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INTRODUCTION 

192 A number of years ago, when I was a freshly-appointed instructor, I 
met, for the first time, a certain eminent historian of science. At the 
time I could only regard him with tolerant condescension. 

I was sorry for a man who, it seemed to me, was forced to hover 
about the edges of science. He was compelled to shiver endlessly in 
the outskirts, getting only feeble warmth from the distant sun of sci
ence-in-progress; while I, just beginning my research, was bathed in 
the heady liquid heat at the very center of the glow. 

In a lifetime of being wrong at many a point, I was never more 
wrong. It was I, not be, who was wandering in the periphery. It was 
he, not I, who lived in the blaze. 

I had fallen victim to the fallacy of the "growing edge"; the belief 
that only the very frontier of scientific advance counted; that every
thing that had been left behind by that advance was faded and dead. 

But is that true? Because a tree in spring buds and comes greenly 
into leaf, are those leaves therefore the tree? If the newborn twigs and 
their leaves were all that existed, they would form a vague halo of 
green suspended in mid-air, but surely that i s  not the tree. The leaves,' 
by themselves, are no more than trivial fluttering decoration. It is the 
trunk and limbs that give the tree its grandeur and the leaves them
selves their meaning. 

There is not a discovery in science, however revolutionary, however 
5parkling with insight, that does not arise out of what went before. "If 
[ have seen further than other men," said Isaac Newton, "it is because 
[ have stood on the shoulders of giants." 

And to learn that which goes before does not detract from the 
,eauty of a scientific discovery but, rather, adds to it; just as the 
�radual unfolding of a flower, as seen by time-lapse photography, is 
nore wonderful than the mature flower itself, caught in stasis. 

In fact, an overly exclusive concern with the growing edge can kill 
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the best of science, for it is not on the growing edge itself that growth "square" and yet survive easily. Unfortunately, they are usually pie
can best be seen. If the growing edge only is studied, science begins to tured as "right" and that can distort the picture of science past re
seem a revelation without a history of development. It is Athena, demption. 
emerging adult and armed from the forehead of Zeus, shouting her scientists share with all human beings the great and inalienable 
fearful war cry with her first breath. privilege of being, on occasion, wrong; of being egregiously wrong 

How dare one aspire to add to such a science? How can one ward sometimes, even monumentally wrong. What is worse still, they are 
off bitter disillusion when part of the structure turns out to be wrong. sometimes perversely and persistently wrong-headed. And since that is 
The perfection of the growing edge is meretricious while it exists, true, science itself can be wrong in this aspect or that. 
hideous when it cracks. With the possible wrongness of science firmly in mind, the student 

But add a dimension! of science today is protected against disaster. When an individual 
Take the halo of leaves and draw it together with branches that run theory collapses, it need not carry with it one's faith and hope and 

into limbs that join to form a trunk that firmly enters the ground. It is innocent joy. Once we learn to expect theories to collapse and to be  
the tree of science that you will then see, an  object that is a liv�g, supplanted by more useful generalizations, the coUapsing theory be
growing, and permanent thing; not a flutter of leaves at the growmg comes not the gray remnant of a broken today, but the herald of a 
edge, insubstantial, untouchable, and dying with the frosts of fall. new and brighter tomorrow. 

Science gains reality when it is viewed not as an abstraction, but as Third, by following the development of certain themes in science, 
the concrete sum of work of scientists, past and present, living and we can experience the joy and excitement of the grand battle against 
dead. Not a statement in science, not an  observation, not a thought the unknown. The wrong turnings, the false clues, the elusive truth 
exists in itself. Each was ground out of the harsh effort of some man, nearly captured half a century before its time, the uosung prophet, 
and unless you know the man and the world in which he worked; tht the false authority, the hidden assumption and cardboard syllogism, 
assumptions he accepted as truths; the concepts he considered un. all add to the suspense of the struggle and make what we slowly gain 
tenable; you cannot fully understand the statement or observation or through the study of the history of science worth more than what we 
thought. might quickly gain by a narrow glance at the growing edge alone. 

Consider some of what the history of science teaches. To be sure, the practical thought might arise: But would it not be 
First, since science originated as the product of men and not as a better if we learned the truth at once? Would we not save time and 

revelation, it may develop further as the continuing product of men effort? 
If a scientific law is not an eternal truth but merely a generalizatiot Yes, we might, but it is not as important to  save time and effort 
which, to some man or group of men, conveniently described a set ol as to enjoy the time and effort spent. Why else should a man rise be
observations, then to some other man or group of men, another gen fore dawn and go out in  the damp to fish, waiting happily all day for 
eralization might seem even more convenient. Once it is grasped tbal the occasional twitch of his line when, without getting out of bed, be 
scientific truth is limited and not absolute, scientific truth become might have telephoned the market and ordered all the fish he wanted? 
capable of further refinement. Until that is understood, scientific re It is for this reason, then, that I present this new collection of es

search has no meaning. says. It is my hope that, every once in a while, some vignette of 
Second, it reveals some important truths about the humanity o: Science Past may illuminate some comer of Science Present. 

scientists. Of all the stereotypes that have plagued men of science 
surely one above all has wrought harm. Scientists can be picturec 
as "evil,,, "mad," "cold," "self-centered," "absent-minded," evet 
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Part I 

MATHEMATICS 



1 T-FORMATION 

l have been accused of having a mad passion for large numbers and 
this is perfectly true. I wouldn't dream of denying it. However, may I 
point out that I am not the only one? 

For instance, in a book entitled Mathematics and the Imagina
tion (published in 1940) the authors, Edward Kasner and James 
Newman, introduced a number called the "googol," which is good and 
large and which was promptly taken up by writers of books and articles 
on popular mathematics. 

Personally, I think it is an awful name, but the young child of one 
of the authors invented it, and what could a proud father do? Thus, we 
are afflicted forever with that baby-talk number. 

The googol was defined as the number 1 followed by a hundred 
zeros, and so here (unless I have miscounted or the Noble Printer 
has goofed) is the googol, written out in full: 
10,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 
ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo, 
ooo,ooo,000,000. 

Now this is a pretty clumsy way of writing a googol, but it fits in  
with our system of numeration, which i s  based on the number 10. 
To write large numbers we simply multiply !O's, so that a hundred 
is ten times ten and is written 100; a thousand is ten times ten times 
ten and is written 1000 and so on. The number of zeros in the number 
i s  equal to the number of tens being multiplied, so that the googol, 
with a hundred zeros following the 1, i s  equal to a hundred tens mul
tiplied together. This can also be written as 10100• And since 100 is 
ten times ten or 102, the googol can even be written as 1010 2 

• 

Certainly, this form of exponential notation ( the little figure in the 
upper right of such a number is an "exponent") is very convenient, 
and any book on popular math will define a googol as 10100. How-
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ever, to anyone who loves large numbers, the googol is only the begin
ning and even this shortened version of writing large numbers isn't 
simple enough.1 

So I have made up my own system for writing large numbers and 
I am going to use this first chapter as a chance to explain it. (Freeze, 
everyone! No one's leaving till I'm through.) 

The trouble, it seems to me, is that we are using the number 1 O to  
build upon. That was good enough for cave men, I suppose, but we 
modems are terribly sophisticated and we know lots better numbers 
than that. 

For instance, the annual budget of the United States of America is 
in the neighborhood, now, of $100,000,000,000 (a hundred billion 
dollars). That means 1,000,ooo,ooo,ooo (one trillion) dimes. 

Why don't we, then, use the number, one trillion, as a base? To 
be sure, we can't visualize a trillion, but why should that stop us? 
We can't even visualize fifty-three. At least if someone were to show 
us a group of objects and tell us there are fifty-three of them altogether, 
we couldn't tell whether be were right or wrong without counting 
them. That makes a trillion no less unreal than fifty-three, for we have 
to count both numbers and both are equally countable. To be sure, it 
would take us much longer to count one trillion than to count fifty
three, but the principle is the same and I, as anyone will tell you, am 
a man of principle. 

The important thing is to associate a number with something 
physical that can be grasped and this we have done. The number 
1,ooo,ooo,000,000 is roughly equal to the number of dimes taken 
from your pocket and mine (mostly mine, I sometimes sullenly think) 
each year by kindly, jovial Uncle Sam to build missiles and otherwise 
run the government and the country. 

Then, once we have it firmly fixed in our mind as to what a tril
lion is, it takes very little effort of imagination to see what a trillion 
trillion is; a trillion trillion trillion, and so on. In order to keep from 

l The proper name �or the googol, before I forget, is "ten duotrigintillion,'' 
but I dare say, gloomily, that that will never replace "googol.'' 
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drowning in a stutter of trillions, let's use an abbreviated system that, 
as far as I know, is original with me.2 Let's call a trillion T-1; a trillion trillion T-2; a trillion trillion tril
lion T-3, and form large numbers in this fashion. (And there's the 
"T-formation" of the title! Surely you didn't expect football?) 

Shall we see how these numbers can be put to use? I have already 
said that T -1  is the number of dimes it takes to run the United States 
for one year. In that case, T-2 would represent the number of climes 
it would take to run the United States for a trillion years. Since this 
length of time is undoubtedly longer than the United States will en
dure (if I may be permitted this unpatriotic sentiment) and, in all 
likelihood, longer than the planet earth will endure, we see that we 
have run out of financial applications of the Asimovian (ahem!) 
T-numbers long before we have even reached T-2. 

Let's try something else. The mass of any object is proportional 
to its content of protons and neutrons which, together, may be re
ferred to as nucleons. Now T-1 nucleons make up a quantity of mass 
far too small to see in even the best optical microscope and even T-2 
nucleons make up only l i  grams of mass, or about /6 of an ounce. 

Now we've got room, it would seem, to move way up the T-scale. 
How massive, for instance, are T-3 nucleons? Since T-3 is a trillion 
times as large as T-2, T-3 nucJeons have a mass of 1.67 trillion 
grams, or a little under two million tons. Maybe there's not as much 
room as we thought. 

In fact, the T-numbers build up with breath-taking speed. T-4 
nucleons equals the mass of all the earth's ocean, and T-5 nucleons 
equals the mass of a thousand solar systems. If we insist on continu
ing upward, T-6 nucleons equal the mass of ten thousand galaxies 
the size of ours, and T-7 nucleons are far, far more massive than the 
entire known universe. 

Nucleons are not the only subatomic particJes there are, of course, 
but even if we throw in electrons, mesons, neutrinos, and all the other 

2 Actually, Archimedes set up a system of numbers based on the myriad, and 
spoke of a myriad myriad, a myriad myriad myriad and so on. But a myriad is 
only 10,000 and I'm using l,000,000,000,000, so I don't consider Archimedes 
to be affecting my originality. Besides, he only beat me out by less than twenty
two centuries. 
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paraphernalia of subatomic structure, we cannot reach T-7. Io short, 
there are far less than T-7 subatomic particles of all sorts in the visible 
universe. 

Clearly, the system of T-numbers is a powerful method of express
ing large numbers. How does it work for the googol? Well, consider 
the method of converting ordinary exponential numbers into T-num
bers and vice versa. T-1 is equal to a trillion, or 1012; T-2 is equal to 
a trillion trillion, or 1024, and so on. Well, then, you need only divide 
an exponent by 12 to have the numerical portion of a T-number; and 
you need only multiply the numerical portion of a T-number by 12 to 
get a ten-based exponent. 

If a googol is 10100, then divide 100 by 12, and you see at once that 
it can be expressed as T-8!, Notice that T-8! is larger than T-7 
and T-7 is in tum far larger than the number of subatomic particles in 
the known universe. It would take a billion trillion universes like our 
own to contain a googol of subatomic particles. 

What then is the good of a googol, if it is too large to be useful in 
counting even the smallest material objects spread through the largest 
known volume? 

I could answer: For its own sheer, abstract beauty-
But then you would all throw rocks at me. Instead, then, let roe 

say that there are more things to be counted in this universe than ma
terial objects. 

For instance, consider an ordinary deck of playing cards. In order 
to play, you shuffle the deck, the cards fall into a certain order, and 
you deal a game. Into how many different orders can the deck be 
shuffled? (Since it is impossible to have more essentially different 
game-situations than there are orders-of-cards in a shuffled deck, this 
is a question that should interest your friendly neighborhood poker
player.) 

The answer is easily found (if you know where to look, and I do) 
and comes out to 80,000,000,000,000,000,000,000,000,000,000, 
ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooq,ooo,ooo,ooo,ooo, or s x 1061• 

In T-numbers, this is something like T-5J. With an ordinary deck of 
cards, then, we can count arrangements and reach a value equal to 
that of the number of subatomic particles in a galaxy, more or less. 
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If, instead of 52 cards, we played with 70 cards (and this is not 
unreasonable; canasta, I understand, uses 108 cards), then the num. 
ber of different orders after shuffling, just tops the googol mark. 

So when it comes to analyzing card games (let alone chess, eco
nomics, and nuclear war), numbers like the googol and beyond are 
met with. 

Mathematicians, in fact, are interested in many varieties of num
bers (with and without practical applications ) in which vastnesses far, 
far beyond the googol are quickly reached. 

Consider Leonardo Fibonacci, for instance, the most accomplished 
mathematician of the Middle Ages. (He was born in Pisa, so be is 
often called Leonardo of Pisa.) About 1200, when Fibonacci was in 
bis prime, Pisa was a great commercial city, engaged in commerce 
with the Moors in North Africa. Leonardo had a chance to visit that 
region and profit from a Moorish education. 

r 

The Moslem world had by that time learned of a new system of 
numeration from the Hindus. Fibonacci picked it up and in a book, Liber Abaci, published in 1202, introduced these "Arabic numbers" 1 
and passed them on to a Europe still suffering under the barbarism 
of the Roman numerals. (Since Arabic numerals are only about a tril- 1 lion times as useful as Roman numerals, it took a mere couple of cen-

( turies to convince European merchants to make the change.) 
In this same book Fibonacci introduces the following problem: 

"How many rabbits can be produced from a single pair in a year if 
every month each pair begets a new pair, which from the second month \ 
on become productive, and no deaths occur?" (It is also assumed 
that each pair consists of a male and female and that rabbits have no I objection to incest.) 

) In the first month we begin with a pair of immature rabbits, and 
in the second month we still have one pair , but now they are mature. 
By the third month they have produced a new pair, so there are two 
pairs, one mature, one immature. By the fourth month the immature 
pair has become mature and the first pair bas produced another im
mature pair, so there are three pairs, two mature and one immature. 

You can go on if you wish, reasoning out how many pairs of rabbits 
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there will be each month, but I will give you the series of numbers 
right now and save you the trouble. It is: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 

At the end of the year, you see, there would be 144 pairs of rab
bits and that is the answer to Fibonacci's problem. 

The series of numbers evolved out of the problem is the "Fibonacci 
series" and the individual numbers of the series are the "Fibonacci 
numbers." If you look at the series, you will see that each number 
(from the third member on) is the sum of the two preceding n.umbers: 

This means we needn't stop the series at the twelfth F1bonacc1 
number (F12). We can construct Fia easily enough by adding F11 and 
p12• Since 89 and 144 are 233, that is F1a. Adding 144 and 233 gives 
us 377 or F14• We can continue with F15 equal to 610, F1e equal to 
987, and so on for as far as we care to go. Simple arithmetic, nothing 
more than addition, will give us all the Fibonacci numbers we want. 
·To be sure, the process gets tedious after a while as the Fibonacci 

numbers stretch into more and more digits and the chances of arith
metical error increase. One arithmetical error anywhere in the series, 
if uncorrected, throws off all the later members of the series. 

But why should anyone want to carry the Fibonacci sequence on and 
on and on into large numbers? Well, the series has its applications. It 
is connected with cumulative growth, as the rabbit problem shows, 
and, as a matter of fact, the distribution of leaves spirally about a 
lengthening stem, the scales distributed about a pine cone, the seeds 
distributed in the sunflower center, all have an arrangement related to 
the Fibonacci series. The series is also related to the "golden section," 
which is important to art and aesthetics as well as to mathematics. 

But beyond all that, there are always people who are fascinated 
by large numbers. (I can't explain the fascination but beli7

ve me it 
exists.) And if fascination falls short of working away mght after 
night with pen and ink, it is possible, these days, to program a com
puter to do the work, and get large numbers that it would be impracti
cal to try to work out in the old-fashioned way. 

The October 1962 issue of Recreational Mathematics Magazine3 

a This is a fascinating little periodi.cal which I heartily recommend to any nut 
congruent to myself. 
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lists the first 571 Fibonacci numbers as worked out on an IDM 7090 
computer. The fifty-fifth Fibonacci number passes the trillion mark, 
so that we can say that F55 is greater than T-1. 

From that point on, every interval of fifty-five or so Fibonacci 
numbers (the interval slowly lengthens) passes another T-number. 
Indeed, F451 is larger than a googol. It is equal to almost one and a 
half googols, in fact. 

Those multiplying rabbits, in other words, will quickly surpass 
any conceivable device to encourage their multiplication. They will 
outrun any food supply that can be dreamed up, any room that can 
be imagined. There might be only 144 at the end of a year, but there 
would be nearly 50,000 at the end of two years, 15,000,000 at the 
end of three years, and so on. In thirty years there would be more 
rabbits than there are subatomic particles in the known universe, 
and in forty years there would be more than a googol of rabbits. 

To be sure, human beings do not multiply as quickly as Fibonacci's 
rabbits, and old human beings do die. Nevertheless, the principle re
mains. What those rabbits can do in a few years, we can do in a few 
centuries or millenniums. Soon enough. Think of that when you tend 
to minimize the population explosion. 

For the fun of it, I would like to write F571, which is the largest 
number given in the article. (There will be larger numbers later, but 
I will not write them outf) Anyway, Fm is: 960412006189225538239 
4288336092486502610491741187706781682226478902901437830 
847886419258908418525433 1637646183008074629. This vast 
number is not quite equal to T-10.4 

For another example of large numbers, consider the primes. These 
are numbers like 7, or 641, or 5237, which can be divided evenly only 
by themselves and 1. They have no other factors. You might suppose 
that as one goes higher and higher in the scale of numbers, the primes 
gradually peter out because there would be more and more smaller 
numbers to serve as possible factors. 

This, however, does not happen, and even the ancient Greeks knew 
that. Euclid was able to prove quite simply that if all the primes are 

4 Since this was written, the editor of Recreational Mathematics wrote to say 
!hat he h�d new Fibonacci numbers, up to F1000• This F1000, with 209 digits, 
1s something over T-17. 

,.. 
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listed up to a "largest prime," it is always possible to construct a still 
larger number which is either prime itsel f or has a prime factor that is 
Jarger than the "largest prime." It follows then there is no such thing 
as a "largest prime" and the number of primes is infinite. 

Yet even if we can't work out a largest prime, there is an allied prob
lem. What is the largest prime we know? It would be pleasant to point 
to a large number and say: "This is a prime. There are an infinite 
number of larger primes, but we don't know which numbers they are. 
This is the largest number we know to be a prime." 

Once that is done, you see, then some venturesome amateur mathe
matician may find a still larger prime. 

Finding a really large prime is by no means easy. Earlier, for in
stance, I said that 5237 is prime. Suppose you doubted that, how 
would you check me? The only practical way is to try all the prime 
numbers smaller than the square root of 5237 and see which, if any, 
are factors. This is tedious but possible for 5237. It is simply impracti
cal for really large numbers-except for computers. 

Mathematicians have sought formulas, therefore, that would con
I struct primes. It might not give them every prime in the book, so that ' it could not be used to test a given number for prime-hood. However, 

I 

it could construct primes of any desired size, and after that the task of 
finding a record-high prime would become trivial and could be 
abandoned. 

{ 
However, such a formula has never been found. About 1600, a 

French friar named Marin Mersenne proposed a formula of partial 
value which would occasionally, but not always, produce a prime. This 
formula is 2" - 1, where p is itself a prime number. (You understand, 
I hope, that 2" represents a number formed by multiplying p two's to
gether, so that 28 is 2 X 2 x 2 x 2 X 2 x 2 x 2 x 2, or 256.) 

Mersenne maintained that the formula would produce primes when 
p was equal to 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, or 257. This can 
be tested for the lower numbers easily enough. For instance, if p equals 
3, then the formula becomes 23 - 1, or 7, which is indeed prime. If p 
equals 7, then 27 - 1 equals 127, which is prime. You can check the 

( 
equation for any of the other values of p you care to. 

• The numbers obtained by substituting prime numbers for p in 

l 

Meraenne's equation ruce called "Mersenne number.," aod il the num-
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ber happens to be prime it is a "Mersenne prime." They are symboJ. f 
ized by the capital letter M and the value of p. Thus M3 equals 7; 1{1 
equals 127, and so on. 

I don't know what system Mersenne used to decide what primes 
would yield Mersenne primes in his equation, but whatever it was, it 
was wrong. The Mersenne numbers M2, M3, M:;, M7, M18, Mn, M19, 

Mai, and M121 are indeed primes, so that Mersenne had put his finger 
on no less than nine Mersenne primes. However, M67 and M2(;1, which 
Mersenne said were primes, proved on painstaking examination to be 
no primes at all. On the other band, Mu1, M80, and M107, which Mer. 
senne did not list as primes, are primes, and this makes a total of t 
twelve Mersenne primes. 

In recent years, thanks to computer work, eight more Mersenne 
primes have been located (according to the April 1962 issue of Rec. 
reational Mathematics) . These are M1>21, M607, M1270, M2211a, 

M2281, Ma211, M425a, and MH23· What's more, since that issue l 
three even larger Mersenne primes have been discovered by Donald I 
B. Gillies of the University of Illinois. These are M0689, M004i, and 
Mu:na, 

The smallest of these newly discovered Mersenne primes, M521, is 
obtained by working out the formula 2521 - 1. You take 521 two's 

I multiply them together, and subtract one. The result is far, far highe; 
than a googol. In fact, i t  is higher than T-13. 

I Not to stretch out the suspense, the largest known Mersenne prime, 
M1121s, and, I believe, the largest prime known at present, has 3375 
digits and is therefore just about T -281-l. The googol, in comparison 
to that, is a trifle so small that there is no reasonable way to describe 
its smallness. \ 

I 

The Greeks played many games with numbers, and one of them 
was to add up the factors of particular integers. For instance, the fac
tors of 12 (not counting the number itself) are 1, 2, 3, 4, and 6. Each ' 
of these numbers, but no others, will go evenly into 12. The sum of 1 

these factors is 16, which is greater than the number 12 itself, so that 
12 is an "abundant number." 

The factors of 10, on the other hand, are 1, 2, and 5, which yield a 

sum of 8. This is less than the number itself, so that l O is  a "deficient 
number." (All primes are obviously badly deficient.) 

