
Density usually decreases with heating and increases with cool
ing. Thus. although the density of cold water is I gm/cm•, that of 
hot water is only about 0.96 gm/cm•. 

Then again, solids melt to liquids if heated sufficiently, and 
the liquids become solids again if cooled. This change in the stat, 
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-0/ matter is accompanied by a sudden change in density. Thus, 
ice has a density of 0.92 gm/cm3. but as soon as it is melted to 
water the density increases sharply to 1 .00 gm/cm•. Again, solid 
iron has a density of 7.8 gm/cm3

, but this decreases sharply when 
iron is melted to the liquid fonn, which has a density of only 
6.9 gm/cm3

• An atomist might point out that a ready explanation 
for this is that in one state the constituent atoms are more compact 
than in the other. (Usually it is the solid state which is denser. 
with water a rather unusual exception. ) 

· However, in all such changes, · the density varies by only a 
few percent, and this is not overwhelmingly convincing. Working 
against the atomist is the fact that l iquids and solids are rela
tively incompressible. Large increases of pressure (attainable only 
with specialized equipment )  are required to bring about even small 
decreases in volume. For this reason, there can't be much empty 
space in ordinary matter, and even atomists must admit that in 
liquids and solids, atoms, if they exist, are in virtual contact. Since 
liquids and solids remain incompressible at any temperature, the 
feeling that atoms are further apart in hot water than in cold, or 
in liquid iron than in sol id iron, seems to be wrong. If it were 
not wrong, then hot water and liquid iron would be at least 
moderately compressible, and they are not. 

It is another matter entirely, however, when the point of view 
shifts from sol ids and liquids to gases. When liquid water is boiled 
and gaseous steam is formed, the change in density is drastic and 
dramatic. Where water has a density of 0.96 gm/cm3 at the boil
ing point, steam at the same temperature has a density of no more 
than 0.0006 gm/cm'. Steam is only about i t  1 700 as dense as 
water. 

This can be reasonably explained by adopting an atomistic 
view. One can suppose that the constituent atoms (or groups of 
atoms) making up water move far apart in the conversion of the 
liquid water to the gaseous steam, and that steam is as low in 
density as it is because it consists mostly of the empty space 
between atoms. We might generalire and say that whereas in 
liquids and solids atoms are virtually in contact, in gases they are 
far apart This spreading out of atomic particles would account 
not only for the extremely low density of gases, but also for their 
low pressure, their small frictional forces, and so on. 

If this atomistic view is so, and if the particles of gas are 
widely spread out, then gases ought to be easily compressible. If 
pressure is exerted upon a given volume of gas. that volume ought 
to decrease considerably. This is actually so, and the fact was 
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first clearly presented to the scientific community by the English 
physic:ist Robert Boyle ( 1 627-1691 ) in 1 660. 

He poured mercury into the open long end of a J-shaped 
tube and trapped some of the air in the closed short end. By add
ing additional mercury, he raised the pressure on the trapped air 
by an amount he could measure through the difference between 
the inches of mercury in the open and closed sides. He found that 
doubling the pressure on the trapped gas generally halved its 
volume; tripling the pressure reduced the volume to a third, and 
so on. 

The trapped gas was always able to support the column of 
mercury on the other side once its volume had been reduced by 
the appropriate amount, so that the pressure it exerted was equal 
to the pressure exerted upon it. (This is to be expected from 
Newton's third law-which, however, was not yet enunciated in 
Boyle's time. ) 

Consequently, we can say that for a given quantity of gas the 
pressure (P) is inversely related to the volume ( V) ,  so as one 
goes up, the other goes down (P=k/V) .  Therefore, the product 
of the two remains constant: 

PV = k  (Equation 10-1 ) 

This relationship is called Boyle's law.• 
Another way of stating Boyle's law is as follows. Suppose that 

you have a sample of gas with a pressure P, and a volume V,. If 
you change the pressure, either increasing it or decreasing it, to P 2, 

you will find that the volume automatically changes to V,. How
ever, the product of pressure and volume must remain constant by 
Equation 1 0-1 , so we can say that for a given quantity of gas : 

P,V, = P2V, (Equation 10-2)  

and that, too, is an  expression of Boyle's law. 
Indeed, gas is so easily compressed that the pressure of the 

upper layers of a column of gas will compress the lower layers. 
Whereas a column of virtually incompressible liquid has a constant 
density throughout, columns of gases vary considerably in density 
with height. This is particularly noticeable in the case of the 
atmosphere itself. 

If gas were as incompressible as liquid, and if it were as dense 
at all heights as it is at sea level, then one could easily calculate 

• Boyle's Jaw, as it turned out, is only an approximation (see page 208), 
but it is a very useful approximation and, in the case of some gases, an approxi
mation very close to the truth. 
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what the height of the atmosphere ought to be. Air pressure is 
1033.2 grams of weight per square centimeter. This means that 
a column of gas one square centimeter in cross section and ex
tending straight upward to the top of the atmosphere weighs 
1033.2 grams. A column with such a cross section. but only one 
centimeter high. has a weight of 1.3 milligrams. Each additional 
height of one centimeter added to the column would add an addi
tional 1.3 milligrams. and it would take a total height of about 
800,000 centimeters to account for the 1033.2 grams of air 
pressure. This is a height of just about five miles. 

However, this cannot be right. for balloons have found air 
to exist at heights of over 20 miles. and less direct methods of 
measurement have shown perceptible quantities of air to exist at 
heights of over l 00 miles. 

The point is that the atmosphere is not at constant density. 
As one moves upward. one finds that a given quantity of gas is 
under less pressure because the quantity of air above it has be
come less. By Boyle's law, that given quantity of gas must there
fore take up a larger volume. Consequently, as one rises. the 
amount of atmosphere remaining above, while decreasing rapidly 
in weight, decreases only very slowly in volume. For that reason, 
indeed, the atmosphere has no definite upper edge, but fades slowly 
off for hundreds of miles above earth's surface, decreasing in 
density until it peters out into the incredibly thin wisps of gas that 
make up interplanetary space. 

By pointing out the atomistic argument first, I was trying 
to make absolutely clear the importance and significance of Boyle's 
experiment. It is not to be supposed. however, that that one experi
ment at once turned scientific opinion toward atomism. It was not 
until the first decades of the nineteenth century, a century and a 
half after Boyle's experiment, that the weight of evidence had 
finally accumulated to the point where scientists could no longer 
avoid accepting atomism. 

The scientist usually given credit for the final establishment 
of atomism is the English chemist John Dalton ( 1776-1844 ) .  He 
worked out the "modem atomic theory" in detail, between 1 803 
and 1 808, basing it chiefly on the observations of the properties 
of gases that had begun with Boyle's experiments. (In fact. one 
might maintain that Boyle's law made atomism inevitable, and 
that all that followed merely served to place a finer edge on the 
concept. ) 

It is now generally accepted that all matter consists of atoms; 
that these atoms may exist singly, but much more commonly 
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exist in groups of from two to many hundreds of thousands ; and 
that these groups of atoms, called molecules, maintain their iden
tity under ordinary circumstances and form the particles of 
matter. * 

It was by considering gases to consist of a collection of 
widely-spaced molecules (or, occasionally, of widely-spaced indi
vidual atoms) that it became possible to view such phenomena as 
sound and heat in a new and more fundamental manner. 

• Under certain circumstances, molecules do alter in nature, and old 
combinations of atoms shift and change into new combinations. These shifts 
and changes of molecular combinations are the prime concern of the science 
of chemistry. 
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Sound 

Water Waves 
Fluids can move in the various fashions that solids can move. 
They can undergo translational motion, as when rivers flow or 
winds blow. They can undergo rotational motion, as in whirlpools 
and tornadoes. Finally, they can undergo vibrational motion. It is 
the last that concerns us now, for a vibration can produce a dis
tortion in shape that will travel outward. Such a moving shape
distortion is called a wave. While waves are produced in solids, 
they are most dearly visible and noticeable on the surface of a 
liquid. It is in connection with water surfaces, indeed, that early 
man first grew aware of waves. 

If a stone is dropped into the middle of a quiet stretch of 
water, the weight of the stone pushes down on the water with 
which it comes into contact and a depression is created. Water is 
virtually incompressible, so room must be made for the water that 
is pushed downward. This can only be done by raising the water 
in the immediate neighborhood of the fallen stone, so the central 
depression is surrounded by a ring of raised water. 

The ring of raised water falls back under the pull of gravity, 
and its weight acts like the original weight of the stone. It pushes 
the water underneath downward and throws up a wider ring of 
water a bit farther away from the original center of disturbance. 

148 
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This continues, and the ring of upraised water moves farther and 
farther out from the center. As it moves outward, the total mass 
of upraised water must be sprea� out through a larger and larger 
circumference, and the height of the upraised ring is therefore 
lower and lower. 

Nor is there a single wave emanating from the center of 
the disturbance. As the initial wall of upraised water immediately 
about the center of disturbance comes down, it not only pu�nes 
up a wall of water beyond itself, but also pushes up the water at 
the center. This rises and then drops again, acting, so to speak, 
like a second stone, and setting up a second circular wall of 
water that spreads outward inside the first wall. This is followed 
by a third wall, and so on. Each successive wall is lower than the 
one before, since with each rise and fall of water some of the 
energy is consumed in overcoming the internal friction of the 
water and is converted into heat. As a particular wall of water 
spreads outward, some of its energy is also being continually 
converted into heat. Eventually, all the waves die out and the pool 
is quiet again ; however, it is very slightly warmer for having 
absorbed the kinetic energy of the falling stone. 

To produce a wave, then, we need an initial disturbance. If 
this initial disturbance, in correcting itself, disturbs a neighboring 
region in a fashion s:.milar to the original disturbance, the wave is 
propagated. 

In a propagated wave, if we concentrate our attention on a 
given point in space, we see that some property waxes and wanes, 
often periodically. In the case of water waves, for instance, if we 
view one portion of the water surface and no other, then the vary
ing property is potential energy as that portion of the surface first 
rises, then falls, then rises again. 

It is important to realize that the water is moving up and 
down only. The disturbance is propagated outward across the 
surface of the water, and it appears to the casual observer that 
water is moving outward ; however, it is not ! Only the disturbance 
is. A chip of wood floating on water that has been disturbed into 
ripples will rise and fall with the rise and fall of the water it 
rests on, but the moving ripples will not carry the wood with it. 
(To be sure, waves approaching the shore will carry material 
with them, sometimes even forcefully, as the water dashes on the 
rocks or beach. These waves, however, are being driven by the 
horizontal force of the wind and are different from the ripples 
set up by the vertical force of a falling stone. ) 

Suppose we imagine a cross section of the surface of the 
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water that is undergoing the disturbance of a falling stone. Ideally, 
ignoring loss of height with increasing circumference or loss of 
energy as heat. we have a steady rise and fall. This rise and fall is 
what we commonly think of when the word "wave" is spoken, 
or when we speak of a ''wavy line. .. 

In its simplest form, such a wavy line is identical with the 
type of curve produced if one plots the value of the sine of an 
angle (see page 1 1 1 )  on graph paper as the size of the angle 
increases steadily. For an angle of 0° , the sine is 0. As the angle 
increases, the sine also increases. first quickly, then more and 
more slowly, till it skims a maximum of 1 at 90 ° . For still larger 
angles it begins to decrease, first slowly, then more and more 
rapidly, reaching O again at 1 80° and passing into negative 
values thereafter. It skims a minimum of - 1 at 270° , then in
creases again to reach O once more at 360° . An angle of 360° can 
be considered equivalent to one of 0°, so the whole process can 
be viewed as beginning again and continuing onward indefinitely. 
In plotting the graph, then, one gets a wave-like figure that can 
extend outward forever as it oscillates regularly between + 1 and 
- 1 .  It is this wave-like figure ( the sine curve) that represents 
the shape of an idealized water wave. 

A wave like the water wave, in which the motion of each 
part is in one direction ( up-and-down in this case ) ,  and the direc
tion of propagation of the disturbance is at right angles to that 
direction (outward across the water surface in this case ) ,  is a 
transverse wave. (Transverse is from Latin words meaning "lying 
across"; the motion of the water itself "lies across" the line of 
propagation.) 

The point at which the disturbance is greatest in the upward 
direction ( + l ,  in the sine curve ) is the crest, and the point at 
which it is greatest in the downward direction ( - 1 , in the sine 
curve) is the trough. Between crest and trough are points where 
the water is momentarily at the level it would be at if the surface 
were undisturbed ( 0, in the sine curve) ; these are nodes. There 
are two kinds of nodes in these water waves, for water may pass 
through a node on its way down to a trough or on its way up to a 
crest. We might distinguish these as ''descending nodes" and 
"ascending nodes" (borrowing terms that are used in astronomy 
for an analogous purpose ) .  The vertical distance from a node lo 
either a crest or a trough is the amplitude of the wave. 

Two or more points that occupy the same relative positions 
in the sine curve are said to be in phase. For instance, the points 
on the various crests are all in phase ; so are the points on the 



Sound 151 

various troughs. The ascending nodes are all in phase; the descend· 
ing nodes are all in phase. All points lying a fixed portion of the 
way between an ascending node and a crest are in phase, and so 
on. If two waves exist, and if they match up in such a way that 
the crest of one is even in space or form with the crest of another 
at the same instant in time, those portions of the two waves are 
said to be in phase. It is possible that the entire stretch of both 
waves may be in phase in this fashion, crest for crest and trough 
for trough. 

Naturally, points on a single wave that are not in phase are 
out of phase. And a pair of waves in which the crest in one case 
does not appear at the same time as the crest of another are out 
of phase. 

A sine curve can be looked upon as consisting of a particular 
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small portion that repeats itself indefinitely. For instance, a portion 
of the sine curve from one crest to the next can be shaped into a 
stamp, if you like, and the entire sine curve can be reproduced 
by stamping that one crest-to-crest portion, then another like it to 
its right, another like it to the right again, and so on. The same 
could be done if we took a portion of the sine curve from trough 
to trougn or from ascending node to ascending node or from 
descending node to descending node, and so on. An appropriate 
stamp can be made covering the section from any point on the 
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sine curve to the next point in phase. The length from any such 
point to the next is constant for any particular sine curve. This 
length (let us say from crest to crest for simplicity's sake) defines 
a wavelength. The wavelength is USl.!,ally symbolized by the Greek 
letter "lambda" (A). 

If nodes are not distinguished from eacli other ( and they are 
usually not in physics), then successive nodes are half a wave
length apart. If crest and trough are lumped together as antirwdes 
( as sometimes they are). then successive antinodes are half a wave
length apart. 

A particular crest moves outward along the surface of the 
water (though the water itself, I repeat, does not move outward 
with it) ,  and the distance it travels in one second is the velocity of 
the wave. 

Let us suppose that the velocity of a particular wave is ten 
meters per second and that the wavelength (that is, the distance 
from crest to crest) is two meters. If we fut our attention on a 
certain point of the water's surface. we will note that a particular 
crest is at that point. It travels outward, and two meters after it 
a second crest occupies that point; two meters after that there is 
is a third crest, and so on. After one second the original crest is 

, ten meters away, and a fifth crest ( 1 0  divided by 2) is occupying 
: the original spot. 

The number of crests (or the number of troughs. ascending 
nodes. descending nodes, or any successive points in phase) 
passing a given point in one second is the frequency of the wave. 
Frequency is usually symbolized by the Greek letter "nu" {v) . 

Frequency 
j- motion of crest In one second 
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From what I have said, it should be clear that the velocity of a 
wave divided by its wavelength is equal to its frequency, so: 

V P = -
,\ 

(Equation 1 1-1 ) 

The units of velocity are meters per second in the mks sys
tem, and those of wavelengths are meters. The units of frequency 
are therefore (m/sec) /m, or 1 ,1sec. Since in algebra 1 /a is said 
to be the "reciprocal" of a, I /sec is sometimes spoken of as 
reciprocal seconds. More often it is referred to by the phrase "per 
second." The frequency of the wave mentioned above as an ex
ample can be written 5/sec, and this can be read as "5 per second" 
or as "5 reciprocal seconds." 

Sound Waves 
At a comparatively early stage in the quest for knowledge, 

sound came to be thought of as resulting from a kind· of wave mo
tion. The first experiments on sound were conducted by the ancient 
Greeks, and these were rather remarkable in one way, for the study 
of sound was one branch of physics in which the Greeks seemed, 
by modern criteria, to start off in the right direction from the very 
beginning. 

As early as the sixth century B.c., Pythagoras of Samos was 
studying the sound produced by plucked strings. It could be seen 
that a string vibrated when plucked. The plucked string's motion 
was only a blur, but even so, certain facts about that blur could be 
associated with sound. The width of the blurred motion seemed to 
correspond to the loudness of the sound. As the vibration died down 
and the blur narrowed, the sound grew softer. And when the 
vibration stopped, either by natural slowing or by an abrupt touch 
of the hand, so did the sound. Furthermore, it could be made out 
that shorter strings vibrated more rapidly than longer ones, and 
the more rapid vibration seemed to produce the shriller sound. 

By 400 B.c., Archytas of Tarentum (420?-360? B.c. ) ,  a 
member of the Pythagorean school, was suggesting that sound was 
produced by the striking together of bodies--swift motion produc
ing high pitch and slow motion producing low pitch. By about 350 
B.c., Aristotle was pointing out that the vibrating string was strik
ing the air; and that the portion of the air which was struck must in 
tum be moved to strike a neighboring portion, which in turn 
struck the next portion, and so on. To Aristotle, then, it seemed 
that air was necessary as a medium through which sound was con-
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ducted, and he reasoned that sound would not be conducted 
through a vacuum. ( In this, Aristotle was correct. ) 

Since in rapid rhythm a vibrating string strikes the air not 
once but many ti�es, not one blow, but a long series of blows, 
must be conducted by the air. The Roman engineer Marcus Vit
ruvius Pollio, writing in the first century B.c., suggested that the 
air did not merely move, but vibrated, and that it did so in response 
to the vibrations of the string. It was these air vibrations, he held, 
that we heard as sound. 

Finally, about 500 A.D., the Roman philosopher Anicius 
Manilius Severin us Boethius ( 480?-524?) made the specific 
comparison of the conduc.tion of sound through the air with the 
waves produced in calm water by a dropping pebble. While this 
analogy has its va,ue, and while water waves can be used to this day 
( and are so used in this book, for instance) to serve as a preliminary 
to a consideration of sound waves, there are nevertheless important 
differences between water waves and sound waves. 

Transverse waves, such as water waves, can appear only 
under certain conditions. Such waves represent conditions in which 
one section of a body moves sideways with respect to another and 

. then reverses that motion. (You can produce a transverse wave in 
a tall stack of cards by moving each card sideways by the proper 
amount. ) Such a sideways motion is produced by a type of force 
called a shear. For such a force to result in a transverse wave, how
ever, the force producing the shear must be countered by another 
force that brings the portions of the body back into line. 

Within a solid, for ins�ance, a blow may cause a portion of 
the substance to move sideways with respect to a neighboring por
tion. The strong cohesive forces between the molecules of a solid, 
which tend to keep each molecule in place, act to bring the dis
placed section back. It shoots back, overshoots the mark, shoots 
back again, overshoots the mark again, and so on. The resulting 
vibration is propagated just as the waves on a water surface are, 
and as a result it is possible to have transverse waves through the 
body of a solid. 

The cohesive forces in liquids and gases are, however, very 
weak in comparison to those in solids and do not serve to restore 
a shear. If a portion of water or air is shifted sideways with respect 
to a neighboring portion, additional water or air will simply flow 
into the region left Nempty" by the shifting portion, and the new 
arrangement of portions will remain. There are therefore no trans
verse waves through the body of a fluid. 

To be sure, transverse waves will travel over the horizontal 
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upper surface of l iquids, for there we have the special case of an 
outside force, gravity, resisting the up-and-down shear. Within 
the body of the liquid, gravity cannot be counted upon to do this 
work, for each fragment of water is buoyed up by the surrounding 
water_ Since the density of each bit of water is equal to the density 
of the surrounding water, each bit of water has a weight of zero 
(see page 124) and does not respond to gravity. If a portion of 
water within the body of the liquid is raised by a shear, it remains 
in the new position, in spite of gravity. Since transverse waves are 
confined to the surface of a fluid, and since gases have no definite 
volume and therefore no definite surface, it follows that transverse 
waves cannot be transmitted by gases under any condition. 

Consequently, if sound is transmitted through the air as a 
wave form (as all the evidence indicates it must be) ,  that wave 
form cannot be transverse. A logical alternative is that it consists 
of periodic compressions and rarefactions. 

Consider the vibrations of a tuning fork, for instance. The 
prong of a tuning fork moves right, left, right, left, in a rapid 
periodic motion. As it moves right, the molecules of air lying imme
diately to the right are pushed together, forming a small volume of 
compression. The pressure within the compressed volume is greater 
than in the neighboring volume of normal air. The molecules in the 
compressed volume spring apart and push against the neighboring 
volume, compressing it, The neighboring volume compresses its 
neighbor as it springs apart, and so on. Thus, a volume of compres
sion is propagated outward in all directions, forming an expanding 
sphere about the source of the disturbance just as the crest of a 
water wave forms an expanding circle about its source of dis
turbance. (The atmosphere is a three-dimensional medium, the 
surface of the water a two-dimensional one, which is why we have 
an expanding sphere in one case, an expanding circle in the other. ) 

Meanwhile, the prong of the tuning fork, having moved to 
the right and set off an expanding volume of compression, next 
moves to the left. More room is made to the right of the prong and 
the air in that immediate volume expands and becomes relatively 
rarefied. Pressure is higher in the neighboring un-rarefied air, 
which therefore pushes into the rarefied volume and is itself rarefied 
in the process. In this way, a volume of rarefaction expands out
ward on the heels of the volume of compression. 

Again the prong of the tuning fork moves right, then left, 
then right, so that volumes of compression and volumes of rare
faction follow each other outward in rapid alternation for as long 
as the prong continues to vibrate. Each period of the prong ( one 
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movement back and forth) sets up one compression/rarefaction 
combination. 

In these waves of alternate cqmpression and rarefaction, the 
individual molecules of air move in one direction when compressed, 
then in the reverse direction when rarefied; the volumes of com
pression and rarefaction move outward and are propagated in 
a direction parallel to the back and forth motion of the molecules. 
Such a wave, in which the particles move parallel to the propaga• 
tion rather than perpendicular to it, is a longitudinal wave, or a 
compression wave. 

Longitudinal waves are harder to picture and grasp than are 
transverse waves, for there are no examples out of common ex
perience that we can draw on to illustrate the former in the way 
we used water waves to illustrate the latter. Nevertheless, having 
gone into some detail about transverse waves. we can deal with 
longitudinal waves by analogy. 

The points of maximum compression are analogous to the 
crests of transverse waves, and the points of maximum rarefac
tion to the troughs. In between there are areas where pressure is 
momentarily normal, and these correspond to the nodes. 

The distance between points of maximum compression ( or 
between points of maximum rarefaction) is the wavelength of the 
longitudinal wave. The number of points of maximum compres
sion (or of maximum rarefaction) passing a given position in 
one second is the frequency of the longitudinal wave. 

Since the molecules of liquids and solids, as well as those 
of gases, evolve a restoring counterforce when compressed. 

Sound waves 
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longitudinal waves can be carried through gases, liquids and solids. 
Sound waves in particular are carried by water and by steel, as well 
as by air. (Waves produced in the body of the earth by the vibra
tions induced by earthquakes are of both varieties, transverse and 
longitudinal. Both can be transmitted by the solid matter of the 
earth, but it was found that when the waves penetrated a certain 
depth below the earth's surface, only the longitudinal ones con
tinued onward, while the transverse waves were stopped suddenly 
and entirely. It was from this that geologists were able to deduce 
that the earth contains a liquid core, and to measure its diameter 
with considerable accuracy. ) 

Sound waves, however, cannot be conducted in the complete 
absence of molecules. If ari electric bell is suspended in a bell jar 
and set to ringing, it will be heard through the glass (which can 

. carry sound waves) .  If the bell jar is gradually evacuated, the 
sound of the bell will become fainter and will eventually fade out 
altogether. The clapper may continue to strike the bell furiously 
and the bell may even be seen to vibrate, but no longitudinal 
waves can be set up among the molecules of an air that does 
not exist. Ar, a result, sound will not be heard. 

(It is frequently stated that the moon, which lacks an at
mosphere, is a soundless world. However, sound can be trans
mitted through the moon'!> crust, and an astronaut may hear a 
distant explosion if he makes the proper contact with the moon's 
surface. ) 

Loudnes, 
Suppose we consider a sound wave in which the succession 

of compressions and rarefactions are regular. This would be 
analogous to a transverse wave that had the form of a regular sine 
curve. Such a sound wave is heard by us as a steady musical note 
and is produced by a tuning fork. Indeed, if a pen is attached to 
the prong of a tuning fork in such a way that it makes contact 
with a roll of paper being moved at constant velocity in a direction 
at right angles to the vibration of the prong. a sine wave will be 
produced. 

A tuning fork may produce sounds that differ in loudness. 
If it is struck lightly, it will emit a soft sound ; if struck more 
heavjly it will emit a sound which our ear will detect as identical 
with the first except for being louder. The l ightly struck tuning fork 
will move back and forth over a comparatively small arc ; the 
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more heavily struck one will move back and forth over a larger 
arc. As is to be expected of simple harmonic motion, the two 
movements will involve an identical period despite the difference in 
amplitude, so either way the same number of volumes of com
pression and of rarefactions are set up per second. The frequency 
of the sound produced is. therefore, the same in either case. 

However, the more heavily struck tuning fork, moving in the 
larger arc, compresses the air more violently. Therefore, a louder 
note differs from a softer note in that the compressed volumes of 
the former are more compressed, and the rarefied volumes more 
rarefied. The greater difference in extent of compression in a 
longitudinal wave is analogous to a greater amplitude in a trans
verse wave. This can easily be visualized if we think again of 
the tuning fork with the pen attached. A gently vibrating prong 
would mark off a sine curve of small amplitude; one vibrating 
through a greater arc. as a result of a heavier blow, would mark 
off a sine curve of greater amplitude. 

To compress air against the resistance of its pressure re
quires energy, and the compressed air contains a store of energy 
that it can expend by expanding and pushing whatever is in the 
neighborhood- For this reason, sound waves can be considered a 
form of energy. 