But consider 6. Its factors are 1, 2, and 3, and this adds up to 6. 
When the factors add up to the number itself, that number is a "per
fect number." 

Nothing has ever come of the perfect numbers in two thousand 
years, but the Greeks were fascinated by them, and those of ·them who 
were mystically inclined revered them. For instance, it  could be ar
gued ( once Greek culture had penetrated Judeo..Christianity) that 
God had created the world in six days because six is a perfect number. 
(Its factors are the first three numbers, and not only is their sum 
six, but their product is also six, and God couldn't be expected to re
sist all that.) 

I don't know whether the mystics also made a point of the fact that 
the lunar month is just a trifle over twenty-eight days long, since 28, 
with factors of 1, 2, 4, 7, and 14 (which add up to 28), is another 
perfect number. Alas, the days of the lunar month are actually 29! 
and the mystics may have been puzzled over this slipshod arrangement 
on the part of the Creator. 

But how many of these wonderful perfect numbers are there? Con
sidering that by the time you reach 28, you have run into two of them, 
you might think there were many. However, they are rare indeed; far 
rarer than almost any other we11-known kind of number. The third 
perfect number is 496, and the fourth is 8128, and throughout ancient 
and medieval times, those were the only perfect numbers known. 

The fifth pedect number was not discovered until about 1460 ( the 
name of the discoverer is not known) and it is 33,550,336. In modem 
times, thanks to the help of the computer, more and more perfect 
numbers have been discovered and the total now is twenty. The 
twentieth and largest of these is a number with 2663 digits, and this 
is aJmost equal to T -222. 

But in a way, I have been unfair to Kasner and Newman. I have 
said they invented the googol and I then went on to show that it was 
easy to deal with numbers far higher than the googol. However, I 
should also add they invented another number, far, far larger than the 
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googol. This second number is the "googolplex," which is defined as 
equal to 1 Ogoogoi. The exponent, then, is a 1 followed by a hundred 
zeros, and I could write that, but I won't. Instead, I'll say that a goo. 
golplex can be written as: 

10 10100 
or even 1 010102 

The googol itself can be written out easily. I did it at the beginning 
of the article and it only took up a few lines. Even the largest number 
previously mentioned in this article can be written out with ease. The 
largest Mersenne prime, if written out in full, would take up less than 
two pages of this book. 

The googolplex, however, cannot be written out-literally cannot. 
It is a 1 followed by a googol zeros, and this book will not hold as 
many as a googol zeros no matter how small, within reason, those 
zeros are printed. In fact, you could not write the number on the en
tire surface of the earth, if you made each zero no larger than an atom. 
In fact, if you represented each zero by a nucleon, there wouldn't be 
enough nucleons in the entire known universe or in a trillion like it 
to supply you with sufficient zeros. 

You can see then that the googolplex is incomparably larger than 
anything I have yet dealt with. And yet I can represent it in T-numbers 
without much trouble. 

Consider! The T-numbers go up through the digits, T-1, T-2, T-3, 
and so on, and eventually reach T-1,000,000,000,000. (This is a num
ber equivalent to saying "a trillion trillion trillion trillion . . ." and 
continuing until you have repeated the word trillion a trillion times. 
It will take you umpty-ump lifetimes to do it, but the principle re
mains.) Since we have decided to let a trillion be written as T -1 ,  tbe 
number T-1,000,000,000,000 can be written T-(T-1 ) .  

r 

Remember that we must multiply the numerical part of the T -num
ber by 1 2  to get a ten-based exponent. Therefore T -(T -l )  is equal 

} to 1012,ooo,ooo,ooo,ooo, which is more than 10 1013 • 
• 1025 I In the same way, we can calculate that T-(T-2) 1s more than 10 , 

and if we continue we finally find that T-(T-8) is nearly a googolplex. 
I As for T-(T-9) ,  that is far larger than a googolplex; in fact, it is far l larger than a googol googolplexes. 

I 
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One more item and I am through. 
In a book called The Lore of Large Numbers, by Philip J. Davis, 

a number called "Skewes' number" is given. This number was obtained 
by s. Skewes, a South African mathematician who stumbled upon it 
while working out a complex theorem on prime numbers. The number 
is described as "reputed to be the largest number that has occurred 
in a mathematical proof." It is given as: 

01034 
101 

10102 
' Since the googolplex is only 10 , Skewes number is incom-

parably the greater of the two. 
And how can Skewes number be put into T-forroation? 
Well, at this point, even I rebel. I'm not going to do it. 
I will leave it to you, 0 Gentle Reader, and I will tell you this much 

as a hint. It seems to me to be obviously greater than T-[T-(T-1 )  ]. 
From there on in, the track is yours and the road to madness is 

unobstructed. Full speed abead, all of you. 
As for me, I shall hang back and stay sane; or, at least, as sane as 

I ever am, which isn't much. 
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l have always been taken aback a little at my inability to solve mathe
matical conundrums since (in my secret heart of hearts) I feel this 
to be out of character for me. To be sure, numerous dear friends have 
offered the explanation that, deep within me, there rests an artfully 
concealed vein of stupidity, but this theory has somehow never com
mended itself to me. 

Unfortunately, I have no alternate explanation to suggest. 
You can well imagine, then, that when I come across a puzzle to 

which I can find the answer, my heart fairly sings. This happened to 
me once when I was quite young and I have never forgotten it. Let me 
explain i t  to you in some detail because it will get me somewhere 1 
want to go. 

The problem, in essence, is this. You are offered any number of 
unit weights: one-gram, two-gram, three-gram, four-gram, and so on. 
Out of these you may choose a sufficient number so that by adding 
them together in the proper manner, you may be able to weigh out 
any integral number of grams from one to a thousand. Well, then, how 
can you choose the weights in such a way as to end with the fewest 
possible number that will tum the trick? 

I reasoned this way-
I must start with a 1-gram weight, because only by using it can I 

weigh out one gram. Now if  I take a second 1-gram weight, I can 
weigh out two grams by using both 1-gram weights. However, I can 
economize by taking a 2-gram weight instead of a second 1-gram 
weight, for then not only can I weigh out two grams with it, but I can 
also weigh out three grams, by using the 2-gram plus the 1-gram. 

What's next? A 3-gram weight perhaps? That would be wasteful, 
because three grams can already be weighed out by the 2-gram plus 
the I-gram. So I went up a step and chose a 4-gram weight. That gave 

r 
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me not only the possibility of weighing four grams, but also five grams 
(4-gram plus 1-gram), six grams (4-gram plus 2-gram), and seven 
grams ( 4-gram plus 2-gram plus I-gram). 

By then I was beginning to see a pattern. If seven grams was the 
most J could now reach, I would take an 8-gram weight as my next 
choice and that would carry me through each integral weight to fifteen 
grams (8-gram plus 4-gram plus 2 -gram plus I-gram). The next 
weight would be a 16-gram one, and it  was clear to me that in  order 
to weigh out any number of grams one had to take a series of weights 
(beginning with the 1-gram) each one of which was double the next 
smaller. 

That meant that I could weigh out any number of grams from one 
to a thousand by means of ten and only ten weights: a I -gram, 2-gram, 
4-gram, 8-gram, 16-gram, 32-gram, 64-gram, 128-gram, 256-gram, 
and 512-gram. In fact, these weights would carry me up to 1023 grams. 

Now we can forget weights and work with numbers only. Using the 
numbers 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512, and those only, 
you can express any other number up to and including 1023 by add
ing two or more of them. For instance, the number 100 can be ex
pressed as 64 plus 32 plus 4. The number 729 can be expressed as 
512 plus 128 plus 64 plus 16 plus 8 plus 1. And, of course, 1023 
can be expressed as the sum of all ten numbers. 

If you add to this list of numbers 1024, then you can continue 
forming numbers up to 2047; and if you next add 2048, you can con
tinue forming numbers up to 4095; and if you next-

Well, if you start with 1 and continue doubling indefinitely, you 
will have a series of numbers which, by appropriate addition, can be 
used to express any finite number at  all. 

So far, so good; but our interesting series of numbers-!, 2, 4, 8, 
16, 32, 64, . . .  -seems a little miscellaneous. Surely there must be 
a neater way of expressing it. And there is. 

Let's forget 1 for a minute and tackle 2. If we do that, we can be
gin with the momentous statement that 2 is 2. (Any argument?) Go
ing to the next number, we can say that 4 is 2 times 2. Then 8 is 2 
times 2 times 2; 16 is 2 times 2 times 2 times 2; 32 is . . .  But you 
get the idea. 



16 ADDING A DIMENSION 

So we can set up the series ( continuing to ignore 1 )  as 2, 2 times 2, 
2 times 2 times 2, 2 times 2 times 2 times 2, and so on. There is a 
kind of pleasing unifonnity and regularity about this but all those 2 
times 2 times 2's create spots before. the eyes. Therefore, instead of 
writing out all the 2's, it would be convenient to note how many 2's 
are being multiplied together by using the exponential method de
scribed in the previous chapter. 

Thus, if 4 is equal to 2 times 2, we will call it 22 (two to the second 
power, or two squared) . Again if 8 is 2 times 2 times 2, we can take 
note of the three 2's multiplied together by writing 8 as 2a (two to the 
third power, or two cubed). Following that line of attack we would 
have 16 as 24 (two to the fourth power), 32 as 25 (two to the fifth 
power), and so on. As for 2 itself, only one 2 is involved and we can 
call it 21 ( two to the first power ). 

One more thing. We can decide to let 2° (t�o to the zero power) 
be equal to 1. (In fact, it is convenient to let any number to the zero 
power be equal to l. Thus, 3° equals 1, and so does 170 and 
1,965,211°. For the moment, however, we are interested only in 2° 
and we are letting that equal l . )  

Well, then, instead of having the series 1, 2, 4 ,  8, 16, 32, 64, . . •  , 
we can have 20, 21, 22, 23, 24, 25, 26 • • • •  It's the same series as far 
as the value of the individual members are concerned, but the second 
way of writing it is prettier somehow and, as we shall see, more useful. 

We can express any number in terms of these powers of 2. I said 
earlier that 100 could be expressed as 64 plus 32 plus 4. This means 
it can be expressed as 28 plus 25 plus 22• In the same way, if 729 is 
equal to 512 plus 128 plus 64 plus 16 plus 8 plus 1, then it can also 
be expressed as 2° plus 27 plus 26 plus 24 plus 23 plus 20. And of course, 
I 023 is 29 plus 28 plus 27 plus 26 plus 25 plus 24 plus 23 plus 22 plus 
21 plus 2°. 

But let's be systematic about this. We are using ten different powers 
of 2 to express any number below 1024,. so let's mention all of them 
as a matter of course. If we don't want to use a certain power in the 
addition that is required to express a particular number, then we need 
merely multiply it by 0. If we want to use it, we multiply it by 1. Those 
are the only alternatives; we either use a certain power, or we don't 
use it; we either multiply it by 1 or by 0. 
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Using a dot to signify multiplication, we can say that 1023 is: 1•29 

plus 1 ·28 plus 1 •27 plus 1 •26 plus 1 ·25 plus 1 ·24 plus 1,2a plus 1 •22 

plus 1•21 plus 1·2°. All the powers are used. In expressing 729, how
ever, we would have: 1 ·2° plus 0·28 plus l ·27 plus 1 ·26 plus 0·25 plus 
1 ·24 plus I •28 plus 0•22 plus 0•21 plus 1 •2°. And again, i'n expressing 
100, we can write: 0•29 plus 0·28 plus 0·27 plus 1 •26 plus 1·25 plus 
0•24 plus 0·23 plus l •22 plus 0-21 plus 0·2°. 

But why bother, you might ask, to include those powers you don't 
use? You write them out and then wipe them out by multiplying them 
by zero. The point is, however, that if you systematically write them 
all out, without exception, you can take it for granted that they are 
there and omit them altogether, keeping only the 1 's and the O's. 

Thus, we can write 1023 as 1111111111; we can write 729 as 
1011011001; and we can write 100 as 0001100100. 

In fact, we can be systematic about this and, remembering the or
der of the powers, we can use the ten powers to express all the num
bers up to 1023 this way: 

0000000001 equals 1 
0000000010 equals 2 
0000000011 equals 3 
0000000100 equals 4 
0000000101 equals 5 

0000000110 equals 6 
0000000111 equals 7, all the way up to 

1111111111 equals 1023. 
Of course, we don't have to confine ourselves to ten powers of 2, 

we can have eleven powers, or fourteen, or fifty-three, or an infinite 
number. However it would get wearisome writing down an infinite 
number of 1 's and O's just to indicate whether each one of an infinite 
number of powers of 2 is used or is not used. So it is conventional to 
leave out all the high powers of 2 that are not used for a particular 
number and just begin with the highest power that is used and con
tinue from there. In other words, leave out the unbroken line of zeros 
at the left. In that case, the numbers can be represented as: 
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1 equals 1 
10 equals 2 
11 equals 3 

100 equals 4 
101 equals 5 

110 equals 6 
111 equals 7, and so on. 

Any number at all can be expressed by some combination of 1 's 
and O's in this fashion, and a few primitive tribes have actually used a 
number system like this. The first civilized mathematician to work 

r 

I 
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it out systematically, however, was Gottfried Wilhelm Leibniz, about 
three centuries ago. He was amazed and gratified because be reasoned 
that 1, representing unity, was clearly a symbol for God, while O rep- I 
resented the nothingness which, aside from God, existed in the begin- I ning. Therefore, if all numbers can be represented merely by the use of 
1 and 0, surely this is the same as saying that God created the universe I 

out of nothing. I 
Despite this awesome symbolism, this business of 1 's and O's made I no impression whatsoever on practical men of affairs. It might be 

r a fascinating mathematical curiosity, but no accountant is going to 
work with 1011011001 instead of 729. 

I But then it suddenly turned out that this two-based system of 
numbers (also called the "binary system," from the Latin word binarius, meaning "two at a time") is ideal for electronic computers. 

After all, the two different digits, 1 and 0, can be matched in the 
computer by the two different positions of a particular switch: "on" 
and "off." Let "on" represent 1 and "off" represent 0. Then, if the 
machine contained ten switches, the number 1023 could be indicated 
as on-on-on-on-on-on-on-on-on-on; the number 729 could be on
off-on-on-off-on-on-off-off-on; and the number 100 could be off-off
off-on-on-off -off-on-off-otf. 

By adding more switches we can express any number we want sim
ply by this on-off combination. It may seem complicated to us, but 
it is simplicity itself to the computer. In fact, no other conceivable 
system could be as simple-for the computer. 

However, since we are only human beings, the question is, can we r 

l_ 
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handle the two-based system? For instance, can we convert back and 
forth between two-based numbers and ordinary numbers? If we are 
shown 110001 in the two-based system, what does it mean in ordi
nary numbers? 

Actually, this is not difficult. The two-based system uses powers of 
2, starting at the extreme right with 2° and moving up a power at a 
time as we move leftward. So we can write 110001 with little num
bers underneath to represent the exponents thus I 10001. Only the ' 5 4 3 2 1 0  
exponents under the 1 's are used, so 110001 represents 25 plus 2* plus 
2° or 32 plus 16 plus 1. In other words, 110001 in the two-based sys
tem is 49 in ordinary numbers. 

Working the other way is even simpler. You can, if you wish, try to 
fit the powers of 2 into an ordinary number by hit and miss, but you 
don't have to. There is a routine you can use which always works and 
I will describe it (though, if you will forgive me, I will not bother to 
explain why i t  works). 

Suppose you wish to convert an ordinary number into the two
based system. You divide it by 2 and set the remainder to one side. 
(If the number is even, the remainder will be zero; if odd, it will be 1.) 
Working only with the whole-number portion of the quotient, you 
divide that by 2 again, and again set the remainder to one side and 
work only with the whole-number portion of the new quotient. When 
the whole-number portion of the quotient is reduced to O as a result of 
the repeated divisions by 2, you stop. The remainders, read backward, 
give the original number in the two-based system. 

If this sounds complicated, it can be made simple enough by use 
of an example. Let's try 131 : 

131 divided by 2 is 65 with a remainder of 1 
65 divided by 2 is 32 with a remainder of 1 
32 divided by 2 is 16 with a remainder of 0 
16 divided by 2 is 8 with a remainder of O 
8 divided by 2 is 4 with a remainder of 0 
4 divided by 2 i s  2 with a remainder of O 
2 divided by 2 is I with a remainder of 0 
I divided by 2 is O with a remainder of 1 

In the two-based system, then, 131 is written 10000011. 



20 ADDING A DIMENSION With a little practice anyone who knows fourth-grade arithmetic can switch back and forth between ordinary numbers and two-based numbers. 
The two-based system has the added value that it makes the ordinary operations of arithmetic childishly simple. In using ordinary numbers, we spend several years in the early grades memorizing the fact that 9 plus 5 is 14, that 8 times 3 is 24, and so on. In two-based numbers, however, the only digits involved are 1 and 0, so there are only four possible sums of digits taken two at a time: 0 plus 0, 1 plus 0, 0 plus 1, and 1 plus 1. The first three are just what one would expect in ordinary arithmetic: 0 plus O equals 0 1 plus O equals 1 0 plus 1 equals 1 The fourth sum involves a slight difference. In ordinary arithmetic 1 plus 1 is 2, but there is no digit like 2 in the two-based system. There 2 is represented as IO. Therefore: 1 plus 1 equals 10 (put down O and carry 1 )  Imagine, then, how simple addition is in the two-based system. If you want to add 1001101 and 11001, the sum would look like this: 1001101 11001 1100110 You can follow this easily from the addition table I've just given you, and by converting to ordinary numbers (as you ought also to be able to do) you will see that the addition is equivalent to 77 plus 25 equals 102. It may seem to you that following the 1 's and O's is difficult indeed and that the ease of memorizing the rules of addition is more than made up for by the ease of losing track of the whole thing. This is true enough-for a human. In a computer, however, on-off switches are easily designed in such combinations as to make it possible for the on's and off's to follow the rules of addition in the two-based system. Computers don't get confused and surges of electrons bouncing this way and that add numbers by two-based addition in microseconds. 

ONE, TEN, BUCKLE MY SHOE 21 Of course (to get back to humans) if you want to add more than two numbers, you can always, at worst, break them up into groups of two. If you want to add 110, 101, 100, and 111, you can first add 110 and 101 to get 1011, then add 100 and 111 to get 1011, and finally add 1011 and 1011 to get 10110. (The last addition involves adding 1 plus 1 plus 1 as a result of carrying a 1 into a column which is already 1 plus 1. Well, 1 plus 1 is 10 and 10 plus 1 is 11, so 1 plus 1 plus 1 is 11, put down 1 and carry 1.) Multiplication in the two-based system is even simpler. Again, there are only four possible combinations: 0 times 0, 0 times 1, 1 times 0, and 1 times 1. Here, each multiplication in the two-based system is exactly as it would be in ordinary numbers. In other words: 0 times O is 0 
0 times 1 is 0 

1 times O is 0 1 times 1 is 1 To multiply 101 by 1101, we would have 101 1101 101 000 101 101 1000001 In ordinary numbers, this is equivalent to saying 5 times 13 is 65. Again, the computer can be designed to manipulate the on's and off's of its switches to match the requirements of the two-based multiplication table-and to do it with blinding speed. 
It is possible to have a number system based on powers of 3, also (a three-based or "ternary" system). The series of numbers 3°, 31, 32, 3a, 34, and so on (that is, 1, 3, 9, 27, 81, and so on) can be used to express any finite number provided you are allowed to use up to two of each member of the series. Thus 17 is 9 plus 3 plus 3 plus 1 plus 1, and 72 is 27 plus 27 plus 9 plus 9. 



22 ADDING A DIMENSION If you wanted to write the series of integers according to the threebased system, they would be: 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, and soon. You could have a four-based number system based on powers of 4, with each power used up to three times; a five-based number sys.. tern based on power of 5 with each power used up to four times; and so on. To convert an ordinary number into any one of these other systems, you need only use a device similar to the one I have demonstrated for conversion into the two-based system. Where you repeatedly divide by 2 for the two-based system, you would repeatedly divide by 3 for the three-based system, by 4 for the four-based system, and so on. Thus, I have already converted the ordinary number 131 into 11000001 by dividing 131 repeatedly by 2 and using the remainders. Suppose we divide 131 repeatedly by 3 instead and make use of the remainders: 
131 divided by 3 is 43 with a remainder of 2 43 divided by 3 is 14 with a remainder of 1 14 divided by 3 is 4 with a remainder of 2 4 divided by 3 is 1 with a remainder of 1 1 divided by 3 is O with a remainder of 1 

The number 131 in the three-based system, then, is made up of the remainders, working from the bottom up, and is 11212. In similar fashion we can work out what 131 is in the four-based system, the five-based system, and so on. Here is a little table to give you the values of 131 up through the nine-based system: two-based system three-based system four-based system five-based system six-based system seven-based system eight-based system nine-based system 

1 1000001 
11212 
2003 
1011 
335 
245 
203 
155 You can check these by working through the powers. In the nine-

ONE, TEN, BUCKLE MY SHOE 23 based system, 155 is 1 ·92 plus 5·91 plus 5·9°. Since 92 is 81, 91 is 9, and 9° is 1, we have 81 plus 45 plus 5, or 131. In the six-based system, 335 is 3·62 plus 3·61 plus 5·6°. Since 62 is 36, 61 is 6, and 6° is 1, we have 108 plus 18 plus 5, or 131. In the four-based system, 2003 is 2•43 plus 0•42 plus 0•41 plus 3•4°, and since 48 is 64, 42 is 16, 41 is 4, and 4° is l ,  we have 128 plus O plus O plus 3, or 131. The others you can work out for yourself if you choose. 
But is there any point to stopping at a nine-based system? Can there be a ten-based system? Well, suppose we write 131 in the ten-based system by dividing it through by tens: 

131 divided by 10 is 13 with a remainder of 1 13 divided by 10 is 1 with a remainder of 3 1 divided by 10 is O with a remainder of 1 
And therefore 131 in the ten-based system is 131. In other words, our ordinary numbers are simply the ten-based system, working on a series of powers of 10: 10°, 101, 102, 103, and so on. The number 131 is equal to 1·102 plus 3·101 plus 1·10°. Since 102 is 100, 101 is 10, and 10° is 1, this means we have 100 plus 30 plus 1, or 131. There is nothing basic or fundamental about ordinary numbers then. They are based on the powers of 10 because we have ten fingers and counted on our fingers to begin with, but the powers of any other number will fulfill all the mathematical requirements. Thus we can go on to an eleven-based system and a twelve-based system. Here, one difficulty arises. The number of digits ( counting zero) that is required for any system is equal to the number used as base. 
In the two-based system, we need two different digits, 0 and 1. 

In the three-based system, we need three different digits, 0, 1, and 2. In the familiar ten-based system, we need, of course, ten different digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. It follows, then, that in the eleven-based system we will need eleven different digits and in the twelve-based system twelve different digits. Let's write @ for the eleventh digit and # for the twelfth. In ordinary ten-based numbers, @ is 10 and # is 11 .  
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Thus, 131 in the eleven-based system is: 
131 divided by 1 1  is 1 1  with a remainder of 1 0  (@) 

1 1  divided by 11  is 1 with a remainder of 0 
1 divided by 1 1  is O with a remainder of 1 

so that 131 in the eleven -based system is 10@. 
And in the twelve-based system: 

131 divided by 12  is 10 with a remainder of 1 1  (#) 
10 divided by 12 is O with a remainder of 10 (@) 

so that 13 1  in the twelve-based system is @#. 
And we can go up and up and up and have a 4583-based system if 

we wanted (but with 45 83 different digits, counting the zero). 

Now all the number systems may be valid, but which system is 
most convenient? As one goes to higher and higher bases, numbers be
come shorter and shorter. Though 131  is 1 1000001 in the two-based 
system, it is 131 in the ten-based system and @# in the twelve-based 
system. It moves from eight digits to three digits to two digits. In fact, 
in a 131-based system (and higher) it would be down to a single 
digit. In a way, this represents increasing convenience. Who needs 
long numbers? 

However, the number of different digits used in constructing num
bers goes up with the base and this is an increasing inconvenience. 
Somewhere there is an intermediate base in which the number of dif
ferent digits isn't too high and the number of digits in the usual num
bers we use isn't too great. 

Naturally it would seem to us that the ten-based system is just right. 
Ten different digits to memorize doesn't seem too high a price to pay 
for using only four digit combinations to make up any number under 
ten thousand. 

Yet the twelve-based system has been touted now and then. Four 
digit combinations in the twelve-based system will carry one up to a 
little over twenty thousand, but that seems scarcely sufficient recom
pense for the task of learning to manipulate two extra digits. (School 
children would have to learn such operations as @ plus 5 is 13 and 
# times 4 is 38.) 

But here another point arises. When you deal with any number 
system, you tend to talk in round numbers: 10, 100, 1000, and so on. 
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Well, 1 0  in the ten-based system is evenly divisible by 2 and 5 and that 
is all. On the other hand, 10 in the twelve-based system (which is 
equivalent to 12 in the ten-based system) is even1y divisible by 2, 3, 
4, and 6. This means that a twelve-based system would be more 
adaptable to commercial transactions and, indeed, the twelve-based 
system is used every time things are sold in dozens ( 12 's) and grosses 
(144's) for 12 is 10 and 144 is 100 in the twelve-based system. 

In this age of computers, however, the attraction is toward a two
based system. And while a two-based system is an uncomfortable 
and unaesthetic melange of l's and O's, there is a compromise pos
sible. 

A two-based system is closely related to an eight-based system, for 
1000 on the two-based system is equal to 10 on the eight-based sys
tem, or, if you'd rather, 23 equals 81• We could therefore set up a 
correspondence as follows: 

Two-Based System 

000 

001 

010 
Oll 

100 

101 

1 10 

111 

Eight-Based System 

0 
l 

2 
3 
4 
5 
6 
7 

This would take care of all the digits (including zero) in the eigbt
based system and all the three-digit combinations (including 000) in 
the two-based system. 

Therefore any two-based number could be broken up into groups 
of three digits ( with zeros added to the left if necessary) and con
verted into an eight-based number by using the table I've just given 
you. Thus, the two-based number 1 1 1001000010100110 could be 
broken up as l l l,001,000,010,100,110 and written as the eight
based number, 710246. On the other hand, the eight -based number 
33574 can be written as the two-based number 011011101 1 1 1 100 
almost as fast as one can write, once one learns the table. 

In other words, if we switched from a ten-based system to an eight
based system, there would be a much greater understanding between 



26 ADDING A DIMENSION ourselves and our machines and who knows how much faster science would progress. Of course, such a switch isn't practical, but just think- Suppose that, originally, primitive man bad learned to count on his eight fingers only and had left out those two awkward and troublesome thumbs. 
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3 VARIETIES OF THE INFINITE 

There are a number of words that publishers like to get into the titles of science-fiction books as an instant advertisement to possible fans casually glancing over a display that these books are indeed science fiction. Two such words are, of course space and time. Others are 
Earth (capitalized), Mars, Venus, Alpha Centauri, tomorrow, stars, 
sun, asteroids, and so on. And one-to get to the nub of this chapteris infinity. One of the best s.f. titles ever invented, in my opinion, is John Campbell's Invaders from the Infinite. The word invaders is redolent of aggression, action, and suspense, while infi.nite brings up the vastness and terror of outer space. Donald Day's indispensable Index to the Science Fiction Maga
zines lists "Infinite Brain," "Infinite Enemy," "Infinite Eye," "Infinite Invasion," "Infinite Moment," "Infinite Vision," and "Infinity Zero" in its title index, and I am sure there are many other titles containing the word. Yet with all this exposure, with all this familiar use, do we know what infinite and infinity mean? Perhaps not all of us do. We might begin, I imagine, by supposing that infinity was a large number; a very large number; in fact, the largest number that could exist. If so, that would at once be wrong, for infinity is not a large number or any kind of number at all; at least of the sort we think of when we say "number." It certainly isn't the largest number that could exist, for there isn't any such thing. 

Let's sneak up on infinity by supposing first that you wanted to write out instructions to a bright youngster, telling him how to go about counting the 538 people who had paid to attend a lecture. There would be one particular door through which all the audience 
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would leave in single file. The youngster need merely apply to each 
person one of the various integers in the proper order: 1, 2, 3, and 
so on. 

The phrase "and so on" implies continuing to count until all the 
people have left, and the last person who leave.s has received the in
teger 538. If you want to make the order explicit, you might tell the 
boy to count in the following fashion and then painstakingly list all 
the integers from 1 to 538. This would undoubtedly be unbearably 
tedious, but the boy you are dealing with is bright and knows the 
meaning of a gap containing a dotted line, so you write: "Count thus: 
1, 2, 3, . . .  , 536, 537, 538." The boy will then understand (or 
should understand) that the dotted line indicates a gap to be filled 
by all the integers from 4 to 535 inclusive, in order and without 
omission. 

Suppose you didn't know what the number of the audience was. It 
might be 538 or 427 or 651. You could instruct the boy to count 
until an integer had been given to the last man, whatever the man, 
whatever the integer. To express that symbolically, you could write 
thus: "Count: 1, 2, 3, . . .  , n - 2, n - 1, n." The bright boy would 
understand that n routinely represents some unknown but definite 
integer. 

Now suppose the next task you set your bright youngster was to 
count the number of men entering a door, filing through a room, out 
a second door, around the building, and through the first door again, 
the men fanning a continuous closed system. 

Imagine both marching men and counting boy to be completely 
tireless and willing to spend an eternity in their activities. Obviously 
the task would be endJess. There would be no last man at all, ever, 
and there is no last integer at all, ever. (Any integer, however large, 
even if it consisted of a series of digits stretching in microscopic size 
from here to the farthest star, can easily be increased by 1.) 

How do we write instructions for the precise counting involved 
in such a task. We can write: "Count thus: 1, 2, 3, and so on end
lessly." 

The phrase "and so on endlessly" can be written in shorthand, 
thus, oo, 

The statement "1, 2, 3, • • . , oo" should be read "one, two, three, 
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and so on endJessly" or "one, two, three, and so on without limit," 
but it is usually read, "one, two, three, and so on to infinity." Even 
J)lathematicians introduce infinity here, and George Gamow, for in
stance, has written a most entertaining book entitled just that: One, 
Two, Three . . .  Infinity. 

It might seem that using the word infinity is all right, since it comes 
from a Latin word meaning "endless," but nevertheless it would be 
better if the Anglo-Saxon were used in this case. The phrase "and so 
on endlessly" can't be mistaken. Its meaning is clear. The phrase "and 
so on to infinity," on the other hand, inevitably gives rise to the notion 
tllat infinity is some definite, though very huge, integer and that once 
we reach it we can stop. 

So let's be blunt. Infinity is not an integer or any number of a kind 
with which we are familiar. It is a quality; a quality of endlessness. 
And any set of objects (numbers or otherwise) that is endJess can 
be spoken of as an "infinite series" or an "infinite set." The list of 
integers from 1 on upward is an example of an "in.finite set." 

Even though oo is not a number, we can still put it through certain 
arithmetical operations. We can do that much for any symbol. We 
can do it for letters in algebra and write a + b = c. Or we can do it for 
chemical formulas and write: CH, + 302 =CO2 + 2H20. Or we 
can do it for abstractions, such as: Man + Woman = Trouble. 

The only thing we must remember is that in putting symbols that 
are not integers through arithmetical paces, we ought not to be sur
prised if they don't follow the ordinary rules of arithmetic which, 
after all, were originally worked out to apply specifically to integers. 

For instance, 3 - 2 = 1, 17 - 2 = 15, 4875 - 2 = 4873. In general, 
any integer, once 2 is subtracted, becomes a different integer. Any
thing elc;e is unthinkable. 

But now suppose we subtract 2 from the unending series of in
tegers. For convenience sake, we can omit the first two integers, 1 
and 2, and start the series: 3, 4, 5, and so on endJessly. You see, don't 
you, that you can be just as endless starting the integers at 3 as at 1, 
so that you can write: 3, 4, 5, . . .  , oo. 

In other words, when two items are subtracted from an infinite 
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set, what remains is still an infinite set. In symbols, we can write this; 
oo - 2 = oo .  This looks odd because we are used to integers, where 
subtracting 2 makes a difference. But infinity is not an integer and 
works by different rules. (This can't be repeated often enough.) 

For that matter, if you lop o.fI the first 3 integers o,: the first 25 
or the first 1000000000000, what is left of the series of integers 
is still endless. You can always start, say, with 1000000000001, 
1000000000002, and go on endlessly. So oo -n = oo,  where n repre
sents any integer, however great. 

In fact, we can be more startling than that. Suppose we consider 
only the even integers. We would have a series that would go: 2, 4, 6, 
and so on endlessly. It would be an infinite series and could therefore 
be written: 2, 4, 6, . . .  , oo. In the same way, the odd integers 
would form an in.finite series and could be written: l ,  3, 5, . . .  , oo. 

Now, then, suppose you went through the series of integers and 
crossed out every even integer you came to, thus: 1 ,  'J,, 3, If, 5, fd, 7, 
.8, 9, ){1, 1 1, .1,2:, • • •  , oo. From the infinite series of integers, you 
would have eliminated an infinite series of even integers and you 
would have left behind an infinite series of odd integers. This can be 
symbolized as oo - oo = oo. 

Furthennore, it could work the other way about. If you started 
with the even integers only and added one odd integer, or two, or five, 
or a trillion, you would still merely have an unending series, so that 
co + n = oo • In fact, if you added the unending series of odd integers 
to the unending series of even integers, you would simply have the 
unending series of all integers, or: oo + oo = oo. 

By this point, however, it  is just possible that some of you may 
suspect me of pulling a fast one. 

After all, in the first 10 integers, there are 5 even integers and 5 

odd ones; in the first 1000 integers, there are 500 even integers and 
500 odd integers; and so on. No matter how many consecutive integers 

j we take, half are always even and half are odd. 
Therefore, although the series 2, 4, 6, . . . is endless, the total can I 

only be half as great as the total of the also endless series 1 ,  2, 3, 4, 
I 5, 6 . . . .  And the same is true for the series 1, 3, 5, . . .  , which, 
( 

though endless, is only ha� as great as the ,.,;es of all intege,s, 

I 
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And so (you might think) in subtracting the set of even integers 
from the set of all integers to obtain the set of odd integers, what we 
are doing can be represented as: oo -foo = f oo. That, you might 
think with a certain satisfaction, "makes sense." 

To answer that objection, let's go back to counting the unknown 
audience at the lecture. Our bright boy, who has been doing all our 
counting, and is tired of it, turns to you and asks, "How many seats 
are there in the lecture hall?" You answer, "640." 

He thinks a little and says, "Well, I see that every seat is taken. 
There are no empty seats and there is no one standing." 

You, having equally good eyesight, say, "That's right." 
"Well, then,'' says the boy, "why count them as they leave. We 

know right now that there are exactly 640 spectators." 
And he's correct. If two series of objects (A series and B series) 

just match up so that there is one and only one A for every B and 
one and only one B for every A, then we know that the total number 
of A objects is just equal to the total number of B objects. 

In fact, this is what we do when we count. If we want to know 
how many teeth there are in the fully equipped human mouth, we 
assign to each tooth one and only one number (in order) and we 
apply each number to one and only one tooth. (This is called placing 
two series into "one-to-one correspondence.") We find that we need 
only 32 numbers to do this, so that the series 1, 2, 3, . . .  , 30, 31, 
32 can be exactly matched with the series one tooth, next tooth, next 
tooth, . . . , next tooth, next tooth, last tooth. 

And therefore, we say, the number of teeth in the fully-equipped 
human mouth is the same as the number of integers from 1 to 32 in
clusive. Or, to put it tersely and succinctly: there are 32 teeth. 

Now we can do the same for the set of even integers. We can write 
down the even integers and give each one a number. Of course, we 
can't write down all the even integers, but we can write down some 
and get started anyway. We can write the number assigned to each 
even integer directly above tt, with a double-headed arrow, so: 

1 2 3 4 5 6 7 8 9 10 . 
t t t t t t t t $ t 
2 4 6 8 10 12 14 16 18 20 . 
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We can already see a system here. Every even integer is assigned 
one particular number and no other, and you can tell what the par
ticular number is by dividing the even integer by 2. Thus, the even 
integer 38 has the number 19 assigned to it and no other. The even 
integer 24618 has the number 12309 assigned to it. In the same way, 
any given number in the series of all integers can be assigned to one 
and only one even integer. The number 538 is applied to even integer 
1076 and to no other. The number 29999999 is applied to even inte
ger 59999998 and no other; and so on. 

Since every number in the series of even integers can be applied to 
one and only one number in the series of all integers and vice versa, 
the two series are in one-to--one correspondence and are equal. The 
number of even integers then is equal to the number of all integers. 
By a similar argument, the number of odd integers is equal to the 
number of all integers. 

You may object by saying that when all the even integers ( or odd 
integers) are used up, there will still be fully half the series of all inte
gers left over. Maybe so, but this argument has no meaning since the 
series of even integers ( or odd integers) will never be used up. 

Therefore, when we say that "all integers" minus "even integers" 
equals "odd integers," this is like saying oo - oo = co, and terms like 
Joo can be thrown out. 

In fact, in subtracting even integers from all integers, we are cross
ing out every other number and thus, in a way, dividing the series 
by 2. Since the series is still unending, oo /2 = oo anyway, so what price 
half of infinity? 

Better yet, if we crossed out every other integer in the series of even 
integers, we would have an unending series of integers divisible by 4; 
and if we crossed out every other integer in that series, we would have 
an unending series of integers divisible by 8, and so on endlessly. Each 
one of these "smaller" series could be matched up with the series of 
all integers in one-to-one correspondence. If an unending series of 
integers can be divided by 2 endlessly, and still remain endless, then 
we are saying that oo / oo = oo. 

If you doubt that endless series that have been drastically thinned 
out can be put into one-to-one correspondence with the series of all 
integers, just consider those integers that are multiples of one trillion. 
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you have: 1,ooo,ooo,000,000; 2,ooo,ooo,000,000; 3,ooo,ooo,ooo,
ooo; . . •  ; oo. These are matched up with 1, 2, 3, . . .  , oo. For 
any number in the set of "trillion-integers," say 4,856,000,000,000,000, 
there is one and only one number in the set of all integers, which, in 
this case, is 4856. For any number in the set of all integers, say 342, 
there is one and only one number in th.e set of "trillion-integers," in 
this case, 342,000,000,000,000. Therefore, there are as many integers 
divisible by a trillion as there are integers altogether. 

It works the other way around, too. If you place between each num
ber the midway fraction, thus: !, 1, lt, 2, 2t, 3, 3t, . . .  , oo, you 
are, in effect, doubling the number of items in the series and yet this 
new series can be put into one-to-one correspondence with the set of i integers: so that 200 = oo. In fact, if yo� keep on doing it in?efi.nitely, 
putting m all the fourths, then all the eighths, then all the sixteenths, 
you can stil l keep the resulting series in one-to-one correspondence 
with the set of all integers so that oo • co = oo 2 = oo . 

This may seem too much to swallow. How can all the fractions be 
lined up so that we can be sure that each one is getting one and only 
one number. It is easy to line up integers, 1, 2, 3, or even integers, 
2, 4, 6, or even prime numbers 2, 3, 5, 7, 11. . • .  But how can you 
line up fractions and be sure that all are included, even fancy ones like 

14s9& and 6 8 9 4 4 4 47a 
2725�Z3 . Z 

' 

There are, however, several ways to make up an inclusive list of 
fractions. Suppose we first list all the fractions in which the numerator 
and denominator add up to 2. There is only one of these: f· Then 
list those fractions where the numerator and denominator add up to 3. 
There are two of these: t and ,t. Then we have t, ·!, and t, where the 
numerator and denominator add up to 4. Then we have f, f, f, and t, 
In each group, you see, we place the fractions in the order of decreas
ing numerator and increasing denominator. 

If k h list. 1 1. 1 a 2. 1 4 s 2 1 � 4 a 2 1 and so we ma e sue a · r, 1 '  2• I• 2 ,  i• 1• 2• i• 7• 1• "ii'.• a• -;r, i• 
on endlessly, we can be assured that any particular fraction, no matter 
how complicated, will be included if we proceed far enough. The frac
tion 2 � � i:; 8 will be in that group of fractions in which the numerator 
and denominator add up to 2740422, and it will be the 2725523rd 
of the group. Similarly, 6 8 H: 4 47 3 will be the second fraction in the 



34 ADDING A DIMENSION group in which the numerator and the denominator add up to 689444475. Every possible fraction will thus have its particular as. signed place in the series. It follows, then, that every fraction has its own number and that no fraction will be left out. Moreover, every number has its own frac. tion and no number is left out. The series of all fractions is put into a one-to-one correspondence with the series of all integers, and thUs the number of all fractions is equal to the number of all integers. (In the list o°f fractions above, you will see that some are equal in value. Thus, , and f are listed as different fractions, but both have the same value. Fractions like t, f, and f not only have the same value but that value is that of an integer, 1. All this is all right. It shows that the total number of fractions is equal to the total number of integers even though in the series of fractions, the value of each particu- • lar fraction, and all integral values as well, is repeated many times; in fact, endlessly.) 
By now you may have more or less reluctantly decided that all unendingness is the same unendingness and that "infinity" is "infinity" no matter what you do to it. Not so! Consider the points in a line. A �e can be marked off at equal intervals, and the marks can represent points which are numbered 1, 2, 3, and so on endlessly, if you imagine the line continuing endlessly. The midpoints between the integer.points can be marked t, I!, 2!, . . . , and then the thirds can be marked and the fourths and the fifths and indeed all the unending number of fractions can be assigned to some particular point. 
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then the diagonal of the square would be just equal to y2. If that diagonal is laid down on the line, starting from the zero point, the end of that diagonal coincides with the point on the line which can be set equal to y2. Now the catch is that the value of V2 cannot be represented by a fraction; by any fraction; by any conceivable fraction. This was proved by the ancient Greeks and the proof is simple but I'll ask you to take my word for it here to save room. Well, if all the fractions are assigned to various points in the line, at least one point, that which corresponds to y2, will be left out. All numbers which can be represented as fractions are "rational numbers" because a fraction is really the ratio of two numbers, the numerator and the denominator. Numbers which cannot be represented as fractions are "irrational numbers" and y2 is by no means the only one of those, although it was the first such to be discovered. Most square roots, cube roots, fourth roots, etc., are irrationals, so are most sines, cosines, tangents, etc., so are numbers involving pi ( 11'), so are logarithms. In fact, the set of irrational numbers is unending. It can be shown that between any two points represented by rational numbers on a line, however close those two points are, there is always at least one point represented by an irrational number. Together, the rational numbers and irrational numbers are spoken of as "real numbers." It can be shown that any given teal number can be made to correspond to one and only one point in a given line; and that any point in the line can be made to correspond to one and only one real number. In other words, a point in a line which can't be assigned a fraction, can always be assigned an irrational. No point can be missed by both categories. The series of real numbers and the series of points in a line are 
It would seem then that every point in the line would have some fraction or other assigned to it. Surely there would be no point in the line left out after an unending number of fractions had been assignetl to it? Oh, wouldn't there? There is a point on the line, you see, that would be represented by a value equal to the square root of two ( y2). This can be shown as follows. If you construct a square on the line with each side exactly equal to the interval of one integer already marked off on the line, 

therefore in one-to-one correspondence and are equal. I Now the next question is: Can the series of all real numbers, or of all points in a line ( the two being equivalent) ,  be set into a one-to-
1 one correspondence with the series of integers. The answer is, No! 

I It can be shown that no matter how you arrange your real numbers or your points, no matter what conceivable system you use; an endless 
I 
i 
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number of either real numbers or points will always be left out. The 
result is that we are in the same situation as that in which we are 
faced with an audience in which all seats are taken and there are peo. 
ple standing. We are forced to conclude that there are more people 
than seats. And so, in the same way, we are forced to conclude that 
there are more real numbers, or points in a line, than there are integers. 

If we want to express the endless series of points by symbols, we 
don't want to use the symbol oo for "and so on endlessly," since this 
has been all tied up with integers and rational numbers generally. In
stead, the symbol C is usually used, standing for continuum, since all 
the points in a line represent a continuous line. 

We can therefore write the series : Point 1,  Point 2, Point 1, 
. . .  , c. 

Now we have a variety of endlessness that is different and more in
tensely endless than the endlessness represented by "ordinary infinity." 

This new and more intense endlessness also has its peculiar arith
metic. For instance, the points in a short line can be matched up one
for-one with the points in a long line, or the points in a plane, or the 
points in a solid. In fact, let's not prolong the agony, and say at once 
that there are as many points in a line a millionth of an inch long 
as there are points in all of space. 

About 1895 the German mathematician Georg Cantor worked out 
the arithmetic of infinity and also set up a whole series of different 
varieties of endlessnesses, which he called "transfinite numbers." 