The more the air is compressed, the more energy it contains 
and can expend. Another way of looking at it is to consider 
that the vibrating tuning fork has kinetic energy that is expended 
in compressing air.• If the prong swings through a greater arc 
but completes its period in the same time, it moves at a greater 
average velocity and has more kinetic energy that it can expend 
in compressing air. Whichever way we look at it, we can come 
to the conclusion that loudness is a matter of quantity of energy, 
and that a loud sound contains more energy than a soft one. 

The loudness. or intensity, of sound is measured in terms of 
the quantity of energy passing each second through one square 
centimeter of area, the area being perpendicular to the direction 
of propagation of the sound. Energy expended per unit time ia 
power, and the amount of power involved in sound is very small 
To indicate just how 8!llall, let's reconsider some units of power. 

A watt is the mks unit of' power and is equal to one joule 
per second. We are familiar with watts in connection with light 

• The tuning fork, or any sound-producing_ device, also rarefies air against 
its own pressure, which also requires energy. The argument is exactly analogo111 
if rarefaction is considered rather than compression. 



160 Understanding Physics 
bulbs; we all know that a light with a power of 75 watts is 
none too bright for reading purposes, and that one with as little 
power as 40 watts is rather dim. Even a night light, just bright 
enough to dispel the worst of the shadows and enable us to get to 
the bathroom at night without tripping over the furniture, has a 
power of 1/4 watt. A microwatt is 1/ 1 ,000,000 of a watt, so 
that such a night light has a power of 250,000 microwatts. 

In comparison with that, ordinary conversational sounds 
carry a power of but 1000 microwatts, and low sounds sink down 
to bare fractions of a microwatt. 

The ear detects differences in loudness by ratios of power 
rather than by actual differences. Thus, a 2000-microwatt sound 
will seem a certain amount louder than a 1000-microwatt sound, 
but a 3·000-microwatt sound will not appear louder by as much 
again. It takes a 4000-microwatt sound to seem louder by as much 

· as a 2000-microwatt sound is louder than a 1 000-microwatt sound. 
To get a sound that is as much louder still than a 4000-microwatt 
sound, we must rise to an 8000-microwatt sound. The ratios 
2000/1000, 4000/2000, and 8000/4000 are all equal even 
though the differences are not, and it is by ratios that the ear 
judges. 

This means that the ear acts not by the power of a sound, 
but by the logarithm* of that power. When one sound carries ten 
times the power of a second sound, the ratio of the power of the 
first to that of the second is 1 0, and the logarithm of that ratio is 
l. The difference in sound intensity is then said to be·one be/, so 
named in honor of Alexander Graham Bell ( 1 847-1 922) ,  who 
studied the physics of sound and invented the telephone. Similarly, 
if one sound is 1 00 times as powerful as another, it is two bels 

• The common logarithm of a number is its exponent when it is expressed 
as a power of JO. For instance, 10' is ( 10) ( 10),  or 100; 10' is ( 10)(10)(10), 
or JOOO. Therefore, the logarithm of JOO Is 2 and that of I 000 is 3. The use 
of logarithms converts a geomeiric series ( one in which each number is 
obtained by multiplying the preceding number by a fixed quantity) into an 
arithmetic one (where each number is obtained from the preceding by addition) .  
In the series 10-I00-1000-10,000-I00,000, etc., each number is  obtained 
by multiplying the previous number by 10. If the logarithms of the numbers 
in the series are written instead, we have 1-2-3--4-S, etc., where each 
number is oblained by adding I to the previous number. Our senses generally 
work by conVC51ing a geometric series to an arithmetic one in this fashion. 
H one stimuiation is 100,000 times as intense as another of the same sort, the 
Riise organ, working by logarithms, detects it as, say, five times as intense. 
In this way sense organs can be useful over an enormous range of intensity. 
This is the Webl!r•Fechner lAw, so named in honor of two Germans: Emst 
Heinrich Weber ( 179S-1878), who first expressed th� law; and Gustav Theodor 
Fechner ( 1 801-1887), who popularized i1. 



Sound 161 

louder; if it is 1 000 times as powerful it is three bels louder, and 
so on. This kind of unit imitates the logarithmic working of the 
ear. 

The bel is rather too large a unit for convenience. A tenth 
of a bel is a decibel. One sound is a decibel louder than another 
sound when the first is 1 .26 times as powerful as the second, for 
the logarithm of 1 .26 is just about 0. 1 .  

Because of the small amount of energy represented by even 
loud sounds, sound energy is not something we are usually aware 
of. The energy of a roll of thunder may be sufficient to cause ob
jects to vibrate noticeably. The telephone is an example of the 
manner in which human ingenuity has managed to usefully con
vert sound energy into electrical energy and back to sound energy. 

For the most part, however, the sounds that continually sur
round us, whether created by human beings, by other forms of 
life, or by inanimate surroundings, simply fade out and are 
converted into heat. 

If sound remained unconverted into other forms of energy, 
we could easily see how the loudness of sound would fall off with 
distance from the source. The sound wave moves outward as an 
expanding sphere from the source, and the total power repre
sented by each sound wave spreads out over that surface. The 
surface of a sphere is equal to 4,,.,2, where r is the radius of the 
sphere--that is, the distance from the source. If the distance from 
the center is tripled, the surface area is increased ninefold and 
only one-ninth as much power passes through any square centi
meter on the surface. The intensity of sound would then be ex
pected to vary inversely as the square of the distance from the 
source. This is how the intensity of gravitational attraction falls 
off, for instance. However, gravity is not absorbed by matter, 
whereas sound is easily absorbed by most of the objects with which 
it makes contact--even by the air itself. As a result, sound falls 
off more rapidly than one would expect. 
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Pitch 

The Velocity of Sound 

A particular object has some natural period of vibration, and 
in the case of simple harmonic motion at least, this period 
is proportional to the square root of the mass of the object divided 
by the restoring force ( see Equation 8-4 on page 1 07 ) .  In the case 
of the pendulum, where the restoring force is gravity (which in
creases with mass ) ,  the period varies as the square root of the 
length of the pendulum divided by the acceleration due to gravity 
(see Equation 8-9, page 1 12 ) .  

This means that we will generally expect that o f  two similar 
objects the larger and more m assive will have the longer period 
of vibration. It will consequently produce fewer sound waves per 
unit time, and the individual waves will have a longer wavelength 
and a lower frequency. 

The period of vibration can also be varied by changing the 
si7.e of the restoring force, the period shortening as the restoring 
force increases in size. A taut string is more difficult to pull out 
of its equilibrium position than a slack one is. and from that it is 
dear that the force tending to restore the string to position is 
Increased as the string grows tauter. Of two strings otherwise 
alike, the tauter snaps back faster and,, if it is a bowstring, shoots 
the arrow farther. (That is why bowstrings are kept as taut as 

16! 
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possible when the bow is in action . )  A taut string, snapping back 
quickly, naturally has a shorter period of vibration than a slack 
one has and produces sound waves with higher frequency and 
shorter wavelength. 

From experience, however, we know that all the factors that 
serve to produce a sound wave of low frequency also produce a 
deep tone, while those that bring about a sound wave of high 
frequency also produce a shrill tone. Large objects with long 
periods of vibration produce deep tones, while similar small ob
jects produce shrill ones. Compare the tolling of a church bell 
with the tinkling of a sleigh bell, the strum of the string on the 
bass viol with the shrillness of the string on the tenor violin. In 
the realm of life, compare the trumpeting of the elephant with the 
squeak of the mouse; the honk of the goose with the tweet of the 
canary. The voice of a man with his longer vocal cords is deeper 
than those of women and children with their shorter ones. An 
individual can vary the shrillness of the sound he produces by 
adjusting the tautness of his vocal cords ( though he is not aware 
he is doing so) ,  and the sound of a freely vibrating string can be 
made more shrill as it is made more taut. 

This property of shrillness, or depth in a tone, is referred 
to as the pitch of the sound, and it is quite obvious that the ear 
differentiates the frequencies of sound waves as pitch. As frequency 
increases, a sound is heard as increasingly shrill. As frequency 
decreases, a sound is heard as increasingly deep. 

It is easy to determine the frequency of a sound wave. The 
vibrations of a tuning fork can actually be counted in several ways, 
including ( to mention a simple method ) having it mark itself by 
penpoint on a moving scroll of paper and counting the waves 
produced in a unit time. In this way, frequency and pitch can be 
matched. For instance, a tuning fork or pitch pipe that produces 
a "standard A" ( the pitch against which musicians standardize 
their instruments) can be shown to have a frequency of 440 per 
second. 

To calculate the actual wavelength of a sound of a certain 
pitch, one can make use of Equation 1 1-1 . This tells us that the 
frequency ( v) is equal to the velocity of the wave ( v) divided 

. by the wavelength (.\) . Solving Equation 1 1-1  for .\, we find that : 

(Equation 12-1 ) 

The piece of information we need to make Equation 1 2-1 
useful is the velocity of sound. This velocity may be determined 
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with considerable accuracy by a straightforward experiment which 
was first carried through successfully in the early seventeenth 
century. 

Suppose a cannon is set up on one hill and observers are 
stationed on another hill a known distance away. When the cannon 
is fired, the flash is seen at once ( assuming that light travels so 
quicl_cly that its journey from one hill to the other takes up virtually 
zero time-which is correct) .  The sound of the cannon. however, 
is beard only after a measurable interval of time. The distance 
between cannon and observers divided by the number of seconds 
of lag in hearing the cannon ( the possesswn of a good timepiece 
is assumed) will give the velocity of sound. 

To be sure, if. there is a wind the compression waves will be 
hastened onward by the overall movement of the air, or slowed 
down, depending on the direction of the wind. What can be done, 
therefore, is to place cannon on both hills and fire each, first one 
then the other. Whatever effect the wind has in one direction. 
it has a precisely opposite effect in the other, and averaging the two 
velocities obtained will give the velocity in quiet air. 

The currently accepted velocity of sound at ordinary tempera• 
tures (say, 20° C or, what is equivalent, 68 ° F) • is 344 meters per 
second (or 1 1 30 feet per second, or 758 miles per hour) .  This 
velocity varies a bit with temperature. On a cold winter day, it 
may be as low as 330 meters per second; on a hot summer day. 
as high as 355 meters per second. 

The temperature difference has important effects. During 
the day, upper levels of the atmosphere are generally c�l� than 
air at ground leveL As the upper part of a beam of sound waves 
penetrates the cooler strata, it slows up; the effect of that is to veer 
the entire beam upward. ( If you are walking, and someope seizes 
your left arm. slowing that part of your body, you automatically 
veer leftward. )  At night, the situation is reversed, for the upper 
levels are warmer than the lower levels. The upper part of a beam 
of sound waves will quicken, and the whole beam will veer down• 
ward. It is for this reason that sound can usually be heard more 
clearly and over greater distances by night than by day. 

However, if we confine ourselves to room temperature, we 
may write Equation 12-1 as: 

). = �  (Equation 12-2) " 
• The question of temperature and temperature scales will be takeu up later 

In some detail (see page 181). 
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Until recent times, sound traveled at a velocity much greater 
than that of any man-made vehicle, so for practical purposes the 
velocity of sound did not concern the traveler. With the invention 
of the airplane, however, and with the steady increase in the 
velocities of which it was capable; the velocity of sound became 
of importance for reasons other than those involving the speed 
of communication. 

It is the speed of the natural rebound of molecules after 
compression that dictates the rate at which a compressed area 
restores itself to normal and compresses the next area; so it is ·this 
speed of rebound that determines the velocity of sound. It is 
also the speed of the natural rebound of molecules after striking 
a speeding plane that makes it possible for air to "get out of the 
way" of the plane. As the plane approaches the velocity of sound, 
then, it approaches the velocity with which the air molecules can 
rebound. The plane begins to "chase after" the rebounding air 
molecules and, with increasing speed, more and more nearly 
catches them. Such a plane compresses the air ahead permanently 
(or at least for as long as it maintains its speed) ,  since the air 
cannot get out of its way. This volume of compressed air ahead 
of the plane puts great strains upon the plane's structure; for a 
time in the 1 940's, it was felt that a plane would disintegrate if it 
approached the speed of sound too closely. Thus, talk began to be 
heard of a "sound barrier," as though the velocity of sound repre
sented a wall the plane could not break through. 

The ratio of the velocity of an object to the velocity of sound 
in the medium in which the object is traveling is called the Mach 
number, in honor of an Austrian physicist, Ernst Mach ( 1 838-
1 9 1 6 ) ,  who toward the end of the nineteenth century first in
vestigated the theoretical consequence of motion at such velocities. 
To equal the velocity of sound is to be moving at "Mach l ," to 
double it is to be at "Mach 2," and so on. A Mach number does 
not represent a definite velocity, but depends upon the nature, 
temperature, and density of the fluid through which the object is 
traveling. For normal air at room temperature, Mach 1 is 344 
meters per second, or 758 miles per hour. 

Improved design of planes enabled them to withstand the 
stresses at high velocities, and on October 14, 1 947, a manned 
plane "broke the sound barrier" by traveling at a velocity of more 
than Mach 1 .  Since then velocities of Mach 3 and more have been 
attained. (An astronaut circling the earth at a speed of five miles 
per second might be said to be traveling at Mach 25, if the velocity 
of sound in ordinary air is used as a comparison. However, the 
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astronaut is traveling through a near vacuum across which no 
significant amount of sound is conducted, and Mach numbers 
do not really apply to him. ) 

A plane traveling at supersonic velocities (velocities greater 
than Mach 1 ) carries its sound waves ahead of it, so to speak, 
since it travels more quickly than they could alone. The volumes 
of compression are brought together, and instead of a smooth 
progression from compression to rarefaction and back, as in ordi
nary sound waves, there is a sharp dividing line between a volume 
of strong compressions and the normal surrounding atmosphere. 
The strong compression streams backward in a cone-shaped band, 
with an angle depending on the Mach number, and is called a 
shock wave. A similar shock wave streams back from speeding 
bullets, too; it is also formed by the effect of lightning bolts, for 
instance, which will energetically expand air at velocities greater 
than Mach 1 .  (The shock wave is an example of a wave form 
that is not periodic. ) 

If a plane traveling at supersonic velocities slows down or 
veers off, the shock wave will revert to ordinary sound waves, 
carrying volumes of unusually str<>ng compression and rarefaction, 
however. In this train, sound waves expand and weaken as they 
travel, but if they are fairly close to the ground to begin with, and 
happen to be directed downward, they will strike the ground with 
considerable strength, producing the now well-known "sonic 
boom." 

Thunder is the sonic boom produced by lightning, and the 
crack of a bullwhip is a miniature sonic boom, since it has been 
established that the tip of such a whip can be made to travel at 
sllpersoni; velocities. 

The velocity of sound, when spoken of simply as such, always 
implies its velocity through air. However, sound travels through 
any material body, and its velocity varies with the nature of the 
body. Intermolecular forces in liquids and solids, stronger than in 
gases, bring about a much quicker rebound after compression. 
Consequently, sound travels with greater velocities through liquids 
and solids than through any gas, and the more rigid the substance 
(and hence the stronger the intermolecular forces) ,  the greater 
the velocity of sound through it. In water, sound travels at a 
velocity of 1 450 m/sec ( 3240 miles per hour) , and in steel 
it travels at-a-velocity of about 5000 m/sec (or 1 1 ,200 miles per 
hour) .  
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The Musical Scale 

Sounds of different pitch can be produced in musical in
struments by striking or plucking strings of different length and 
thickness, as in the piano or harp; by using few strings but 
altering their effective length by pinning one end with the .finger 
at varying points, as in the case of the violin ; by allowing sound 
waves to fill tubes which may be lengthened or shortened by 
physical movement, as in the trombone; or by blocking or un
blocking certain sections of the tube by stopping a hole with a 
finger, as in a flute, or depressing a key, as in a trumpet. 

When two notes are sounded, either together or one after 
the other, the combination is sometimes pleasant and sometimes 
unpleasant. This is partly a subjective and cultural matter, for 
we like what we are used to and many types of music, such as 
rock and roll or traditional Japanese, sound unpleasant to the un
initiated but very pleasant to the devotee. Nevertheless, if we 
confine ourselves to the serious music of the West, we can come 
to certain conclusions about this. 

When two notes are sounded together, the result is not two 
separate trains of sound waves, each traveling independently 
through the air. Instead, the two waves add to each other to form 
a resultant wave. 

To make things very simple, suppose that two sound waves 
are each of the same frequency but are sounded in such a way that 
one is half a wavelength behind the other. Whenever one sound 
wave is forming an area of compression at one point, the other 
is forming an area of rarefaction there, and vice versa. The two 
effects cancel each other and the air does not move. As a result, 
the two sounds taken together produce silence, and this phenom
enon is called interference. It is difficult to picture this if we think 
of longitudinal waves. However, if the longitudinal waves are 
pictured as analogous transverse waves ( as they invariably are 
for this purpose ) interference is easily pictured. Wherever the 
sine curve of one sound wave goes up, the sine curve of the 
other goes down, and if the two are added together a horizontal 
line ( no wave at all ) is the result. 

On the ot�er hand, if two waves of the same frequency are 
sounded exactlydn phase, they would add to each other, so com
pressed areas are more compressed and rarefied areas are more 
rarefied than if either sound had been produced alone In trans
verse wave analogy, the crests and troughs of the separate waves 
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would match, and the resulting crests would be higher and troughs 
deeper of the two waves together than of either alone. The ear 
would hear one sound of the proper pitch, but louder. This is 
reinforcement. 

Actually, perfect interference or reinforcement is unlikely. 
Instead, two or more waves will combine, reinforcing here, inter
fering there, and will form resulting patterns of very complicated 
form that will not at all resemble the regular sine waves of in
dividual notes. However complicated these patterns may be, they 
will remain periodic. That is, a small unit section of the pattern 
can be taken, and the entire pattern can be shown to be made 
up of a succession of these units. 

In 1 807, the French physicist Jean Baptiste Joseph Fourier 
( 1 768-1 830),  studying wave forms generally, showed that any 
periodic wave pattern, however complicated it might seem, could 
be separated by appropriate mathematical techniques into the in
dividual sine waves making it up. The mathematics involved is 
referred to as harmonic analysis because it can be applied to musi
cal sounds. (The wave patterns of musical sounds are composed 
of separate sine waves that display an orderly set of interrelation
ships. Where this is not true, but where the component sine waves 
are chosen and combined at random, so to speak, the result is not 

Interference 

Reinforcement  

wove 2 

wove 1 

resul tant 
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music, but "noise." The difference is analogous to that between 
an orderly but complicated geometrical figure and the same lines 
combined in random fashion to produce a scribble. Fourier's 
methods could be used to analyze the wave patterns of noise, too, 
so perhaps it should be referred to by the more neutral term wave 
analysis. ) 

Restricting ourselves to very simple cases, and without insert
ing appreciable mathematics, let's consider two notes of different 
pitch, and therefore of different frequency, sounded iogether. The 
compressed regions of the sound wave (or the crests, if we wish 
to speak in the more easily visualized transverse-wave analogy) 
would be coming at shorter intervals in the case of the note of 
higher frequency, and they would overtake those of the sound 
wave with the lower frequency. 

Suppose one note has a frequency of 250 per second and 
another note of 25 1 per second. and suppose they start in phase. 
The first crest for both appears simultaneously. The second crest 
of the 25 1 /sec note appears just a little sooner than the second 
crest of the 250/sec note. The third crest appears still sooner, and 
the fourth crest appears still sooner. At the end of one second, 
however, one note has completed exactly 250 vibrations and the 
other exactly 25 1 vibrations. They are back in phase, but the 
25 1 /sec note has gained one complete crest.• Each succeeding 
second, the 25 1 /sec note gains another complete crest. 

At the point where the two notes are in phase, crest for 
crest, there is a short period of complete reinforcement, and the 
note sounds loudly. As the second progresses and the crests fall 
more and more out of phase, there is more and more interference 
and the sound becomes softer. At the half-minute mark, midway 
between two in-phase periods; the notes are completely out of 
phase and the crests of one match the troughs of another, and 
there is a short period of complete interference. The result is a 
regular swelling and dying of sound, with the maximum loudness 
coming at second-intervals when the crests match. Such periodi
cally changing loudness when two notes are sounded together 
is called a beat. 

Suppose the two notes had frequencies of 250/sec and 
252/sec, respectively. Then, after half a second, one note would 
have completed 125 vibrations and the other 1 26 vibrations, and 

• The two notes arc racing only in connection with the number of crests 
being produced in a given time, not in terms of velocity. Both notes are traveling 
through space at the same velocity. Indeed, the velocity of sound does not 
depend on frequency. 
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they would be back in phase with crest matching crest. This would 
be repeated every half-second, and there would be two beats per 
second. The number of beats per second, where two notes are 
sounded simultaneously, is generally equal to the difference in the 
frequencies of those notes. 

If beats are infrequent enough to be heard separately, they 
render the sound combinations unpleasant to the ear. Apparently, 
30 beats per second is maximally unpleasant. Where beats are 
more than 60 per second, however, they melt into each other 
as far as the ear is concerned, and the combination of sounds 
seems pleasant or harmonious. 

Consider two notes of which one has a frequency exactly 
double the other. One has a frequency of 220/sec, let us say, 
and the other 440/sec; the ratio of frequencies is 1 : 2. The 
number of beats, when the notes are sounded together, is 440-
220, or 220 a second. The beats duplicate the lower note, so 
the two notes seem to melt into each other and be almost the same 
note. They go well together. 

It was Pythagoras who first noticed that notes that go well 
together are related by these small whole-number ratios. He had 
no method of measuring frequency itself, but he considered strings 
of different lengths. He found that two strings with lengths in a 1 : 2  
ratio produced a pleasant combination; so did strings with a 2 : 3  
ratio and a 3 : 4  ratio. 

( Pythagoras wandered off in mystical fashion from these 
sound observations--sound in both senses. He assumed that the 
interplay of small whole numbers in the production of pleasing 
sounds fit in with, his views that all the universe was ruled by 
number. He and his pupils speculated that the planets them
selves produced sounds--the so-called music of the spheres-
with notes based on their relative distances from the earth. Science 
did not free itself of these notions for 2000 years. ) 

Suppose then that we start with a note of a 440/sec fre
quency ( the standard frequency for musicians ) and call it A. 
A note of twice the frequency sounds so much like it that we can 
call that A, too, and · we can use the letter for a sound of half 
the frequency, for that matter. In fact, we can have a whole series 
of such A's, with frequencies of 1 1 0/sec, 220/sec, 440/sec, 
880/sec, 1 760/sec, and so on, extending the range, if we choose, 
both upward and downward indefinitely. 

Between any two successive A's, we can introduce other 
notes with frequencies that bear some orderly arithmetical rela
tionship to the A-notes and to each other. It is customary to in-
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troduce six other notes in the interval ; these are lettered B, C, D, 
E, F, and G. Thus we have, from A to A, the notes : A, B, C, D, 
E, F, G, A. In passing from A to A, there are eight notes ( count
ing both A's) and seven intervals between notes. The span from 
A to A is therefore called an octave (from a Latin word for 
"eighth." Other spans are spoken of in plain English. The span 
from C to G (C, D, E, F, G ) ,  involving as it does five notes, is a 
fifth, while the span from C to F is a fourth. 

The frequencies associated with the notes from the 220/sec 
A to the 880/sec A are: 

A = 220 
B = 247.S 
C = 264 
D = 297 
E = 330 
F = 352 
G = 396 

A = 440 
B = 495 
C = 528 
D = 594 
E = 660 
F = 704° 
G = 792 

A = 880 

The range from 220/sec to 440/sec is  one octave and that 
from 440/sec to 8 80/sec is another octave. Each note in·the upper 
octave is double the corresponding note in the lower octave, so 
the interval from B to B is an octave; so is the interval from 
C to C, from D to D, and so on. Remembering to double the 
frequency for each higher octave and halve it for each lower 
octave, you can write the frequencies for any note in any octave. 

If the successive notes within any octave are sounded, they 
sound just like the corresponding notes within any corresponding 
octave lower or higher. The standard piano keyboard covers a 
range of a little over seven octaves ; if the white notes are sounded 
one after the other, one can easily detect the same "tune" to be 
repeated seven times, at successively higher pitches. 

The freq�encies are interrelated by ratios that can be ex
pressed in small whole numbers. The ratio of G to C, for instance, 
is 396:264, or 3 :2 ;  the ratio of F to C is 352 :264, or 4 : 3 .  It is 
these simple ratios that Pythagoras studied, and it is the simplicity 
of the ratios that sets up beats that reinforce the notes themselves 

Pattern of octave Intervals 

do = re = mi - fo = sol = la = ti - do 
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and make them blend well together. That is why fifths and fourths 
are much used as intervals between successive notes. 

Then, too, the . ratios of C, E and G are 264: 330: 396, or 
4 :5 :6, and the three notes sounded together as a major triad make 
a pleasing sound-combination, or chord. F, A and C also make a 
major triad, and so do G, B and D. In fact, the note intervals are 
so designed that every note can be part of one or another of these 
three major triads. 

If the ratio of the frequency of adjacent notes is considered, 
it turns out that B : A  as 9 : 8. The ratio for D :C and for G:F is 
also 9 : 8 .  The ratio for E:D and A:G is not quite that, but it is 
close, 10 :9. In other words, of the seven intervals between the 
notes of the octave, five are of roughly equal size, and we can call 
them "whole intervals." 

The frequency ratio of F:E, however, is only half as large, 
for it is 352: 330, or 16 :  1 5 ;  this is also true of the ratio of C:B. 
(This may be easier to see if we express it another way. A ratio 
of 9 : 8  represents an increase in frequency of 1 2.5 p_ercent, and 
one of 10 :  9 represents an increase of 1 1 . 1  percent. The ratio 
1 6: 1 5, however, represents an increase of only 6.7 percent. )  
In passing from B to C o r  from E t o  F, then, .we are traversing 
only a "half interval." 

If we start from A and go up the notes through B, C, and 
so on, we will be passing intervals in the following pattern: whole, 
half, whole, whole, half, whole, whole, whole, half, whole, whole, 
half, and so on. Successive half intervals are separated by two 
whole intervals, three whole intervals, two whole intervals, three 
whole intervals, and so on. 