He represented these transfinite numbers by the letter aleph, which 
is the first letter of the Hebrew alphabet and which looks like this: N 

The various transfinites can be listed in increasing size or, rather, 
in increasing intensity of endlessness by giving each one a subscript, 
beginning with zero. The very lowest transfinite would be "aleph-null," 
then there would be "aleph-one," "aleph-t�o," and so on, endlessly. 

This could be symbolized as: N O , N 1 , N 2, • • •  , N co 
Generally, whatever you do to a particular transfinite number in 

the way of adding, subtracting, multiplying, or dividing, leaves it un
changed. A change comes only when you raise a transfinite to a trans
finite power equal to itself (not to a transfinite power less than itself). 
Then it is increased to the next higher transfinite. Thus : 
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Nf0 = N1 . N 1� 1 = N2 • andsoon. ' ' 
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What we usually consider as infinity, the endlessness of the integers, 
has been shown to be equal to aleph-null. In other words: 00 = � 0 
And so the tremendous vastness of ordinary infinity turns out to be 
the very smallest of all the transfinites. 

That variety of endlessness which we have symbolized as C may 

be represented by aleph-one so that C = N1 , but this has not 
been proved. No mathematician has yet been able to prove that there 
is any infinite series which has an endlessness more intense than the 
endlessness of the integers but less intense than the endlessness of the 
points in a line. However, neither has any mathematici� been able 
to prove that such an intermediate endlessness does not exist. 

lf' the continuum is equal to aleph-one, then we can finally wnte 
an equation for our friend "ordinary infinity" which will change it: 

ooco = C .  
Finally, it has been shown that the endlessness of all the curves that 

can be drawn on a plane is even more intense than the endlessness of 
points in a line. In other words, there is no way of lining up the curves 
so that they can be matched one-to -one with the points in a line, with
out leaving out an unending series of the curves. This endlessness of 
curves may be equal to aleph-two, but that hasn't been proved yet, 
either. 

And that is all. Assuming that the endlessness of integers is aleph
null, and the endlessness of points is aleph-one, and the endlessness of 
curves is aleph-two, we have come to the end. Nobody has ever sug
gested any variety of endlessness which could correspond to aleph
three (let alone to aleph-thirty or aleph-three-million). 

As John E. Freund says in his book A Modern Introduction to 
Mathematics! (a book I recommend to all who found this article in 
the least interesting), "1t seems that our imagination does not permit 
'1S to count beyond three when dealing with infinite sets." 

Still, if we now return to the title Invaders from the ln(i.nite, I think 
we are entitled to ask, with an air of phlegmatic calm, ''Which infi
nite? Just aleph-null? Nothing more?" 

1 New York: Prentice-Hall, 1956. 
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In my essay "Those Crazy Ideas," which appeared in Fact and Fancy, 
I casually threw in a footnote to the effect that e"' = -1. Behold, a 
good proportion of the comment which I received thereafter dealt 
not with the essay itself but with that footnote (one reader, more in 
sorrow than in anger, proved the equality, which I had neglected to 
do). 

My conclusion is that some readers are interested in  these odd sym
bols. Since I am, too (albeit I am not really a mathematician, or any
thing else), the impulse is irresistible to pick up one of them, say 1r, 
and ta1k about it in this chapter and the next. In Chapter 6, I will 
discuss i. 

In the first place, what is 'TT? Well, it is the Greek letter pi and it 
represents the ratio of the length of the perimeter of a circle to the 
length of its diameter. Perimeter is from the Greek perimetron, mean
ing "the measurement around," and diameter from the Greek diametron, meaning "the measurement through." For some obscure reason, 
while it is customary to use perimeter in the case of polygons, it is also 
customary to switch to the Latin circumference in speaking of circ1es. 
This is all right, I suppose (I am no purist) but it obscures the reason 
for the symbol '11". 

Back about 1600 the English mathematician William Oughtred, in 
discussing the ratio of a circle's perimeter to its diameter, used the 
Greek letter 1r to symbolize the perimeter and the Greek letter a 
( delta) to symbolize the diameter. They were the first letters, respec
tively, of perimeiron and diametron. 

Now mathematicians often simplify matters by setting values equal 
to unity whenever they can. For instance, they might talk of a circle 
of unit diameter. In such a circle, the length of the perimeter is  nu
merically equal to the ratio of perimeter to diameter. (This is obvious 
to some of you, I suppose, and the rest of you can take my word for 
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it.) Since in a circle of unit diameter the perimeter equals the ratio, 
the ratio can be symbolized by 'TT, the symbol of the perimeter. And 
since circles of unit diameter are very frequently dealt with, the habit 
becomes quickly ingrained. 

The first top-flight man to use 1r as the symbol for the ratio of the 
length of a circle's perimeter to the length of its diameter was the Swiss 
mathematician Leonhard Euler, in 1737, and what was good enough 
for Euler was good enough for everyone else. 

Now I can go back to calling the distance around a circle the cir
cumference. 

But what is the ratio of the circumference of a circle to its diameter 
in actual numbers? 

This apparently is a question that always concerned the ancients 
even long before pure mathematics was invented. In any kind of con
struction past the hen-coop stage you must calculate in advance all 
sorts of measurements, if you are not perpetually to be calling out to 
some underling, "You nut, these beams are all half a foot too short." 
In order to make the measurements, the universe being what it is, you 
are forever having to use the value of 'TT in multiplications. Even when 
you're not dealing with circles, but onJy with angles (and you can't 
avoid angles) you will bump .into '11". 

Presumably, the first empirical calculators who realized that the 
ratio was in1portant, determined the ratio by drawing a circle and 
actually measuring the length of the diameter and the circumference. 
Of course, measuring the length of the circumference is a tricky prob
lem that can't be handled by the usual wooden foot-rule, which is far 
too inflexible for the purpose. 

What the pyramid-builders and their predecessors probably did was 
to lay a linen cord along the circumference very carefully, make a 
little mark at the point where the circumference was completed, then 
straighten the line and measure it with the equivalent of a wooden 
foot-rule. (Modern theoretical mathematicians frown at this and make 
haughty remarks such as "But you are making the unwarranted as
sumption that the line is the same length when it is straight as when 
it was curved." I imagine the honest workman organizing the con
struction of the local temple, faced with such an objection, would 
have solved matters by throwing the objector into the river Nile.) 
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Anyway, by drawing circles of different size and making enough 
measurements, it undoubtedly dawned upon architects and artisans, 
very early in the game, that the ratio was always the same in all circles. 
In other words, if one circle had a diameter twice as long or 1 i as 
long as the diameter of a second, it would also have a circumference 
twice as long or 1i as long. The problem boiled down, then, to 
finding not the ratio of the particular circle you were interested in 
using, but a universal ratio that would hold for all circles for all time. 
Once someone had the value of 1r in his head, he would never have 
to determine the ratio again for any circle. 

As to the actual value of the ratio, as detennined by measurement, 
that depended, in ancient times, on the care taken by the person mak
ing the measurement and on the value he placed on accuracy in the 
abstract. The ancient Hebrews, for instance, were not much in the 
way of construction engineers, and when the time came for them to 
build their one important building (Solomon's temple), they had to 
call in a Phoenician architect. 

It is to be expected, then, that the Hebrews in describing the tem
ple would use round figures only, seeing no point in stupid and trou
blesome fractions, and refusing to be bothered with such petty and 
niggling matters when the House of God was in question. 

Thus, in Chapter 4 of 2 Chronicles, they describe a "molten sea" 
which was included in the temple and which was, presumably, some 
sort of container in circular form. The beginning of the description 
is in the second verse of that chapter and reads: "Also he made a 
molten sea of ten cubits from brim to brim, round in compass, and five 
cubits the height thereof; and a line of thlrty cubits did compass it 

round about." 
The Hebrews, you see, did not realize that in giving the diameter 

of a circle (as ten cubits or as anything else) they automatically gave 
the circumference as well. They felt it necessary to specify the circum
ference as thirty cubits and in so doing revealed the fact that they 
considered 1r to be equal to exa.ctly 3. 

There is always the danger that some individuals, too wedded to 
the literal words of the Bible, may consider 3 to be the divinely or
dained value of 1r in consequence. I wonder if this may not have been 
the motive of the simple soul in some state legislature who, some years 
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back, introduced a bill which would have made 1T legally equal to 3 
inside the bounds of the state. Fortunately, the bill did not pass or all 
the wheels in that state (which would, of course, bave respected the 
laws of the state's august legislators) would have turned hexagonal. 

In any case, those ancients who were architecturally sophisticated 
knew well, from their measurements, that the value of 1r was dis
tinctly more than 3. The best value they had was 2

/ ( or 3f, if you pre
fer) which really isn't bad and i s  still used to this day for quick 
approximations. 

Decimally, ¥ is equal, roughly, to 3.142857 . . .  , while 1r is equal, 
roughly, to 3.141592 . . . •  Thus, 2

/ is high by only 0.04 percent or 1 
part in 2500. Good enough for most rule-of-thumb purposes. 

Then along came the Greeks and developed a system of geometry 
that would have none of this vile lay-down-a-string-and-measure-it
with -a-ruler business. That, obviously, gave values that were only as 
good as the ruler and the string and the human eye, all of which were 
dreadfully imperfect. Instead, the Greeks went about deducing what 
the value of 1r must be once the perfect lines and curves of the ideal 
plane geometry they had invented were taken properly into account. 

Archimedes of Syracuse, for instance, used the "method of exhaus
tion" (a forerunner of integral calculus, which Archimedes might have 
invented two thousand years before Newton if some kind benefactor 
of later centuries had only sent him the Arabic numerals via a time 
machine) to calculate 'TT'. 

To get the idea, imagine an equilateral triangle with its vertexes 
on the circumference of a circle of unit diameter. Ordinary geometry 
suffices to calculate exactly the perimeter of that triangle. It comes out 
to 3\/f, if you are curious, or 2.598076. . . . This perimeter bas to 
be less than that of the circle (that is, than the value of 1r), again by 
elementary geometrical reasoning. 

Next, imagine the arcs between the vertexes of the triangle divided 
in two so that a regular hexagon ( a six-sided figure) can be inscribed 
in the circle. Its perimeter can be determined also ( it is exactly 3) 
and this can be shown to be larger than that of the triangle but still 
less than that of the circle. By proceeding to do this over and over 
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again, a regular polygon with 12, 24, 48 . . .  sides can be inscribed, 
The space between the polygon and the boundary of the circle is 

steadily decreased or "exhausted" and the polygon approaches as close 
to the circle as you wish, though it never really reaches it. You can do 
the same with a series of equilateral polygons that circumscribe the 
circle (that lay outside it, that is, with their sides tangent to the circle) 
and get a series of decreasing values that approach the circumference 
of the circle. 

In essence, Archimedes trapped the circumference between a series 
of numbers that approached 7T from below, and another that ap
proached it from above. In this way 1T' could be determined with any 
degree of exactness, provided you were patient enough to bear the 
tedium of working with polygons of large numbers of sides. 

Archimedes found the time and patience to work with polygons of 
ninety-six sides and was able to show that the value of 1T' was a little 
below 2/ and a little above the slightly smaller fraction 27\

3• 

Now the average of these two fractions is 3l9

2l and the decimal 
equivalent of that is 3.141851. . . .  This is more than the true value 
of 7T by only 0.0082 percent or 1 part in 12,500. 

Nothing better than this was obtained, in Europe, at least, until the 
sixteenth century. It was then that the fraction � 1: was first used as an 
approximation of '11'. This is really the best approximation of 1r that 
can be expressed as a reasonably simple fraction. The decimal value 
of ;�; is 3.14159292 . . .  , while the true value of 1r is 3.14159265. 
. . . You can see from that that ffi is higher than the true value by 

[ only 0.000008 percent, or by one part in 12,500,000. 
Just to give you an idea of how good an approximation � � � is, let's 

I 
suppose that the earth were a perfect sphere with a diameter of ex
actly 8000 miles. We could then calculate the length of the equator 

I by multiplying 8000 by 1r. Using the approximation n; for 'TT, the an-
swer comes out 25,132.7433 . . .  miles. The true value of 7T would I 
give the answer 25,132.7412 . . .  miles. The difference would come 

I 
to about 11 feet. A difference of 1 1  feet in calculating the circum
ference of the earth might well be reckoned as negligible. Even the 
artificial sateUites that have brought our geography to new heights of 
precision haven't supplied us with measurements within that range 
of accuracy. 
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It follows then that for anyone but mathematicians, ffi is as close 
to 7T as it is necessary to get under any but the most unusual circum
stances. And yet mathematicians have their own point of view. They 
can't be happy without the true value. As far as they are concerned, 
a miss, however close, is as bad as a megaparsec. 

The key step toward the true value was taken by Fran9<>is Vieta, 
a French mathematician of the sixteenth century. He is considered the 
father of algebra because, among other things, he introduced the use 
of letter symbols for unknowns, the famous x's and y's, which most 
of us have had to, at one time or another in our lives, face with trepida
tion and uncertainty. 

Vieta performed the algebraic equivalent of Archimedes' geo
metric method of exhaustion. That is, instead of setting up an infinite 
series of polygons that came closer and closer to a circle, he deduced 
an infinite series of fractions which could be evaluated to give a figure 
for 'TT. The greater the number of terms used in the evaluation, the 
closer you were to the true value of 71'. 

I won't give you Vieta's series here because it involves square roots 
and the square roots of square roots and the square roots of square 
roots of square roots. There is no point in involving one's self in that 
when other mathematicians derived other series of terms (always an 
infinite series) for the evaluation of 1r; series much easier to write. 

For instance, in 1673 the German mathematician Gottfried Wil
helm von Leibniz (who first worked out the binary system-see Chap
ter 2 )  derived a series which can be expressed as follows: 

7r - 4 _ 4 + 4 - 4 + 4 - 4 + 4 _ 4 -T a s .f 1f IT IT IT · · · 

Being a naive nonmathematician myself, with virtually no mathe
matical insight worth mentioning, I thought, when I first decided to 
write this essay, that I would use the Leibniz series to dash off a short 
calculation and show you how it would give 1r easily to a dozen places 
or so. However, shortly after beginning, I quit. 

You may scorn my lack of perseverance, but any of you are wel
come to evaluate the Leibniz series just as far as it is written above, to 
i'�, that is. You can even drop me a postcard and tell me the result. If, 
when you finish, you are disappointed to find that your answer isn't 
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as close to 1r as the value of : � g, don't give up. Just add more terms, 
Add /7 to your answer, then subtract 1

4
0, then add ..L and subtract� 2 1  2 a• 

and so on. You can go on as long as you want to, and if any of you 
find out bow many terms it takes to improve on � � :, drop me a line 
and tell me that, too. 

Of course, all this may disappoint you. To be sure, the endless series 
is a mathematical representation of the true and exact value of 'IT. To 
a mathematician, it is as valid a way as any to express that value. But 
if you want it in the form of an actual number, how does it help you? 
It isn't even practical to sum up a couple of dozen terms for anyone 
who wants to go about the ordinary business of living; how, then, can 
it be possible to sum up an infinite number? 

Ah, but mathematicians do not give up on the sum of a series just 
because the number of terms in it is unending. For instance, the series: 

! + t + i+ -h + a\ + n . . .  

can be summed up, using successively more and more terms. If you do 
this, you will find that the more terms you use, the closer you get to 1, 
and you can express this in shorthand form by saying that the sum of 
that infinite number of terms is merely 1 after all. 

There is a formula, in fact, that can be used to determine the sum 
of any decreasing geometric progression, of which the above is an ex
ample. 

Thus, the series: 
-L +-s-+_s_+ _a_ +  _ _ 8 _  
1 0  1 0 0  1 0 0 0  1 0 0 0 0  1 0 0 0 0 0  • 

adds up, in all its splendidly infinite numbers, to a mere !, and the 
series: 

.! +...1..+ l + 1 + 1 
2 2 0  200 2 0 0 0  moo · · · 

adds up to J. 
To be sure, the series worked out for the evaluation of 1r are none 

of them decreasing geometric progressions, and so the formula can
not be used to evaluate the sum. In fact, no formula has ever been 
found to evaluate the sum of the Leibniz series or any of the others. 
Nevertheless, there seemed no reason at first to suppose that there 
might not be some way of .finding a decreasing geometric progression 
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that would evaluate TT. If so, 1r would then be expressible as a frac
tion. A fraction is actually the ratio of two numbers and anything ex
pressible as a fraction, or ratio, is a "rational number," as I explained 
in the previous chapter. The hope, then, was that 1r might be a ra
tional number. 

One way of proving that a quantity is a rational number is to work 
out its value decimally as far as you can (by adding up more and more 
terms of an infinite series, for instance) and then show the result to 
be a "repeating decimal"; that is, a decimal in which digits or some 
group of digits repeat themselves endlessly. 

For instance, the decimal value of i is 0.33333333333 . • • , while 
that of t is 0.142857 142857 142857 . . .  , and so on endlessly. 
Even a fraction such as l which seems to "come out even" is really a 
repeating decimal if you count zeros, since its decimal equivalent is 
0.125000000000 . . . .  It can be proved mathematically that every 
fraction, however complicated, can be expressed as a decimal which 
sooner or later becomes a repeating one. Conversely, any decimal 
which ends by becoming a repeating one, however involved the repeti
tive cycJe, can be expressed as an exact fraction. 

Take any repeating decimal at random, say 0.37373737373737. 
. . . First, you can make a decreasing geometrical progression out of 
it by writing it as: 

8 7  +_il_ + 87 + 8 1  
JOO 1 0 0 0 0  1 0 0 0 0 0 0  1 0 0 0 0 0 0 0 0  • ' ' 

and you can then use the fonnula to work out its sum, which comes 
out to ;:. (Work out the decimal equivalent of that fraction and see 
what you get.) 

Or suppose you have a decimal which starts out nonrepetitively and 
then becomes repetitive, such as 15.21655555555555 . . . .  This can 
be written as: 

15 + 2 1 6 + 5 + 5 + 1000 10000 100000 -1-0 o_,o,._o_o_o • • • 

From 1 0 � 0 0 on, we have a decreasing geometric progression and its 
sum works out to be 9 01;0 0• So the series becomes a .finite one made out 
of exactly three tenns and no more, and can be summed easily: 

15 +...ll.!..+ __L_ = 1 8 6 9 4 9  
1 0 0 0  9 0 0 0 0  9 0 0 0  
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If you wish, work out the decimal equivalent of 1
: �ii 9 and see what 

you get. 
Well, then, if the decimal equivalent of '" were worked out for a 

number of decimal places and some repetition were discovered in it 
however slight and however complicated, provided it could be show� 
to go on endlessly, a new series could be written to express its exact 
value. This new series would conclude with a decreasing geometric pro
gression which could be summed. There would then be a finite series 
and the true value of 1r could be expressed not as a series but as an 
actual number. 

Mathematicians threw themselves into the pursuit. In 1593 Vieta 
himself used his own series to calculate 'IT to seventeen decimal places. 
Here it is, if you want to stare at it: 3.14159265358979323. As you 
see, there are no apparent repetitions of any kind. 

Then in 1615 the German mathematician Ludolf voo Ceulen used 
an infinite series to calculate 1r to thirty-five places. He found no signs 
of repetitiveness, either. However, this was so impressive a feat for 
his time that he won a kind of fame, for rr is sometimes called "Lu
dolf's number" in consequence, at least in German textbooks. 

And then in 1717 the English mathematician Abraham Sharp went 
Ludolf several better by finding rr to seventy-two decimal places. Still 
no sign of repeating. 

But shortly thereafter, the game was spoiled. 

To prove a quantity is rational, you have to present the fraction to 
which it is equivalent and display it. To prove it is irrational, however, 
you need not necessarily work out a single decimal place. What you 
must do is to suppose that the quantity can be expressed by a fraction, 
�, and then demonstrate that this involves a contradiction, such as that 
p must at the same time be even and odd. This would prove that no 
fraction could express the quantity, which would therefore be irra
tional. 

Exactly this sort of proof was developed by the ancient Greeks to 
show that the square root of 2 was an irrational number (the first ir
rational ever discovered) .  The Pythagoreans were supposed to have 
been the first to discover this and to have been so appalled at finding 
that there could be quantities that could not be expressed by any frac-
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tion, however complicated, that they swore themselves to secrecy and 
provided a death penalty for snitching. But like all scientific secr�ts, 
from irrationals to atom bombs, the information leaked out anyway. 

Well, in 17 61 a German physicist and mathematician Johann 
Heinrich Lambert finally proved that 1r was irrational. Therefore, no 
pattern at all was to be expected, no matter how slight and no matter 
bow many decimal places were worked out. The true value can only 
be expressed as an infinite series. 

Alas! 
But shed no tears. Once 1r was proved irrational, mathematicians 

were satisfied. The problem was over. And as for the application of 
rr to physical calculations, that problem was over and done with, too. 
You may think that sometimes in very delicate calculations it might 
be necessary to know 1r to a few dozen or even to a few hundred places, 
but not so! The delicacy of scientific measurements is wonderful 
these days, but still there are few that approach, say, one part in a bil
lion, and for anything that accurate which involves the use of 1r, nine 
or ten decimal places would be ample. 

For example, suppose you drew a circle ten billion miles across, 
with the sun at the center, for the purpose of enclosing the entire solar 
system, and suppose you wanted to calculate the length of the circum
ference of this circle ( which would come to over thirty--0ne billion 
miles) by using � �: as the approximate value of 11'. You would be off 
by less than three thousand miles. 

But suppose you were so precise an individual that you found an 
error of three thousand miles in 31,000,000,000 to be insupportable. 
You might then use Ludolf's value of '" to thirty-five places. You 
would then be off by a distance tbat would be equivalent to a mil
lionth of the diameter of a proton. 

Or let's take a big circle, say the circumference of the known uni
verse. Large radio telescopes under construction will, it is hoped, re
ceive signals from a distance as great as 40,000,000,000 light-years. 
A circle about a universe with such a radius would have a length of, 
roughly, 150,000,000,000,000,000,000,000 (150 sextillion) miles. 
If the length of this circumference were caJculated by Ludolf's value 
of 1r to thirty-five places, it would be off by less than a millionth of an 
inch. 
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What can one say then about Sharp's value of 1T to seventy-two 
places? 

Obviously, the value of 1T, as known by the time its irrationality was 
proven, was already far beyond the accuracy that could conceivably 
be demanded by science, now or in the future. 

And yet with the value of 1r no longer needed for scientists, past 
what had already been determined, people nevertheless continued their 
calculations through the first half of the nineteenth century. 

A fellow called George Vega got 1T to 140 places, another called 
Zacharias Dase did it to 200 places, and someone called Recher did it 
to 500 places. 

Finally, in 1873, William Shanks reported the value of 1T to 707 
places, and that, until 1949, was the record- and small wonder. It 
took Shanks fifteen years to make the calculation and, for what that's 
worth, no signs of any repetitiveness showed up. 