When we sing the scale, using the traditional names for the 
notes (do, re, mi, fa, sol, la, ti, do) ,  through long habit, we insist 
on placing the half-note intervals between mi and fa and between 
ti and do. Any other arrangement sounds wrong to us. We there-
fore want the seven intervals of the octave to fall into the follow• 
ing pattern: whole, whole, half, whole, whole, whole, half. If you 
check back, you will see that this particular arrangement can only 
be brought about if we start with do on the note C (it doesn't 
matter which C ) .  Then re becomes D, mi becomes E, fa becomes 
F, sol becomes G, la becomes A, ti becomes B, and do is C again. 
The mi-fa half interval corresponds to the EF half interval, and the 
Ji.:clo -half interval corresponds to the BC half-note interval. The 
arrangement of notes you sound in singing the scale now matches 
the successive notes you tap out, beginning at C on the white keys 
of the piano: If you start on any white key of the piano other than 
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C and play the successive white keys, the piano and you will sound 
half intervals at different points in the scale, and the piano (not 
you, of course) will sound dreadful. 

It is desirable to be able to play the scale from any point on 
the piano keyboard, so that the range of the scale can be adjusted 
to a particular human voice, for instance. For this reason, in every 
octave, five black notes are inserted to break up the five whole 
intervals. This accounts for the familiar black note pattern of two 
(CD, DE) and three ( FG, GA, AB) all along the keyboard. Now 
the scale can be sounded by beginning at any note on the piano 
(either white or black) provided you remember to choose your 
notes carefully and play sometimes black and sometimes white. 
Only if you start on C, however, can you play the scale by sound
ing successive white notes only. 

It is for this reason that C seems a natural do · and that the 
"key of C" is the simplest key to play for beginners (white keys 
only, for the most part ! ) .  "Middle C" is the particular C that is 
about at the midpoint of the piano keyboard, and it is the C with 
the frequency 264/sec. 9 

Modification of Pitch 
Pitch will change if the source of sound is moving relative 

to the hearer. Suppose a distant train, standing motionless, sounds 
a whistle that has a frequency of 344/sec. In that case, when the 
sound wave reaches us, 344 compression/rarefaction combinations 
will strike our eardrum each second. Since sound (at room tem
perature) travels at 344 m/sec, successive areas of compression 
are a meter apart. 

Suppose next that the train is moving rapidly toward us at 

• Physicists often use a frequency of 256/sec for middle C, because as 
,ower of 2, 256 is a particularly easy number to halve and double. It is 
j(2) (2) (2) (2) (2) (2) (2), or 2'. 

Plano keyboard 
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a rate of 34.4 m/sec ( 75.8 miles an hour) , or just one-tenth the 
velocity of sound. It is still sounding its whistle. One region of 
compression is moving ahead of it, and by the time it has moved 
a meter, another region of compression is emitted. By that time, 
however, the train has moved forward a tenth of a meter and the 
second region of compression is only 0.9 meters behind the first. 
This happens for all successive regions of compression if the train 
maintains a steady pace. For this reason, sound waves from the 
whistle of the approaching train enter our eardrums 0.9 meters 
apart and in one second 344/0.9, or 382 of them, strike the ear
drums. A person on the train, and therefore moving right along 
with the whistle, receives 344 regions of compression in one sec
ond. The ratio 382 : 344 is close to 9 : 8 ,  so the sound is a whole 
interval shriller ( see page 1 72)  for the person watching the train 
approach than for the person on the train. 

On the other hand, if the train were receding, then by the 
time a region of compression had moved a meter toward the 
hearer and a new region of compression was due, the train would 
have moved a tenth of a meter away, and the two areas of com
pression would be 1 . 1  meters apart. The frequency would be 
344/1 . 1 ,  or 3 1 2  per second. Now it is deeper by nearly a whole 
interval than it would sound to the person on the train. 

If the train passed us at this velocity, the sound we heard 
would shift suddenly from a frequency of 382/sec as it was ap
proaching and passed, to 3 1 2/sec as it passed and receded. 

This phenomenon is called the Doppler effect in honor of the 
Austrian physicist Christian Johann Doppler ( 1 803-1 853 ) ,  who 
first studied the effect and explained it correctly in 1 842. 

Pitch can be made to vary in a much more subtle way, too. 
The same note sounded with the same loudness on the piano, 
violin, and clarinet sounds different to us. If we have any experi-
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ence at all, we can tell which instrument is sounding the note. 
This difference in notes that are identical in pitch and loudness is 
a difference in quality or timbre. 

To explain this, we must consider that the vibrations of a 
string, or of any sound-producing device, are actually more com
plicated than I have described them to be. A string, for instance, 
may indeed vibrate all in one piece to produce a vibration and, 
therefore, a sound wave of a given frequency. In the transverse
wave analogy, this would be a simple, regular sine curve, and is 
the fundamental note. It is the fundamental note we usually think 
of when we speak of the frequency of a particular note. 

However, the string may also vibrate as two halves: one half 
moving to the right as the other half moves to the left and vice 
versa; the midpoint of the string, bounding the two halves, serving 
as a motionless node. Each half of the string vibrates at twice 
the frequency of the whole string, so a note is sounded with just 
twice the frequency of the fundamental note. The string may 
also vibrate in thirds, in fourths, in fifths, and so on, to produce 
notes with frequencies three times, four times, five times, and so 
on, that of the fundamental notes. All these notes of higher fre
quencies are called overtones. The fundamental note and the 
various overtones are sounding simultaneously; the actual motion 
of the string is a combination of all. The fundamental note re
mains dominant, but the overtones add their wave forms, and 
therefore the resulting wave form is far more complicated than 
a simple sine curve. Furthermore, for strings under different con
ditions ( to say nothing of other sound-producing devices) the over• 
tones may be receiving different proportionate stress; certain over
tones may be stronger in some cases than in others, so the final 
wave form will be different for different instruments. Such a dif• 
ference imposed on the eardrum is great enough for us to detecL 

This difference can be magnified by methods of selecting 
some overtones from the rest for special magnifications. Let's see 
how. 

A vibrating object may force another to vt'brate in unison, so 
the second object sets up the same sound wave pattern and pro
duces the same sound. If a vibrating tuning fork has its stem placed 
in contact with a table, its sound is suddenly louder because now 
the entire table is vibrating in unison. 

Such a forced vibration need not even be the result of direct 
physical contact between sol ids. Indirect contact through air may 
be sufficient. A given vibration will set the air pulsing in longi
tudinal waves; these waves will, in turn, set the eardrum vibrating 
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in unison. The eardrum will move inward when a region of com
pression strikes, and outward when a region of rarefaction does; 
it moves a greater distance from the equilibrium position as the 
regions become more compressed and more rarefied. It is through 
such forced vibrations that the eardrum exactly duplicates the 
original vibration, and we are able to judge ( via a complicated 
hearing mechanism we will not describe here) the pitch, loud
ness, and even the timbre of a sound. 

There are occasions, however, when one particular frequency 
is more easily "forced" than another on a second body. Imagine 
yourself pushing a child. on a swing. for instance. The child on a 

, swing represents a form of pendulum and has a natural period 
of vibration. If you apply successive pushes to the swing at random 
intervals, you will often push the swing as it is moving back to
ward you and will cancel what motion it possesses, slowing it. By 
persisting, you will keep the swing moving in accordance with 
your pushes, but you wil l  expend a lot of energy doing so. If, how
ever, you timed your pushes to match the natural period of vibra
tion of the swing, you would push each time as the swing begins 
to move away from you, thus adding to its velocity and increasing 
it further with each swing and rhythmic push. At the expense of 
far less energy, you would get a far more rapid and extended swing. 

( Marching soldiers crossing a bridge are supposed to break 
step. Otherwise, if the thud of the footsteps in unison happened 
to match the natural period of vibration of the bridge, the bridge 
would swing in wider and wider arcs until it finally broke apart. ) 

The situation is analogous for sound waves. The sound wave 
of a particular not� would push another object with each region 
of compression and pull it with each region of rarefaction. If the 
rhythmic push-and-pul l  did not match the natural period of the 
receiving object, the forced vibration could only be obtained at 
the expense of considerable energy being used to overcome that 
natural period. If, however, the frequency of the note just matched 
the natural period of vibration of the receiving object, the latter 
would begin to vibrate more and more. This is called resonance 
(from Latin words meaning "to sound again") .  

Any given sound wave would produce fa r  more vioration 
in a resonating object than in any other kind ; in fact only the 
resonating object might produce sound waves strong enough to 
be audible. Suppose, for instance, you raise the top of a piano to 
expose the wires and step on the "loud" pedal to allow all those 
wires to vibrate freely. Now sing a short, loud note. Only those 
wires that vibrate at the frequency of that note will resonate, and 
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when you stop singing, you will hear the piano answer back softly 
in that same note. 

Musical instruments depend upon the resonance of the mate> 
rials making up their structure to strengthen and add richness to 
the notes produced. Pianos have a "sounding board" just under the 
wires, and this device can resonate with the various notes. With
out that board, the notes sounded by the wires would be quite 
weak. 

Naturally, the resonating portions of each instrument, al
though resonating to almost all the notes ( the resonating portions 
are complicated in shape and different parts have different natural 
periods of vibration) ,  do not do so with equal efficiency. The 
wood of a violin resonates to the notes produced by it, but it may 
resonate more efficiently to some overtones than to others. No 
two violins are of exactly the same shape, or of exactly the same 
wood with the same grain arrangement, or possess exactly the 
same varnish. As a result, there are subtle differences in resonance 
from instrument to instrument. The Italian violinmaker Antonius 
Stradivarius ( 1 644-1 737 ) manufactured violins that are the de
spair of imitators, for it is almost impossible to duplicate their 
richness of tone. 

The sounds we ourselves make produce resonances in the 
air filling the hollows in throats, mouths and nasal cavities. The 
natural vibrations of the air depend on the shape and size of the 
cavities, and since in no two individuals are these cavities of 
precisely the same shape and size, voices differ in quality; we usu
ally have no trouble recognizing the voice of a friend from among 
a large number of others. 

Reflection of Sound 

A ripple in a water tank is turned back on itself when it strikes 
the rim of the tank; having progressed, let us say, leftward prior 
to contact, it proceeds rightward thereafter, much as a billiard 
ball does that has struck the edge of a pool table head-on. The 
water wave has been reflected t from Latin words meaning "to bend 
back" ) .  

Sound waves can be reflected, too. A mountain wall will re
flect them, for instance. A word shouted across a valley is heard 
almost at once as it leaves the lips, being conducted through the 
air from lips to ear. It is then heard again seconds later, after 
the sound wave has reached the mountain wall, been reflected, 
and crossed the valley a second time. This is the echo. If mountain 
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sides are properly arranged, more than one echo may be heard. 
Similar echoes may be heard in tunnels, in large empty rooms, 

and indeed anywhere where hard surfaces reflect sound rather 
than absorb it. In ellipsoidal rooms a sound uttered at one focus 
of the ellipse will spread out in all directions; however, in reflect
ing from various portions of the walls and ceiling, it will concen
trate upon the other focus. Two people standing at the foci can 
converse in whispers, even though separated by a large distance. 
Such "whispering galleries" always amaze those who have never 
encountered one before. 

In rooms of moderate size, the length of time taken for a 
sound wave to travel to a wall, be reflected to an opposite wall, 
be reflected once again to the first wall, and so on, is so short that 
distinct echoes will not be heard. Instead, a series of very rapid 
echoes will blend into a dull, hollow rumble that may persist 
audibly for a considerable time after the original sound is no longer 
being formed. This persistence of sound is called reverberation. 
The study of the behavior of sound in enclosed places, particu
larly with regard to such reverberation, is called acoustics ( from 
a Greek word meaning "to hear" ) ,  a term that is sometimes applied 
to the study of sound generally. 

Reverberation can represent a great inconvenience. A lec
turer may find that his words cannot be heard because of the dying 
sound of his previous words. An orchestra may find its best 
efforts reduced to discord as previous notes l ive on past the . time 
when they are wanted or needed. Reverberation can be reduced 
by draping the walls, using a soft, pulpy material for the ceiling, 
or even by the presence of an audience in winter clothing. When 
sound waves enter the small interstices of fabric or other porous 
material, contact of the moving air molecules with solid material 
is rn&de over a hugely increased area. Friction is increased and 
sound energy is converted into heat. The sound waves, in other 
words, are absorbed rather than reflected. 

This can be overdone. If reverberation is reduced to too low 
a level, there seems a "deadness" to sounds. A reverberation pe
riod of one second, or even two if the room is very large, is aimed 
for. 

Sound waves are not always either reflected or absorbed ( nor 
arc water waves ) .  There is a third alternative: sound waves (and 
water waxes, too) can bend around obstacles and continue on
ward. It is because of this that we have no difficulty hearing some
one call from behind a tree or from around a corner. This ability 
to bend around obstacles is not the same for all kinds of waves. 
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In 1 8 1 8 , the French physicist Augustin Jean Fresnel ( 1788-
1 827) was able to show, in connection with his studies of wave 
motions generally, that whether a wave was reflected or not de
pended upon the comparative size of the wavelength and the ob
stacles. When an obstacle was the size of the wavelength or less, 
it did not reflect the wave, which, instead, bent round the obstacle. 
If the obstacle was considerably larger than the wavelength, the 
wave was reflected. 

Consider the common sounds we hear about us every day, 
with frequencies, let us say, through the middle range of the piano 
from C below low C to C above high C-a range of four octaves. 
The range of frequencies extends from 66/sec to 1 056/sec. If 
we make use of Equation 1 2-2, we see that the range of wave
lengths over these four octaves is from 5.2 meters down to 0.32 
meters ( roughly from 1 to 18 feet, in common units ) .  The com
mon obstacles we meet with fall within this range of size and 
do not reflect such sound to any great degree, so sound bends. 

This bending is, of course, more likely for the deeper sounds 
than for the shriller ones. We judge the direction of a sound by the 
inequality of loudness in the two ears, automatically turning our 
head until both ears hear the sound with equal loudness .  Our head 
is large enough to reflect, somewhat. a shrill sound coming from 
one side. There is then a considerable reduction in the intensity 
of that sound making its way around our head to the other ear. 
We have no trouble, therefore, locating a child by its shrill cry. 
On the other hand, the deep tones of the lower register of an organ 
move around our head with ease and sound equally intense in 
both ears. The sound seems to come from all around us; this in 
itself lends majesty to the swell of the organ. 

The full range of the piano covers 7 .5 octaves. The lowest 
note possesses a frequency of 27.5/sec and a wavelength of 1 2.5 
meters. We can hear still deeper sounds; however, the usual ex
treme in that direction is 15/sec, a sound with a wavelength of 
22 meters. The highest note of the piano possesses a frequency 
of 4224/sec and a wavelength of 0.08 1 meters, or 8 . 1  centi
meters. The adult human ear can hear sounds with a frequency 
as high as 1 5 ,000/sec (wavelength, 2 .2 centimeters ) ,  and the child 
can sometimes hear a frequency as high as 20,000/sec (wave
length, 1 .7 centimeters) .  Such extremely shrill sounds will be 
reflected quite well by objects too small to reflect sounds in the 
more common range. The high-pitched creak of a cricket may be 
reflected so well by various objects that it is next to impossible 
to tell exactly where the original sound is coming from. 



180 Undemanding Physics 

It is, of course, possible for objects to vibrate with frequencies 
of less than 15/sec and more than 20,000/sec; when this hap
pens sound waves are produced which are not audible. Those that 
are too deep to be audible are infrasonic waves (from Latin words 
meaning "below sound") ,  while those that' are too shrill to be 
audible are ultrasonic waves ( from Latin words meaning "beyond 
sound") .  

Infrasonic waves are comparatively unimportant except 
where they become energetic enough to do physical damage, as 
in earthquakes. Ultrasonic waves impinge upon us more often and 
in many ways. For one thing, they are not inaudible to all forms 
of life;  many animals smaller than ourselves can both produce 
and hear them. The "silent" whistles to which dogs respond pro
duce ultrasonic waves that they can hear though we cannot. The 
singing canary produces ultrasonic waves that would undoubtedly 
greatly add to the beauty of the song if we could but hear them. 
The squeaking mouse also produces them, and the waiting cat 
can hear them where we cannot-which increases the efficiency 
of the feline stalk. 

Ultrasonic sound waves, with wavelengths even shorter than 
those of the shrillest sounds we can hear, can be reflected efficiently 
by quite small objects. Bats take advantage of this fact. They emit 
a continuous series of ultrasonic squeaks while flying. These have 
frequencies of from 40,000 to 80,000/sec and, therefore, have 
wavelengths of from 8 to 4 millimeters. A twig or an insect will 
tend to reflect such short wavelengths; and the bat, whose squeaks 
are of extremely short duration, will catch the faint echo between 
sq1.teaks. It can thus guide its flight by hearing alone and continue 
flying with perfect efficiency even if blinded. This process is called 
echolocation. 

Men duplicate this effect by making use of beams of ultra
sonic waves underwater. These are reflected from objects such 
as the sea bottom, jutting rocks above the sea bottom itself, schools 
of fish, or submarines. The technique is referred to as sonar, an 
abbreviated form of "sound navigation and ranging" (where "rang
ing" means getting the range of an object-that is, determining its 
distance) .  
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Temperature 

Hot and Cold 

Heat has been mentioned several times in the book, notably 
toward the end of Chapter 7 in connection with the conservation 
of energy. I have not stopped, however, to consider it in detail, 
since to do so with proper understanding required first a considera
tion of the properties of fluids and, in particular, of gases. Enough 
of these properties have now been described to make it advisable 
to tum again to the subject of heat. 

Heat is most familiar to us as a subjective sensation. We feel 
something to be "hot" or "cold," and we know what we mean 
when we say that one object is "hotter" than another. The degree 
of hotness or coldness of an object is called its temperature. 

Temperature is of importance to physicists because a great 
many of the properties of matter with which he deals vary with 
temperature. In the previous chapter, for instance, I mentioned 
that the velocity of sound varied with temperature (see page 1 64) .  
Again, the volume of  a given mass of  water increases as  it i s  heated 
to near the boiling point, and so the density decreases. Hot water 
possesses weaker cohesive forces than does cold water, so the 
viscosity and surface tension decrease as temperature goes up. 
Even such seeming unchangeables as the length of an iron rod 
change with temperature 

181 



lll! Untlentanding Physlce 
It follows then that if a physicist is to mate proper generali

zatio� concerning the universe. he must know just how the 
properties of matter change with temperat11re. and to do that he 
must be able to measure the temperature accurately. Our subjective 
feelings are insufficiently fine under the best conditions and are 
grossly inaccurate at times; therefore they will not do for the 
purpose. Thus. a polished metal surface exposed to the tempera• 
ture of freezing water will feel much colder to the touch than a 
polished wooden surface exposed to the same conditions (for 
reasons to be discussed on page 22S).  even though both are at 
the same temperature. A well-known experiment produces an even 
greater paradox. If you place one hand in ice water and one in 
hot water and leave them there for a few moments, and then place 
both hands in the same container of lukewarm water. you will 
simultaneously feel the lukewarm water to be wann ( with your 
cold hand) and cold (with your hot hand) .  

Some objective means of  measuring temperature is therefore 
needed. The logical method is to find some property that changes 
in an apparently uniform manner with temperature and then as
sociate fixed changes in temperature with fixed changes in that 
property. Physicists make use of a number of different temperature
dependent properties for the purpose, but the most commonly 
used property for the temperature range met with in ordiqary life 
is that of volume-change. The volume of a given mass of matter 
generally increases with rising temperature an_d decreases with 
falling temperature. ( I  say "generally" because there are occasional 
exceptions to this. ) 

The change in volume with temperature is, in the case of 
liquids and solids, quite small and, in fact, unnoticeable to the 
eye. Thus, a steel rod a meter long will, if brought from the tem• 
peraturc of melting ice to that of boiling water, expand in length 
by one millimeter-that is. one part in a thousand. Since it is the 
volume that is expanding, the other dimensions will also increase 
by one part in_ a thousand, and if the steel rod has a circular cross 
section one centimeter in . radius, that radius will increase by one. 
hundredth of a millimeter. 

Such changes. while small, are by no means unimportant. 
Long metal girders such as those used in bridges, or long rails 
such as those used in railroad tracks, will expand and buckle 
in the hot summer sun if fixed at both ends. To avoid that, spaces 
are left between adjoining units so that there will be room to 
expand. Again, even a .  trifling change in the length of a clock's 
pendulum. will alter its period slightly. for that peti9d depends 
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upon its length (see page 1 12 ) .  The e1T9r in �me-measurement. 
which depends upon that period, is cumulative and would make it 
necessary to adjust the clock periodically in summer, although it 
might run perfectly at cooler temperatures. 

Not all substances expand by the same relative amounts when 
exposed to a given temperature change. An alloy of iron and 
nickel ( in 5 to 3 ratio) will, for instance, only expand to one
tenth the extent that iron or steel will. For this reason, it is a useful 
alloy out of which to construct measuring tapes, rods of standard 
length, and so on. Because its length is more nearly invariable than 
that of most metals, the trade name for the alloy is Invar. 

Glass expands with temperature almost to the same extent 
that steel will. If a glass vessel is exposed to a drastic temperature 
change, one portion of it may expand (or contract) while another 
portion, to which the temperature change has not yet penetrated. 
does not. The expansion or contraction may not be large in an 
absolute sense, but it is enough to set up internal strains which 
the cohesive forces of glass are not sufficient to withstand, so the 
glass cracks. 

One way out of this dilemma is to use relatively thin glass 
so that if one portion is heated (or cooled ) the temperature change 
will penetrate to other portions quickly. * Another and better way 
is to make use of a boron-containing variety of glass, usually 
known by the trade name of Pyrex, which will change in volume 
with a given temperature only by one-third the amount that ordi
nary glass will. It is therefore far more resistant to cracking under 
temperature change because smaller strains are set up. Its thick
ness (and mechanical strength ) need not, therefore, be sacrificed 
to temperature stability. Quartz, with a still smaller tendency to 
change volume with temperature (less even than that of Invar) ,  
i s  still better for the purpose. A quartz vessel can be  heated to 
red heat and plunged into ice water, and be undamaged by the 
ordeal. 

However startling the effects of trifling changes in volume, 
those changes remain trifling in actual size. Unless they can some
how be magnified, they would be difficult to use as a measure of 
temperature. Fortunately, there are simple methods of magnifying 
small volume changes. 

One method is to weld strips of two different metals together, 
say a strip of brass with one of iron. For a given change of tem
perature, a brass strip will change in volume ( and, therefore, in 

• It takes time for temperature change to make its way through glass 
because glass is a poor conductor (see page 224) of heat. 
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length) to nearly twice the extent that an iron strip of the same 
size will. If the two strips of metal were not weided together. the 
brass would expaad under the influence of increasing temperature 
and slide against the iron, becoming a trifle the longer of the two 
although they had been equal in lensth to start with. If the tem
perature is reduced below the starting point, matters are reversed. 
Now the brass contracts more than the iron does, sliding against 
the iron and ending a trifle the shorter of the two. 
· However, the two strips of metal are welded together and 
the brass cannot slide against the iron. What happens then is that 
the welded strips ( a  bimetallic strip or a compound bar) bend 
in the direction of the iron if it is heated. The brass would then lie 
along the· outer rim of the curve and the iron along the inner. Since 
the outer rim is longer than the inner. this allows the brass to be 
longer than . the iron while remaining welded throughout. As the 
temperature falls again, the curve straightens and becomes entirely 
straight when the temperature returns to its original value. If the 
temperature falls lower still, the bimetallic strip bends in the direc
tion of the brass, which now lies on the inner rim while the iron 
lies on the outer rim. 

If such a bimetallic strip is fixed at one end, the other end 
sways back and forth as temperature changes. The outer rim of 
the curved strip is very little longer than the inner, and the differ
ence in length increases but slowly with the degree of bending. 
For that reason. even small changes in temperature, producing 
very small differences in length between the iron and brass, never
theless produce a considerable amount of bending. 

A device of this sort can be used as a thermostat. As the 
temperature in the house falls, the bimetallic strip begins to c urve 
to the left, let us say, and at a certain temperature the bending is 
sufficient for it to close an electrical contact that turns on the 
furnace. As the house heats up, the bimetallic strip bends back 
and quickly breaks the contact, thereby turning the furnace off. 
By altering the position of the electrical contact ( easily done by 
hand) ,  we can arrange to have the bimetallic strip tum the furnace 
o� at any temperature we please. 

Then, too, the exact position of the free end of such a bi- . 
metallic strip can be used as a measure of the temperature. If a 
pen is attached and a circle of paper is allowed to revolve under 
it at a fixed speed, the devi� will automatically make a continuous 
recording of its position, and temperatures can be deduced from 
the position of the wavering line. 

Again, pendu,ums-can be designed in which the rod is not 
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a single piece of metal but several strips of two different metals
say, steel and zinc. These can be joined by horizontal bars in 
such a way that the temperature change in the zinc tends to 
lengthen the pendulum while the temperature change in the iron 
tends to shorten it. The combined action tends to leave the pen
dulum unaltered in length as temperature changes. This is a com
pensation pendulum. 

Temperature Scales 
A much more common method of magnifying volume change 

for the purpose of measuring temperature is to make use of liquids 
rather than solids. Imagine an evacuated spherical container with 
a long, narrow tube of constant width extending upward. The 
container holds enough liquid to fill the sphere completely, but 
the neck remains empty and includes only vacuum. If the liquid 
is warmed, its volume will increase and there will be no place for 
the liquid to expand into but the neck. The volume of the water 
rising into the cylindrical neck can be expressed by the usual 
formula for the volume of a cylinder, V = rrh, where r is the 
radius of the cylindrical neck and h is the height to which the water 
rises. For a given volume. the smaller the value of the radius of 
the neck, the greater the height to which the liquid must rise. It 
follows that even though the additional volume of liquid ( due to 
expansion with temperature) is very small, the change in height 
can be made quite sizable if only the radius of the tube is made 
small enough. There is no difficulty in using changes in the height 
to measure changes in temperature. 

Thermostat electrical 
contoct 
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A device making use of a sizable reservoir of fluid and a 
narrow tube into which that fluid can expand is the most common 
form of thermometer (from Greek words meaning "heat-measure"). 
Such thermometers were first devised in the seventeenth century 
and a variety of fluids were used. Water, naturally, was one of 
the first. Unfortunately, water does not expand uniformly with 
temperature. In fact, it reaches a point of maximum density and 
minimum volume at a temperature somewhat above its freezing 
point. If the temperature is dropped further, water actually ex
pands as the temperature is lowered until it freezes (and in that 
process expands still further, for ice is less dense than water by 
nearly ten percent) .  Furthermore, water remains liquid over a 
comparatively small temperature range and is · useless for tem

·peratures below its freezing point or above its boiling point. 
Alcohol, also used in thermometers, stays liquid at temperatures 
far below that at which water freezes; however, it boils at a 
temperature even lower than that at which water boils. 