We can wonder about the motivation that would cause a man to 
spend fifteen years on a task that can serve no purpose. Perhaps it 
is the same mental attitude that will make a man sit on a flagpole or 
swallow goldfish in order to "break a record." Or perhaps Shanks saw 
this as his one road to fame. 

If so, he made it. Histories of mathematics, in among their descrip
tions of the work of men like Archimedes, Fermat, Newton, Euler, 
and Gauss, will also find room for a line to the effect that William 
Shanks in the years preceding 1873 calculated 1T to 707 decimal places. 
So perhaps he felt that his life had not been wasted. 

But alas, for human vanity-
In 1949 the giant computers were coming into their own, and oc

casionally the young fellows at the controls, full of fun and life and 
beer, could find time to play with them. 

So, on one occasion, they pumped one of the unending series into 
the machine called ENIAC and bad it calculate the value of 1r. They 
kept it at the task for seventy hours, and at the end of that time they 
had the value of 1r (shades of Shanks!) to 2035 places.1 

1 By 1955 a faster computer calculated ,,. to 10,017 places i n  thirty -three hours 
and, actually, there are interesting mathematical points to be derived from study
ing the various digits of .... 

T 

l 
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And to top it all off for poor Shanks and his fifteen wasted years, an 
error was found in the five hundred umpty-umpth digit of Shanks' 
value, so that all the digits after that, well over a hundred, were wrong! 

And of course, in case you're wondering, and you shouldn't, the 
values as determined by computers showed no signs of any repetitive
ness either. 
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The previous chapter does not conclude the story of Tl'. As the title 
stated, it was only a piece of Tl'. Let us therefore continue onward. 

The Greek contribution to geometry consisted of idealizing and ab
stracting it. The Egyptians and Babylonians solved specific problems 
by specific methods but never tried to establish general rules. 

The Greeks, however, strove for the general and felt that mathe
matical figures had certain innate properties that were eternal and 
immutable. They felt also that a consideration of the nature and re
lationships of these properties was the closest man could come to ex
periencing the sheer essence of beauty and divinity. (If I may veer 
away from science for a moment and invade the sacred precincts of the 
humanities, I might point out that just this notion was expressed by 
Edna St. Vincent Millay in a famous line that goes: "Euclid alone 
has looked on Beauty bare.") 

Well, in order to get down to the ultimate bareness of Beauty, one 
had to conceive of perfect, idealized figures made up of perfect ideal
ized parts. For instance, the ideal line consisted of length and nothing 
else. It bad neither thickness nor breadth nor anything, in fact, but 
length. Two ideal lines, ideally and perfectly straight, intersected at an 
ideal and perfect point, which had no dimensions at aU, only position. 
A circle was a line that curved in perfectly equal fashion at all points; 
and every point on that curve was precisely equally distant from a 
particular point called the center of the circle. 

Unfortunately, although one can imagine such abstractions, one 
cannot communicate them as abstractions alone. In order to explain 
the properties of such figures ( and even i n  order to investigate them 
on your own) it is helpful, almost essential in fact, to draw crass, 
crude, and ungainly approximations in wax, on mud, on blackboard, 

I 
i 

I 
I 

� 
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or on paper, using a pointed stick, chalk, pencil, or pen. (Beauty must 
be swathed in drapery in mathematics, alas, as in life.) 

Furthermore, in order to prove some of the ineffably beautiful prop
erties of various geometrical figures, it was usually necessary to make 
use of more lines than existed in the figure alone. It might be neces
sary to draw a new line through a point and make it parallel or, per
haps, perpendicular to a second line. It might be necessary to divide a 
line into equal parts, or to double the size of an angle. 

To make all this drawing as neat and as accurate as possible, in
struments must be used. It follows naturally, I thlnk, once you get into 
the Greek way of thinking, that the fewer and simpler the instruments 
used for the purpose, the closer the approach to the ideal. 

Eventually, the tools were reduced to an elegant minimum of two. 
One is a straightedge for the drawing of straight lines. Thls is not a 
ruler, mind you, with inches or centimeters marked off on it. It is 
an unmarked piece of wood ( or metal or plastic, for that matter) 
which can do no more than guide the marking instrument into the 
form of a straight line. 

The second tool is the compass, which, while most simply used to 
draw circles, will also serve to mark off equal segments of lines, will 
draw intersecting arcs that mark a point that is equidistant from two 
other points, and so on. 

I presume most of you have taken plane geometry and have utilized 
these tools to construct one line perpendicular to another, to bisect an 
angle, to circumscribe a circle about a triangle, and so on. All these 
tasks and an infinite number of others can be performed by using the 
straightedge and compass in a finite series of manipulations. 

By Plato's time, of course, it was known that by using more com
plex tools, certain constructions could be simplified; and, in fact, that 
some constructions could be performed which, until then, could not 
be performed by straightedge and compass alone. That, to the Greek 
geometers, was something like shooting a fox or a sitting duck, or 
catching fish with worms, or looking at the answers in the back of the 
book. It got results but it just wasn't the gentlemanly thing to do. The 
straightedge and compass were the only "proper" tools of the geo
metrical trade. 
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Nor was it felt that this restriction to the compass and straightedge 
unduly limited the geometer. It might be tedious at times to stick to 
the tools of the trade; it might be easier to take a short cut by using 
other devices; but surely the straightedge and compass alone could do 
it all, if you were only persistent enough and ingenious enough. 

For instance, if you are given a line of a fixed length which is al
lowed to represent the numeral 1, it is possible to  construct another 
line, by compass and straightedge alone, exactly twice that length to 
represent 2, or another line to represent 3 or 5 or 500 or ! or t or t 
or ! or 2} or 27� :. In fact, by using compass and straightedge only, 
any rational number (i.e., any integer or fraction) could be duplicated 
geometrically. You could even make use of a simple convention 
( which the Greeks never did, alas) to make it possible to represent 
both positive and negative rational numbers. 

Once irrational numbers were discovered, numbers for which no 
definite fraction could be written, it might seem that compass and 
straightedge would fail, but even then they did not. 

For instance, the square root of 2 has the value 1.414214 . . .  and 
on and on without end. How, then, can you construct one line which 
is 1.414214 . . .  times as long as another when you cannot possibly 
ever know exactly how many times as long you want it to be. 

Actually, it's easy. Imagine a given line from point A to point B. 

(I can do this without a diagram, I think, but if you feel the need you 
can sketch the lines as you read. It won't be hard.) Let this line, AB, 

represent L. 
Next, construct a line at B, perpendicular to AB. Now you have 

two lines forming a right angle. Use the compass to draw a circle with 
its center at B, where the two lines meet, and passing through A. I t  
will cut the perpendicular line you have just drawn at a point we can 
call C. Because of the well-known properties of the circle, line BC is 
exactly equal to line AB, and is also 1. 

Finally, connect points A and C with a third straight line. 
That line, AC, as can be proven by geometry, is exactly y2 times 

as long as either AB or BC, and therefore represents the irrational 
quantity y2. 

Don't, of course, think, that it is now only necessary to measure 
AC in terms of AB to obtain an exact value of y'2. The construction 
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• 

was drawn by imperfect instruments in the hands of imperfect men 
and is only a crude approximation of the ideal figures they represent. 
It is the ideal line represented by AC that is y2, and not AC itself in 
actual reality . 

It is possible, in similar fashion, to use the straightedge and com-
pass to represent an infinite number of other irrational quantities. 

In fact, the Greeks had no reason to doubt that any conceivable 
number at all could be represented by a line that could be constructed 
by use of straightedge and compass alone in a finite number of steps. 
And since all constructions boiled down to the construction of certain 
lines representing certain numbers, it was felt that anything that could 
be done with any tool could be done by straightedge and compass 
alone. Sometimes the details of the straightedge and compass con
struction might be elusive and remain undiscovered, but eventually, 

� the Greeks felt, given enough ingenuity, insight, intelligence, intuition, 
and luck, the construction could be worked out. 

For instance, the Greeks never learned how to divide a circle into 
I seventeen equal parts by straightedge and compass alone. Yet it could 
I be done. The method was not discovered until 1801, but in that year, 

I tb.e German mathematician Karl Friedrich Gauss, then only twenty
� four, managed it. Once he divided the circle into seventeen parts, he 

I 

could connect the points of division by a straightedge to form a regu
lar polygon of seventeen sides (a "septendecagon"). The same system 

j 
could be used to construct a regular polygon of 257 sides, and an 
infinite number of other polygons with still more sides, the number of 

! sides possible being calculated by a formula which I won't give here. 
I If the construction of a simple thing like a regular septendecagon 
• could elude the great Greek geometers and yet be a perfectly soluble 

problem in the end, why could not any conceivable construction, 
however puzzling it might seem, yet prove soluble in the end. 

As an example, one construction that fascinated the Greeks was 
this: Given a circle, construct a square of the same area. 

This is called "squaring the circle." 
There are several ways of doing this. Here's one method. Measure 

the radius of the circle with the most accurate measuring device you 
have-say, just for fun, that the radius proves to be one inch long pre-
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cisely. (This method will work for a radius of any length, so why not 
luxuriate in simplicity.) Square that radius, leaving the value still l ,  
since 1 x 1 is 1,  thank goodness, and multiply that by the best value 
of 1r you can find. (Were you wondering when I'd get back to 1r?) If t you use 3.1415926 as your value of 11', the area of the circle proves to I be 3.1415926 square inches. . 

I 
Now, take the square root of that, which is 1 .7724539 inches, and 

draw a straight line exactly 1.7724539 inches long, using your meas
uring device to make sure of the length. Construct a perpendicular at 
each end of the line, mark off 1.7724539 inches on each perpendicu- r 

lar, and connect those two points. 
Voila! You have a square equal in area to the given circle. Of 

course, you may feel uneasy. Your measuring device isn't infinitely 
accurate and neither is the value of 1r which you used. Does not this 
mean that the squaring of the circle is only approximate and not exact? � 

Yes, but it is not the details that count but the principle. We can 
assume the measuring device to be perfect, and the value of 7T which 
was used to be accurate to an infinite number of places. After all, this 
is just as justifiable as assuming our actual drawn lines to represenil: 
ideal lines, considering our straightedge perfectly straight and our 
compass to end in two perfect points. In principle, we have indeed 
perfectly squared the circle. 

Ah, but we have made use of a measuring device, which is not one 
of the only two tools of the trade allowed a gentleman geometer. That 
marks you as a cad and bounder and you are hereby voted out of the 
club. 

Here's another method of squaring the circle. What you really need, 
assuming the radius of your circle to represent l, is another straight 
line representing yii. A square built on such a line would have just 
the area of a unit-radius circle. How to get such· a line? Well, if you 
could construct a line equal to 7T times the length of the radius, there 
are known methods, using straightedge and compass alone, to constmct 
a line equal in length to the square root of that line, hence represent- • 
ing the \f1T, which we are after. f 

But it is simple to get a line that is 'Tf times the radius. According I to a well-known formula, the circumference of the circle is equal in 
I length to twice the radius times 11'. So Jet us imagine the circle resting 
I 
__J 
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on a straight line and let's make a little mark at the point where the 
circle just touches the line. Now slowly tum the circle so that it moves 
along the line (without slipping) until the point you have marked 
makes a complete circuit and once again touches the line. Make an
other mark where it again touches. Thus, you have marked off the 
circumference of the circle on a straight line and the distance between 
the two marks is twice 11'. 

Bisect that marked-off line by the usual methods of straightedge 
and compass geometry and iou have a line representing 7T. Construct 
the square root of that line �d · you have yii. 

Voila! By that act, you,have;.in effect, squared the circle. 
But no. I'm afraid fou're still out of the club. You have made use 

of a rolling circle with a mark on it and that comes under the heading 
of an instrument other than the straightedge and compass. 

The point is that there are any number of ways of squaring the cir
cle, but the Greeks were unable to find any way of doing it with 
straightedge and compass alone in a finite number of steps. (They 
spent I don't know how many man-hours of time searching for a 
method, and looking back on it, it might all seem an exercise in futility 
now, but it wasn't. In their search, they came across all sorts of new 
curves, such as the conic sections, and new theorems, which were far 
more valuable than the squaring of the circle would have been.) 

Although the Greeks failed to find a method, the search continued 
and continued. People kept on trying and trying and trying and try
ing-

And now let's change the subject for a while. 

Consider a simple equation such as 2x - 1 = 0. You can see that 
setting x = t will make a true statement out of it, for 2 ( V - 1 is in
deed equal to zero. No other number can be substituted for x in this 
equation and yield a true statement. 

By changing the integers in the equation (the "coefficients" as they 
are called) x can be made to equal other specific numbers. For in
stance, in 3x - 4 = 0, x is equal to f; and in 7x + 2 = 0, x = - ;. 
In fact, by choosing the coefficients appropriately, you can have as a 
value of x any positive or negative integer or fraction whatever. 

But in such an "equation of the first degree," you can only obtain 
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Ax + B = 0, where A and B are rational, such that x will turn out to be equal to \/2, for instance. The thing to do is to try a more complicated variety of equation. Suppose you try x2 - 2 = 0, which is an "equation of the second degree" because it involves a square. If you solve for x you'll find the an. swer, \/2, when substituted for x will yield a true statement. In fact, there are two possible answers, for the substitution of - y2 for x will also yield a true statement. You can build up equations of the third degree, such as Ax9 + Bx2 + Cx + D = 0, or of the fourth degree (I don't have to give any more examples, do I?), or higher. Solving for x in each case becomes more and more difficult, but will give solutions involving cube roots, fourth roots, and so on. In any equation of this type (a "polynomial equation") the value of x can be worked out by manipulating the coefficients To talce the simplest case, in the general equation of the first degree: Ax + B = 0, the value of x is -Bl A. In the general equation of the second degree: 

-B +\!B2 - 4AC 
Ax2 + Bx+ C = 0, there are two solutions. One is 

2A 

-B - \!B2 -4AC and the other is ZA Solutions get progressively more complicated and eventually, for equations of the fifth degree and higher, no general solution can be given, although specific solutions can still be worked out. The principle remains, however, that in all polynomial equations, the value of x can be expressed by use of a finite number of integers involved in a finite number of operations, these operations consisting of addition, subtraction, multiplication, division, raising to a power ("involution"), and extracting roots ("evolution").  These operations are the only ones used in ordinary algebra and are therefore called "algebraic operations." Any number which can be derived from the integers by a finite number of algebraic operations in any combination is called an "algebraic number.'.' To put it in reverse, any algebraic number is a possible solution for some polynomial equation. 

TOOLS OF THE TRADE 57 i Now it so happens that the geometric equivalent of all the algebraic operations, except the extraction of roots higher than the square root, can be performed by straightedge and compass alone. If a given line ._ represents l, therefore, it follows that a line representing any alge-1 braic number that involves no root higher than the square root can be constructed by straightedge and compass in a finite number of ma-nipulations. Since 'l1' does not seem to contain any cube roots ( or worse) ,  is it possible that it can be constructed by straightedge and compass? That might be if algebraic numbers included all numbers. But do they? Are there numbers which cannot be solutions to any polynomial equation, and are therefore not algebraic? To begin with, all possible rational numbers can be solutions to equations of the first degree, so all rational numbers are algebraic • numbers. Then, certainly some irrational numbers are algebraic num· , bers, for it is easy to write equations for which y2 or ..,yf.5 - 3 are I solutions. But can there be irrational numbers which will not serve as a solu-1 tion to a single one of the infinite number of different polynomial j equations in each of all the infinite number of degrees possible? In 1844 the French mathematician Joseph Liouville finally found a way of showing that such nonalgebraic numbers did exist. (No, I don't know how he did it, but if any reader thinks I can understand the method, and I must warn him not to overestimate me, he is welcome to send it in.) However, having proved that nonalgebraic numbers existed, Liouville could still not find a specific example. The nearest he came was to show that a number represented by the symbol e could not serve as the root for any conceivable equation of the second degree. ( At this point I am tempted to launch into a discussion of the number e because, as I said at the start of the previous chapter, there is the famous equation e .. , = -1. But I�!,Lt�ist temptation. I'll say only that e is an irrational number with a vrue that has now been calculated to sixty thousand places, of which the first twenty-five decimals are: 2.7182818284590452353602874.) Then, in 1873, the French mathematician Charles Hermite worked out. a method of analysis that showed that e could not be the root of 
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any conceivable equation of any conceivable degree and hence was 
actually not an algebraic number. It was, in fact, what is called a 
"transcendental number," one which transcends (that is, goes beyond) 
the algebraic operations and cannot be produced from the integers 
by any finite number of those operations. (That is, Y2 is irrational 

� 

but can be produced by a single algebraic operation, taking the square 
I root of 2. The value of e, on the other hand, can only be calculated 

by the use of infinite series involving an infinite number of additions, I 
divisions, subtractions, and so on.) 

I Using the methods developed by Hermite, the German mathemati
cian Ferdinand Lindemann in 1882 proved that 1r, too, was a tran- I 
scendental number. I This is crucial for the purposes of this article, for it meant that a 

! line segment equivalent to 1T cannot be built up by the use of the 
straightedge and compass alone in a finite number of manipulations. I 
The circle cannot be squared by straightedge and compass alone. It is 
as impossible to do this as to find an exact value for VZ., or to find an 

( odd number that is an exact multiple of 4.  
I 
j One odd point about transcendental numbers-

They were difficult to find, but now that they have been, they prove 
to be present in overwhelming numbers. Practically any expression 
that involves either e or 1r is transcendental, provided the expression 
is not arranged so that the e or 1T cancel out. Practically all expres-

I 
sions involving logarithms (which involve e) and practically all ex
pressions involving trigonometric functions (which involve '11') are 
transcendental. Expressions involving numbers raised to an irrational I 
power, such as xv2, are transcendental. ' 

In fact, if you refer back to Chapter 3, you will understand me 
when I say that it has been proved that the algebraic numbers can be 
put into one-to-one correspondence with the integers, but the tran
scendental numbers can not. 

This means that the algebraic numbers, although infinite, belong to 
the lowest of the transfinite numbers, � , while the transcendental 
numbers belong to the next higher trans&nite, �1 • There are thus 
infinitely more transcendental numbers than there are algebraic 
numbers. 

1 
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To be sure, the fact that the transcendentality of 1r is now well 
established and has been for nearly a century doesn't stop the ardent 
circle-squarers, who continue to work away desperately with straight
edge and compass and continue to report solutions regularly. 

So if you know a way to square the circle by straightedge and 
compass alone, I congratulate you, but you have a fallacy in your 
proof somewhere. And it's no use sending it to me, because I'm a 
rotten mathematician and couldn't possibly find the fallacy, but I tell 
you anyway, it's there. 
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When l was a mere sUp of a lad and attended college, 1 had a friend 
with whom I ate lunch every day. His 11 A.M. class was in sociology, 
which I absolutely refused to take, and my 11 A.M. class was calculus, 
which he as steadfastly refused to take-so we had to separate at 
eleven and meet at twelve. 

As it happened, his sociology professor was a scholar who did 
things in the grand manner, holding court after class was over. The 
more eager students gathered close and listened to him pontificate for 
an additional fifteen minutes, while they threw in an occasional log 
in the form of a question to feed the flame of oracle. 

Consequently, when my calculus lecture was over, I had to enter 
the sociology room and wait patiently for court to conclude. 

Once I walked in  when the professor was listing on the board his 
classification of mankind into the two groups of mystics and realists, 
and under mystics he had included the mathematicians along with the 
poets and theologians. One student wanted to know why. 

"Mathematicians," said the professor, 0are mystics because they be
lieve in numbers that have no reality." 

Now ordinarily, as a nonmember of the class, I sat in the comer 
and suffered in silent boredom, but now I rose convulsively, and said, 
"What numbers?" 

The professor looked in my direction and said, "The square root 
of minus one. It has no existence. Mathematicians call it imaginary. 
But they believe it has some kind of existence in a mystical way." 

"There's nothing mystical about it," I said, angrily. "The square 
root of minus one i s  just as real as any other number." 

The professor smiled, feeling he had a live one on whom he could 
now proceed to display his superiority of intellect (I have since had 
classes of my own and I know exactly how he felt) .  He said, silkily, 
"We have a young mathematician here who wants to prove the reality 

,. 

J 
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of the square root of minus one. Come, young man, hand me the 
square root of minus one pieces of chalk!" 

I reddened, "Well, now, wait-" 
"That's all," he said, waving his hand. Mission, he imagined, ac

complished, both neatly and sweetly. 
But I raised my voice. "I'll do it. I'U do it. I'll hand you the square 

root of minus one pieces of chalk, if you band me a one-half piece of 
. chalk." 

The professor smiled again, and said, "Very well," broke a fresh 
piece of chalk in half, and handed me one of the halves. "Now for 
your end of the bargain." 

"Ah, but wait," I said, "you haven't fulfilled your end. This is one 
piece of chalk you've handed me, not a one-half piece." I held it up 
for the others to see. "Wouldn't you all say this was one piece of 
chalk? It certainly isn't two or three." 

Now the professor wasn't smiling. "Hold it. One piece of chalk is a 
piece of regulation length. You have one that's half the regulation 
length." 

I said, "Now you're springing an arbitrary definition on me. But 
even if I accept it, are you willing to maintain that this is a one-half 
piece of chalk and not a 0.48 piece or a 0.52 piece? And can you 
really consider youtself qualified to discuss the square root of minus 
one, when you're a little hazy on the meaning of one half?" 

But by now the professor had lost his equanimity altogether and 
his final argument was unanswerable. He said, "Get the hell out of 
here!" I left (laughing) and thereafter waited for my friend in the 
corridor. 

Twenty years have passed since then and I suppose I ought to finish 
the argument-

Let's start with a simp1e algebraic equation such as x + 3 = 5. The 
expression, x, represents some number which, when substituted for x, 
makes the expression a true equality. In  this particular case x must 
equal 2, since 2 + 3 = 5, and so we have "solved for x." 

The interesting thing about this solution is that it is the only solu
tion. There is no number but 2 which will give 5 when 3 is added to it. 

This is true of any equation of this sort, which is called a "linear 
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equation" (because in geometry it can be represented as a straight 
line) or "a polynomial equation of the first degree." No polynomial 
equation of the first degree can ever have more than one solution for x. 

There are other equations, however, which can have more than one 
solution. Here's an example: x2 - 5x + 6 = 0, where x2 ("x. square" 
or "x squared") represents x times x. This is called a "quadratic equa
tion," from a Latin word for "square," because it involves x square. It 
is also called "a polynomial equation of the second degree'' because of 
the little 2 in x2

• As for x itself, that could be written x1, except that 
the 1 is always omitted and taken for granted, and that is why x + 3 
= 5 is an equation of the first degree. 

If we take the equation x2 - 5x + 6 = 0, and substitute 2 for x, then 
x2 is 4, while 5x is 10, so that the equation becomes 4 - 10 + 6 = 0, 
which is correct, making 2 a solution of the equation. 

However, if we substitute 3 for x, then x2 is 9 and 5x is 15, so 
that the equation becomes 9 - 1 5  + 6 = 0, which is also correct, mak
ing 3 a second solution of the equation. 

Now no equation of the second degree bas ever been found which 
has more than two solutions, but what about polynomial equations 
of the third degree? These are equations containing x3 ("x cube" or "x 

cubed"),  which are therefore also called "cubic equations." The ex
pression x3 represents x times x times x. 

The equation x8 - 6x2 + 1 Ix - 6 = 0 has three solutions, since you 
can substitute 1 ,  2, or 3 for x in this equation and come up with a 
true equality in each case. No cubic equation has ever been found 
with more tban three solutions, however. 

In the same way polynomial equations of the fourth degree can be 
constructed which have four solutions but no more; polynomial equa
tions of the fifth degree, which bave five solutions but no more; and 
so on. You might say, then, that a polynomial equation of the nth 
degree can have as many as n solutions, but never more than n. 

Mathematicians craved something even prettier than that and by 
about 1800 found it. At that time, the German mathematician Karl 
Friedrich Gauss showed that every equation of the nth degree had 

. 
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exactly n solutions, not only no more, but also no less. 
j However, in onter to make the fundamental theorem true, our no-_
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tion of what constitutes a solution to an algebraic equation must be 
drastically enlarged. 

To begin with, men accept the "natural numbers" only: 1, 2, 3, 
and so on. This is adequate for counting objects that are only consid· 
ered as units generally. You can have 2 children, 5 cows, or 8 pots; 
while to have 2i- children, St cows, or 8i pots does not make much 
sense. 

In measuring continuous quantities such as lengths or weights, how
ever, fractions became essential. The Egyptians and Babylonians man
aged to work out methods of handling fractions, though these were 
not very efficient by our own standards; and no doubt conservative 
scholars among them sneered at the mystical mathematicians who be
lieved in a number like 5}, which was neither 5 nor 6. 

Such fractions are really ratios of whole numbers. To say a plank 
of wood is 2f yards long, for instance, is to say that the length of the 
plank i s  to the length of a standard yardstick as 21 is to 8. The Greeks, 
however, discovered that there were definite quantities which could 
not be expressed as ratios of whole numbers. The first to be discovered ., 
was the square root of 2, commonly expressed as y2, which is that;=
number which, when multiplied by itself, gives 2. There is such a num
ber but it cannot be expressed as a ratio; hence, it is an "irrational 
number." 

Only thus far did the notion of number extend before modem times. 
Thus, the Greeks accepted no number smaller than zero. How can 
there be less than nothing? To them, consequently, the equation 
x + 5 = 3 had no solution. How can you add 5 to any number and 
have 3 as a result? Even if you added 5 to the smaUest number (that 
is, to zero), you would have 5 as the sum, and if you added 5 to any 
other number (which would have to be larger than zero), you would 
have a sum greater than 5. 

The first mathematician to break this taboo and make systematic 
use of numbers less than zero was the Italian, Girolamo Cardano. 
After all, there can be less than nothing. A debt is less than nothing. 

If all you own in the world is a two-dollar debt, you have two dol
lars less than nothing. If you are then given five dollars, you end with 
three dollars of your own (assuming you are an honorable man who 
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pays his debts). Consequently, in the equation x + 5 = 3, x can be set 
equal to -2, where the minus sign indicates a number less than zero. 

Such numbers are called "negative numbers," from a Latin word 
meaning "to deny," so that the very name carries the traces of the 
Greek denial of the existence of such numbers. Numbers greater than 
zero are "positive numbers" and these can be written + 1, + 2, + 3, and 
so on. 

From a practical standpoint, extending the number system by in
cluding negative numbers simplifies all sorts of computations; as, for 
example, those in bookkeeping. 

From a theoretical standpoint, the use of negative numbers means 
that every equation of the first degree has exactly one solution. No 
more; no less. 

If we pass on to equations of the second degree, we find that the 
Greeks would agree with us that the equation x2 - 5x + 6 = 0 has two 
solutions, 2 and 3. They would say, however, that the equation 
x2 + 4x - 5 = 0 has only one solution, 1. Substitute 1 for x and x2 is I, 
while 4x is 4, so that the equation becomes 1 + 4 - 5 = 0. No other 
number will serve as a solution, as long as you restrict yourself to 
positive numbers. 

However, the number -5 is a solution, if we consider a few rules 
that are worked out in connection with the multiplication of negative 
numbers. In order to achieve consistent results, mathematicians have 
decided that the multiplication of a negative number by a positive 
number yields a negative product, while the multiplication of a nega
tive number by a negative number yields a positive product. 

If, in the equation x2 + 4x -5 = 0, -5 is substituted for x, then x2 

becomes - 5  times -5, or +25, while 4x becomes +4 times -5, or 
-20. The equation becomes 25 -20 - 5 = 0, which is true. We 
would say, then, that there are two solutions to this equation, + 1 and 
-5. 

Sometimes, a quadratic equation does indeed seem to have but a 
single root, as, for example, x2 - 6x + 9 = 0, which will be a true 
equality if and only if the number +3 is substituted for x. However, 
the mechanics of solution of the equation show that there are actually 
two solutions, which happen to be identical. Thus, x2 - 6x + 9 = 0 can 
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be converted to ( x -3 ) (  x - 3) = 0 and each ( x - 3) yields a solution. ' 
The two solutions of this equation are, therefore, +3 and +3. 

Allowing for occasional duplicate solutions, are we ready to say 
then that all second-degree equations can be shown to have exactly 
two solutions if negative numbers are included in the number system? 

Alas, no! For what about the equation x2 + 1 = 0. To begin with, 
x2 must be -1, since substituting -1 for x2 makes the equation 
-1 + 1 = 0, which is correct enough. 

But if x2 is -1, then x must be the famous square root of minus one 
(y'-1 ), which occasioned the set-to between the sociology professor 
and myself. The square root of minus one is that number which when 

r multiplied by itself will give -1. But there is no such number in the 
set of positive and negative quantities, and that is the reason the so
ciology professor scorned it. First, + 1 times + 1 is + 1; secondly, -1 
times -1 is +1. 

To allow any solution at all for the equation x2 + 1 = 0, let alone 
two solutions, it is necessary to get past this roadblock. If no positive 
number will do and no negative one either, it is absolutely essential to 
define a completely new kind of number; an imaginary number, if you 
like; one with its square equal to -1. 

We could, if we wished, give the new kind of number a special sign. 
The plus sign does for positives and the minus sign for negatives; so 
we could use an asterisk for the new number and say that * I ("star 
one") times * 1 was equal to -1. 

However, this was not done. Instead, the symbol i (for "imagi
nary") was introduced by the Swiss mathematician Leonhard Euler 
in 1777 and was thereafter generally adopted. So we can write i = 
y=T or i2 = -1. · 

Having defined i in this fashion, we can express the square root of 
any negative number. For instance, � can be written y4 times 
v-f, or 2i. In general, any square root of a negative number, y-n, 

can be written as the square root of the equivalent positive number 
times the square root of minus one; that is, Fn = yn i. 

In this way, we can picture a whole series of imaginary numbers 
exactly analogous to the series of ordinary or "real numbers." For 1, 
2, 3, 4, . . . , we would have i, 2i, 3i, 4i. . • . This would include 
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fractions, for f would be matched by ,¥; ! � by 1
1 
�', and so on. It 

would also include irrationals, for \/2 would be matched by y2 i and 
even a number like 1T (pi) would be matched by 1ri. 

These are all comparisons of positive numbers with imaginary num. 
bers. What about negative numbers? Well, why not negative imagi. 
naries, too? For -1, -2, -3, -4, . . .  , there would be -i, -2i, -3i, 
-4i . . . .  

So now we have four classes of numbers: 1 )  positive real numbers, 
2) negative real numbers, 3) positive imaginary numbers, 4) nega. 
tive imaginary numbers. (When a negative imaginary is multiplied by 
a negative imaginary, the product is negative.) 

Using this further extension of the number system, we can find the 
necessary two solutions for the equation x2 + 1 = 0. They are +i and 
-i. First +i times +i equals -1, and secondly -i times -i equals -1, 
so that in either case, the equation becomes -1 + 1 = 0, which is a true 
equality. 

In fact, you can use the same extension of the number system to 
find all four solutions for an equation such as x4 - 1 = 0. The solu
tions are +l, -1, +i, and -i. To show this, we must remember that 
any number raised to the fourth power is equal to the square of that 
number multiplied by itself. That is, n4 equals n2 times n2• 

Now let's substitute each of the suggested solutions into the equa
tions so that x4 becomes successively ( + 1 )4, (-1 )4, ( +i)4, and 
(-i)'. 

First (+l)<t equals (+1)2 times (+1)2, and since (+1)2 equals 
+ 1, that becomes + 1 times + 1, which is + 1 .  

Second, (-1)4 equals (-1)2 times (-1)2, and since (-1)2 also 
equals + 1, the expression is again + 1 times + 1,  or + 1. 

Third, ( +i)4 equals ( +i)2 times ( +i)2 and we have defined 
(+i)2 as -1, so that the expression becomes -1 times -1, or +l. 

Fourth, (-i)4 equals (-i)2 times (-i)2, which is also -1 times 
-1, or +I. 

All four suggested solutions, when substituted into the equation 
x4 - 1 = 0, give the expression + 1 - 1 = 0, which is correct. 

It might seem all very well to talk about imaginary numbers-for 
a mathematician. As long as some defined quantity can be made sub-

I 
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ject to rules of manipulation that do not contradict anything else in 
the mathematical system, the mathematician is happy. He doesn't 
really care what it "means." 

Ordinary people do, though, and that's where my sociologist's 
charge of mysticism against mathematicians arises. 

And yet it is the easiest thing in the world to supply the so-called 
"imaginary" numbers with a perfectly real and concrete significance. 
Just imagine a horizontal line crossed by a vertical line and call the 
point of intersection zero. Now you have four lines radiating out at 
mutual right angles from that zero point. You can equate those lines 
with the four kinds of numbers. 

If the line radiating out to the right is marked off at equal intervals, 
the marks can be numbered + 1, +2, +3, +4, . . .  , and so on for as 
long as we wish, if we only make the line long enough. Between the 
markings are all the fractions and irrational numbers. In fact, it can 
be shown that to every point on such a line there corresponds one 
and only one positive real number, and for every positive real num
ber there is one and only one point on the line. 

The line radiating out to the left can be similarly marked off with 
the negative real numbers, so that the horizontal line can be con
sidered the "real-number axis," including both positives and negatives. 

Similarly, the line radiating upward can be marked off with the 
positive imaginary numbers, and the one radiating downward with 
the negative imaginary numbers. The vertical line is then the imagi
nary-number axis. 

Suppose we label the different numbers not by the usual signs and 
symbols, but by the directions in which the lines point. The rightward 
line of positive real numbers can be called East because that would 
be its direction of extension on a conventional map. The leftward 
line of negative real numbers would be West; the upward line of posi
tive imaginaries would be North; and the downward line of negative 
imaginaries would be South. 

Now if we agree that + 1 times + 1 equals + 1, and if we concen
trate on the compass signs as I have defined them, we are saying that 
East times East equals East. Again since -1 times -1 also equals + 1, 
West times West equals East. Then, since +i times +i equals -1, and 
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so does -i times -i, then North times North equals West and so does 
South times South. 

We can also make other combinations such as -1 times +i, which 
equals -i (since positive times negative yields a negative product even 
when imaginaries are involved), so that West times North equals 
South. If we list all the possible combinations as compass points, 
abbreviating those points by initial letters, we can set up the follow
ing system: 

E X E = E  
S X E = S  

W X E = W  
N X E = N  

E x S = S  
S x S = W  

W x S = N  
N X S = E  

E X W = W  
S x W = N  

W X W = E  
N x W = S  

E x N = N  
S X N = B  

W X N = S  
N x N = W  

There is a very orderly pattern here. Any compass point multiplied 
by East is left unchanged, so that East as a multiplier represents a 
rotation of 0°. On the other hand, any compass point multiplied by 
West is rotated through 180° ("about face"). North and South repre
sent right-angle turns. Multiplication by South results in a 90° clock
wise tum ("right face") ; while multiplication by North results in a 
90° counterclockwise tum ("left face") . 

Now it so happens that an unchanging direction is the simplest 
arrangement, so East (the positive real numbers) is easier to handle 
and more comforting to the soul than any of the others. West (the 
negative real numbers), which produces an about face but leaves one 
on the same line at least, is less comforting, but not too bad. North 
and South (the imaginary numbers), which send you off in a new 
direction altogether, are least comfortable. 

But viewed as compass points, you can see that no set of numbers 
is more "imaginary" or, for that matter, more "real" than any other. 

Now consider how useful the existence of two number axes can be. 
As long as we deal with the real numbers only, we can move along 
the real-number axis, backward and forward, one-dimensionally. The 
same would be true if we used only the imaginary-number axis. 

Using both, we can define a point as so far right or left on the 
real-number axis and so far up or down on the imaginary-number 
axis. This will place the point somewhere in one of the quadrants 
formed by the two axes. This is precisely the manner in which points 

THE IMAGINARY THAT ISN'T 69 

are located on the earth's surface by means of latitude and longitude. 
We can speak of a number such as +5 + Si, which would repre7 

sent the point reached when you marked off 5 units East followed by 
5 units North. Or you can have -7 + 6i or +0.5432 - 9.l l Si or 
+\/'2+0 i. 

Such numbers, combining real and imaginary units, are called 
"complex numbers." 

Using both axes, any point in a plane ( and not merely on a line) 
can be made to correspond to one and only one complex number. 
Again every conceivable complex number can be made to correspond 
to one and only one point on a plane. 

In fact, the real numbers themselves are only special cases of the 
complex numbers, and so, for that matter, are the imaginary numbers. 
If you represent complex numbers as all numbers of the form 
+a+ bi, then the real numbers are all those complex numbers in  
which b happens to be equal to zero. And imaginary numbers are all 
the complex numbers in which a happens to be equal to zero. 

The use of the plane of complex numbers, instead of the lines of 
real numbers only, has been of inestimable use to the mathematician. 

For instance, the number of solutions in a polynomial equation is  
equal to its degree only if complex numbers are considered as solu
tions, rather than merely real numbers and imaginary numbers. For 
instance the two solutions of x2 - 1 = 0 are +1 and -1, which can 
be written as + 1 + Oi and -1 + Oi. The two solutions of x2 + 1 = 0 
are +i and -i, or O + i and O - i. The four solutions of x4 - 1 = 0 
are all four complex numbers just listed. 

In all these very simple cases, the complex numbers contain zeros 
and boil down to either real numbers or to imaginary numbers. This, 
nevertheless, is not always so. In the equation x1 - I = 0 one solu
tion, to be sure, is + 1 + Oi ( which can be written simply as + 1), 
but the other two solutions are -i + iv'3 i and -t - !v'3 i. 

The Gentle Reader with ambition can take the cube of either of 
these expressions (if he remembers how to multiply polynomials al
gebraically) and satisfy himseH that it will come out + 1. 

Complex numbers are of practical importance too. Many familiar 
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measurements involve "scalar quantities" which differ only in magnj. 
tude. One volume is greater or less than another; one weight is greater 
or less than another; one density is greater or less than another. For 
that matter, one debt is greater or less than another. For all such 
measurements, the real numbers, either positive or negative, suffice. 

However, there are also "vector quantities" which possess both 
magnitud: and. direction. A velocity may differ from another velocity 
not only ID bemg greater or less, but in being in another direction 
This holds true for forces, accelerations, and so on. 

For such vector quantities, complex numbers are necessary to the 
mathematical treatment, since complex numbers include both magni
tude and direction (which was my reason for making the analogy 
between the four types of numbers and the compass points). 

Now, when my sociology professor demanded "the square root of 
minus one pieces of chalk,'' he was speaking of a scalar phenomenon 
for which the real numbers were sufficient. 

On the other hand, bad he asked me how to get from his room to 
a certain spot on the campus, he would probably have been angered 
if I had said, "Go two hundred yards." He would have asked, with 
asperity, "In which direction?" 

Now, you see, be would have been dealing with a vector quantity 
for which the real numbers are insufficient. I could satisfy him by 
saying "Go two ·hundred yards northeast," which is equivalent to 
saying "Go 100\/2 plus 100\/2 i yards." 

Surely it is as ridiculous to consider the square root of minus one 
"imaginary" because you can't use it to count pieces of chalk as to 
consider the number 200 as "imaginary" because by itself it cannot 
express the location of one point with reference to another. 

l 

7 PRE-FIXING IT UP 

I go through lite supported and bolstered by many comf Orting myths, 
as do all of us. One of my own particularly cherished articles of faith 
is that there are no arguments against the metric system and that the 
common units make up an indefensible farrago of nonsense that we 
keep out of stubborn folly. 

Imagine the sobering effect, then, of having recently come across 
a letter by a British gentleman who bitterly denounced the metric 
system as being artificial, sterile, and not geared to human needs. For 
instance, he said (and I don't quote exactly), if one wants to drink 
beer, a pint of beer is the thing. A liter of beer is too much and hall a 
liter is too little, but a pint, ah, that's just rigbt.1 

As far as I can tell, the gentleman was serious in his provincialism, 
and in considering that that to which he is accustomed has the force 
of a natural law. It reminds me of the pious woman who set her face 
firmly against all foreign languages by holding up her Bible and say
ing, "If the English language was good enough for the prophet Isaiah, 
and the apostle Paul, it is good enougb for me." 

But mainly it reminds me that I want to write an essay on the metric 
system. 

In order to do so, I want to begin by explaining that the value of 
the system does not lie in the actual size of the basic units. Its worth 
is this: that it is a logical system. The units are sensibly interrelated. 

All other sets of measurements with which I am acquainted use 
separate names for each unit involving a particular type of quantity. 
In distance, we ourselves have miles, feet, inches, rods, furlongs, and 
so on. In volume, we have pecks, bushels, pints, drams. In weight, 

1 Before you write to tell me that half a liter is larger than a pint, let me ex• 
plain that though it is larger than an American pint, it is smaller than a British 
pint. 
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we have ounces, pounds, tons, grains. It is like the Eskimos, who are 
supposed to have I don't know how many dozens of words for snow 
a different word for it when it is falling or when it is lying there, whe� 
it is loose or packed, wet or dry, new-fallen or old-fallen, and so on. 

We ourselves see the advantage in using adjective-noun combina
tions. We then have the noun as a general term for all kinds of snow 
and the adjective describing the specific variety: wet snow, dry snow, 
hard snow, soft snow, and so on. What's the advantage? First, we 
see a generalization we did not see before. Second, we can use the 
same adjectives for other nouns, so that we can have hard rock, hard 
bread, hard heart, and consequently see a new generalization, that of 
hardness. 

The metric system is the only system of measurement which, to my 
knowledge, has advanced to this stage. 

Begin with an arbitrary measure of length, the meter ( from the 
Latin metrum or the Greek metron, both meaning "to measure"). 
Leave that as the generic term for length, so that all units of length 
are meters. Differentiate one unit of length from another by means 
of an adjective. That, in my opinion, would be fixing it up right. 

To be sure, the adjectives in the metric system (lest they get lost 
by accident, I suppose) are firmly jointed to the generic word and thus 
become prefixes. (Yes, Gentle Reader, in doing this to the measure
ment system, they were "pre-fixing it up.") 

The prefixes were obtained out of Greek and Latin in accordance 
with the fo1Iowing little table: 

English Greek Latin 
thousand chilioi roille 
hundred hecaton centum 
ten deka decem 

Now, if we save the Greek for the large units and the Latin for the 
small ones, we have: 

1 kilometer2 
1 hectometer 
1 dekameter 

equals 
equals 
equals 

1000 
100 

IO 

meters 
meters 
meters 

2 The 9reek ch has the guttural German ch sound. The French, who invented 
the metnc system, have no such sound in their language and used k instead as 
the nearest approach. That is why chilioi becomes kilo. Since we don't have the 
guttural ch either, this suits us fine. 

I 
I 
I 
I i 
I . 
I 
I 
I 
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1 meter equals 1 meter 
I decimeter equals 0.1 meter 
1 centimeter equals 0.01 meter 
1 millimeter equals 0.001 meter 

It doesn't matter how long a meter is; all the other units of length 
are as defined. If you happen to know the length of the meter in terms 
of yards or of wavelengths of light or of two marks on a stick, you 
automatically know the lengths of all the other units. Furthermore, 
by having all the sub-units vary by powers of ten, it becomes very easy 
(given our decimal number system) to convert one into another. 
For instance, I can tell you right off that there are exactly one million 
millimeters in a kilometer. Now you tell me right off how many inches 
there are in a mile. 

And again, once you have the prefixes memorized, they will do for 
any type of measurement. Ii you are told that a "poise" is a measure 
of viscosity, it doesn't matter how large a unit it is or how it is related 
to other sorts of units or even what, exactly, viscosity is. Without 
knowing anything at all about it, you still know that a ceotipoise is 
equal to a hundredth of a poise, that a hectare is a hundred ares, that 
a decibel is a tenth of a bel; and even that a "kilobuck" is equal to a 
thousand dollars.a 

In one respect and, to my mind, in only one were the French sci
entists who established the metric system in 1795 shortsighted. They 
did not go past the thousand mark in their prefix system. 

Perhaps they felt that once a convenient basic unit was selected for 
some measurable quantity, then a sub-unit a thousand times larger 
would be the largest useful one, while a sub-unit a thousandth as large 
would be the smallest. Or perhaps they were influenced by the fact 
that there is no single word in Latin for any number higher than a 
thousand. (Words like million and billion were invented in the late 
middle ages and in early modern times.) 

The later Greeks, to be sure, used myrias for ten thousand, so it 
is possible to say "myriameter" for ten thousand meters, but this is 
hardly ever used. People say "ten kilometers" instead. 

The net result, then, is that the metric system as organized originally 
s If anyone wants to write that a millipede is a thousandth of a pede and that 

one centipede equals ten millipedes, by all means, do-but I won't listen. 