Furthermore, both water and alcohol wet glass. As the height 
of liquid sinks with the falling temperature, some remains behind, 
clings to the glass, and then slowly trickles down. The level of 
liquid may then be observed to rise slowly, and it would be diffi
cult to decide whether this was because temperature was going 
up or iiquid was trickling down. 

The first to make use of mercury as a thermometric fluid 
was a German physicist named Gabriel Daniel Fahrenheit ( 1 686-
1736),  and he did this in 1 7 1 4. Mercury's freezing point is con
siderably below that of water and its boiling point is considerably 
higher; in addition, it expands quite smoothly with temperature 
change. (One way of judging this is by noting that temperature 
changes as measured by the change in volume of mercury agree 
closely with temperature . changes as measured by changes in a 
variety of other properties of matter. It is more reasonable to as
sume that all these changes are regular than that they all happen 
to be irregular in just the same way. ) Finally, mercury does not 
wet glass, and the height of the mercury column would not be 
affected by delayed trickling. 

Once the course of temperature change is made easily visible 
by the rise and fall of the mercury thread in the narrow tube of 
the thermometer, it is next necessary to associate some dc!finite 
numerical values with fixed pasitions. 

At atmospheric pressure, for instance, ice melts at a particular 
temperature and there seems every reason to believe that this 
temperature is the same in all places and at all times. (At least, 
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there is no reason to believe the contrary.) Similarly. water always 
boils at a particular temperature at atmospheric pressure in all 
places and at all times. If a thermometer is placed in melting ice, 
the level to which the meri:ury thread rises can be marked; if it is 
placed in boiling water, a new level is marked. All men would 
have marks on their own thermometers that were comparable; 
all thermometers would match and .. speak the same language.• 
Once two such marks were set, the distance between could bo 
divided into equal steps. or degrees. 

Fahrenheit's method of setting his fixed point unfortunately 
did not invalve the freezing point and boiling point of water 
directly. For his zero point. he used a mixture of ice and salt that 
produced the lowest freezing point he could get, and for another 
point, he tried to use the temperature of the human body. He 
ended by associating the freezing point of pure water with tho 
number 32 and the boiling point of water with 212. (These figures 
are separated by 180 degrees, you see. ) This is the Fahrenheit 
scale, and measurements upon it are given in "degrees Fahrenheit,• 
abbreviated as "°F." Thus, the freezing point of water is 32°F, 
and the boiling point of water is 2 1 2°F. Body temperature is set 
at 98.6°F, and something like 70°F is considered a comfortable 
room temperature. 

Temperatures below the 0°F mark can be said to be so many 
"degrees below zero.'' or a minus sign can be used. Thus alcohol · 
freezes at 1 79 degrees below zero, Fahrenheit, or at -179°F. 

In 1742. the Swedish astronomer Anders Celsius ( 1701-
1744) made use of a different scale. one in which the freezing 
point of water was associated with O and the boiling point with 
100, these points therefore being separated by a hundred degrees. 
This scale is called the Centigrade scale (from Latin words mean
ing ''hundred degrees•). but in the 1950's it was decided to honor 
the inventor by calling it the Celsim scale. Whether one speaks of 
"degrees Centigrade" or .. degrees Celsius.• however. the abbrevi
ation is "0C." On the Celsius scale. the melting point of ice, or 
the freezing point.of water, is 0°C. and the boiling point of water 
is 100°C. 

The Celsius scale commends itself to scientists because the 
0 to 100 stretch fits in with the decimal nature of the metric system 
and because that stretch of temperature over which water remains 
liquid is a particularly interesting one. especially to chemists. It 
is the Celsius scale that is used universally by scientists. 

The Fahrenheit scale, however, is used in ordinary affairs 
in the United States and Great Britain, and it has at least this 
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advantage: the O to 100 stretch in the Fahrenheit scale covers 
the usual range of temperatures in the world. Meterologists using 
the Celsius scale must frequently descend to negative numbers; 
those using the Fahrenheit scale need do so but rarely. 

Since both scales are used in the United States ·and Great 
Britain, it is useful to be able to convert one to the other. Let us 
begin by noting that in the range between the freezing point and 
the boiling point of water there are 1 80 Fahrenheit degrees and 
100 Celsius degrees. The Celsius degree is obviously the larger 
of the two and is equal to 1 80/1 00, or 9/5 Fahrenheit degrees. 
Conversely, a Fahrenheit degree is equal to 100/1 80, or 5/9 
Celsius degrees. 

That would be enough if the two scales had their zero point 
in common, but they don't. If the Celsius reading is multiplied by 
9/5,  the result is the number of Fahrenheit degrees, not above 
0°F, but above 32 °F ( for 32°F is the equivalent of 0°C) .  For 
that reason 32 '· must be added to the result. In other words: 

(Equation 1 3-1 ) 

To obtain the reading on the Celsius scale when the Fahren
heit temperature is given, it is only necessary to solve Equation 
1 3- 1  for C, and the answer is: 

C � \<F - 32)  (Equation 1 3-2) 

Expansion 

Once temperature can be measured with precision, it becomes 
possible to express temperature-dependent changes accurately. We 
can decide how much change there is "per degree Celsius" ( a  
phrase that can b e  abbreviated a s  "per °C" o r  as "/°C." 

For instance, we can measure the changing length of a rod 
and determine the increase of length brought about by a definite 
temperature change. We can then calculate what the relative 
increase in length is for a rod that has undergone a temperature 
rise of 1 °C. This increase is the coefficient of linear expansion. 

The size of the coefficient of linear expansion varies from 
substance to substance, but for sol ids it is always quite small. For 
steel, for instance, it is 0.0000l !°C, or, expressed in exponential 
form: 1 X ·1 0-·;oc. This means that a one-meter rod will ex-
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pand by 0.00001 meters when temperature goes up 1 °C, a one-
kilometer rod will expand by 0.00001 kilometers, a one-centimeter 
rod will expand by 0.00001 centimeters, and so on. (Some other 
coefficients of linear expansion are 1 .9 X 10-1 /°C for brass, 2.6 
X 10-1;0c for aluminum, and only 0.04 X 10-6/°C for qµartz...) 

Suppose we represent the coefficient of linear expansion by 
the Greek letter "alpha" (a). If we start with a rod exactly one 
meter long at a particular temperature and raise that temperature 
by 1 °C, then the length increases by .. meters, and the total length 
is 1 + a meters. If we raise the temperature by 2°C, the expansion 
is twice as great, so the total length now becomes 1 + 2a, while 
for a temperature rise of 3 °C it is 1 + 3a. In short, the value of a 
is multiplied by the number of degrees by which the temperature 
is changed. 

It is customary in physics and in mathematics to signify a 
change in a value by the capital form of the Greek letter "delta" 
(.6.) . If we let temperature be symoolized as t, then a temperature 
change is written �t. and is usually read "delta t." In other words, 
we can consider the length of a one-meter rod after a certain rise 
m temperature to be 1 + a(.6./) .  

Naturally, if  temperature i s  allowed to fall instead of rise, 
M is negative and so is a(At) . The expression 1 + a(M) is then 
smaller than 1 ,  which is reasonable, since with falling temperature 
the rod contracts. 

Suppose, now, that we started with a two-meter rod. We can 
consider it as consisting of 2 one-meter rods fused together. Each 
one-meter half has a total length of 1 + a(M) after the temperature 
has changed, and the total length is therefore 2(1 + a(M)] .  This 
can be reasoned similarly for any length. In fact, if we call the 
length of a rod L, then the new length after a change in temperature 
is L[l + a(At)J or, multiplying this out, L + La(M) . 

Wf: can next ask ourselves what the change in length is as 
a result of the change in temperature. The change in length, which 
we can naturally symbolize as AL, would be the length after the 
temperature change minus the original length. This would be 
L + La(M) - L, so we can conclude : 

AL = La (At )  (Equation 1 3-3 ) 
A substance expanding with rise in temperature expands in 

all directions and not in length only, and the change in  volume 
is often more important than the change in length. In liquids and 
gases, particularly, it is the expansion in volume that is measured. 
In solids, however (especially when in the shape of long rods) ,  it 
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is far simpler to measure the l inear expansion and calculate the 
volume expansion from that. 

We can begin by assuming that the coefficient of linear ex
pansion for a given substance has the same value for width and 
height as for length. * Suppose we start with a cubic meter of a 
substance. Its length, after a 1 °C rise in temperature becomes 
1 + a meters. Its width , however, also expands to I + a meters, 
and its height, too. It's volume, which began as 1 3 cubic meters 
( 1 3 

= I ,  of course ) is now ( I + a) 3 cubic meters. The change in 
volume with a I °C rise in temperature is ( 1 + a)3 

- 1 3, or ( 1 + 

a) 3 - 1 ,  and that is the coefficient of cubical expansion. 
The quantity ( 1 + a ) '1 can be expanded by ordinary algebra 

to l + 3a + 3a" + a" . We subtract 1 from this and find that the 
coefficient of cubical expansion is 3a + 3a2 + a3 • Where a is very 
small, as it is in the case of solids and liquids, a.2 and a3 are much 
smaller stillt and can be ignored as not contributing a significant 
quantity to the expression. If we throw out the square and cube, 
then we can say with quite sufficient accuracy that the coefficient 
of cubical expansion is 3a-three times the coefficient of l inear 
expansion. Thus, if the coefficient of linear expansion is 1 X 
10-• /°C for steel, then we can say that its coefficient of cubical 
expansion is 3· X 1 o-s  /°C. 

The coefficient of cubical expansion is roughly ten times 
as high for l iquids as for solids, and considerably higher still for 
gases. It is, indeed, for gases that the coefficient of cubical ex
pansion has proved to have the greatest theoretical significance. 

• This is not necessarily strictly true. A single crystal may expand by 
different amounts in different directions, depending on the orderly arrangement 
of the atoms and molecules making it up. A crystal may, in this respect and 
many others, have properties that vary with direction. In these respects, it is 
anisotropic. Common substances about us, however, are often not crystalline 
or, if they are, are composed of myriads of tiny crystals facing every which way. 
On the average, then, properties would be the same in every direction, and 
the substance would be isotropic. We tend to think of substances generally as 
isotropic because this is the less complicated view, but anisotropy is not really 
a rare phenomenon. We all know that it is much easier to split a wooden 
plank with the grain than against the grain. 

t This may not be at once obvious. If a number is larger than l t ,  then 
the square and cube are larger stil l .  The greater the number, the more mag
nified are the square and cube. Thus, the square of 10 is 100  and the cube 
is 1 000, while the square of 1 00 is 1 0,000 and the cube is 1 ,000,000. Toe 
situation is reversed for numbers less than one. Here the square and cube are 
smaller still, nnd the smaller the original number the greater is the shrinkage 
in square and cube. Thus the square of 1 / 1 0  is 1 / 100 and the cube is 1 / 1000. 
For a figure like I/ I 00,000, which is the coefficient of linear expansion for 
steel, the square is l/ 10 ,000,000,000 and the cube is 1 / 1 ,000,000,000,000,000. 
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Galileo himself realized that gases expand with rising tem
perature and contract with falling temperature; he even tried to 
construct a thermometer based on this fact. Talcing a warmed glass 
btilb with an upward stalk. open at the top, he upended it in a 
trough of water. As the glass bulb cooled, the gas within it con
tracted and water was drawn part way up the stalk. Later, if 
the temperature went up, the gas within the bulb expanded, push
ing the water level in the stalk downward. If the temperature went 
down, the water level rose. Unfortunately for Galileo, the water 
level in the stalk was also affected by changes in air pressure, so the 
thermometer was not an accurate one. However, the principle 
of change in gas volume with change in temperature was estab-
lished. 

Since this is so, then a volume of gas trapped under a column 
of mercury (as in Boyle's experiments )  would expand if heated 
or contract if cooled. This means that if one were studying the 
manner in which the volume of gas changed with changes in 
pressure, one would have to be sure to keep the gas at constant 
temperature. Otherwise changes in volume would take place for 
which pressure was not responsible. Boyle himself in formulating 
what we call Boyle's law did not, apparently, lake note of this 
fact. In J 676, however, a decade and a half after Boyle's experi
ments, a French physicist, Edme Mariotle ( I 620?-1 684 ) ,  dis
covered Boyle's law independently, and he did draw attention to 
the importance of constant temperature. For this rea�on, on the 
European continent the relationship of pressure and volume is 
often called Mariotte's law rather than Boyle's law-and with 
some justice. 

The first attempt to study the expansion of gases with tem
perature change, quantitatively, was in 1 699. The French physi
cist Guillaume Amontons ( 1 663-1705 ) showed that if the gas 
were penned in and prevented from expanding as the temperature 
rose, the pressure increased instead, and that the pressure in
creased by a fixed amount for a given temperature rise regardless 
of the mass of gas involved. 

Amontons, however, could work only with air, for in his time 
air was the only gas readily available. All through the eighteenth 
century, however, a number of gases were produced, distinguished 
among, and studied. In 1 802, the French chemist Joseph Louis 
Gay-Lussac ( 1778-1 850) not only determined the coefficient of 
cubical expansion for air but showed that the various common 
gases such as oxygen, nitrogen and hydrogen all had just about 
the same coefficient of cubical expansion. (This is quite astonish-
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ing, since the coefficient of cubical expansion varies quite a bit · 
from one solid to another and from one liquid to another. Thus, 
the coefficient of cubical expansion is 77 times as great for alumi
num as for quartz and 6 times as great for methyl alcohol as for 
mercury. ) 

The coefficient of cubical expansion for gases at 0°C turns 
out to be 0.00366, or about 300 times the coefficient of cubical 
expansion for the average solid. We can adapt Equation 1 3-3 
for the expansion of gases. We will substitute volume (V )  for 
length and the coefficient of cubical expansion (0.00366, or 
1/273 ) for the coefficient of linear expansion. If we do this, then 
for the change in volume of gases (AV) with change in tem
perature from 0°C (M) ,  we can write: 

V(At)  
AV =  0.00366V(At) = 273 (Equation 1 3-4) 

This is one way of expressing Gay-Lussac's law. As it happens, 
the French physicist Jacques Alexandre Cesar Charles ( 1746- 1 
1 823 ) claimed to have reached Gay-Lussac's conclusions as early 
as 1787. He did not publish them either then or later, and ordi
narily a discovery does not count unless it is published. Neverthe
less, the relationship is frequently called Charles's law because 
of this. 

.Absolute 'Temperature 

The fact that objects expand and contract with temperature 
change raises an interesting point. It is easy to see that an object 
can expand indefinitely as temperature goes up, but can an object 
contract indefinitely as temperature goes down? If it continues 
to contract at a steady rate, will it not eventually contract to zero 
volume? What then? 

The paradox is most acute in the case of gases, which con
tract more rapidly with falling temperature than do liquids or 
solids. The volume of a gas after a certain change in temperature 
from 0°C is the original volume at 0°C plus the change in volume 
(V + AV).  

Suppose then that the temperature were to drop 27 3 degrees 
below 0°C. In that case, At would be - 273. From Equation 
1 3-4, we would ·see that AV, in that case, would be equal to 
V( -273 )/273, or to - V. The new volume ( V+ AV) would 
become JI - V, or 0. A strict application of Gay-Lussac's Jaw 
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would indicate that gases would reach zero volume and vanish 
at -273 °C. 

Physicists did not panic at this possibility. It seemed quite 
likely that before - 273 °C was reached, all gases would be con
verted to liquid form, and for liquids the coefficient of cubical 
expansion would then be much smaller. (This turned out to be 
true. ) Even if this were not so, it seemed quite likely that Gay
Lussac's law might not apply strictly at very low temperatures• 
and that the coefficient of cubical expansion might gradually 
decrease as temperature dropped, so although volume continued 
to shrink, it would do so at a slower and slower rate and never 
reach zero. 

Nevertheless, the temperature -273 °C was not forgotten. 
In 1 848, William Thomson ( later raised to the rank of baron 
and the title of Lord Kelvin )  pointed out the convenience of sup
posing that -273 °C might represent the lowest possible temper
ature, an absolute zero. t 

If we let -273 °C be zero and count upward from that by 
Celsius degrees, we would have an absolute scale of temperature. 
Readings on this scale would constitute an absolute temperature, 
and the degrees given in such a reading could be indicated as O A 
(for "absolute") or, more often, as °K (for Kelvin) .  

To change a Celsius temperature to one o n  the absolute 
scale, it is therefore only necessary to add 273. Since water freezes 
at 0°C, it does so at 273 °K; since it boils at 100°C, it does so at 
373 °K. To prevent confusion, it is customary to represent tem
perature readings on the Celsius scale by the symbol t, and tem
perature readings on the Kelvin scale by the symbol T. * *  ·we can 
write the relationship of the Kelvin scale to the Celsius scale as 
follows, therefore: 

T =  t + 273 (Equation 13-5 )  

• It is important to remember that many scientific generalizations hold 
true only over limited ranges of pressure, temperature and other such environ
mental factors. This does not affect the usefulness of the generalization within 
the proper range, but one must not expect them to be useful outside that range. 

t The actual value, according to the best modern determinations, is 
- 273. 1 6°C. 

•• Confusion cannot be done away with altogether. Thus, t stands not only 
for Celsius temperature but also, very commonly, for time. Every letter of the 
Latin and Greek alphabet-and some from Hebrew. Sanskrit and others-
in small form, capital form, italics, boldface. and gothic script has been used. 
and even so there are numerous duplications of symbols. For that reason, in pre
senting any equation it is always advisable to state the significance of each symbol 
and never to take it for granted that the meaning of any symbol is self-evidenL 
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The convenience of the absolute scale rests on the fact 
that certain physical relationships can be expressed more simply 
by using T rather than t. Thus, suppose we try to express the 
manner in which the volume of a quantity of gas varies with tem
perature. We can start at a temperature 11, with a gas at volume 
V1, and when the temperature bas changed to 11 we will find that 
the gas volume has changed to V,. The final volume will be the 
original volume plus the volume change, so V1 = V1 + AV. 

Using Equation 1 3-4, we see that AV = V1 (At)/273. How
ever, the change in temperature (At) is the difference between 
the final temperature and the original temperature, t, - tr The 
unit of cubical expansion for gases is determined for a starting 
temperature of 0°C so t2 - t1 becomes t2 - 0, or simply r2 • 
We will therefore substitute t2 for the At in Equation 1 3-4. Then, 
in writing V2 = V1 + AV, we will have : 

V1t2 ( 12 ) v, = v, + 273 = v1 1 + 213 (Equation 1 3-6 )  

This i s  easily converted to: 

v. 273 + r: 
v, = 213- (Equation 13-7) 

Let's consider now what the significance of the number 273 
might be. I t  enters this equation because 1/273 is  the coefficient 
of cubical expansion for a gas at 0°C. Remember, however, that 
the unit of the coefficient of cubical expansion is "per °C" or 
"/°C." The number 273 is the reciprocal of that coefficient, and 
its units should be the reciprocal of the units of the coefficient. 
The reciprocal of "/°C" is "°C."• 

For 273, then, in Equation 1 3-7, read 273 Celsius degrees. 
But ( see Equation 1 3-5 ) adding 273 Celsius degrees to a tem
perature reading on the Celsius scale gives the reading on the 
Kelvin scale. Consequently, the final temperature of the gas ( t, )  
plus 273 is the final temperature on the Kelvin scale; or, i n  short, 
t� + 273 = T,. Similarly, 273 Celsius degrees represents the freez
ing point of water on the Kelvin scale, since O + 273 = 273. The 
initial temperature of the gas was 0°C, so we can let 273 represent 
T, , the initial temperature on the Kelvin scale. Consequently, 
Equation 1 3-7 becomes: 

• Just as a reminder • . .  The reciprocal of a is I /a, and the reciprocal of 
f ta is "·  
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(Equation 13-8 ) 

This is another way of expressing Gay-Lussac's law (or 
Charles's law) ,  and just about the simplest way. Using any other 
scale of temperature, the expression would become more compli· 
cated. In words, Equation 1 3-8 can be expressed: The volume 
of a given mass of gas is directly proportional to its absolute tem
perature, provided the pressure on the gas is held constant. 

That last clause is important, because if the pressure o� 
the gas varies, then the volume of the gas will change even though 
the temperature does not. 

So we have Boyle's law which relates volume to ' pressure, 
provided temperature is held constant, and now we have Gay
Lussac's law which relates volume to temperature, provided pres
sure is held constant. Is there any way of relating volume to 
temperature and pressure? In other words, suppose we begin with 
a quantity of gas with volume V,, pressure P1 and temperature 
T,, and change both pressure and temperature to P2 and T1• What 
will the new volume V. be? 

Let's begin by changing the pressure P
1 

to P2 while holding 
the temperature at T

1
• With the temperature constant, Boyle's 

law ( see page 145 )  requires that the new volume ( V,)  must fit 
into the following relationship: P2V, = P1 V1. If we solve for 
v •. we get : 

V
. =  P, V1 

P, ( Equation 13-9 ) 

But V. is not the final volume we are looking for. It is merely 
the volume we attain if we alter the pressure. Now let's keep the 
pressure at the level we have reached, P,, and raise the temperature 
from T, to T,. The volume now changes a second time, from 
V. to V,. (The latter is the volume we expect to have when pressure 
has reached P, and temperature has reached T�. ) In going from 
V. to V2, by raising the temperature from T1 to T2 and keeping 
the pressure constant, Gay-Lussac's law must hold, so V2/V, = 

T2/T1 (see Equation· 1 3-8 ) .  "By substituting for v., the value 
given in Equation 1 3-9, we have the relationshjp: 

V2 _ T2 

( P1 V1 ) /P0 - T, 
(Equation 1 3-10) 
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This can be rearranged by the ordinary techniques of algebra to: 
P2V2 P,V, -- = -- (Equation 13-1 1 )  T, T1 

We can summarize then by saying that for any given quantity 
of gas the volume times the pressure divided by the absolute 
temperature remains constant. The constant here is usually sym
bolized as R, so we can say: (PV) /T = R, or: 

PV = RT (Equation 1 3-12 )  
Actual measurement, however, shows that Equation 1 3-12 

does not hold exactly for gases (for reasons I shall explain later; 
see page 208 ) .  It would hold under certain ideal conditions that 
actual gases do not fulfill ( though some come pretty close to 
doing so) ,  and one can imagine an ideal gas or perfect gas that, 
if it existed, would follow the relationship shown in Equation 
1 3- 12  exactly. For that reason, Equation 1 3-12  (or its equivalent, 
Equation 1 3-1 1 )  is called the ideal gas equation. 
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Heat 

The Kinetic Theory of Gases 
If the atomic theory of gas structure (made inevitable by 
Boyle's experiments ) is to be accepted, it ought to explain the gas 
laws described in the previous chapter and earlier. The first man 
to attempt this seriously was Bernoulli ( of Bernoulli's principle) 
in 1 738 .  

If  gases are composed of  separate particles ( atoms or  mole
cules) spaced widely apart, it may reasonably be assumed that 
these are in constant free motion. If this were not so and the gas 
molecules were motionless, they would, under the force of gravity, 
fall to the bottom of a container and remain there. This is indeed 
the case for liquids and solids, where the atoms do not move 
freely but are in virtual contact and are constrained to remain so. 
The assumption that gases are made up of particles in motion, 1 
each particle virtually uninfluenced by the presence of the others, 
is the kinetic theory of gases ("kinetic," of course, from a Greek 
word meaning "to move" ) .  

For the moment we will not ask why the particles should be 
moving but will merely accept the fact that they are. The kinetic 
energy of the gas particles must far surpass the feeble gravitational 
force that can be exerted by the earth on so small a partfcle. 
(Remember that the force of gravity upon the particle depends in 

l91 
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part upon the mass of the earth multiplied by the mass of the 
particle (see page 44) ,  and the latter is so small a quantity that 
the total force is minute. ) 

To be sure, the pull of gravity is not zero and on a large 
scale it is effective. The earth's atmosphere remains bound to the 
planet by gravitational force, and most of the particles of the gas 
surrounding our planet remain within a few miles of the surface. 
Only thin wisps of gas manage to make their way higher. Never
theless, for small quantities of gas, for quantities small enough to 
be contained within man-made structures, the effects of gravity 
are minute enough to ignore. Consequently, the particles within 
such containers can be viewed as moving with equal ease in any 
direction, upward and sideways as easily as downward. 

In any given container, the random motion of the particles 
in any direction keeps the gas evenly spread out. (The even spread
ing of the gas within the container is enough to show that the 
motion must be random. If it were not, gas would accumulate in 
one part or another of the container. ) If the same quantity of gas 
is transferred to a larger container, the random motion of the 
particles will spread them out evenly within the more spacious 
confines. Thus a gas expands to fill its container, however large, 
and ( unless the container is so huge that the effect of gravity can 
no longer be ignored ) fills it evenly. On the other hand, if the 
gaseous contents of a large container are forced into a smaller 
one, the particles move more closely together and all the gas can 
be made to fit into the smaller confine. There is none left over. 

If we consider the moving gas particles, however, it is clear 
that no individual particle can move for long without interference. 
One particle is bound to collide with another sooner or later, and 
all are bound to collide every now and then with the walls of the 
container. One must assume these particles have perfect elasticity 
and bounce without overall loss of energy. If this were not so, the 
particles would gradually slow and lose energy as they bounced, 
until finally they were brought to a state of rest or near-rest and 
fell to the bottom of the container under the pull of gravity. But 
this does not happen. If we isolate a container of gas as best we 
can and keep it, that container remains full of gas indefinitely. 

Bernoulli pointed out that the bouncing of gas particles off 
the wall of a container produced an effect that could be inter
preted as pressure. As it bounced, each particle subjected the 
wall to a tiny force, and the total force over a unit area was the 
pressure. Strictly speaking, what we call pressure then is actually 
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a great many separate pushes. There are so many of these spread 
so thickly through time, and each separate push is so tiny, that 
the whole is sensed as a smooth, even pressure. Since the particles 
move freely and randomly in all directions, pressure is equal in  
all directions. 

Suppose that a gas is in a container topped by a frictionless 
piston with just enough weights resting upon it to balance the 
gas pressure ( the force of the particles bouncing against the under
surface of the piston ) .  If one of those weights is removed, the 
external force pressing down upon the upper surface of the piston 
is decreased. The upward force of the bouncing particles is greater 
than the downward force that remains, and the piston moves up
ward. 

However, as the piston moves upward, the volume of the 
container increases. As the volume increases, each particle of the 
gas has, on the average, a greater distance to travel in order to 
reach the underside of the piston. Naturally, then, the number of 
collisions against the wall in any given instant must drop off as 
each particle spends more time traveling and less time colliding. 
The pressure decreases in consequence. Eventually, the pressure 
drops to the point where it is balanced by the fewer weights on 
the piston, and the piston rises no more. Gas volume has increased 
as pressure decreased in the manner described by Boyle's law. 

Suppose, instead, that additional weights had been added to 
those originally present on the piston. Now the downward force 
of gravity moves the piston downward against the force of the 
particle collisions. As the piston moves downward, the volume 
decreases. Each particle has, on the average, a smaller distance 
to travel in order to reach the underside of the piston. The number 
of collisions in any given instant rises and pressure increases. 
Eventually, the pressure increases to the point where the addi
tional weight on the piston is balanced. Gas volume has decreased 
and pressure has increased, again in the manner described by 
Boyle's Jaw. 

A century after Bernoulli's time, when the effect of tempera• 
ture on the volume and pressure of gases came to be better under
stood, it was necessary to expand the kinetic theory of gases in 
order to explain the involvement of temperature. 

Imagine a gas in a closed container with immovable walls. 
If the temperature of the gas is raised, its pressure against the walls 
increases. This was first observed by Amontons ( see page 1 9 1  ) 
and is to be expected from the ideal gas equation (Equation 
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1 3-1 2 ) ,  for if volume times pressure is proportional to absolute 
temperature, and if the volume is held constant, then pressure by 
itself must be proportional to the absolute temperature. 

By kinetic theory, pressure increases only if the number of 
collisions of gas particles with the walls in any given instant in
creases. However, since the volume of the container (with its 
immovable walls ) has not changed, the individual particles have 
the same distance to travel before reaching the walls. after the 
temperature rise and before. To account for the fact that more 
of them do reach the walls, and hence raise the pressure, one must 
conclude that as the temperature rises the particles move more 
quickly. In that case, they not only strike the wan oftener, but 
also more energetically. Conversely, with a fall in temperature 
they move more slowly. 

Accepting this, let us consider a sample of gas held under 
a frictionless. weighted piston. The downward force of the weights 
is balanced by the upward force of the gas pressure. If the tem• 
perature of the gas is raised, the particles making it up move more 
quickly and their collisions with the underside of the piston are 
more numerous and energetic. The downward force of the weights 
is overbalanced, and the piston is raised until the expansion of 
volume increases the distance that must be traveled by the par• 
ticles to the point where the number of collisions is so far reduced 
as to be only sufficient to balance the piston once more. Thus, 
volume increases with rising temperature. By similar reasoning, 
we could argue that it would decrease with falling temperature, 
and thus Gay-Lussac's law is explained. 

I have shown how kinetic theory explains the gas laws only 
in a qualitative manner. In the I 860's, however, the Scottish 
physicist James Clerk Maxwell ( 1 83 1-1 879)  and the Austrian 
physicist Ludwig Boltzmann ( 1 844-1 906) treated the kinetic 
theory with full mathematical rigor and established it firmly. We 
can consider some of this. 

Let us begin with a container in the form of a parallelepiped 

Kinet ic theory 

IJ /// 
,I 

----
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(brick-shaped, in other words ) ,  with a length equal to a meters, 
a width of b meters, and a height of c meters. The volume ( V) 
of the container is equal to abc cubic meters. Suppose next that 
within this container are a number (N) of particles each with a 
mass (m ) ,  and that all the particles are moving with a velocity 
of v meters per second. 

These particles can be moving in any direction, but suet. 
motion can always be viewed as being made up of three compo
nents at right angles to each other. (This can be done by setting 
up a .. parallelepiped of force." which is a three-dimensional analog 
of the parallelogram of force mentioned on page 40) .  We can 
arrange the mutually perpendicular components to suit ourselves., 
and we can select one component parallel with the length of the 
container, another parallel with the width, and the third parallel 
with the height. 

Since the motions are random and there is no net motion 
in any one direction ( or the whole container would go flying off 
into space) ,  it is fair to assume that each component contains 
an equal share of the motion. We suppose then that 1 /3 of the total 
particle motion is parallel to the edge a, 1/3 parallel to the edge 
b, and 1 /3 parallel to the edge c. This means that we are viewing 
the container of gas as containing three equal streams of particles, 
one moving left and right in equal amounts, one - moving up and 
down in equal amounts, one moving back and forth in equal 
amounts. 

In reality, of course, all the particles are continually collid
ing with each other, and bouncing and changing direction. Since 
the particles are perfectly elastic, this doesn't change the total 
motion, even though the distribution of motion among the indi
vidual particles is constantly changing. To put it as simply as 
possible, if one particle changes direction in one fashion, another 
particle changes simultaneously in such a way as to balance the 
first change. For this reason we can ignore inter-particle collisions. 

Let us focus our attention on one particle moving parallel 
to edge a. It strikes the face bounded by b and c head-on and 
bounces back at the same speed but in the opposite direction (still 
parallel to edge a ) ,  so its velocity is now -v. Its momentum 

. before the collision was mv, and its momentum after the collision 
is -mv. The total change in momentum is m v - (-mv) , or 
2mv. 

This change in momentum must be balanced by an opposite 
change in momentum on the part of the wall of the container if 
the law of conservation of momentum is to be conserved. The 
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wall is therefore pushed in the .direction opposite to the rebounded 
particle, and 2mv represents the contribution of that one bounce 
of that one particle to the force on the face bounded by b and c. 
For the total force on the face, we need to know how many 
bounces there are on the entire face in a given unit of time. 

The single particle we have been considering, having bounced 
off the face, travels to the other end of the container, bounces 
there, comes back, and bounces off the original face a second 
time; it repeats the process and bounces off a third time, then a 
fourth time, and so on. In traveling to the other end of the con
tainer and back, it travels a distance of 2a meters. Since its velocity 
is v meters per second, the number of its collisions with the 
face under discussion is v /2a times each second. 

The total force delivered to the wall by a single particle 
in one second is the momentum change in one bounce times the 
number of bounces per second. This is 2rnv multiplied by v/2a, 
or mv• /a. But one third of all the particles in the container (N /3 ) 
are moving parallel to edge a and each contributes the same force. 
The total force delivered in one second by all those particles is 
therefore N/3 multiplied by rnv'/a, or Nmv'/3a. 

Pressure is the force exerted against a unit area. The wall 
we are considering is bounded by lines of dimensions b meters 
and c meters, so the area of the wall is be square meters. To get 
the pressure-that is, force per square meter--one must divide 
the total force on the wall by the number of square meters. This 
means we must divide Nmv'/3a by be, and we get a pressure equal 
to Nmv'/3abc. But abc is equal to the volume ( V) of the con
tainer. We can therefore express the pressure (P)  as follows : 

Nrnv2 N 2N 
(

1 ·•
) p = 3V = 3 V  (rnv2 ) = 3 V  2rnv- (Equation 1 4-1 ) 

But the quantity }rnv2 represents kinetic energy (e. ) (see 

page 95 ) .  We can therefore rearrange Equation 1 4-1 as follows : 

PV = 2N (!..mv•) = 2N e. 
3 2 3 

(Equation 14-2) 

In any given quantity of gas the number of particles is con
stant, therefore the quantity 2N/3 is constant. Equation 1 4-2 tells 
us, therefore, that for a given sample of gas, the product of its 
pressure and volume is directly proportional to the kinetic energy 
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of its constituent particles. Equation 1 3-12  ( see page 1 96)  tells 
us, furthermore, that the product of the pressure and volume of 
a gas is directly proportional to its absolute temperature. 

It is a truism that if x is directly proportional to y and is also 
directly proportional to z. then y is directly proportional to z. We 
conclude that if PV is directly proportional both to absolute 
temperature and to the kinetic energy of the gas particles, then 
absolute temperature is itself directly proportional to the kinetic 
energy of the particles of a gas ( and, by extension, to the particles 
of any substance) .  

To be sure, we have assumed that all the particles in the 
gas have identical velocities, and that is not so. As the particles 
collide with each other, momentum will be transferred in a ran
dom manner ( though the total momentum will always be the 
same) .  Briefly, even if the particles had originally been moving 
at equal velocities, they would soon be moving over a whole range 
of velocities. 

Maxwell derived an equation that would express the distribu
tion of particle velocities at various temperatures. If there is a 
distribution of velocities, there is also a distribution of kinetic 
energies. If we know the average velocity, however, and this can 
be obtained from Maxwell's equation, we know the average 
kinetic energy.• At any temperature, there will be individual 
particles with very low energies and others with very high energies. 
The average kinetic energy per particle, however, keeps precisely 
in step with the rise and fall of absolute temperature. 

By the kinetic theory of gases, then, we can define heat as 
the internal energy associated with such phenomena as the ran
dom motions of the particles ( atoms and molecules ) that make 
up matter. Absolute temperature is the measure of the average 
kinetic energy of the individual particles of a system. 

This gives an important theoretical meaning to absolute 
zero. It is not merely a convenience for simplifying equations, or 
a point at which the volumes of gases would shrink to zero if they 
followed Gay-Lussac's law exactly (which they do not ) .  Rather 
it is the temperature at which the kinetic energy of the particles 

• The average here is not the ordinary "arithmetical mean" obtained by 
adding values and dividing by the number of values. It is rather the "root mean 
square" ( rms ) ,  which is the square root of the arithmetical means of the 
squares of the value. Thus, if we have two values, 4 and 6, the ordinary average 

_ / 4' + 6' 
is (4 + 6)/2, or 5. The rms. however is ,y -

2
- or y'26 or 5. 1.  
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of a substance are lowered to an irreducible minimum. Usually 
this minimum is said to be zero, but that is not completely correct. 
Modern theories indicate that even at absolute zero, a very small 
amount of kinetic energy remains present. This amount, however, 
cannot be further reduced, and temperatures below absolute zero 
cannot exist. 

Diffusion 

The motion of gas particles can also be used to explain 
diffusion-that is, the spontaneous ability of two gases to mix 
intimately, even though originally separate, and even against the 
pull of gravity. · Suppose a container is horizontally partitioned 
at the center. In the upper portion of the container is hydrogen; 
in the lower, under equal pressure, nitrogen. If the partition is 
removed, it might be expected that hydrogen ( by far the lighter 
gas of the two ) would remain floating on top, as wood floats 
on water. Nevertheless, in a short time the two gases are intimately 
mixed, the nitrogen diffusing upward, the hydrogen downward, 
in apparent defiance of gravity. 

This comes about because the motion of the gas particles 
is virt1.1ally independent of gravity ( see page 1 98 ) .  One third of 
the nitrogen particles ( on the average, if we assume random 
motion ) are moving upward at any one instant; and one third 
of the hydrogen particles are moving downward. Naturally, the 
two gases mix. 

Diffusion also takes place between mutually soluble liquids, 
although more slowly. For instance, alcohol can be floated on 
water, which is denser; if one waits, the two liquids will mix evenly. 
This indicates that while the particles making up liquids must 
remain in contact, they nevertheless have a certain freedom of 
movement, slipping and sliding about, so th<'y are able to insinuate 
themselves among the particles of another liquid. 

On the other hand, diffusion between different solids in con
tact proceeds with excessive slowness, if at all, and this is an in
dication that the constituent particles in solids are not only in 
contact but are more or less fixed in place; (This does not mean, 
however, that the particles of a solid are motionless; all evidence 
points to the fact that although they have a fixed place, they 
vibrate aboutthat fixed place with an average kinetic energy cor
responding to the absolute temperature of the solid. ) 

To get a notion of the quantitative relationships that involve 
diffusion, let us return to Equation 1 4-1 ,  where P is set equal to 
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· N mv2 /3 V, and let us solve for v, the average velocity of the par
ticles. This gives us the relationship : 

v = /:: (Equation 1 4-3)  

This i s  easily handled. I f  a given quantity of, let us say, oxygen 
is being dealt with, its pressure (P) and volume ( V) are easily 
measured. The quantity Nm represents the numbet of particles 
multiplied by the mass of the individual particle and that is, after 
all, the total mass of the gas, which is easily measured. Without 
going into the details of the calculation, it turns out that at 0°C 
(273 °K) and 1 atmosphere pressure,• the average velocity of the 
oxygen molecule is 460 meters per second ( 0.28 miles per second). · 

Equation 14-3 can be written: v = ..,/3/Nm ,/W. For a 
given quantity of a specific gas (Nm), the total mass, is constant, 
so the quantity ..,/3/Nm is constant. and Equation 14-3 can be 
written v =, kVPV, and we can say that velocity of the gas mole
cules is proportional to the square root of pressure times volume. 
By Equation 13-12 ( see page 196) ,  however, we know that PV 
is directly proportional to the absolute temperature T. We can 
therefore say that v = kv't: that the average velocity of a gas 
molecule is directly proportional to the square root of the absolute 
temperature. 

1f the velocity of 460 m/sec is the average for oxygen mole
cules at a temperature of 273 °K (0°C) ,  what would it be if the 
temperature were dout:,led to 546°K (273°C)?  The average ve
locity is then multipled by the ..,/2, or approximately 1 .4. Oxygen 
molecules, then, will move at an average velocity of 650 m/sec 
(0.40 miles per second) at the higher temperature. 

But suppose we consider different gase£ at the same pressure 
P and volume V. Under these conditions it turns out (as a result 
of evidence more appropriately considered in a book on chemistry) 
that the number of particles present (N) is the same in both. We 
can consider P, V and N to be constant, therefore, and if we write 
Equation 1 4-3 as v = \/3PV /N '1flm, we can simplify this to 
v = kvflm. We are then able to say that at standard conditions 

• Since many properties vary with temperature and pressure, it is usual 
to give the precise temperature and pressure at which a measurement is carried 
through. For the sake of standardization, it is common to use 0' C and I 
atmosphere pressure, or to adjust to those values if measurement is made at 
others. Usually, O'C and I atmosphere pressure are referred to as "standard 
conditions of temperature and pressure.'' and this is abbreviated S.T.P. 
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of temperature and pressure the average velocity of the molecules 
of a gas is proportional to v'TT,ii. Using words, we can say it is 
inversely proportional to the square root of the mass of individual 
molecules, i.e. , the "molecular weight." 

This is sometimes called Graham's law because it was first 
specifically stated by the Scottish chemist Thomas Graham ( 1805-
1 869) in 1 829. He noted that the rate of diffusion of a gas (which 
turns out to depend on the velocity of its molecules) is inversely 
proportional to the square root of its density (and density in gases 
depends on molecular weight ) .  

A proper consideration o f  molecular weights is better taken 
up in a book on chemistry, but we can say that a molecule of 
hydrogen has a molecular weight 1 / 1 6  that of a molecule of 
oxygen. Since hydrogen molecules are 16 times less massive than 
oxygen molecules, they move with a velocity "'16, or four times 
more rapidly. If at 273 >K (0°C )  oxygen molecules move at 
460 m/sec ( 0.28 miles per second) ,  then hydrogen molecules at 
that same temperature move at 1 840 m/sec ( 1 . 12  miles per 
second ).  At 546°K ( 273 °C )  the velocity of both oxygen and 
hydrogen molecules is multiplied by 1 .4, and the latter moves at 
2600 m/sec ( 1 .58  miles per second) .  

The velocity of  sound through a gas depends in part upon 
the rapidity with which gas molecules can swing back and forth 
to form regions of compression and expansion (see page 1 65 ) .  
As the molecules move more quickly with rising temperature, the 
velocity of sound does also. in different gases, furthermore, the 
velocity of sound is inversely proportional to the square root of 
the molecular weight, because that is the way molecular velocity 
varies. 

Air is 4/5 nitrogen (molecular weight, 28 ) and 1/5 oxygen 
(molecular weight, 32) , - so the "average molecular weight" of air 
ls 29. The molecular weight of hydrogen is 2. At a given tempera
ture, the hydrogen molecule moves ../2972, or 3.8 times as quickly 
as the average molecule in air. Since at 20°C sound travels through 
air at the velocity of 344 m/sec, it would travel through hydrogen 
at that temperature at the velocity of about 1 300 m/sec. 

A column of air in an organ pipe, if disturbed, will vibrate 
at a natural frequency that depends on such things as the size of 
the column and the velocity of the air molecules. An organ pipe 
of a given size at a given temperature will therefore produce a 
note of a given pitch. If the pipe is filled with hydrogen, the mole
cules of which will move more rapidly than those of air, the same 
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pipe at the same temperature will produce a sound of a much 
higher pitch. (A man who fills his lungs with hydrogen-not a 
recommended experiment-will find himself speaking, temporarily 
at least, in a shrill treble. ) 

Since both the pitch of the organ pipe and the velocity of 
sound depend on the velocity of the molecules of a gas, one can be 
calculated from the other. Indeed, in about 1 800, the German 
physicist Ernst F. F. Chladni ( 1756-1827 ) ,  sometimes called the 
.. father of acoustics." calculated the velocity of sound in various 
gases (something rather difficult to measure directly) by noting 
the pitch of organ pipes filled with the gas (something quite easy 
to do).  

To be sure. the actual velocities of individua lmolecules cover 
a broad r..nge and some molecules of a particular gas move very 
rapidly. Even at 0°C there would be a very small fraction of the 
molecules in oxygen gas moving. at least temporarily, at velocities 
of 7 miles per second, which is some 25 times the average ve
locity. 

It so happens that 7 miles per second is the escape velocity 
on the earth's surface (see page 63 ). and a molecule moving 
this quickly would be expected to leave the earth permanently. 
For this reason. it might seem that oxygen should constantly be 
"leaking .. out of the atmosphere. So it is, but this should be no 
cause for panic. For one thing, there are very few oxygen molecules 
that travel at 25 times the average velocity. Of those that do, all 
but a vanishingly small number strike other molecules and lose the 
unusually high velocity, long before they can reach the upper 
regions of the atmosphere. Such leakage of oxygen as takes place, 
then, is so slow as to assure the earth its oxygen supply for billions 
of years to come. 

In the case of hydrogen molecules, however, with four times 
the average velocity of oxygen molecules. a larger fraction can be 
expected to attain the escape velocity of 7 miles per second 
(since this is only about six times the average velocity of the 
hydrogen molecule) .  Here the leakage is indeed serious and the 
earth could not hold hydrogen in ·its atmosphere over the geologic 
eras-nor has it. There is good reason to think that the earth's 
atmosphere might have been rich in hydrogen to begin with, but it 
is all gone now. 

The moon, with its much smaller escape velocity ( see page 
63 ) ,  could not even hold any oxygen or nitrogen, if it had ever 
had any; in fact. it lacks an atmosphere altogether. Jupiter and 
the other outer planets, with larger velocities of escape, and with 
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temperatures lower than those of the earth and the moon, can hold 
even hydrogen easily. The outer planets therefore have large 
hydrogen-filled atmospheres. 

Real Gases 
Boyle's law has always been accepted as useful through the 

three centuries during which scientists have been aware of its 
existence. Through the first two of those centuries. it was also 
(wrongly) considered exact. That Boyle's law, while useful. is 
only an approximation of the actual situation was first made clear 

· by the French physicist Henri Victor Regnault ( 1 8 1 0-1 878 ) ,  who 
. in the l 850's measured the exact volumes of different gases under 

different pressures and found that the product of the two (PV} 
was not quite constant after a l l ,  even if the temperature were kept 
carefully constant. Under a pressure of 1 000 atmospheres. the 
product could be twice as high as at I atmosphere pressure. Even 
when he worked with pressures that were only moderately high. 
he frequently found deviations of up to five percent. Furthermore, 
there were differences from gas to gas. Up to pressures of I 00 
atmospheres, hydrogen, nitrogen and oxygen deviated compara
tively little from Boyle's law. while carbon dioxide deviated a good 
deal. 

Yet Boyle's law can be derived from the kinetic theory of 
gases. ls the kinetic theory wrong then? No. not necessarily. How
ever. in deriving Boyle's law from the kinetic theory of gases. it 
simplifies matters to make two assumptions that are not exactly 
true for real gases. For instance. it can be assumed that there are 
no attractive forces among the molecules of a gas, so the motion of 
one molecule can be considered completely without reference to 
the others. This is almost correct but not quite. for there are 
very weak attractive forces among the molecules of gases. 

Another assumption is that the molecules are extremely small 
compared to the empty space separating them-so extremely small 
that their volume can be taken to be zero. Again, this is almost 
correct but not quite. The volume of the molecule.� is indeed very 
small. but it is not zero. 

Now suppose we don't accept the simplifications but consider 
instead that when a molecule is about to strike the wall of a vessel 
there is a net pull backward from all the feeble intermolecular 
forces exerted upon the about-to-collide molecule by the other 
molecules. (This is a kind of gaseous surface tension, like the 
more familiar liquid surface tension described on page 1 26. ) Be-
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cause of this backward pull, the molecule does not strike the sur
face with full force and its contribution to the pressure is less than 
one would expect from kinetic theory if no intermolecular forces 
existed. To bring the pressure of the individual molecule up to the 
no-intermolecular-force ideal, we must add a small extra quantity 
of pressure (P. ) .  The ideal pressure (P, )  is then the actual meas
ured pressure plus this extra quantity (P + P. ) .  

The more molecules present i n  the gas close t o  the colliding 
molecule ( the more distant molecules contribute so little to the 
attractive force that they can be ignored ) ,  the greater the back
ward pull; the more the actual pressure (P) falls short of the ideal 
pressure (P1 ) ,  the greater the value P. we must add to P in the case 
of this one colliding molecule. The quantity of nearby molecules 
is proportional to the density of the gas (D) . 

But pressure depends upon the total number of molecules 
striking the walls in a given time. The value for P x also depends on 
that number. But that number in tum depends upon the density of 
the gas. Thus, P. depends on the density of the gas first in connec
tion with each per colliding molecule, then in connection with 
the number of colliding molecules per U!1it time. The total value 
of P. depends upon its size per colliding molecule multiplied by 
the number of colliding molecules per unit time, or upon a factor 
proportional to density multiplied by another factor proportional 
to density. The total value is then proportional to the square of the 
density, D2

• If, on this occasion, we use a for the proportionality 
constant, we can say that P. = aD2 . 

For a given quantity of gas, density is inversely proportional 
to volume. The denser a gas, the less volume is taken up by a given 
quantity. If P. is directly proportional to the square of the density, 
then, it must be inversely proportional to the square of the volume 
-that is, P. = a/V2

• Since earlier I said that the ideal pressure was 
P + P., we can now write that as P + a/V2. 

Next, what about the matter of the finite volume of the 
molecules? If more and more pressure is put upon a gas, Boyle's 
law requires that the volume decrease steadily and get closer and 
closer to zero. The ideal volume ( V. )  available for contraction is, 
if Boyle's law held perfectly, equal to all the volume ( V) of the 
gas. But if a gas is actually put under great pressure, the molecules 
eventually make virtual contact. After that, there is practically no 
further shrinkage of volume with increase of pressure. The ideal 
volume available for contraction is the volume of the gas minus the 
volume of the molecules themselves. In other words, V. = V - b, 
where b represents the volume of the molecules. 
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The ideal gas equation ( Equation 13-12, see page 1 96) , 

based on the assumption of no intermolecular forces and no molec
ular volume, should really be expressed in terms of ideal pressure 
and ideal volume: P,V, = RT. If the expressions containing the 
actual pressure and volume are used for these ideal values, we get: 

(P + a/ V2 ) ( V - b ) = RT ( Equation 14-4) 
This is the van der Waals equation, since it was first worked 

out by the Dutch physicist Johannes Diderik van der Waals ( 1 837-
1 923 ) in 1 873. The feeble attractive forces between gas molecules 
that help make this modification necessary are called van der Waals 
forces. The values for a and b in the van der Waals equation are 
usually quite small and differ from gas to gas, for the various gas 
molecules have their own characteristic volumes and exert forces 
of characteristic size among themselves. 

The intermolecular forces in gas, while small under ordinary 
conditions, can be made to bring about important changes in 
gaseous properties. The attractive force among gas molecules in
creases as the molecules aproach one another, and the molecules 
approach more and more closely as the volume of a given quantity 
of gas decreases with increasing pressure. Where the attractive 
force is comparatively large to begin with, increased pressure can 
raise the force to a level higher than that which can be overcome 
by the kinetic energy of the gas molecules. The molecules will no 
longer be able to pull apart. but will cling together, and the sub
stance will become a liquid. Gases such as sulfur dioxide, ammonia, 
chlorine and carbon dioxide can in this way be liquefied by pres• 
sure alone and, at this high pressure, be maintained as liquids 
at room temperature. ( If there were no intermolecular forces, 
liquefaction could not take place under any circumstances. All 
substances would be gaseous under all conditions. ) 

Where the intermolecular attractive force is particularly 
weak, however, it is possible that even when the gas molecules are 
forced close enough together to touch, the attractive force will 
still not have increased to the point where it can keep the molecules 
together against the molecular motion representing their kinetic 
energy. For that reason, gases such as oxygen, nitrogen, hydrogen, 
helium, neon or carbon monoxide cannot be liquefied at room 
temperature under any pressure, no matter how high. During the 
early nineteenth century, gases of this sort therefore received the 
name of "permanent gases." 

However. one might increase the attractive force and decrease 
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the kinetic energy as well. If the former is brought about by in• 
creasing the pressure, the latter can be brought about by de
creasing the temperature. If the temperature is brought low 
enough, the kinetic energy is decreased sufficiently for the attrac
tive forces among the molecules of the so-called permanent gases 
to suffice to bring about liquefaction. The temperature at which 
such liquefaction becomes just barely possible is called the critical 
temperature. Above that critical temperature a substance can exist 
only as a gas. The existence of the critical temperature was first 
discovered by the Irish physicist Thomas Andrews ( 1 8 13-1 885) 
in 1 869. 