74 ADDING A DIMENSION offers prefixes that cover only six orders of magnitude. The largest unit, "kilo," is one million (106) times as great as the smallest unit "milli," and it is the exponent, 6, that marks the orders of magnitude. Scientists could not, however, stand still for this. Six orders of magnitude may do for everyday life, but as the advance of instrumentation carried science into the very large and very small in almost every field of measurement, the system simply had to stretch. Unofficial prefixes came into use for units above the kilo and below the milli and of course that meant the danger of nonconformity (which is a bad thing in scientific language). For instance, what we call a "Bev" (billion electron-volts), the British call a "Gev" (giga-electronvolts) .  In 1958, then, an extended set of prefixes, at intervals of three orders of magnitude, was agreed upon by the International Committee on Weights and Measures at Paris. Here they are, with a couple of the older ones thrown in for continuity: 
Size trillion ( 1012) billion ( 109) million ( 100) thousand (103) one (100) thousandth (IO-a) millionth (lO-O) billionth (10-0) trillionth 00-12) 

Prefix 

tera• giga-mega-kilo-
milli• micro-nano-pico-

Greek Root 

teras ("monster") 
gigas ( "giant") megas ("great") 
mikros ("small") 
nanos ("dwarf") 

The prefix pico- does not have a Greek root. Well, then, we have a "picometer" as a trillionth of a meter, a "nanogram" as a billionth of a gram, a "gigasecond" as a billion seconds, and a "teradyne" as a trillion dynes. Since the largest unit, the tera, is 1024 times the smallest unit, the pico, the metric system now stretches not merely over 6, but over a full 24 orders of magnitude. In 1962 femto- was added for a quadrillionth (10-1") and atto- for a quintillionth (l0-18) .  Neither prefix has a Greek root. This extends the metric system over 30 orders of magnitude. Is this too much? Have we overdone it, perhaps? Well, let's see. 

1 

I 
I 

PRE-FIXING IT UP 15 The metric unit of length is the meter. I won't go into the story of how it was fixed at its precise length, but that precise length in terms of familiar units is 1.093611 yards or 39 .37 inches. A kilometer, naturally, is a thousand times that, or 1093.6 yards, which comes out to 0.62137 miles. We won't be far off if we call a kilometer i of a mile. A mile is sometimes said to equal "twenty city blocks"; that is, the distance between, let us say, 59th Street and 79th Street in Manhattan. If so, a kilometer would represent 12! city blocks, or the distance from halfway between 66th and 67th streets to 79th Street. For a megameter we increase matters three orders of magnitude and it is equal to 621.37 miles. This is a convenient unit for planetary measurements. The air distance from Boston, Massachusetts, to San Francisco, California, is just about 4} megameters. The diameter of the earth is 12! megameters and the circumference of the earth is about 40 megameters. And finally, the moon is 380 megameters from the earth. Passing on to the gigameter, we have a unit 621,370 miles long, and this comes in handy for the nearer portions of the solar system. Venus at its closest is 42 gigameters away and Mars can approach us as c1osely as 58 gigameters. The sun is 145 gigameters from the earth and Jupiter, at its closest, is 640 gigameters distant; at its farthest, 930 gigameters away. Finally, by stretching to the limit of the newly extended metric system, we have the terameter, egual to 621,370,000 miles. This will allow us to embrace the entire solar system. The extreme width of Pluto's orbit, for instance, is not quite 12 terameters. The solar system, however, is just a speck in the Galaxy. For measuring distances to the stars, the two most common units are the lightyear and the parsec, and both are outside the metric system. What's more, even the new extension of the system can't reach them. The light-year is the distance that light travels in one year. This is about 5,880,000,000,000 miles or 9450 terameters. The parsec is the distance at which a star would appear to us to have a parallax of one second of arc (parallax-second, get it), and that is equal to 3.26 lightyears, or about 30,000 terameters. Even these nonmetric units err on the small side. If one were to 



76 ADDING A DIMENSION draw a sphere about the solar system with a radius of one parsec, not a single known star would be found within that sphere. The nearest stars, those of the Alpha Centauri system, are about 1.3 parsecs away. There are only thirty-three stars, out of a hundred billion or so in the Galaxy, closer to our sun than four parsecs, and of these only seven are visible to the naked eye. There are many stars beyond this-far beyond this. The Galaxy as a whole has a diameter which is, at its longest, 30,000 parsecs. Of course, we might use the metric prefixes and say that the diameter of the Galaxy is 30 kiloparsecs. But then the Galaxy is only a speck in the entire universe. The nearest extragalactic structures are the Magellanic Clouds, which are 50 kiloparsecs away, while the nearest full-size galaxy to our own is Andromeda, which is 700 kiloparsecs away. And there are hundreds of billions of galaxies beyond at a distance of many megaparsecs. The farthest galaxies that have been made out have distances estimated at about two billion parsecs, which would mean that the entire visible universe, as of now, has a diameter of about 4 gigaparsecs. Suppose, now, we consider the units of length in the other direction -toward the very small. A micrometer is a good unit of length for objects visible under the ordinary optical microscope. The body cells, for instance, average about 4 micrometers in diameter. (A micrometer is often called a "micron.") Drop down to the nanometer (often called a "millimicron") and it can be conveniently used to measure the wavelengths of visible light. The wavelength of the longest red light is 760 nanometers, while that of the shortest violet light is 380 nanometers. Ultraviolet light has a range of wavelengths from 380 nanometers down to 1 nanometer. Shrinking the metric system to its tiniest, we have the picometer, or a trillionth of a meter. Individual atoms have diameters of from 100 to 600 picometers. And soft gamma rays have wavelengths of about 1 picometer. The diameter of subatomic particles and the wavelengths of the hard gamma rays go well below the picometer level, however, reaching something like 1 femtometer. 

PRE-FIXING IT UP 77 The full range of lengths encountered by present-day science, from the diameter of the known universe at one extreme, to the diameter of a subatomic particle at the other, covers a range of 41 orders of magnitude. In other words, it would take 1041 protons laid side by side to stretch across the known universe. 
What about mass? The fundamental unit of mass in the metric system is the gram, a word derived from the Greek gramma, meaning a letter of the alphabet. 4 It is a small unit of weight, equivalent to 2 8\ 5 ounces. A kilogram, or a thousand grams, is equal to 2.205 pounds, and a megagram is therefore equal to 2205 pounds. The megagram is almost equal to the long ton (2240 pounds) in our own units, so it is sometimes called the "metric ton" or the "tonne." The latter gives it the French spelling, but doesn't do much in the way of differentiating the pronunciation, so I prefer metric ton. A gigagram is 1000 metric tons and a teragram is 1,000,000 metric tons and this is large enough by commercial standards. These don't even begin, however, to scratch the surface astronomically. Even a comparatively small body like the moon has a mass equal to 73 trillion teragrams. The earth is 81 times more massive and bas a mass of nearly 6 quadrillion teragrams. And the sun, a merely average star, has a mass 330,000 times that of the earth. Of course, we might use the sun itself as a unit of weight. For instance, the Galaxy has a total mass equal to 150,000,000,000 times that of the sun, and we could therefore say that the mass of the Galaxy is equal to 150 gigasuns. Since it is also estimated that in the known universe there are at least 100,000,000,000 galaxies, then, assuming ours to be of average mass, that would mean a minimum total mass of the universe equal to 15,000,000,000 terasuns or 100 gigagalaxies. Suppose, now, we work in the other direction. A milligram, or a thousandth of a gram, represents a quantity of matter easily visible to the naked eye. A drop of water would weigh about 50 milligrams. 
4 The Greeks marked small weights with letters of the alphabet to indicate 

their weight, for they used letters to represent numbers, too. 
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Drop to a microgram, or a millionth of a gram, and we are in the 
microscopic range. An amoeba would weigh in the neighborhood of 
five micrograms. 

The cells of our body are considerably smaller and for them we 
drop down to the nanogram, or a billionth of a gram. The average liver 
cell has a weight of about two nanograms. 

Below the cells are the viruses, but even if we drop to the picogram, 
a trillionth of a gram, we do not reach that realm. The tobacco-mosaic 
virus, for instance, weighs only 66 attograms. 

Nor is that particularly near the bottom of the scale. There are 
molecules far smaller than the smallest virus, and the atoms that make 
up the molecules and the particles that make up the atom. Consider 
the following table: 

hemoglobin molecule 
uranium atom 

proton 
electron 

Weight in Attograms 

0.1 
0.0004 
0.00000166 
0.0000000009 

All told, the range in mass from the electron to the minimum total 
mass of the known universe covers 83 orders of magnitude. In other 
words, it would take 1088 electrons to make a heap as massive as the 
total known universe. 

In some ways, time (the third of the types of measurement I am 
considering) possesses the most familiar units, because that is the one 
place where the metric system introduced no modification at all. We 
still have the second, the minute, the hour, the day, the year, and so 
on. 

This means, too, that the units of time are the only ones used by 
scientists that lack a systematic prefix system. The result is that you 
cannot tell, offhand, the number of seconds in a week or the number 
of minutes in a year or the number of days in fifteen years. Neither 
can scientists. 

The fundamental unit of time is the second and we could, if we 
wished, build the metric prefixes on those as follows; 

I 

I 

I 
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1 second equals 
1 kilosecond equals 

1 megasecond equals 
1 gigasecond equals 
1 terasecond equals 

1 second 
16il minutes 
l U  days 
32 years 

32,000 years 

79 

It is sobering to think that I have lived only a little over lt  gigasec
onds; that civilization has existed for at most about 250 gigaseconds; 
and that man-like creatures may not have existed for more than 18 
teraseconds altogether. StiJI, that doesn't make much of an inroad into 
geologic time and even less of an inroad into astronomic time. 

Toe solar system has been in existence for about 150,000 terasec
onds and may well remain in existence without major change for 500,-
000 additional teraseconds. The smaller the star, the more carefully 
it hoards its fuel supply and a red dwarf may last without undue change 
for as long as 3,000,000 teraseconds. As for the total age of the uni
verse, past and future, I say nothing. There is no way of estimating, 
and the continuous-creation boys consider its lifetime to be eternal. 

I have one suggestion to make for astronomic time, however (a sug
gestion which I don't think is particularly original with me). The sun, 
according to reasonable estimates, revolves about the galactic center 
once every 200,000,000 years. This we could call a "galactic year" or, 
better, a "galyear." (An ugly word, but never mind!) One gaJyear 
is equal to 6250 teraseconds. On the other hand, a "picogalyear" is 
equal to 1 hour and 45 minutes. 

If we stick to galyears then, the entire fossil record covers at most 
onJy 3 galyears; the total life of the solar system thus far is only 25 gal
years; and the total life of a red dwarf as a red dwarf is perhaps 500 
galyears. 

But now I've got to try the other direction, too, and see what hap
pens for small units of time. Here at least there are no common units 
to confuse us. Scientists have therefore been able to use millisecond 
and microsecond freely, and now they can join to that nanosecond, picosecond, femtosecond, and attosecond. 

These small units of time aren't very useful in the macroscopic 
world. When a Gagarin or a Glenn circles the earth at 5 miles a sec
ond, he tra:vels less than 9 yards in a millisecond and less than a third 
of an inyh in microseconds. The earth itself, moving at a velocity of 



80 ADDING A DIMENSION 18t miles a second in its travels about the sun, moves only a little over an inch in a microsecond. 
In other words, at the microsecond level, ordinary motion is frozen out. However, the motion of light is more rapid than any ordinary motion, while the motion of some speeding subatomic particles is nearly as rapid as that of light. Therefore, let's consider the small units of time in terms of light. 

1 second 
millisecond 

1 microsecond 
1 nanosecond 
1 picosecond 

Distance Covered by Light 

186,200 miles 

186 miles 

327 yards 1 foot 

8
1
0 inch Now, you may think that at picosecond levels subatomic motion and even light-propagation is "frozen." After all, I dismissed earth's motion as "frozen" when it moved an inch. How much more so, then, when thousandths of an inch are in question. However, there is a difference. The earth, in moving an inch, moves 

6 0 o,o O o, 0 0 0 
of its own diameter. A speeding subatomic particle moving at almost the speed of light for a distance of 8

1
0 of an inch moves 120,-000,000,000 times its own diameter. To travel a hundred and twenty billion times its own diameter, the earth would have to keep on going for 1,500,000 years. For Gagarin or Glenn to have traveled for a hundred and twenty billion times their own diameter, they would have had to stay in orbit a full year. A subatomic particle traveling .,/0 of an inch is therefore anything but "frozen,,, and bas time to make a fabulous number of collisions with other subatomic particles or to undergo internal changes. As an example, neutral pions break down in a matter of 0.1 femtoseconds after formation. What's more, the omega-meson breaks down in something like 0.0001 attoseconds or, roughly, the time it would take light to cross the diameter of an atomic nucleus and back. The entire range of time, then, from the lifetime of an omega-meson to that of a red-dwarf star covers a range of 40 orders of magnitude. 

In other words, during the normal life of a red dwarf, some 1040 
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omega-mesons have time to come into existence and break down, one after the other. To summarize, the measurable lengths cover a range of 41 orders of magnitude, the measurable masses 83 orders of magnitude, and • the measurable times 40 orders of magnitude. Clearly, we are not overdoing it in expanding the metric system from 6 to 30 orders of inagnitude. 

I 
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8 THE RIGID VACUUM 

Probably the greatest dilemma facing the man who wants to write sci
ence fiction on the grand scale-and who is also conscientious-is that 
of squaring the existence of an interstellar society with the fact that 
travel at velocities greater than that of light in a vacuum (186,200 
miles per second) is considered impossible. 

There are a number of ways out, however, and I'll mention three. 
The most honest is to accept the limitation, and to assume instead that 
travelers experience time-dilatation. That is, a trip that takes two weeks 
from their own standpoint may take twenty years from the standpoint 
of those at home. This, of course, creates difficulties of plotting, and is 
therefore unpopular among most writers. 

The most daring and intriguing solution is E. E. Smith's "inertialess 

drive," in which matter is assumed to be freed of inertia. (As far as 
we know, by the way, this is impossible.) Matter without inertia can 
undergo an acceleration of any size by the application of any force 
however small. Smith assumed that matter would then be capable of 
attaining any velocity, even one far beyond that of light. 

Actually, this is unlikely. Photons and neutrinos have zero mass 
and therefore zero inertia, yet travel no faster than the velocity of 
light. Consequently, an inertialess drive would be of no help. 

There's another flaw here, too. The resistance of even the thinly
spread gas and dust in interstellar space would become significant as 
velocity rises. Eventually a limit to velocity would be set beyond which 
one could expect the ship to be melted and its occupants broiled. 

The most pedestrian solution is the one I use myself, which is to 
speak of "hyperspace." This involves higher dimensions and one 
usually drags in analogies concerning one's going through a piece of 
paper to get to the other side, instead of traveling all the way over to 
the far distant edge. 

In contrast to all this great thought given over to the problem of 

I 
I 

l 
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interstellar travel, very little is devoted to the problem of interstellar 
communication. According to the relativistic viewpoint of the universe, 
it is not simply matter that cannot be transported at speeds greater 
than that of light in a vacuum; it is any form of meaningful symbol. 

Well, then, suppose you don't want to travel to Sirius to see your 
girl friend; suppose you just want to put in a call and speak to her. 
How do you do that without having to wait sixteen years for the signal 
to make the round trip? 

As far as I know, when this facet of the problem is considered, it 
is tossed off with the word sub-etheric.1 And that, at last, brings me 
to the point. I want to explain what a science-fiction writer means by sub-etheric, and I want to do it in my own fashion; i.e., the long way 
round. 

The word ether bas had a long and splendid history, dating back to 
the time it was coined by Aristotle about 350 B.C. 

To Aristotle the manner in which an object moved was dictated by 
its own nature. Earthy materials fell and fiery particles rose because 
earthy materials had an innate tendency to fall and fiery particles an 
innate tendency to rise. Therefore, since the objects in the heavens 
seemed to move in a fashion characteristic of themselves ( they moved 
circularly, round and round, instead of vertically, up or down),  they 
bad to be made of a substance completely different from any with 
which we are acquainted down here. 

It was impossible to reach the heavens and study this mysterious 
substance, but it could at least be given a name. (The Greeks were 
good at making up names, whence the phrase, "The Greeks had a word 
for it.") The one property of the heavenly objects that could be per
ceiv�d, aside from their peculiar motion, was, however, their blazing 
luminosity. The sun, moon, planets, stars, comets, and meteors all 
gave off light. The Greek word for "to blaze" ( transliterated into our 
alphabet) is aithein. Aristotle therefore called the heavenly material aither, signifying "that which blazes." In Aristotle's day it was pro
nounced "i'ther," with a long i. 

The Romans adopted this Greek word, because to the Romans, 
1 At least, that's how I toss it off. 
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Greek was the language of learning and the average Roman pedant 
adapted all the Greek words he could, just as our modem pedants are 
as Latinized as possible, and as the pedant of the future will drag in all 
the ancient English he can. The Romans transliterated aither into 
aether, making use of the diphthong ae to keep the pronunciation cor
rect, since that, in the Latin of Cicero's day, was pronounced like a 
long i. (Caesar is pronounced "Kaiser," as the Germans know, but 
we don't.) 

The British keep the Latin spelling of aether, but Latin (and Gr�ek, 
too) underwent changes in pronunciation after classical times, and by 
medieval times ae had something of a long e sound. So aether came 
to be pronounced "ee'ther." 

But if it's going to be pronounced that way, why not get rid of the 
superfluous a and spell it "ether." This, actually, is what Americans 
do. 

· (The Greek word for blood is haima, and now you can figure out 
for yourself why we write "hemoglobin" and the British write "haemo
globin.") 

This Aristotelian sense of the word ether is still with us whenever 
we speak of something that is heavenly, impalpable, refined of all 
crass material attributes, incredibly delicate, and so on and so on, as 
being "ethereal." 

By 1700 the Greek scheme of the universe had fallen to pieces. The 
sun, not the earth, was the center of the planetary system, and the 
earth moved about the sun, as did the other planets. The motions of 
the heavenly bodies, including the earth, were dictated solely by grav
ity; and the force of gravity operated on ordinary objects as well. The 
laws of motion were the same for all matter and did not in the least 
depend on the nature of the moving object. Seeming differences were 
the result of the intrusion of additional effects: buoyancy, friction, and 
so on. 

In the general smashup of Aristotelian physics, however, one thing 
remained-the ether. 

You see, if we wipe out the notion that objects move according to 
some inner compulsion, then they must move according to some com
pulsion imposed upon them from outside. This outer compulsion, grav-
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ity, bound the earth to the sun, for instance-but, come to think of it, 
how? 

If you wish to exert a force on something; to push it or pull it; you 
must make contact with it. If you do not make direct contact with it, 
then you make indirect contact with it; you push it with a stick you 
hold in your hand or pull it with a book. Or you can throw a stick (or 
a boomerang) and the force you impart to the stick is carried, physi
cally, to the object you wish to affect. Even if you knock down a house 
of cards with a distant wave of the hand, it is still the air you (so 
to speak) throw at the cards, that physically carries the force to the 
cards. 

In short, something physical must connect the object forcing and 
the object forced. Failing that, you have "action at a distance," which 
is a hard thing to grasp and which philosophers of science seem to be 
reluctant to accept if they can think of any other way out of a dilemma. 

But gravity seems to involve action at a distance. Between the sun 
and the earth, or between the earth and the moon, is a long stretch of 
nothing, not even air. The force of gravitation makes itself felt across 
the vacuum; it is therefore conducted across it; and the question arises: 
What does the conducting? What carries the force from the sun to the 
earth? 

The answer consisted of Aristotle's word again, ether. This new 
ether, however, was not something that made up the heavenly bodies. 
The seventeenth-century scientist rather suspected the heavenly bodies 
were made up of ordinary earthly matter. Instead, ether was now 
viewed as making up the apparently empty volume through which all 
these bodies of matter moved. In short, it made up space; it was, so to 
speak, the very fabric of space. 

Exactly what ether's properties were could not be shown by direct 
observation, for it could not be directly observed. It was not matter or 
energy, for when only ether was present, what seemed to exist to our 
senses and to ou.r measurements was a vacuum-nothing. At the same 
time, ether ( whatever it was) was to be found not only in empty space 
but penneating all matter, too, for the conduction of the gravitational 
force did not seem to be interfered with by matter. If, as during a solar 
eclipse, the moon passed between the earth and the sun, the earth's 
movements were not affected by a hair. The force of gravity clearly 
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traveled, unchanged and undiminished, through two thousand miles 
of matter. Consequently, the ether penneated the moon and, by a 
reasonable generalization, it permeated all matter. 

Furthermore, ether did not interfere with the motion of the planets. 
Planets moved through the ether as though it were not there. Matter 
and ether, then, simply did not interact at all. Ether could conduct 
forces but was not itself subject to them. 

This meant that ether was not moving. How could it move unless 
some force were applied to it, and how could such a force be exerted 
upon it if matter would not interact with it? Or, to put it another way, 
ether is indistinguishable from a vacuum, and can you picture a way 
in which you can exert force on a vacuum (not on a container which 
may hold a vacuum, but on the vacuum itself) so as to impart mo
tion to it? 

This was an important point. As long as astronomers were sure that 
the earth was the motionless center of the universe ( even if it rotated, 
the center of the earth was motionless), it was possible to work up 
laws of motion with confidence. Motion was a concept that meant 
something. If the earth traveled about the sun, however, then while 
you were working out the laws of motion relative to  the earth, you 
would be plagued by wondering whether those laws would make sense 
if the same motion were viewed relative to Mars, for instance. 

Actually, if one could find something that was at rest and refer mo
tion to that, then the laws of motion would still make sense because 
the earth's motion with reference to the something at rest could be 
subtracted from the object's motion with reference to the something 
at rest and that would leave the object's motion with reference to the 
earth, and the laws would still apply and you wouldn't have to worry 
about the motions with reference t o  Mars or to Alpha Centauri or 
anything else. 

And this was where the ether came in. Ether could not move; mo
tion was alien to the very concept of ether, so it could be considered 
in a state of Absolute Rest. This meant there was such a thing as Ab
solute Motion, since any motion could, in principle, be referred to the 
ether. The framework of space and time within which such absolute· 
ness of rest and motion can exist can be referred to as Absolute Space 
and Absolute Time. 
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A century after Newton, ether was to be called upon again. The 
force of gravity, after all, was not the only entity to reach us across the 
stretches of empty space; another entity was light. 

Light did not, however, raise the anxiety at first that gravitation 
did, for it did not act as gravity did. For one thing, light could be 
shielded. When the moon interposed itself between ourselves and the 
sun, light was cut off even though gravity wasn't. Thin layers of matter 
could completely block even strong light, so that it would seem that 
light could not be conducted by the ether which permeated all matter. 

Furthermore, the direction in which a light ray traveled could be 
changed ("refracted") by passing it from one medium to another, as 
from air to water, although ether permeated both media equally. The 
direction in which gravity exerted its force could not be changed by 
any known method. 