The critical temperature for oxygen is 1 54°K ( - 1 1 9°C),  
and i t  was only after oxygen was brought to  a lower temperature 
that it became possible to liquefy it. Hydrogen, with still weaker 
intermolecular forces, must be lowered to a temperature of 33 °K 
( - 240°C) before the kinetic energy of the molecules is low 
enough to be neutralized by those forces. The record in this 
respect is held by helium (not isolated on earth until 1 898 ) .  
Helium i s  the nearest approach, among real gases, to  the gaseous 
ideal. Its critical temperature is 5 °K ( - 268 °C ) .  

On the other hand, there are substances with intermolecular 
forces so great that they remain liquid at room temperature even 
under atmospheric pressure. (These intermolecular forces are 
more than mere van der Waals forces, and they will not be dis
cussed in this book. ) Water is the most common example of a 
substance liquid at ordinary temperatures and pressures. At a 
temperature of 373 °K ( I 00°C)  and 1 atmosphere pressure, the 
intermolecular forces are overcome, thanks to the heightened 
kinetic energy, and water turns into its gaseous form: &team, or 
water vapor.• At temperatures over 1 00°C, water can be kept 
in liquid form by increasing the pressure. This means that the 
boiling point rises with increased pressure, a fact taken advantage 
of in pressure cookers. The critical temperature for water is 
647 °K (374°C) and it is only at temperatures above that, that 
liquid water cannot exist under any conditions. 

Even in liquids, the attractive forces between molecules are 
not large enough to prevent the individual moleclules from slip
ping and sliding about. If, however, the temperature is lowered 
sti11 further, a point is reached where the energies of the indi
viduJl molecules art: insufficiently large to give it even that much 

. • A gas that exists as such only at elevated temperatures is usually referred 
to as a "vapor." 
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freedom. The intermolecular forces are strong enough to keep the 
molecules firmly in place. They may vibrate back and forth, but 
the average position remains fixed and the substance is a solid. 
If the temperature of a solid ii raised, the vibrations become more 
energetic. and at a certain temperature ( depending on the size of 
the intermolecular forces involved) they become large enough to 
counter those forces to the extent of allowing the molecules to slide 
about; the solid ho then melted. or liquefied. 111c melting point 
is only slightly affected by preuure. 

The intermolecular forces of hydrogen are so weak that solid 
hydrogen melts at a temperature of only 14°K ( - 259°C),  and 
liquid hydrogen boils (under atmospheric pressure) at a tempera
ture of only 20°K ( - 2S3 °C). Helium doea better still. Its 
particles consist of individual atoms and the interatomic forces 
are so weak that even the irreducible bit of kinetic energy still 
present at absolute zero is enough to keep it liquid. Solid helium 
cannot exist at any temperature, however low, except under pres
sures greater than atmospheric. The boiling point of helium under 
a pressure of one atmosphere is 4°K ( - 269°C ) .  

O n  the other hand, some substances possess intermolecular or 
interatomic forces so strong that they remain solids at ordinary 
remperatures and even considerably higher. TI1e metal tungsten 
does not melt until a temperature of 3370°C is reached and does 
not boil, under atmospheric pressure, until a temperature of 
S900°C is reached. 

Specific Heat 
So far in our discussio,n of heat in this chapter and the preced

ing one the emphasis has been on temperature. and we must avoid 
confusing the two. Tbe terms .. heat" and "temperature" are by no 
means identical. It is all too easy to assume that if one sample of 
water has a higher temperature than another, it is hotter and there,, 
fore has more heat. Tbe final conclusion. however. ii not neces
sarily true. 

A thimbleful of water at 90°C is much hotter than a bathtub
full of water at 50°C, but there is more total heat i.n the bathtub of 
water. If both arc allowed to stand, the thimbleful of water will have 
cooled to room temperature in an interval during which the bath
tub-full of water would scarcely Jtave cooled �t all. TIIC thimbleful 
loses its heat more quickly because. for one thing. it has far less 
heat. all told, to lose. 

To specify, the heat content of a system is the total internal 
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energy* of the molecules making it up, while temperature is the 
measure of the average translational kinetic energy of the indi
vidual molecules. In other words, heat represents a total quantity 
and temperature a quantity per molecule. 

The difference can be made plainer, perhaps, by an analogy. 
Consider one liter of water poured into a tall thin cylinder so that 
U forms a column one meter high. Into a much broader cylinder, 
five liters of water are poured. and this water stands only 0. 1 
meters high. The water in the narrow cylinder exerts the greater 
pressure on the bottom of the container, but the water in the 
broader cylinder, exerting one-tenth the pressure, is nevertheless 
five times greater in volume. Volume is a total quantity, while 
pressure is a quantity per area. Therefore, temperature is to heat, 
as pressure is to volume. 

It may seem that such a distinction between heat and tempera
ture is unnecessary labor. After all, if one heats water, for instance, 
beat pours into it and the temperature goes up; the two rise 
together and why can't you use one as the measure of the other? 
Unfortunately, this parallel behavior of heat 8J!d temperature can 
be counted on only when you deal with a given quantity of a par
ticular substance, and even then only over certain limited tempera
ture ranges. We can see this if we compare the heat contents of two 
different subjects at identical temperature. 

To do this, we need a unit of measurement for heat. Earlier in 
the book I mentioned such a unit, the calorie, in passing. Now let's 
go into such matters in a bit more detail 

Suppose we add heat to water, thus raising its temperature. 
Experiments will show that the amount of heat required to raise 
the temperature of water by a fixed number of degrees varies with 
the mass of the water receiving the heat. 

We can assume, for instance. that I 00 gram:; of boiling water 
contain a fixed amount of heat. If I 00 grams of boiling water are 
poured into S kilograms (SOOO grams) of cold water, the tempera
ture of the cold water will rise about two Celsius degrees. If, on 
the other hand, the 1 00 grams of boiling water is poured into I 0 
kilograms of cold water, the temperature of the cold water will go 
up only one Celsius degree. 

Again, the quantity of heat required to raise the temperature 
of a fixed mass of water varies with the number of Celsius degrees 
by which the temperature is raised. It takes twice as large a volume 
of boiling water to raise a particular quantity of cold water by 1 0  

• The "lnlemal energy" of a lllbstance consists of lhc kinetic energy of 
ks COllllituenl parlides pl115 lhc Clllll'SY involved iu lhe inlermoleeular aurlleliona. 
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Celsius degrees than by 5 Celsius degrees. The unit of heat must 
therefore be defined in terms of a unit mass and a unit rise in 
temperature; as for instance, the quantity of heat required to raise 
the temperature of one gram of water by I Celsius degree. Actu• 
ally, refined measurements show that the quantity of heat required 
to raise the temperature of one gram of water by I Celsius degree 
varies slightly according to the original temperature of the water. 
so the original temperature must a lso be included in the definition. 
We can say then: 

One calorie is the quantity of heat required to raise the 
temperature of one gram of water from l 4.5°C to l 5.5 °C. 

We might also say that : 
One thousand calories. or a ki/ocalorit, is the quantity of heat 

required to raise the temperature of a kilogram { I OOO grams) of 
water from 1 4.S"C to 1 5 . 5 '  C. 

Suppose now that a gram of aluminum is placed in boi ling 
water for enough time to make certain that it has assumed the 
temperature of boil ing water ( I ooc-c ) .  Plunge the hot aluminum 
quickly into I 00 grams of water at o•c. The aluminum cools off 
and its heat is added to the water, raising its temperature from 
0°C to about 0.22°C. 

To raise the temperature of 1 00 grams or water by 0.22 
Celsius degrees takes I 00 times 0.22 or about 22 calories. The 
gram of aluminum. in cooling from 1 00°C to 0.22°C, has l iber
ated some 22 caloriCL By the law of conservation of energy, we 
would expect that if this cooling liberated 22 calorics. then adding 
22 calorics to the cold aluminum would bring il back up to 
I 00°C. Roughly speaking. then. we can say that it takes 22 
calorics to raise the temperature of a gram of aluminum I 00 
Celsiu, degrees, and 0.22 calorics to raise it J Celsius degree. 
This represents the specific heat of aluminum. where the specific 
heat of a sub51ance is defined as the quantity of heat required 
to raise the temperature of I gram of that substance by 1 Celsius 
degree. 

By this type of experiment one can find that the specific heat 
of iron is 0. 1 1 . that of copper 0.093. that of silver 0.056, and 
that of lead 0.03. If one calorie of heat is added to a 1?ram of 
aluminum 81 0°C. tha1 amount of heat will be enough to heat it 
1 /0.22. or 4.5 Celsius degrees-that is. to a temperature of 4.5 °C. 
The same amount of heat under the same conditions would raise 
the temperature of a gram of iron to 9cc. of copper to 1 1  °C. of 
silver to I S <C, and of lead to 33 °C. 

Here you can see that the distinction between heat and 
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temperature is indeed a useful one, since the same quantity of 
heat may be added to a fixed mass of each of a number of differ

.en! substances and each will attain a different temperature. 
Temperature in itself is consequently no measure at all of total 
heat content. (To return to our volume-pressure analogy, this is 
l ike pouring equal volumes of water into cyindrical vessels of 
different diameters. The volumes may be the same; however. 
the final pressures will vary, and pressure is no measure at all of 
total volume. )  

The conception o f  specific heat was first advanced by the 
Scottish chemist Joseph Black ( 1 728- 1 799) in 1 760. 

Part of the reason for this variation of specific heat from 
substance to substance lies in the different masses of the atoms 
making up each. The lead atom is about 7 .7 times the mass of 
the aluminum atom. the silver atom is 4 times the mass of 
the aluminum atom. the copper atom 2.3 times the mass of the 
aluminum atom, and the iron atom 2 . 1  times the mass of the 
aluminum atom. 

Because of this, a given mass of lead, say 1 gram, contains 
only 1/7.7 times as many atoms as the same mass of aluminum. In 
adding heat to 1 gram of lead, you are therefore engaged in setting 
fewer atoms into motion and less heat is required to increase the 
kinetic energy of the individual atoms by enough to account for 
a 1 Celsius degree temperature rise. For this reason, the specific 
heat of lead, 0.03, is about 1/7.7 that of aluminum. 0.22. Simi
larly, the specific heat of silver is about 1 /4 that of aluminum; 
the specific heat of copper is about 1 /2.3 that of aluminum; and 
the specific heat of iron is about 1/2. l that of aluminum. 

The general rule is that for most elements the specific heat 
multiplied by the relative mass of its atoms yields a number that 
is approximately the same for all. Where the relative mass of 
the atoms of the different elements (the atomic weight) is chosen 
in such a way that the hydrogen atom, which is the lightest, has a 
weight of a trifle over l ,  then the product of specific heat and 
atomic weight comes to about six calories for most elements. 

This is known as the law of Dulong and Petit, after the French 
physicists Pierre Louis Dulong ( 1 785-1 838 ) and Alexis Therese 
Petit ( 1 79 1-1 820 ) .  who first advanced it in 1 8 1 9. 

Latent Heat 
It might occur to you that temperature is very close to being 

a measure of heat content if only we count by atoms or molecules 
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instead of by grams. This would be so if the law of Dulong and 
Petit held for all substances under all conditions, but it does not. 
It holds only for the solid elements and for these only in certain 
temperature ranges. In fact, it is possible to show cases in which 
heat content can change a great deal without any change in 
temperature at all, and that should at once put to rest any notion 
of using temperature as a measure of heat content. 

Suppose I 00 grams of liquid water at 0°C is added to 100 
grams of liquid water at l 00°C. After stirring, the final tempera
ture of the mixture would be 50°C. 

Next, suppose that l 00 grams of ice at 0°C is added to l 00 
grams of liquid water at 1 00°C. After allowing the ice to melt and 
stirring the mixture (assuming that while we wait there is no over
all loss of heat to the outside world or gain of heat from it-a 
matter which can be arranged by insulating the system ) ,  we find 
that the temperature of the mixture is only 1 0°C. 

Why should this be? Clearly the liquid water at  0°C had more 
heat to contribute to the final mixture than the ice at 0°C, and 
yet . both liquid water and ice were at the same temperature. It 
seems reasonable to suppose that a quantity of the heat in the hot 
water was consumed, in the second case, in simply melting the 
ice; so much the less was therefore available for raising the tem
perature of the mixture. 

Indeed, if we heat a mixture of ice and water, we find that no 
matter how much heat is transferred to the mixture, the tempera
ture remains at 0°C until the last of the ice is melted. Only after all 
the ice is melted is heat converted into kinetic energy, and only 
then can the temperature of the water begin to rise. Experiment 
shows that 80 calories of heat must be absorbed from the outside 
world in order that I gram of ice might be melted, and that no 
temperature rise takes place in the process. The ice at 0°C is 
converted to water at 0°C. 

But if the heat gained by the ice is not converted into molec
ular kinetic energy, what does happen to it? If the law of con
servation of energy is valid, we know it cannot simply disappear. 

The water molecules in ice are bound together by strong 
attractive forces that keep the substance a rigid solid. In order to 
convert the ice to liquid water ( in which the molecules, as in all 
liquids, are free of mutual bonds to the extent of being able to slip 
and slide over, under, and beside each other) those forcea must 
be countered. As the ice melts, the energy of heat is consumed in 
countering those intermolecular forces. The water molecules 
contain more energy than the ice molecules at the same tempera• 
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ture, not in the form of a more rapid motion or vibration, but in the 
form of an ability to resist the attractive forces tending to pull 
them rigidly together. 

The law of co11SCIVation of energy requires that the energy 
change in freezing be the reverse of the energy change in melting. 
If liquid water at 0° is allowed to lose heat to the outside world, 
the capacity to resist the attractive forces is lost. little by little. 
More and more of the molecules lock rigidly into place, and the 
water freezes. The amount of heat lost to the outside world in thia 
process of freezing is 80 calories for each gram of ice formed. 

In short, 1 gram of ice at 0°C, absorbing 80 calories, melts to 
l gram of water at 0°C; and 1 gram of water at 0°C. giving 
off 80 calories, freezes to 1 gram of ice at 0°C. 

The heat consumed in melting ice ( or any solid, for that 
matter) is converted into a sort of potential energy of molecules. 
Just as a rock at the top of a cliff has, by virtue of its position 
with respect to gravitational attraction, more energy than a similar 
rock at the bottom of the cliff, so do freely moving molecules in 
liquids, by virtue of their position with respect to intermolecular 
attraction, possess more energy than similar molecules bound 
rigidly in solids. 

It is the kinetic and potential energies of the molecules that, 
together, make up the internal energy that represents the heat 
content. It is the kinetic energy only that is measured by the 
temperature. By changing the potential energy only, as in melt
ing or freezing, the total heat content is changed without changing 
the temperature. 

The discoverer of the fact that heat melted ice without 
raising its temperature was Joseph Black, who first pointed out 
the significance of specific heat (see page 2 1 5 ) .  He referred to 
the heat consumed in melting as latent heat • .. Latent" refers to 
something that is present in essence, but not in such a fashion as 
to be apparent or visible. This is just about synonymous with "po
tential," so the connection between "latent beat" and "potential 
energy" is clear. 

Actually, the heat required to melt a gram of ice is its latent 
heat of fusion ("fusion" being synonymous with "melting") .  
The qualifying phrase "of fusion" i s  necessary, for another type 
of latent heat arises in connection with boiling or vaporization. 
In converting a gram of liquid water at 1 00°C to a gram of steam 
at 1 00°C; what remains of the intermolecular attractions must 
be completely neutralized. Only then are the molecules capable 
of displaying the typical properties of gases-that is, the virtually 
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independent motion. In the earlier process of melting, only a minor 
portion of the intermolecular attractive force was countered, and 
the major portion remains to be dealt with. For this reason, the 
latent heat of vaporization of a particular substance is generally 
considerably higher than the latent heat of fusion for that same 
substance. Thus, the latent heat of vaporization of water-the 
amount of heat required to convert 1 gram of water at 100°C to 
1 gram of steam at 1 00°C-is 539 calories. For water, the latent 
heat of vaporization is almost seven times as high as the latent 
beat of fusion. 

The energy content of steam is thus surprisingly high. A 
hundred grams of water at I 00°C can be made to yield 10,000 
calories as it cools to the freezing point. A hundred grams of 
steam at 1 00°C, however, can be made to give up 53,900 calories 
merely by condensing it to water. The water produced can then 
give up another 10,000 calories if it is cooled to the freezing point. 
It is for this reason that steam engines are so useful and a "hot
water engine" would never do as a substitute. ( It is also no acci
dent that James Watt, the perfecter of the steam engine, was a 
student of Joseph Black. ) 

The latent heat of vaporization can be put to an important 
use. Suppose that a gas such as ammonia is placed under pres
sure in a closed container. If the pressure is made high enough, 
it will liquefy the gas (see page 2 1 0 ) .  As the ammonia liquefies, 
it gives up a certain amount of heat to the outside world. This 
heat would tend to raise the temperature of the immediate sur
roundings and of the ammonia itself. However, if the container of 
ammonia is immersed in running water, the heat evolved is carried 
off by that water and the liquid ammonia is no warmer than the 
gas had been. 

If the container of ammonia is now removed from the water, 
and the pressure is lowered so that the liquid ammonia is free to 
boil again and become a gas, it must absorb an amount of heat 
equivalent to what it had given up before. It absorbs this heat 
from the nearest source--itself and its immediate neighbors. Some 
of the kinetic energy of its own molecules is converted into the 
potential energy of the gaseous state, and the temperature of the 
ammonia drops precipitously. 

If a gas like ammonia is made part of a mechanical device 
that alternately compresses it and allows it to evaporate, a heat
pump will have been set up in which heat is pumped from the 
ammonia and anything in its near neighborhood out (by way of 



Beal 219 running water, for instance) to the world at large. U such a healpump is placed within an insulated box, we have a refrigerator. The lowering of temperature with vaporization is made use of by our own bodies. The activity of the sweat glands keeps ,us covered with a thin film of moisture which, as it evaporates, withdraws heat from our body and keeps us cool. Water has the highes& latent heat of vaporization of any common substance, so the fact that our perspiration is almost pure water means that little of it need be used, and we are ordinarily unaware of it. In hot weather the process must be accelerated, and if humid conditions cut down the rate of evaporation, perspiration will accumulate in visible quantities. We all know the feeling of discomfort that follows upon this partial breakdown of our own private refrigeratioa device. 
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Thermodynamics 

The Flow of Heat 
In the previous chapter, I spoke of mixing hot and cold water 
and said that in the process an intermediate temperature was 
reached. It is easy to see that this is achieved by the physical 
intermingling of the molecules of the hot water (which possess a 
high average kinetic energy) with the molecules of the cold 
water (which possess a low one ) .  The molecules of the mixture, 
taken as a whole, are bound to have an average kinetic energy 
of an intermediate value. 

Gases, too, can blunt the extremes of temperature in this 
fashion. Warm air masses will mingle with cold air masses ( and 
such mingling of air masses is the fount and origin of our weather ) ,  
and the temperature of the earth's surface i s  kept a t  a n  inter
mediate value as a result. It might seem that the mixture of warm 
and cold on earth is not very efficient when one compares the 
frozen floes of the polar regions with the steaming jungles of 
the tropics. It could, however, be worse. Our moon is at the same 
average distance from the sun as the earth itself is, but unlike 
the-earth it lacks an atmosphere. As a result, portions of its sunlit 
side grow hotter than even the earth's tropics do, and portions of 
its darkened side grow colder by far than an Antarctic winter. 

220 
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The transfer of heat by currents of gas or liquid is known 
as convection ( from Latin words meaning "to carry together" ) .  

Such actual movement o f  matter i s  not necessary for transfer 
of heat, however. If one end of a long metal rod is heated, the 
heat will eventually make itself felt at the other end of the rod. 
It is not to be supposed that there are currents of moving matter 
within the solid metal of the rod. What happens, instead, is some
thing like this. As the end of the rod grows hot, the atoms of that 
portion of the metal gain kinetic energy. As long as the rod re
mains solid, the average position of each atom remains fixed, but 
each can and does vibrate about that position. As the atoms gain 
energy, the vibrations become more rapid, and the movements 
extend further from the equilibrium position. The atoms in the 
hottest portion of the rod, vibrating most energetically, jostle 
neighboring atoms, and those atoms, as a result of the impacts, 
vibrate more energetically themselves. In this way, kinetic energy 
jostles itself from atom to atom and, gradually, from one end of the 
rod to the other. This transfer of heat through the main body of 
a solid is conduction (from Latin words meaning "to lead to-
gether" ) .  

· · 

The fact that atoms and molecules of solids vibrate with 
greater amplitude as temperature rises means that each atom or 
molecule takes up more room. It is not surprising then that the 
volume of a solid, or a liquid for that matter, will increase with 
rising temperature and decrease with falling temperature (see page 
182),  even though the molecules remain in virtual contact 
throughout the temperature range up to the boiling point. 

(Thia ia not the only factor involved in the volume change 
that solids and liquids undergo with temperature. There is also 
the matter of the nature of the molecular arrangement. The molec
ular arrangement for a particular substance is usually more com
pact in the solid state than in the liquid state, so there is generally 
a sudden drop in volumo--and consequent rise in density-as a 
substance freezes. Water is exceptional in thia respect. Its molecu
lar arrangement is less compact in the solid state than in the liquid. 
As a result, ice is Jess dense than liquid water and will float in it 
rather than sink to the bottom. ) 

Both convection and conduction are explainable in mechani
cal terms. In both cases, there are actual impingements of ener• 
getic atoms or molecules upon less energetic atoms or molcules. 
and energy is therefore transferred by direct contact. Heat can, 
however, be transmitted without direct contact at all. A hot object 
encased in a vacuum will make its heat felt at a distance, even 
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though there is no matter surrounding it to carry this heat either 
by convection or by conduction. The sun is separated from us by 
almost 93,000,000 miles of vacuum better than any we can yet 
make in the laboratory, and yet its heat reaches us and is evi
dent. Such heat seems to stream out of the hot object in all 
directions, like the conventional rays drawn about the sun by 
cartoonists. The word "ray" is "radius" in Latin, and the transfer
ence of heat across a vacuum is called radiation. The detailed 
discussion of radiation will be left for the second volume of this 
book. 

Interest in the laws governing the movement of heat by any 
or all these methods grew sharp in the first part of the nineteenth 
century because of the growing importance of James Watt's steam 
engine, which depended in its workings on heat flow. In the steam 
engine, heat is transferred from burning fuel to water, converting 
the latter to steam. The heat of the steam then flows into the cold 
water bathing the condenser, and the steam, now minus its heat, 
is converted into water again. This heat flow that turned water to 
steam and back again somehow made available energy that could 
be converted into the kinetic energy of a piston, which, in turn, 
could be used to do work. 

The study of the move�ent of heat ( with particular atten
tion, at first, to the workings of the steam engine) makes up that 
branch of physics called thermodynamics (from Latin words mean
ing "motion of heat") .  Of course, all consideration of heat flow 
must assume, to begin with, that none of the heat will vanish 
into nothing or arise out of nothing. This is the law of conserva
tion of energy, and so important is this generalization, in con
nection with thermodynamics in particular, that it is frequently 
called the first law of thermodynamics. 

The first law of thermodynamics, however, merely states 
that the total energy content of a closed system is constant; it does 
not predict the manner in which the energy in such a system may 
shift from place to place. But even a little experience shows that 
some of the facts about such energy shifts seem to fall into a 
pattern. 

For instance, suppose a closed system ( that is, one that 
exchanges no energy with the outside world-giving off none and 
taking up none) consists of a quantity of ice placed in hot water. 
We can be quite certain that the ice will melt and the water will 
cool. The total energy has not changed; however, some of it has 
shifted from the hot water into the ice, and all the experience of 
mankind tells us that this shift is inevitable. Similarly, a red-hot 
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stone will gradually cool, while the air in its neighborhood will 
gradually warm. 

Such a flow of heat from a hot object to a cool object will 
continue until the temperature of different portions of the closed 
system are equal. and this is true whether heat is transferred by 
convection, conduction or radiation. 

Faced with such factl about heat flow, the early workers in 
thermodynamics found matters most easily visualized if they 
thought of heat as a kind of fluid, and indeed thla fluid even r� 
ceived a namo--<aloric, from a Latin word for "'beat.• 

The flow of heat can be pictured by uses of fluid flow aa 
an analogy. Imagine two vessels connected by a stopcock. with 
the water level high on the left side and low on tho right. 
Naturally, water pressure is higher on the left than on the right, so 
there is a net pressure from left to righL If the stopcock is open. 
water will flow from left to right and continue flowing until tho 
levels are equal on both sides. The high level will fall: the low 
level will rise; and the final level on both sides will be intermediate 
in height. Although the total water volume of the system bas not 
changed, there has been a change in the distribution of water 
within the system leading to an equalization of pres.sure. 

By changing a few key words, we can have the previous 
sentence read: "Although the total heat of the system has not 
changed, there has been a change in the distribution of heat within 
the system leading to an equalization of temperature. .. (Once 
again, as on page 213. we have an analogy between volume/pres
sure and heat/temperature.) 

If  we think of temperature as a kind of driving force direct• 
ing the flow of heal. just as water pressure dircc:tJ the flow of 
water, then ii seems very natural. even inevitable. that heat should 
flow from a region of high temperature to one of low. without 
regard to the total heat content in each regiorL 

Consider a gram of boiling water. for instance. and compare 
it with a kilogram of ice water. To freeze the kilogram of ice 
water, some 80,000 calories of heal must be withdrawn from it. 
To reduce the temperature of the gram of boiling water to tho 
freezing point-and then freeze it-would require the withdrawal 
of I 00 plus 80 calories; only J 80 altogether. Any further cooling 
of the kilogram of ice obtained in the first case. as compared with 
the gram of ice obtained in the second. requires the withdrawal 
of a thousand times as much heat per Celsius degree from tho 
former as from the latter. It is plain then that despite the differ• 
ence in temperatures the total heat in the kilogram of ice water 
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is much higher than the total heat in the gram of boiling water. 

Nevertheless, if the gram of boiling water is added to the 
kilogram of ice w�ter, heat flows from the boiling water into the 
ice water. It is not the difference in  total heat content that deter
mines the direction of heat flow. Rather, it is the difference in tem
perature. Again, our analogy-if in the connected vessels referred 
to above, the left were of narrow diameter and the right of wide 
diameter, water would flow from the region of smaller volume to 
that of greater volume. Not difference of total volume but differ
ence of pressure would dictate the direction of water flow. 

The rate at which water flowed from one portion of the 
system to another would depend on the size of the difference in 
pressure. When the stopcock is first opened, the water flows 
quickly, but as the difference in pressure on the two sides of the 
stopcock decreases, so would the rate of flow. The rate of flow 
becomes very small as the difference in pressure becomes small ; 
it sinks to zero once the water "finds its level" and the differences 
in pressure disappear. 

The flow of heat by conduction can, apparently, be pictured 
analogously. The rate of flow of heat from a hot region to a cold 
one depends in part on the difference in temperature between the 
two. It is conventional to calculate the quantity of heat that 
would flow in one second through a one-centimeter cube, where 
one face of the cube was I Celsius degree cooler than the face on 
the opposite side. This quantity of heat is the coefficient of con
ductivity, and it is measured in calories per centimeter per second 
per degree Celsius (cal/cm-sec-°C) .  

Even given a particular difference o f  water pressure, water 
flow might yet vary depending on whether it flowed through a 
wide orifice, a narrow orifice, a series of narrow orifices, a sponge, 
loosely-packed cotton, well-packed sand, and so on. The same is 
true for heat, and even where a given temperature difference is 
involved, heat will flow more rapidly through one substance than 
through another. In other words, the coefficient of conductivity 
varies from substance to substance. 

Substances for which it is h igh are said to be good con
ductors of heat; those for which it is low are said to be poor 
conductors. In general, metals are good conductors of heat and 
nonmetals poor ones. The best conductor of heat is copper, 
with a coefficient of conductivity equal to t .04 cal/cm-sec- °C. 
In comparison, water has a coefficient of conductivity of 0.001  S 
cal/cm-sec-°C, and some kinds of wood have coefficients as low as 
0 .00009 cal/cm-sec-°C. 
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It is for this reason that cold metal feels so much colder 
than cold wood. The metal and wood may be at equal tempera
tures, but heat leaves the hand much more quickly when it is in 
contact with the metal than with the wood. The temperature of the 
portion of the hand making contact with the substance drops 
much more rapidly in the first case. Analogously, it is safe to lift a 
kettle of boiling water by its wooden or plastic hand-grip, for the 
heat from the metal ( which it is wiser not to touch ) enters the 
wood or plastic slowly enough for loss by radiation to keep pace. 

A system, completely surrounded by material of low heat 
conductivity, loses heat slowly to the outside world, or gains heat 
slowly, even though the temperature difference within and without 
is a great one. The system is made an island, so to speak, of a 
particular temperature in the midst of an outer sea of a different 
temperature. It is therefore insulated (from a Latin word for 
-island") ,  and a material of low heat conductivity is therefore 
a heat insulator. 

Gases have low coefficients of conductivity; air, therefore, is 
a good heat insulator. Woolen blankets and clothes trap a layer of 
air in the tiny interstices between fibers; heat therefore travels 
from our body into the cold outer environment very slowly, and 
so we have a sensation of warmth that we would not otherwise have. 
Wool and air are not warm in themselves, but give the effect of 
warmness by helping us conserve our own body heat. Air alone 
would do equally well, if it could be relied on to remain still. 
The warmed air near our bodies is, however, constantly being 
replaced by cool air as a result of the ubiquitous air currents. 
Heat is carried away by convection, and a windy day feels colder 
than a still day at . the same temperature. 

All substances have coefficients of conductivity greater than 
zero, and there is no substance, therefore, that can qualify as a 
perfect insulator of heat. Suppose, though, we take the phrase 
"no substance" literally and surround a system with a vacuum. 
We would then have a better insulator than anything we could find 
in the realm of matter. A perfect vacuum possesses a coefficient of 
conductivity equal to zero, and cannot bring about heat loss 
through convection e�ther. Evt:n a vacuum is not a perfect in
sulator, however, for it will still serve as a pathway for the loss of 
heat by radiation. 

Loss by radiation, however, is a slower process than loss by 
either conduction or convection. Consequently, some bottles are 
constructed with a double wall within which a vacuum is formed. 
Furthermore, the walls  can be silvered so that any heat radiating 
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across the vacuum, in either direction, is reflected almost entirely. 
In the end, passage of heat through such a vacuum flask. or 
.. thermos bottle," is exceedingly slow. Hot coffee placed in such 
a flask remains hot for an extended period of time, and cold milk 
remains cold. 

Such devices were first constructed by the Scottish chemist 
James Dewar ( 1 842-1923) in 1 892. He used them to store ex
tremely frigid substances, such as liquid oxygen, under conditions 
that would cut down the entry of heat from outside and thus 
minimize evaporation. In the laboratory. these are still called 
"Dewar flasks" in his honor. 

The Second Law of Thermodynamics 

We might therefore summarize the discussion in the preceding 
section by saying that it is the experience of mankind that in any 
closed system heat will spontaneously flow from a hot region to a 
cold region. It seems fair to consider this the second la1v of thermo
dynamics. 

This view of heat as u kind of fluid reached its peak in the 
1 820's. A rigorous mathematical analysis of heat flow according 
to this view was advanced in 1 822 by Fourier. the devisor of 
harmonic analysis. This view was put to further use by another 
French physicist. Nicolas Uonard Sadi Carnot ( 1796-1 832). 

In 1 824, Carnot analyzed the workings of a steam engine io 
terms that we may consider analogous to those that might be a� 
plied to a waterfall The energy of a waterfall can be made to tum 
a water wheel, the motion of which can then be used to run all 
the devices attached to the wheel. In this way. energy of falling 
water is converted into work. 

For a given volume of water, the amount of energy that can 
be converted to work depends on the distance through which the 
water drops--that is, upon the height of the pool of water at the 
bottom of the falls subtracted from the height of the cliff over which 
the water tumbles. 

We could measure these two heights from any agreed-upon 
reference. Taking the level of the pooJ at the bottom of the falls 
as our standard. we could say that its height (h, ) was 0. Then, if 
the height of the cliff (h2) was 10 meters higher, its height would 
be + IO meters. The distance fallen by the water would be h:1-h, 
--that is, IO - 0, or IO meters. 

,we could \1tso let sea level be the standard. in that c:ase. h, 
- I 
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might be + 1 727 meters, and h, would then be + 1 737 meters; 
h,-h 1 would be 1 737-1 727, or still 1 0  meters. The most 
strictly rational zero point for height ( at least on earth ) would be 
the earth's center. In that case, the values of h

1 
and h

2 
might be 

6,367,2 1 2  meters and 6,367,222 meters, respectively, and h2-h, 
would still be l O meters. Indeed, we could let the top of the cliff be 
our zero point. If h2 is 0, then h, ,  representing the water level of 
the pool, ten meters lower than the cliff height, would have the 
value -10  meters. In that case, h2-h 1 would be 0-(- 1 0 ) ,  or still 
1 0  meters. 

I have belabored this point in order to make it perfectly clear 
that it is not the absolute values of h, and h, that count in deciding 
the amount of work we can extract from the energy of falling water. 
but only the difference between them. 

Furthermore, if we continue to consider the waterfall, a clear 
distinction can be drawn between the total energy content of the 
water and the available energy content. The water drops to the bot
tom of the waterfall and forms part of a quiet pool there. The 
pool by itself is not capable of turning a water wheel, yet it contains 
much potential energy. If a hole were dug, the water in that pool 
would drop further and some of its energy could be converted to 
work, provided that a water wheel was placed at the bottom of the 
hole. Ideally, a hole could be dug to the center of the earth, and 
then all the potential energy of the water (at least with respect to 
the earth ) could be used. However, in actual practice no hole is 
dug, and only the energy of the falling water of the actual waterfall 
is used. That energy is available. The further potential energy of 
the water, counting down to the center of the earth, is present but 
unavailable. 

We can apply this sort of reasoning to the flow of heat. In 
the steam engine (or in any heat engine-for example, one that 
might use mercury vapor instead of steam ) heat flows from a 
bot region, the steam cylinder, to a cold region, the condenser. The 
heat flows from the high temperature to the low temperature, as 
water flows from a greater height to a lesser one. It is not the value 
of either the high or the low temperature which dictates the amount 
of energy that can be converted to work. but rather the temperature 
difference. It is fair, then, to represent the available energy in 
terms of the temperature difference within the heat engine. We can 
express this most conveniently in terms of absolute temperature 
( see page 1 93 ) ,  a concept not yet fully worked out at the time 
of Carnot's premature death from cholera at the age of 36. If we 
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consider the hot region of the heat engine to be at a temperature 
T, and the cold region to be at T1, then the available energy can 
be represented as T

2
-T1

• 
The cold region of the steam engine still contains heat, of 

course. If the condenser is at a temperature of 25 °C, the water 
it contains ( formed from the condensed steam) can, in principle, 
be cooled further and frozen, then cooled still further down to 
absolute zero; in the same way. water can be allowed to drop, -in 
principle, to the earth's center. The total energy of the system 
would be represented by the difference between the temperature 
of the hot region and absolute zero--that is T

1
-0, or simply T � 

The maximum efficiency (E)  of such a heat engine would be 
the ratio of the available energy to the total energy. If, under the 
conditions of the heat engine, all the energy of a system could be 
converted. in principle, to work, then the efficiency would be 1 .0; 
if half the total energy could be converted into work, E would 
equal 0.5, and so on. Expressing available energy and total energy 
in terms of temperature differences, we can say then that: 

E :..:.: T,-Ti (Equation 15-1 ) 
T, 

Thus, suppose that steam at a temperature of l 50°C ( 423 °K) 
is  condensed to water at  50°C ( 323 °K ) .  The maximum efficiency 
would then be ( 423-323 ) /423,  or 0.236. Less than a quarter of 
the total heat in the steam would be available for conversion into 
work. 

What's more, even this value is reached only if the heat 
engine is mechanically perfect : if .there are no losses of energy 
through friction: none through radiation of heat to the outside 
world, and so on. In actual practice. heat engines are considerably 
less efficient than the maximum predicted by Equation 1 5-l . What 
equation 1 5-1 does, however, is to set a maximum beyond which 
even mechanical perfection cannot pass. 

Equation 1 5-1  is derived on the assumption that heat flows 
only from a hot region to a cold, never vice versa. It, too, is there
fore an expression of the second law of thermodynamics (see page 
226) .  The second law can therefore be viewed as setting a new 
kind of limitation on the utilization of energy. 

The first law of thermodynamics ( the law of conservation of 
energy) makes it plain that one cannot extract more energy from a 
system than the total energy present in the first place. The second 
law of thermodynamics maintains that it is impossible to extract 
more work from a system than the quantity of available energy 
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present, and that the available energy present is invariably le.ss 
than the total energy present unless a temperature of absolute zero 
can be attained.* 

The second law of thermodynamics points out an im
portant fact. In order to extract work from a heat engine, there 
must be a temperature difference. Suppose the hot region and the 
cold region were at the same temperature, both T,. Equation 
1 5-1 would then become ( T2-T2 )/T2, or 0. There would be no 
available energy. ( In the same way, no work could be done by a 
waterfall cascading down a height of O meters) .  

If this were not so, it would be conceivable that a ship travel
ing over the ocean could suck in water, make use of some of its 
energy content and then expel that water (cooler now than it was 
before) back into the ocean. All the ships in the world, and indeed 
all of man's other devices, could be run at the cost of a trifling 
fraction of the enormous quantity of energy in the ocean. The 
ocean would cool slightly in the process, and the atmosphere would 
warm, but the heat would flow back from air to water and all 
would be well. 

If the second law of thermodynamics as expressed by Equa
tion 1 5-1 is valid, however, this is impossible. To extract heat 
from the ocean, you would need a reservoir colder than the ocean 
and a refrigerating device to keep it colder than the ocean. The 
energy expended on refrigeration would be greater than the energy 
extracted from the ocean ( assuming the refrigeration device to 
be mechanically imperfect, as it must be) and nothing would be 
gained. In fact, energy will have been lost. Virtually all ''perpetual 
motion machines" worked up by hopeful inventors violate the 
second law of thermodynamics in one way or another. Patent 
offices will not even consider applications for such devices unless 
working models are supplied, and there seems l ittle chance that a 
working model of such a device can �ver be constructed. 

Entropy 

In the hands of Carnot, the second law of thermodynamics 
was of only limited application. He dealt only with heat engines 
and specifically omitted from consideration engines that worked 
by other means (by human or animal agency, for instance, or by 
the power of wind ) .  Indeed, in Carnot's time, even the first law of 

• It has been said that the first law of thermodynamics states, "You can't 
win." and that the second Jaw of thermodynamics adds. "And you can't break 
even, either." 
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thermodynamics was not yet thoroughly understood in its broadest 
sense. 

In the l 84o·s, however, when Joule had demonstrated the 
interconversion of heat and a variety of other kinds of energy, and 
Helmholtz had specifically declared the law of conservation of 
energy to be of universal generality (see page 100). it seemed 
that the second law, dictating the direction of flow of heat. might 
also be made universally applicable. In heat engines. a tempera• 
ture difference was required before energy could be converted to 
work, but not all work-producing devices were heat engines. It was 
possible to obtain work out of some systems in which there was 
only one level of temperature. 

Thus. work can be obtained from electric batteries where no 
temperature differences are involved. Here. however. there are 
differences in electrical potential (a matter which is not dis
cussed in this book) that represent available energy. Again. chemi• 
cal reactions can be made to do work though tho final products 
of the reaction might be at the same temperature as the original 
reagents. The difference in chemical potential would represent 
the available energy in that case. 

To make the second law of thennodynamics fully general. 
it must be seen to apply to electrical energy, to chemical energy. 
indeed to all fonns of energy. and not to heat atone. In whatever 
form energy exists. work can only be obtained if the ellergy is 
present in a state of greater intensity in one portion of the system 
and lesser intensity in another portion. (In the case of heat, tho 
intensity is measured u temperature: in other.fonns of energy. 
it is measured in other ways.) It is the difference in intensity that 
measures the available energy. What is left of the total energy 
content after the available energy is subtracted is the unavailable 
energy. 

In 1 850. the German physicist Rudolf .Julius Emanuel 
Clausius ( 1 822-1 888) saw the true generality of Carnot's find• 
ings and announced it, specifically, as the second law of thermo
dynamics. (For this reason. Clausius is usually given the credit 
for being its discoverer.) 

Now let's consider the second law again. In a heat engine. 
the temperature difference between the hot region and the cold 
region is the measure of the available energy. However, the second 
law states that in a closed system heat must flow from a hot region 
to a cold. With time. therefore, this temperature difference must 
decrease, for as the heat flows in the only direction it can flow, 
the hot region cools down and the cold region warms up. Conse-
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quently,.the available energy decreases with time. Since the total 
energy remains constant, the unavailable energy must increase as 
the available energy decreases. 

Of course, we might remove the restriction of a closed system 
so that we can allow heat to enter the hot region from outside 
and keep it from cooling down. We can also pump heat out of the 
cold region and keep it from warming up. (This is done in actual 
steam engines, where burning fuel keeps the steam chamber con
tinually hot, and running cold water keeps the condenser continu
ally cold.) It takes energy to pump heat into the hot region and out 
of the cold region, however. We are increasing the total energy of 
the system merely to keep the available energy constant. As total 
energy goes up while available energy remains constant, the un
available energy goes up, too. 

In short, no matter how we argue matters in the case of a 
heat engine, unavailable energy increases with time. We might 
make this increase a very slow one, if we insulate the system well 
enough to minimize heat flow from hot to cold. If we had a perfect 
insulator. we might even conceive of a situation in which the un
available energy did not increase . .  · 

What applies to heat engines ought also apply to all work
producing devices. We might say then that the unavailable energy 
in any system can remain unchanged under ideal conditions, but 
always increases with time under actual conditions. 

Clausius invented the word entropy (a word of uncertain 
derivation) to serve as a measure of the unavailability of energy. 
He showed that entropy could be expressed as heat divided by 
temperature. The units of entropy therefore are calories per degree 
Celsius. We can say then that the entropy of a system can remain 
unchanged under ideal conditions, but always increases with time 
under actual conditions. And this, too, is an expression of the 
second law of thermodynamics. 

You must remember that the laws of thermodynamics apply 
to closed systems only. If we consider an open system, it is only 
too simple to find examples of apparent decreases in entropy. 

In a refrigerator, for instance, heat is constantly being 
pumped from the cold objects within to the warm atmosphere out
side in apparent defiance of the second law. A warm object, placed 
within the refrigerator, cools down; therefore, the available energy 
(represented by the temperature difference between the air outside 
and the object within the 'refrigerator) increases. 

Where forms of energy other than heat are concerned, 
analogous "violations" of the second law of thermodynamics 
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can be demonstrated. A man can walk uphill, increasing the avail
able energy as measured by the difference in potential energy be
tween himself and the bottom of the valley. Iron ore can be refined 
to pure iron and a spent storage battery can be charged-the 
former representing an "uphill movement" in chemical energy. 
the latter an "uphill movement" in electrical energy. 

In every case cited, the system is not closed; energy is flowing 
into the system from outside. In order to make the second law 
of thermodynamics valid, the source of this outside energy must 
be included in the system so that it is "outside" no more. 

Thus, material within the refrigerator does not spontaneously 
cool down (and remember that the original expression of the 
second Jaw, see page 226, speaks only of a spontaneous flow of 
heat ) .  Instead, the cooling takes place only because a motor is 
working within the refrigerator. Although the entropy of the re
frigerator's interior is decreasing, that of the motor is increasing. 
Furthermore. the motor's increase is greater than the interior's 
decrease, so the net change in entropy over the entire system-the 
refrigerator's interior plus its motor-is an increase. 

In the same way, the entropy decrease involved in convert• 
ing iron ore to iron is smaller than the entropy increase involved 
in the burning coke and in the other reactions that bring about the 
refining of iron. The entropy increase in the electric generator 
supplying the electricity for the charging of the storage battery 
is greater than the entropy decrease of the storage battery itself 
as it is charged. The entropy decrease involved in a man walking 
uphill is less than the entropy increase involved in the reactions 
within his tissues which make the chemical energy of foodstuffs 
available for the effort involved in walking uphill 

This is true also of various large-scale. planet-wide processes 
that seem to involve a decrease in entropy. Examples of such 
entropy-decreasing phenomena are the uneven heating of the 
atmosphere, which gives rise to wind and weather; the lifting of 
uncounted tons or water miles high against the pull of .gravity. 
which gives rise to rain and rivers; the conversion by green 
plants of carbon dioxide in the atmosphere to complicated organic 
compounds,. which is the basis of the earth's never-ending food 
supply and of its coal and oil as well. It is because of these 
phenomena that the available energy on earth remains at approxi. 
mately the same level through all its history; these phenomena also 
explain why we are in no dan,ger of running out of available energy 
in the forseeable future. 
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Yet all these phenomena must not be considered in isolation, 
for all take place at the expense of the solar energy reaching the 
earth. It is solar energy that unevenly heats the atmosphere, that 
evaporates water, and that serves as the driving force for the 
photosynthetic activity of green plants. In the course of its radia
tion of heat and light. the sun undergoes a vast increase in entropy• 
-one that is much vaster than the relatively puny decreases of 
entropy in earth-bound phenomena. 

In other words, if we include within our system all the ac
tivities that affect the system. then it turns out that the net change 
in entropy is always an increase. When we detect an entropy 
decrease, it is invariably the case that we are studying part of a 
system and not an entire one. 

In actual practice we can never be sure that we are dealing 
with a closed system. No matter how we insulate, there are always 
influences from outside--energy gains and energy losses from 
and to the outside. All processes on the earth are affected by solar 
energy. and even if we consider the earth and sun together as 
one large system, there are gravitational and radiational influences 
from other planets and even other stars. Indeed, we cannot be 
certain that we arc dealing with a truly closed system unless we 
take for our system nothing less than the entire universe. 

In terms of the universe we can (as Clausius did ) express 
the laws of thermodynamics with utmost generality. The first law 
of thermodynamics would be: The total energy of the universe is 
constant. The second law of thermodynamics would be: The total 
entropy of the universe Is continually increasing. 

Now suppose the universe is finite in size. It can then contain 
only a finite amount of energy. If the entropy of the universe 
(which is the measure of its unavailable energy content) is con
tinually increasing, then eventually the unavailable energy will 
reach a point where it is equal to the total energy. Since the 
unavailable energy cannot rise beyond that point, the entropy 
of the universe will have reached a maximum. 

In this condition of maximum entropy, no available energy 
remains. no processe, involving energy transfer are possible. no 
work can be done. The universe has "run down ... 

• We might proceed to wonder bow the sun was formed, for this formation 
must have involved a vast entropy decrease in order to make it possible fOI' 
the sun to continue radiating. at the expense of a continual large entropy in• 
crease, for so many billions of yean. However, to trace matt en back beyond 
the sun would be more suitable in a book devoted to astronomy. 
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Disorder 

Observations and experiments on heat in the first half of the 
nineteenth century assumed heat to be a fluid. From the very start 
of the century, however, evidence indicating that heat was not a 
fluid, but a form of motion, had begun to mount. 

In 1 798, for instance, Benjamin Thompson, Count Rumford 
( 1 753-1 8 14) ,  a Tory exile from the United States, was boring 
cannon in the service of the Elector of Bavaria. He noted that 
great quantities of heat were formed. Neither the cannon being 
bored nor the boring instrument used was at more than room 
temperature to begin with, and yet the ,heat developed by the act 
of boring was sufficient to bring water to a boil after a time; 
and the longer the boring was continued the more water could be 
boiled. It almost appeared as though the quantity of heat con• 
tained within the cannon and borer was infinite. 

If heat were a fluid, and a form of matter, then to suppose it 
were formed in the act of boring raised a difficulty. Already, the 
French chemist Antoine Laurent Lavoisier ( 1 743-1 794) had 
established the law of conservation of matter, according to which 
matter could be neither created nor destroyed ; and there was 
an increasing tendency among scientists to believe this gener
alization to be valid. If heat were being formed, then it must be 
something other than matter. To Rumford, the most straight
forward possibility was that the motion of the boring instrument 
against the metal of the cannon was transformed into the motion 
of small parts of both borer and metal, and that it was this in- · 
ternal motion that was heat. 

This notion was largely disregarded during the following 
decades. The assumption that small parts of an object might be 
moving invisibly seemed in 1 800 to be just as difficult to accept 
as the assumption that matter was being created, perhaps even 
more difficult. A decade after Rumford's experimenting, however, 
the atomic theory was advanced and began to increase in popu
larity. By the internal movements of matter, one now meant 
the motions or vibrations of the atoms and molecules making it up. 
and the assumption of such motion became continually more ac
ceptible. In the J 840's Joule's experiments in converting work 
to heat (see page 99) extended Rumford's observations and made 
the victory of the atomic motion view of heat inevitable. Finally, 
in the I 860's, the kinetic theory of gases and the concept of heat 
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as a form of motion on the atomic scale were established rigor
ously by Maxwell and Boltzmann ( see page 200).  

This did not mean that the laws of thermodynamics, estab
lished in the first place on the basis of a fluid theory of heat. 
turned out to be false. Not at all! The laws were based on observed 
phenomena, and they remained valid What bad to be changed 
were the theories that explained why they were valid. The fluid 
theory of heat. to be sure. explained these phenomena very neatly,• 
but the atomic motion theory could be made to explain everything 
the fluid theory of heat could, and proved just as finn a founda
tion for the observation-based laws of thermodynamics. 

To be sure, the view of heat as atomic motion is somewhat 
more difficult to picture and explain than the view of heat as a 
fluid. In the latter,case, we can think of such familiar objects as 
waterfalls; in the former, the best we can do is imagine a set of 
perfectly elastic billiard balls bouncing about eternally in a 
closed chamber. One might suppose that of two theories one ought 
to accept the simpler, as Ockham's razor (see page 5 )  recom
mends. However, Ockham's razor is applied properly only when 
two or more theories explain all relevant facts with equal ease. This 
is not so in the present case. 

If we confine ourselves to heat flow only, then it is easier 
to picture heat as a fluid than as atomic motion. However, if we 
are to explain the effect of heat on gas pressure and gas volume, 
if we are to explain specific heat, latent heat, and a host of other 
phenomena, it becomes very difficult to use the fluid theory. 
On the other hand, the atomic motion theory not only can explain 
heat flow but also all the other heat-involved phenomena. 

Suppose, for instance, you have a hot body and a cold body 
in contact. The molecules in the hot body are, on the average, 
moving or vibrating more rapidly than the molecules in the cold 
body. To be sure, the molecules in both bodies possess a range 
of velocities, and there may be some molecules in the cold body 
that are moving more quickly than some molecules in the hot 
body, but this is an exceptional situation When a molecule from 
the hot body ( an "H molecule") collides with one from the cold 
body (a "C molecule") the chances are very good that .it will be 
the H molecule that will be moving the more quickly of the two. 
Another way of putting it is that if a great number of H molecules 

• In fact, It was just because It explained them so neatly that the fluid 
theory lasted aa long as it did in the face of mounting evidence against iL 
It was distressing to have to give up something so convenient. 
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collide with a great number of C molecules, there will be a few 
cases where the C molecule is moving more rapidly than the 
H molecule with which it collides, but a vast preponderance of 
cases where it is the H molecule that is the more rapid of the 
two. 

Now when two moving objects collide and rebound, the 
velocities of both may change in any of a large number of ways. 
These changes may be grouped into one of two classes. In the first 
class, the slower object may lose velocity in the process of collision 
while the faster object may gain velocity. The result would be that 
the slower object would finish by moving still more slowly, and 
the faster object would finish by moving still more quickly. In the 
second class, the slower object may gain velocity in the process 
of collision while the faster object may lose velocity. In the 
first class of collisions, the velocities become more extreme, in 
the second class more moderate. 

There are many more ways in which a collision can belong to 
the second class than to the first. This means that over a large 
number of collisions in which velocity redistributes itself in a 
purely random manner, there will be many more collisions re
sulting in more moderate velocities than in more extreme veloci
ties. Random collisions will bring about an "averaging out" of 
velocities .•  

When a hot body and a cold body are in contact, a large 
number of H molecules collide with a large number of C mole
cules; the result is that after rebounding, the H molecules are 
moving less quickly on the whole, and the C molecules are moving 
more quickly. This means that the H molecules have become 
cooler and the C molecules warmer. There has been a flow of heat 
from the H molecules to the C molecules. The temperature of the 
portion of the hot body in contact drops, and that of the portion 
of the cold body in contact rises. 

Such collisions continue not only at the boundary at which 
the hot and cold bodies meet, but also within the substance of each. 
In the hot body, for instance, H molecules that have been cooled 

• This does not mean that all velocities will u ltimately be exactly equal 
if only there are enough collisions. If two objects collide al equal velocities, it 
becomes very probable that there will be a gain in velocity of one at the 
expense of the other. Too much "averaging out" becomes very unlikely. there
fore. Instead, haveraging our· proceeds only to a certain point and slops. At 
a particular temperature, the "averaging out" produces a range of velocities 
such as that predicted by the Maxwell-Boltzmann equations. A smaller and 
more limited range is extended to that point by coll isions; a wider and more 
extended range is contracted to that point by collisions. 
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off by collisions with C molecules collide with neighboring mole
cules that have not been cooled off; here, too, there is a general 
moderation of velocities. 

The result of these random collisions and random alterations 
of velocity throughout the entire system is that, eventually, the 
average velocities of the molecules in an) portion of the system 
will be the same as in any other portion: this average will be a 
value that will lie between the two original extremes. (Hot and 
cold mix to produce lukewarm, so to speak. )  Once the velocities 
are the same. on the average, throughout the system, collisions 
may continue to alter velocities, so a particular molecule may be 
moving quickly at one moment and slowl} at another; however, 
the average will no longer change The entire system having 
reached an intermediate equilibrium temperature, heat flow will 
cease. 

In both the fluid theory of heat and the atomic motion theory, 
heat can be expected to flow spontaneously from a hot area to a 
cold area and this., after all, is a statement of the second law of 
thermodynamics. Yet there is a crucial difference between the two 
theories with respect to such heat flow. 

In the fluid theory, the flow of heat is absolute. It is capable 
of going "downhill" only, and an "uphill� movement is incon
ceivable. In the atomic motion theory , however, the flow of heat 
is a statistical matter and is not absolute The random changes of 
velocity as a result of random collisiom will result, as a matter 
of extreme!� high probability but not certainty, in the flow of heat 
from hot to cold. It is extremely unlikelj . but not inconceivable, 
that in eve!) collision, the faster molecule may gain velocity at the 
expense of the slower one, so heat will flow "uphill" from cold to 
hot. 

Maxwell tried to dramatize this possibility by visualizing a 
scientific fantas) . Imagine two gas-filled vessels, H and C, con
nected by a stopcock. The H vessel is the hotter, and its molecules 
move the more rapidly on the average. 

But it i� only on the average that H molecules move more 
rapidly than C" molecules. Some H molecules happen to move 
slowly, and some C molecules happen to move rapidly. Suppose 
that an intelligent atom-sized creature i� in control of the stopcock 
(this creature h usually referred to as "Maxwell's Demon" ) .  When 
one of the minority of slow H molecule� approaches, Maxwell's 
Demon opens the stopcock and lets it  into the C chamber. When 
one of the minority of fast C molecules approaches, Maxwell's 
Demon opens the stopcock and lets it into the H chamber. At 
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«:>tl:ler times, the Demon keeps the stopcock closed. In this way, 
there is a slow but steady drizzle of low-velocity molecules into 
C and an equally slow and equally steady drizzle of high-velocity 
molecules into H. The average velocity of the molecules in C 
drops, while that in H rises-and heat flows uphill from cold to 
hot. 

The chance of such "uphill" flows of heat ( or of any other 
form of energy) is so fantast ically small in the ordinary affairs of 
life that it is quite safe to ignore it. However, the shift from a 
condition of "certainty" to a condition of "probability" is of crucial 
importance. As scientists probed deeper and deeper into the 
subatomic world during the twentieth century, statistical analysis 
of events and their consequences became more and more important 
and the improbable ( but not impossible) gains a perceptible 
chance of taking place, while more and more of those cause/effect 
combinations we usually assume to be certain have been shown 
to be only very, very, very probable. In short, Maxwell's statistical 
interpretation of heat flow marks one of the first steps in the 
transition from the "classical physics" of the nineteenth century 
( with which this volume is concerned) to the "modem physics" 
of the twentieth century. 

And how can entropy be interpreted in the light of the atomic 
motion view of heat? Entropy, according to the second law of 
thermodynamics, always increases. Well, then, what is it that al
ways increases as a result of molecular coll isions? In a manner of 
speaking, moderation does. If in a system, to begin with, an ac
cumulation of heat is concentrated in one portion and there is a 
deficit in another, molecular collisions increase moderation and 
spread the heat more evenly throughout the system. In the end, 
when temperature equil ibrium is reached, heat is spread out as 
evenly as possible. 

Entropy can therefore be interpreted as a measure of the 
evenness with which energy is distributed. This can be applied to 
ttny form of energy and not merely to heat. When an electric 
battery discharges, its electrical energy is more and more evenly 
distributed over its substance and over the material involved in 
the electrical flow of current. In the course of a spontaneous chemi
cal i:eaction, chemical energies are more evenly distributed over 
the molecules involved. 

What's more, the evenness of energy distribution is "most 
even," so to speak, when it is distributed as random motion among 
molecules. The conversion of any form of non-heat energy to heat 
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r�presents a gain in the evenness with which energy is distributed 
and is, therefore, a gain in entropy. 

It is for this reason that any process involving a transfer 
of energy is bound to produce heat as a side-product. A body in 
motion will produce heat as a result of friction or air resistance. 
and some of its kinetic energy will be spread out over the mole
cules with which it has come in contact. In converting electrical 
energy to light or to motion, heat is also produced, as we know if 
we touch an electric light bulb or an electric motor. 

This means, in reverse, that if heat were completely con
verted into some form of non-heat energy. then there would auto
matically be a decrease in entropy. But a decrease in entropy 
in a closed system is so extremely unlikely that the possibility of 
its occurrence under ordinary conditions can be ignored. Some 
heat, to be sure. can be converted into other forms of energy, but 
only at the expense of further increasing the entropy of the re
maining heat in the system. In the steam engine, for instance, the 
conversion of the heat energy of the steam into the kinetic energy 
of the pistons is a piece of decreasing entropy that is at the expense 
of the (still greater) increasing entropy of the burning fuel that 
produces the steam. 

The increasing evenness with which energy is spread out 
can be interpreted as increasing "disorder." We interpret order 
as a quality characterized by a differentiation of the parts of a 
system: a separating of things into categories; a filing of cards 
in alphabetical order; a listing of things in terms of increasing 
quantities. To spread things out with perfect evenness is to dis
regard all these differentiations. A particular category of objects 
is evenly spread out among all the other categories, and that is 
maximum disorder. 

For this reason. when we shuffle a neatly stacked deck of 
cards into random order, we can speak of an increase in entropy. 
And, in general. all spontaneous processes do indeed seem ( in 
line with the second law of thermodynamics ) to bring about an 
increase of disorder. Unless a special effort is made to reverse the 
order of things (increasing .our own entropy).  neat rooms will 
tend to become messed up, shining objects will tend to become 
dirty, things remembered will tend to become forgotten, and so on. 

We thus find there is an odd and rather paradoxical symmetry 
to this book. We began with the Greek philosophers making the 
first systematic l attempt to establish the generalizations underlying 
the order of the universe. They were sure that such an order. basi• 
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cally simple and comprehensible, existed. As a result of the <;on
tinuing line of thought to which they gave rise, such generaliza
tions were indeed discovered. And of these, the most powerful 
of all the generalizations yet discovered-the first two laws of 
thermodynamics-succeed in demonstrating that the order of the 
universe is. first and foremost, a perpetually increasing disorder. 
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Antinodes, 1 53 
A rchimedes, 9, 88,  1 23- 1 24 
Archimedes' principle. 1 24 
A rchytas, 1 54 
A ristorle, 4, 6-7, 1 35-1 36. 1 54- 1 55 
Assumptions, 4-5 
Astrophysics, 3 
Atmosphere, 207 

density of, 1 46; pressure of. 
1 38 .  

Atmosphere (unit ) .  1 38 
Atom(s), 146 
Atomic weight, 2 15  
Atomism, l 35ff. 

gases and, 143ff. 
Available energy. 227-229 

Balance, 57, 85-86 
Balloons, 1 4 1  
Bar. 1 39 
Barometer, 1 38 
Bats, 1 80 
Beats, 1 69- 1 70 
Bel, 1 60 
Bell. A lexander G •• 1 60 
Bernoulli. Daniel, 1 34, 1 97-1 98 
Bernoull i 's principle, 1 33-1 34. 

1 42- 1 43 
Bimetal l ic strip, 1 84 
Black, Joseph, 2 1 5, 2 1 7-2 1 8 
Boethius. Anici11s M. S., 1 55 
Bolr,mann, L11dwig, 200, 235 
Boyle, Robert. 1 45. 1 9 1  
Boyle's law, 145, 1 9 1 ,  208-2 1 0  

kinetic theory of gases and. I 99 
British thermal unit, 99 
Buoyancy. 1 22-1 25 

Caloric. 223 
Calorie, 99, 2 1 4  
Capillary action, 1 29- 1 30 
Carbon dioxide, 2 1 0  
Carnot. Nicolas L .  S • •  226-227. 

229 
Cm·entllsh. Henry, 50-5 1 
Celestial mechanics, 88 
Cel.tius. Anders, 1 87 
Celsius scale, 1 87-1 88. 19) 
Center of gravity, 77 
Center of mass, 76 
Centigrade scale, 1 87- 1 88 
Centimeter, 2 1  
Centipoise, 1 33 
Centrifugal force, 55 
Centripetal force, 55 
cgs system, 32 
Charles, Jacqui?$ A. C� t92 

243 



244 Index 
Charles's law, 1 92, 1 95 
Chemistry, 1 47n 
Chladni, Ernst F. F., 207 
Chlorine, 2 1 0  
Chord, 1 72 
Circular motion, I 04- 1  05 
Clausius. Rudolf J. E., 230 
Clockwise, 73 
Coefficient of conductivity, 224 
Coefficient of cubical expansion. 

1 90-: 92 
Coefficient of linear expansion, 

1 88-1 89 
Cohesion, 1 25 
Compensation pendulum, 18S 
Compound bar, 1 84 
Compression waves, 156-157 
Conduction, 221 
Conductivity, coefficient of, 224 
Conservation of angular momen-

tum, 8 1 -83 
Conservation of energy, I 00, 222 
Conservation of matter, 234 
Conservation of momentum., 67• 

72 
center of mau and, 76 

Convection. 221 
Converging series, 62 
Copernicus, Nicholas, 38 
Copper, 2 14-215, 224 
Counterclockwise. 73 
Couple, 8S 
Crest, 1 50 
Critical temperature, 21 1 
Cubical expansion, coefficient of, 

1 90-192 

Dalton, John, 146 
Deceleration, 28 
Decibel, 1 6 1  
Degree. (of angles) ,  73 
Degrees (of temperature) ,  1 87 
Democritu,, 1 3S-1 36 
Density, 1 17 

pressure and, 144; temperature 
and, 143-144. 

Dewar, Jame,, 226 
Dewar flask, 226 
Diffusion. gas, 204ff. 
Dimensional analym, 1 8  
Disorder, 239-240 
Displacement, 27 
Distance, 27 
Doppler, Christian J., 1 74 

Doppler effect, 1 74 
Dulong, Pierre J., 2 1 5  
Dulong and Petit, law of, 2 1 S  
Dynamics, 88 
Dyne, 32 

Earth, conservation of momentum 
and, 7 1 -72 
gravitational pull of, 37, 4 1 -46; 

gravitational variations on, 
55; mass of, S2; radius of, 
46; rotation of, SS ;  shape of, 
55-56; weight of, 60. 

Echo, 177- 1 78 
Echolocation, 1 80 
Einstein, Albert, 2411, 26, 26n, 

47n, 1 00 
Elasticity, 50 
Energy, 94 

available, 227-229; conserva• 
tion of, 99- 1 00, 222; forms 
of, 98-99; heat and, 98-99; 
internal, 2 1 3n; kinetic, 94-
97; mechanical, 97; potential, 
96-97; surface. 126. 

Entropy, 23 UL 
disorder and, 238-240 

Equatorial bulge, 56 
Equilibrium, 86-87 
Erg, 90 
Escape velocity, 63 
Ether, 6 
Experiments, 8-9 
Exponential notation, 52 

Fahrenheit, Gabriel D., 1 86 
Fahrenheit scale, 1 87-1 88 
Falling bodies, 7-8, ! Off .. 19-20, 

1 4 1  
Fechner, Gusta, T� 160n 
First law of motion, 24, 33 
First law of thermodynamics, 222, 

229n, 233 
Fluid ( s ) ,  l lS-1 16  
Fluid mechanics, 1 20 
Fly-wheel, 8 1  
Foot-pound, 99 
Force, 24 

acceleration and, 29n, 30; cen• 
trifugal, 5S; centripetal, 55;  
definition of, 26;  distance 
and, 89-90; gravitational, 25; 
mass and, 30; movement of, 
75; multipl ication of, 89; 



paral lelogram of, 40-4 1 ;  t ime 
and, 65-66; torque-produc
ing, 75; units of, 32-33 .  

Fourier, Jean B. J., 1 68, 226 
Free fal l ,  10, 59-60 
Frequency, 1 5 3 - 1 54 

of musical notes, 1 7 1 - 1 73 ;  of 
sound waves, 1 63 - 1 64, l 69ff. 

Fresnel, A ugustin J., 1 19 
Friction, 25, 35, 1 30-1 3 1  

heat and, 9 8  
Fulcrum, 85 
Functions, trigonometric, I I I n  
Fusion, latent heat of, 2 1 7 

Galileo, 9ff., 38-39, 88, 1 08, 1 1 3 ,  
1 9 1  

Gas(es ) ,  1 1 6, 1 36ff. 
atomism and, 1 43ff.; coefficient 

of cubical expansion in, 1 92;  
diffusion of ,  204ff. ; gravity 
and, 198 ;  kinetic theory of, 
l 971f. ; liquefaction of, 2 1  O;  
perfect, 1 96;  permanent, 
21 O; pressure of, l 381f.; 
sound velocity in, 206-207; 
specific gravity of, 1 36 ;  tem
perature and, 1 9 1 - 1 93. 

Gay-Lussac, Joseph L., 1 9 1  
Gay-Lussac's Jaw, 1 92, 1 95 

kinetic theory of gases and, 200 
Geophysics, 3 
Glass, 1 32n 

temperature change and, 1 83 
Graham, Thomas, 206 
Graham's Jaw, 206 
Gram, 3 1  
Gravitational constant, 48 

value of,  52 
Gravity, 20, 25, 44-45 

center of, 77; distance and, 46, 
6 1 ;  pendulum and, 1 09- 1 1 1 . 

Guericke, Otto von, 1 40 
Gyroscope, 8 1  

Harmonic analysis, 1 68 
Harmonic motion, I 02 
Heat, energy and, 98-99 

entropy and, 238-239 ;  flow of, 
220-226, 235-238 ;  frict ion 
and, 98; insulator of, 225 : 
latent, 2 1 5-2 1 8 ; mechanical 
equivalent of, 99; motion 
and, 234-240; specific, 2 1 4-

Index 245 

2 1 5 ;  temperature and, 2 1 21f; 
un its of, 99. 

Hel ium, 2 1 1 -2 1 2  
Helmholtz, Hermann von, 1 00, 

230 
Hero, 9 
Herschel, William, 41 
H iero, 1 23- 1 24 
Hooke, Robert, 49, 1 1 3 
Hooke's law, 50, I 02 
Horsepower, 93  
Huygens, Christiaan, 1 1 3 
Hydraul ic press, 1 2 1 - 1 22 
Hydrodynamics, 1 20, 134 
J.lydrogen, 1 36- 1 37 

buoyancy of, 1 4 1 ; critical tem
perature of, 2 1 1 ;  melting 
point of, 2 1 2 ; molecular 
velocity of, 206; 

Ice, 1 44 
melting of, 2 1 6-2 17  

Ideal gas, 1 96 
Ideal gas equation, 1 96 
Impulse, 66-67 
Incl ined plane, ! Off., 88, 9 1 -92 
Inertia, 24 

mass and, 30 ;  moment of, 8 1 ;  
rotational, 79. 

Infrasonic waves, 1 80 
Insulator, heat, 225 
Interface, 1 28 
Interference, 1 67 
Internal energy, 2 1 3n 
lnvar, 1 83 
Inverse-square law, 46 
Iron, 1 44 ,  2 1 4-2 1 5  
Isotropic substances, 1 90n 

Joule, James P., 99-1 00, 230, 234 
Joule, 90, 99 
J upiter, 207-208 

Kelvin, Lord, 1 93 
Ki localorie, 2 1 4  
Ki logram, 3 1  
Ki lometer, 2 1  
K inetic energy, 94-97 

temperature and, 203 
K inetic theory of gases. 1 971£. 

Latent heat, 2 1 5-2 1 8  
Lm•uMer, A ntoine L . •  234 
Leud, 2 1 4-2 1 5  



246 Index 
Leibniz, Gottfried W .. 94 
Lever, 85-90 
Lightning. 1 66 
Limiting sum, 62 
Linear expansion. coefficient of. 

1 88-1 89 
Linear velocity, 73 
Liquid (s) ,  1 1 6 

density of, 1 36- 1 37 
Logarithms. 1 60n 
Longitudinal wave, 1 56-1 57 
Loudness. 1 58-1 6 1  

Mach, Ernst, 1 65 
Mach number. 1 65 
Machine, 88  
Mariotte, Edme, 19 1  
Mariotte's law. 1 9 1  
Mars, 49 
Mass, 30 

center of, 76; measurement of, 
57; units of, 3 1 ;  weight 
and, 53ff.; weightlessness and, 
58-60. 

Mathematics, 1 7  
Matter, conservation of, 234 
Maxwell, J. Clerk, 200, 235, 237 
Maxwell'• Demon. 237-238 
Maxwell's equation, 203 
Mayer, JuliUJI R. von, 1 00 
Mechanical energy, 97 
Mechanical equivalent of heat, 99 
Mechanics, 88 

fluid, 1 20 
Meniscus. 1 28 
Mercury ( element) ,  128 

b.irorneter and, 1 3  8 ;  thermo-
meter and, 1 86. 

Mercury (planet) ,  47n 
Meter, 20.21 
Metric system. 20-2 t 
Microwatu, 160 
Millimeter, 47 
Milli poise, 1 3  3 
mks system, 32 
Molecular biology, 3 
Molecular weight, 206 
Molecule-. 147 
Moment of force, 75 
Moment of inertia, 8 1  
Momentum, 66ff. 

angular, 8 1 ;  conservation of, 
67-72: vectors and, 67. 

Moon. atmosphere of, 207 

distance or, 46; gravitational 
force on, 57-58 ;  mass of. 49; 
motion of, 4 1  ff. 

Motion, 3ff. 
circular. 1 04- 1 05 ;  combined. 

37-4 1 ;  component, 40-4 1 :  
energy and, 94-97: falling, 
7-8; first law of, 24, 33:  
Greek view or, 5-9 ;  har
monic, 1 02;  heat and, 234-
240; heavenly, 6-7 ; laws of. 
23ff.: moon's, 41 ff. ; peri
odic, I 04 : perpetual, 229; 
quantity of, 65-66; random, 
1 98, 235-238;  rotational, 72;  
second law of, 30-3 1 ;  third 
law of, 34-36, 70; transl:i
tional, 72; vibratory. IO I ff. 

Musical notes, I 671f. 
frequency or, 1 7 1 - 1 73 

Natural philosophy, I 
Newton, Isaac, 23ff. 37ff. 
Newton, 33  
Nodes, 1 50 

Oblate spheroid, 56 
Ockham, William of, 5 
Ockham's razor, 5, 235 
Octave, 1 7 1  
Orbital velocity, 64 
Osmium, 1 37 
Overtones, 1 75 
Oxygen, 205, 2 1 1 

Parabola, 39 
Parachute, 142 
Parallelogram of force, 40-4 1  
Pascal, Blaise, 1 1 9, 1 39 
Pascal's principle, 1 19 
Pauli, Wolfgang, 1 00 
Pendulum, 1 08-1 1 4  

compensation, 1 85 
Perfect gas, 1 96 
Period, I 04n 
Periodic motion, 1 04 
Perpetual motion, 229 
Perspiration, 2 1 8-2 1 9  
Petit, A lexis T., 2 1 S  
Philosophy, 1 -2 
Physical chemistry, 3 
Physical philosophy, 2 
Physics, 2-3 
Pi, 74, 74n 



Pitch, ! 62ff. 
motion and, 1 73-174 

Plane, inclined, I Off., 88, 9 1 -92 
Platinum, 1 37 
Pneumatics, 1 20 
Poise, 1 33 
Poiseuille, Jean L. M., 1 33 
Potential energy, 96-97 
Power, 93 
Pressure, l l  6ff., 1 38ff. 

gases and, 145-146; units of, 
1 16-1 1 7. 

Proportionality, 14, 14n, 1 8- 1 9  
Proportionality constant, 19  
Pull, 26 
Pulley, 88 
Push, 26 
Pyrex, 183 
Pythagoras, 1 02, 154, 1 70, 171  

Quartz, 1 83 

Radium, 73-75 
Radiation, 222 
Random motion, 1 98, 235-238 
Rankine, William J. M., 96 
Reciprocal seconds, 1 54 
Reflection, 1 77 
Refrigeration, 2 1 8-2 1 9  
Regnault, Henri V., 208 
Reinforcement, 1 68 
Relativity, theory of, 24n, 47n 
Resonance, 1 76- 177 
Rest, 6, 24n 
Reverberation, 1 78 
Revolutions per minute, 73 
Root mean square, 203n 
Rotational motion, 72-73 

torques and, 75 
Rumford, Count, 234 

Satellites, 60, 64 
Scalar quantity, 27 
Science, 1 
Screw, 88  
Second law of  motion, 30-3 1 
Second law of thermodynamics, 

226tf., 233 
Series, converging, 62 
Shear, 1 55 
Shock wave, 1 66 
Silver, 2 14-2 15  
Simple harmonic motion, I 02 
Simple machine, 88 

Sine, 1 1 1  

Index 241 

Sine curve, 150 
Solids, 1 1 5, 125 

density of, 1 37 
Sonar, 1 80 
Sonic boom, 1 66 
Sound, 1 54ff. 

intensity of, l 59; interference 
and, 1 67;  loudness of, 158-
16 1 ; pitch of, 1 62ff.; power 
of, 1 60; quality of, 175-177; 
reflection of, 1 77-1 80; rein
forcement of, 168 ;  tempera
ture and, 1 64; velocity of, 
1 64. 

Sound barrier, 1 65 
Sound waves, 1 56-1 57 

frequency of, 1 63-164, l 691f. 
Specific gravity, 1 37 
Specific heat, 2 14-21 5  
Speed, 29 

angular, 73 
Spring balance, 53 
Statics, 88 
Steam, 144 
Steel , 1 66 
Stevinus, Simon, 1 1  
Stradivarius, Antonius, 177 
Strain, 50 
Streamlining, 1 3 1  
Stress, 50 
Sulfur dioxide, 2 10  
Sum, limiting, 62  
Supersonic velocity, 1 66 
Surface energy, 1 26 
Surface tension, 1 27-1 30 

Temperature, 1 8 1  ff. 
absolute, 1 93 - 195 ;  critical, 2 1 1 ;  

gases and, 1 9 1 - 1 93 ;  heat and, 
2 1 2ff. ; heat flow and, 223-
224; molecular kinetic energy 
and, 203 ; molecular velocity 
and, 205 ; sound and, 1 .64. 

Temperature scales, 1 87-1 88, 1 9] 
Terminal velocity, 1 3 1 

in air, 1 4 1 - 1 42 
Thermodynamics, 2221f. 

first law of, 222, 229n, 233; 
second law of, 226ff., 233. 

Thermometer, 1 85-188 
Thermos bottle, 226 
Thermostat, 1 84- 1 85 
Third law of motion, 34-36, 70 



:48 l� 
Thompson. BnrJamin, 234 
Thomson, William, 193 
Thunder, 166 
Tune, measurement of, 107-108, 

1 1 3-1 14 
Torque, 75 

angular acceleratioo and, 80; 
lever and, BS. 

Torricelli, E11an,11lista, 138, 140 
Torricelli, 1 38 
Tonion balance so, 
Translational motion, 72 
Transverse wave, I SO, 1SS- 1S6 
Trigonometric functions, 1 1 1  n 
Trough, ISO 
Tungsten, 212 
Turbulence, 1 3 1  

Ultrasonic waves, 1 80 
Universal gravitation, 44-4S 
Units, 17  

common, 20, 3 1 ;  systems of, 
32. 

Universe, running down of, 233 
Uranium hexafluoride, 1 37 

Vacuum, 7 
heat flow and, 22S-226; Torri-

cellian, 1 40. 
Van der Waals, Johannes D .. 2 10  
Van der Waals equation, 208-2 10  
Van der Waals forces, 2 10  
Vapor, 2 1 1 n  
Vaporization, latent heat of, 2 1 8  
Vector, 27-28 
Velocity, 14  

angular, 73 ;  escape, 63 ;  linear, 
73; molecular, 205; orbital, 
64; supersonic, 166; terminal, 
1 3 1 ,  141-142; units of, IS:  

Vectors and, 28.  
Vibratory motion, 10111. 

period of, I 03ff. 
Viscosity, 1 30-1 33 
"Vis viva," 94 
Virruvius Pollio, Marcus, 1 SS 
Volume, temperature and, 1 82ff, 

Wallb1, John, 70 
Water, 1 1 6 

boiling of, 217-218 ;  coefficient 
of conductivity of, 224; criti
cal temperature of, 2 1 1 ;  
density of, 1 36, 221 ;  sound 
velocity in, 1 66; waves in, 
148-149. 

Wall, James, 93, 2 1 8  
Watt, 93 
Wave(s) ,  148ff. 

compression, 1S6-157;  longitu
dinal, 1 56-1 58;  sound, 1 54ff. ; 
transverse, I SO, I 55-1 56. 

Wave analysis, 1 69 
Wavelength, 1 52- 1 53 

reflection and, 179- 1 80 
Weather, 1 39 
Weber, Ernst H., 1 60n 
Weber-Fechner law, 1 60n 
Wedge, 88 
Weight, 43, 53 

pressure and, 1 1 6 ;  units of, 54; 
variations of,  55-60. 

Wheel and axle, 88 
Whispering galleries, 178 
Wood, 224 
Work, 90-92 

"stored," 93-94 

Young, Thomas, 94 