Newton postulated, therefore, that light consisted of tiny particles 
moving at great velocities. In this way, light required no ether and yet 
did not represent action at a distance either, for the effect was carried 
across a vacuum, physically, by moving objects. Furthermore, the 
particle theory could be �asily elaborated to explain the straight-line 
motion of light, and its ability to be reflected and refracted. 

There were opposing views in Newton's time to the effect that light 
was a wave form, but this made no headway. The wave forms then 
known (water waves and sound waves, for instance) did not travel in 
straight lines but easily bent around obstacles. This was not at all the 
way light acted and therefore light could not be a wave form. 

In 1801, however, an English physician, Thomas Young, showed 
that it was possible to combine two rays of light in such a way as to 
get alternating bands of light and darkness ("interference fringes"). 
This seemed difficult to  explain if light consisted of particles (for bow 
could two particles add together to make no particles?), but very easy 
to explain if light were a wave fonn. Suppose the wave of one light ray 
were on its way up and the wave of the other were on its way down. 
The two effects would cancel, for no net motion at all, and there would 
be darkness. 

Furthermore, it could be shown that a wave form would move 
about obstacles that were of a size comparable to its own wavelength. 
Obstacles larger than that would be increasingly efficient ( as their 
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size increased) in reflecting the wave form. Where obstacles vastly 
larger than the wavelength were concerned, the wave form would seem 
to travel in straight lines and cast sharp shadows. 

Well, ordinary sound waves have wavelengths measured in feet and 
yards. Young, however, was able to deduce the wavelength of light 
from the width of the interference fringes and found it to be some
thing like a sixty-thousandth of an inch. As far as obstacles of ordi
nary size were concerned, obstacles large enough to see, light traveled 
in straight lines and cast sharp shadows even though it was a wave 
form. 

But this new view did not take over without opposition. It raised 
serious philosophical problems. It makes one ask at once: "If light 
consists of waves, then what is waving?" In the case of water waves, 
water molecules are moving up and down. In the case of sound waves 
through air, air molecules are moving to and fro. But light waves? 

The answer was forced upon physicists. Light can travel through 
a vacuum wjt.h.. the Zr£�!es! .e��. and the vacuiim

co
ntaTned nothing 

b�t_ ether. If light was a wave form, it had to-consist, therefore, of 
waves of ether. 

But then how account for the fact that light could be reflected, re
fracted, and absorbed, when gravitation carried by the same ether 
could not? Was it possible that there were two ethers with different 
properties, one to conduct gravity and one to conduct light? The ques
tion was never answered, but through the nineteenth century, light 
was far more crucial to the development of theoretical physics than 
gravity was, and it was the particular ether that carried light that was 
under continual discussion. Physicists referred to it as the "luminifer
ous ether" (Latin for "light-carrying ether"). 

But difficulties were to arise in the case of the luminiferous ether 
tl1at never arose in the case of the gravity-carrying ether. You see, 
there are two kinds of wave forms-

In water waves, while the wave motion itself is progressing, let us 
say, from right to left, the individual water molecules are moving up 
and down. The movement of the oscillating parts is in a direction at 
right angles to the movement of the wave itself. This type of wave 
form, resembling a wriggling snake, is a "transverse_wave." 
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Io sound waves the individual molecules are moving back and forth 
in the same direction that the sound wave is traveling. Such a wave 
form (a bit harder to picture) is a "longitudinal wave." 

Well, then, what kind of a wave is a light wave, transverse or 
longitudinal? At first, everyone voted for longitudinal waves-even 
Young did-for reasons I'll shortly explain. 

Unfortunately, one annoying fact intervened. Back in Newton's 
time a Dutel] ,physician, Erasmus Bartholin, had discovered that a 
ray of light, upon entering a transparent crystal of a mineral called 

' Iceland spar, was split into two rays. The separation was brought ab�ut 
because the original ray was bent by two different amounts. Everythmg 
seen through Iceland spar s�med double, and the phenomenon was 
called "double refraction." 

In order for a ray of light to bend in two different directions on 
enteri)'lg Iceland spar, the components of light had to exist in two 
different varieties, or, if there were only one variety, that variety had 
to show some sort of asymmetry. 

Newton tried to adjust the particle theory of light to account for 
this, and made a heroic effort, too. Through sheer intuition, he caught 
a glimmer of our modern view of light as consisting of both particles 
and waves, two centuries ahead of time. However, after Newton's 
death, the lesser minds that followed him thought of a much better way 
of accounting for "double refraction." They ignored it. 

What about the wave theory? Well, no one could think of a way to 
make a longitudinal wave explain double refraction, but transverse 
waves were another matter. 

Imagine that your eye is a piece of Iceland spar and that a ray of 
light is coming directly toward it. The ether, as was then supposed, 
would be undulating at right angles to the direction of motion, but 
there are an infinite number of directions that would be at right angles 
to the direction of motion. As the light comes toward you, the ether 
could be moving up and down, or right and left, or diagonally (turned 
either clockwise or counterclockwise), to any extent. 

Every diagonal undulation can be divided into two components, 
a vertical one and a horizontal one, so in the last analysis we can say 
that the light ray approaching us is made up of vertical undulations 
and horizontal undulations. Well, Iceland spar can choose between 
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them. The vertical undulations bend to one extent, the horizontal to 
another, and where one ray of light enters, two emerge. 

It is a good question as to why Iceland spar should do this and not 
glass, but the question is not pertinent to this discussion and I shall 
leav� th�t to another essay some day. What does matter is simply that 
long1tudmal waves could not be used to explain double refraction and 
tran�verse waves could and the conclusion had to be, then, that light 
consisted of transverse waves. The theory of light as a transverse wave 
form was worked out in the 1820s by a French physicist named 
Augustin Jean Fresnel. 

This aroused a furor indeed, for the manner in which longitudinal 
waves and transverse waves are conducted show important differences. 
Longitudinal waves can be conducted by matter in any state, gaseous 
liquid, or solid. Thus, sound waves travel through air, through water: 
and through iron with equal ease. If light were a longitudinal wave 
then the Iuminiferous ether could be viewed as an exceedingly subtl; 
gas; so subtle as to be indistinguishable from a vacuum. It . would 
still be capable, in principle, of conducting light. 

Transverse waves are more particular. They cannot travel through 
the body of a gas or liquid. (Water waves agitate the surface of water, 
but cannot travel through the water itself.) Transverse waves can 
travel through solids only. This means that if the luminiferous ether 
conducts light, and if light is a transverse wave, then the Iuminiferous 
ether must have the properties of a solid! 

And there is worse to follow. For atoms or molecules to engage in 
periodic motion (as they must, to establish a wave form) ,  they must 
have elasticity. They must spring back into position, if deformed out 
of it, overshoot the mark, spring back again, overshoot the mark 
again, and so on. The speed with which an atom or molecule springs 
back into position depends upon the rigidity of the material. The more 
rigid, the faster the snapback, the faster the oscillation as a whole, and 
the faster the progress of the wave form. Thus sound waves progress 
more rapidly through water than through air, and more rapidly through 
steel than through water. 

It works in reverse. If we know the velocity at which a wave form 
travels through a medium, we can calculate how rigid it must be. 

Well, what is the velocity of light through a vacuum; i.e., through 
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the ether? It is 186,200 miles per second, and this was known in 
Fresnel's time. For transverse waves to travel that rapidly, the con
ducting medium must be rigid indeed-more rigid than steel. 

And so there's the picture of the luminiferous ether; a substance in
distinguishable from a vacuum yet more rigid than steel. A rigid 
vacuum! No wonder physicists tore their hair. 

A generation of mathematicians worked out theories to account for 
this wedding of the mutually exclusive and managed to cover the 
general inconceivability of a rigid vacuum with a glistening layer of 
fast-talking plausibility. As for an actual physical picture of the luminif
erous ether, the best that could be advanced was that it was a substance 
something like the modem Silly Putty. It yielded freely to a stress 
applied relatively slowly ( as by a planet moving at two to twenty miles 
per second), but rigidly resisted a stress applied rapidly ( as by light 
traveling at 186,200 miles a second). 

Even so, physicists would undoubtedly have given up the ether in 
despair if it weren't so useful as the only way to avoid action at a dis
tance. And instead of growing less useful with time, it grew more so, 
thanks to the work of the Scottish mathematician James Clerk Max
well. This came about as follows. 

Long before Newton had worked out the theory of gravitation, two 
other types of action-at-a-distance forces were known: magnetism and 
static electricity. Both attracted objects even across a vacuum and 
both types of forces, it therefore seemed, had to be conducted by the 
ether. (In fact, before the theory of gravitation had been put forth, 
men such as Galileo and Kepler speculated that magnetic forces must 
bind planets to the sun.) 

But there again-was there a separate ether for magnetism and one 
for electricity, as well as one for light and one for gravity? Were there 
four ethers altogether, each with its own properties? If so, things were 
worse than ever. This piling up of four different vacuums, one as rigid 
as steel, and the other three who-knows-what, threatened to rear a 
structure th�t would topple under its own weight and bury the edifice of 
physics in its ruins. 

In the mid-nineteenth century, Maxwell subjected the matter to 
acute mathematical analysis and showed that he could build up a con-



94 ADDING A DIMENSION sistent picture of what was known of electricity and magnetism, and in so doing, maintained that the two forces were interrelated in such a way that one could not exist without the other. There was neither electricity nor magnetism, but "electromagnetism." Furthermore, if an electrically charged particle oscillated, it radiated energy in the form of a wave, with a frequency equal to that of the oscillation period. In other words, if the charge oscillated a thousand times a second, a thousand waves were formed each second. The velocity of such a wave worked out to a certain ratio which, once solved, turned out to be just about exactly the speed of light. Maxwell could not believe this to be a coincidence. Light, he insisted, was an "electromagnetic radiation." (Light has a frequency of several hundred trillion waves per second, and where was the electric charge that oscillated at such a rate? Maxwell couldn't answer that, but a generation later, the electrons within the atom were discovered 
and the question was answered.) Such a theory was �- It unified electricity, magnetism, and light into different aspects of one phenomenon and made one ether do for all three.2 'Ims simplified the ether concept and made it explain much more than before. (At this point, it should perhaps have been renamed the "electromagnilerous ether," but it wasn't.) If Maxwell's theory held up, physicists could grow much more comfortable with the ether concept. But would it hold up? One way to establish a theory is to make predictions based upon its tenets and have them turn out to be so. To Maxwell, it seemed that since electric charges could oscillate in any period, there should be a whole family of electromagnetic radiations with frequencies greater than those of light and smaller than those of light, and to all degrees. This prediction was borne out in 1888 (after Maxwell's too-early death, unfortunately) when the German physicist Heinrich Hertz managed to get an electric current to oscillate not very rapidly and then detected very low-frequency electromagnetic radiation. This low-frequency, long-wavelength radiation is what we now call "radio waves." Radio waves, being electromagnetic radiation, are conducted 

2 This leaves gravity out, but all efforts to join gravity to electromagnetism as 
a fourth aspect (a "unified field theory") have failed. Einstein devoted half bis 
life to it but did not succeed. 
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through the ether at 186,200 miles per second. This is the limiting speed of communication by any form of electromagnetic radiation. 
But if we grant the ether concept, suppose we imagine a "sub-ether," one that permeates the ether itself as ether permeates matter, and one that bas all the properties of ether greatly intensified. It would be even more tenuous and undetectable and at the same time far more rigid. It would, in other words, be a super-rigid super-vacuum. It might even be conjectured that gravitational force, still unaccounted for by Maxwell's theory, would travel through such a sub-ether. In that case, wave forms (perhaps gravitic, rather than electromagnetic) would travel through it at far greater velocities than that of light. The stars of the galactic empire might then not be too far apart for rapid communication. And there is your word sub-etheric. Now isn't that an exciting idea? Might it not even be valid? After all, if the ether concept is granted . . Ah, but is it granted? You see, Hertz's discovery of waves that confirmed Maxwell's electromagnetic theories and seemed to establish the ether concept once 

and for all, had come too late. Few realized it at the time, but the year 
before Hertz's discovery, the ether concept had been shattered past 
retrieval. It happened through one little experiment that didn't work. And if you read the next chapter, you'll learn about it. 



9 THE LIGHT THAT FAILED 

In the summer of 1962 a fetching young lady from Newsweek asked 

permission to interview me; permission which I granted at once, you 
�ay be sure. It seems that Newsweek was planning to do a special 
issue on the space age, and it was this young lady's job to gather 
some comments on the matter by various science-fiction personalities. 

I discoursed learnedly on science fiction to her, filling ninety un
forgiving minutes with sixty seconds' worth of distance run each, 
before I ungripped her with my glittering eye. 

Eventually, the special issue appeared, dated October 8, 1962, and 
there, on page 104, was three quarters of a page devoted to science 
fic�o� (and not �ad commentary either; no complaints on that score). 
W1thm that section, every bit of my long-winded brilliance was dis
carded with the exception of one remark which read as follows: 

"But sci- ti  is 'a topical fairy tale where all scientists' experiments 
succeed,' comments Isaac Asimov . . . .  "t 

Ever since then, this quotation has bothered me. Oh, I said it; I 
wasn't misquoted. It's just that l seem to have implied that what 
scientists want are experiments that succeed, and that is not neces
sarily true. 

. 
Under the proper circumstances, a failure, if unexpected and sig

nificant, can do more for the development of science than a hundred 
routine successes. In fact, the most dramatic single experiment in the 
last three and a half centuries was an outright failure of so thunderous 
a nature as to win its perpetrator a Nobel Prize. What a happy fairy 
tale for scientists it would be if all experiments failed like that! 

This fits in, fortunately, with the fact that in the previous chapter, 
I discussed the ether and ended at a point where it seemed enthroned 

1 J'v!Y natural modesty forbids my quoting the rest of the passage but you can 
look 1t up for yourself if you like. Please do. 
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immovably in the very fabric of physics. I said then that at the very 
peak of its power and prosperity, the ether was dashed from its 
throne and destroyed. 

The man who brought about that destruction was an American 
physicist named Albert Abraham Michelson. What started him on the 
track was a peculiar scientific monomania; Michelson got his kicks 
out of measuring the velocity of light. Such a measurement was Jtis 
first scientific achievement, and his last, and just about everything he 
did io science in between grew out of his perpetual efforts to improve 
his measurements. 

And if you think I'm going to go one step farther without retreating 
three centuries to discuss the history of the measurement of the ve
locity of light, you little know me. 

Throughout ancient and medieval times the velocity of light was 
assumed (by those who thought about the matter at all) to be in
finite. The Italian scientist Galileo was the first to question this. About 
1630 he proposed a method for measuring the velocity of light 

Two people, he suggested, were to stand on hilltops a mile apart, 
both carrying shielded lanterns. One was to uncover his lantern. The 
other upon seeing the light was at once to uncover bis own lantern. 
If the first man measured the time that elapsed between his own un
covering and the sight of the spark of light from the other hill, he 
would know how Jong it took light to cover the round distance. Galileo 
had actually tried the experiment, he said, but had achieved no rea
sonable results. 

It is not hard to see why he had failed, in the light of later knowl
edge. Light travels so quickly that the time lapse between emission 
and return was far too short for Galileo to measure with any instru
ment that then existed. There would be a small time lapse to be sure, 
but that represented the time it took for the assistant to think "Hey, 
there's the old man's light" and get his own light uncovered. 

All that Galileo could possibly have shown by bis experiment, 
which was correct in principle, was that if the velocity of light was 
not infinite, then it was at least very, very fast by ordinary standards. 
Still, it was useful to show even this much. 
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The next step was taken nearly half a century later. In 1676 a 
Danish astronomer Olaus Roemer was working at the Paris Ob
servatory, observing Jupiter's satelJites. Their times of revolution had 
been carefully measured, so it seemed possible to predict the exact 
moments at which each would pass into eclipse behind Jupiter and 
this, too, had been done. 

' 

To Roemer's surprise, however, the moons were being eclipsed at 
the wr�ng tim�s. At those times of the year when the earth was ap
proachmg Jupiter, the eclipses came more and more ahead of sched
ule, while when earth was receding from Jupiter, they feU progressively 
further behind schedule. 

Roemer reasoned that he did not see an ec1ipse when it took place, 
but only when the cut-off end of the light beam reached hin1. The 
eclipse itself took place at the scheduled moment, but when the earth 
was closer than average to Jupiter, he saw the eclipse sooner than if 
the earth were farther than average from Jupiter. Earth was at a 
minimum distance from Jupiter when both planets were in a line on 
the saine side of the sun, and it was at a max.imum distance when 
both planets were in a line on opposite sides of the sun. The difference 
between those distances was exactly the diameter of the earth's orbit. 

The difference in time between the earliest eclipse of the satellites 
and the latest eclipse must therefore represent the time it took light 
to travel the diameter of earth's orbit. Roemer measured this time as 
twenty-two minutes and, accepting the best figure then available for 
the diameter of the earth's orbit, calculated that light traveled at a 
velocity of 138,000 miles per second. This is only three quarters of 
what is now accepted as the correct value,2 but it hit the correct order 
of magnitude and for a first attempt that was magnificent. 

Roemer announced his results and it made a small splash but 
aroused as much opposition as approval and the matter was forgotten 
for another half century. 

In the 1 720s the English astronomer James Bradley was hot on 
the trail of the parallax of the stars. This had become a prime as-

2 The actual maximum difference of eclipse times, by later measurements 
tur�e� ont to be sixteen minutes thirty-six seconds. The diameter of the earth'� 
orbit ts about 185,500,000 miles, and 1 leave it to you O Gentle Reader to 
calculate a good approximation of the correct velocity. ' 

' 
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tronomical problem after Copernicus had first introduced the helio
centric theory of the solar system. If the earth really moved about 
the sun, said the anti-Copemicans, then the nearby stars should seem 
to sl1ift position ("parallactic displacement") when compared with 
the more distant stars. Since no such shift was observed, Copernicus 
must be wrong. 

"Ah," said the Copemicans in rebuttal, "but even the nearest 
stars are so distant that the parallactic displacement is too small to 
measure." 

Yet even after astronomers had all adopted the heliocentric theory, 
there was still discomfort over the question of the stellar parallax. 
This business of "too small to measure" seemed very much like an 
evasion. Observation should be refined to the point where the shift 
could be measured. That would accomplish two things. It would 
show bow far the nearest stars were, and it would be the final proof 
that the earth was moving round the sun. 

Bradley's close observations did, indeed, demonstrate that the stars 
showed a tiny displacement through the year. However, this displace
ment was not of the right sort to be explained by the earth's motion. 
Something else had to be responsible and it was not until 1728 that 
a suitable explanation occurred to Bradley. 

Suppose we consider the starlight bombarding the earth to be like 
rain drops falling in a dead calm. If a man were standing motionless 
in such a rainstorm, he would have to hold an umbrella vertically 
overhead to ward off the vertically-dropping rain. If he were to walk, 
however, he would be walking into the rain and he would have to 
angle the umbre1Ia forward, or some drops that would just miss the 
umbreUa would nevertheless hit him. The faster he walks, the greater 
the angle at which he would have to tilt his umbrella. 

In the same way, to observe light from a moving earth, the tele
scope has to be. angled very slightly. As the earth changes the direc
tion of its motion in its course about the sun, the slight angle of the 
telescope must be changed constantly and the star seems to mark out 
a tiny ellipse against the sky (with reference to the sun). Bradley had 
discovered what is called the "aberration of light." 

This was not parallactic displacement and it did not help determine 
the distance of any stars ( that had to wait still another century).  Just 
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the same it did prove the earth was moving with respect to the stars, 
for if the earth were motionless, the telescope would not have to be 
tilted at all, and the star would not seem to move. 

It gave additional information, too. The amount of the aberration 
of light depended on two factors: the velocity of light and the velocity 
of the earth's motion in its orbit. The latter was known (about I8i 
miles per second); therefore the former could be calculated. Bradley's 
estimate was that light bad a velocity of about 188,500 miles per 
second. This was only 1.2 percent above the true value. 

Two independent astronomical methods had yielded figures for the 
velocity of light and improved observations showed the two methods 
yielded roughly the same answer. Was there no way, however, in 
which the velocity could be measured on earth, under conditions con
trolled by the experimenter? 

The answer was yes, but the world had to wait a century and a 
quarter after Bradley's discovery before a method was found. The 
discoverer was a French physicist Armand Hippolyte Louis Fizeau 
who returned to GaliJeo's method but eliminated the personal ele
ment. Instead of having an assistant return a second beam of light, 
he had a mirror reflect the first one. 

In 1849 Fizeau set up a rapidly turning toothed disk on one hill
top and a mirror on another, five miles away. Light passed through 
one gap between the teeth of the turning disk and was reflected by 
the mirror. If the disk turned at the proper speed, the reflected light 
returned just as the next gap moved into line. 

From the velocity at which the wheel had to be turned in order 
for the returning light to be seen, it was possible to calculate the time 
it took light to cover the ten-mile-round distance. The value so deter
mined was not as good as those the best astronomic measurements 
had provided; it was 5 percent off, but it was excellent for a first 
laboratory attempt. 

In 1850 Fizeau's assistant Jean Bernard Leon Foucault improved 
the method by using two mirrors, one of which revolved rapidly. The 
revolving mirror reflected the light at an angle and from that angle, 
the velocity of light could be calculated. By 1862 he had obtained 
values within a percent or so of the true one. 
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Foucault went further. He measured the velocity of light through 
water and other transparent media (you could do this with laboratory 
methods but not with astronomical methods). He discovered in this 
way that light moved more slowly in water than in air. 

This was important. If the particle theory of light were true, light 
should move more rapidly in water than in air; if the wave theory 
of light were true, light should move more slowly in water than in air. 
By the mid-nineteenth century, to be sure, most physicists had ac
cepted the wave theory. Nevertheless, Foucault's experiment was 
widely interpreted as having placed the final nail in the coffin of the 
particle theory. 

And now we come to Michelson. Michelson had been born in 
1852 in a section of Poland that at that time was under Gennan rule, 
and be was brought to the United States two years later. His family 
did not fol low the usual pattern of settling in one of the large East 
Coast cities. Instead, the Michelsons made their way out to the far 
West, a region which the forty-niners had just ripped wide open. 

The Michelson family did well there ( as merchants, not as gold
miners), and young Albert applied for entrance into Annapolis in 
1869. He passed the necessary tests, but the son of a war veteran 
(Civil War, of course) took precedence. It took the personal in
tervention of President Grant (with an assist from the Nevada con
gressman who pointed out the political usefulness of such a gesture 
to the family of a prominent Jewish merchant of the new West) to 
get Albert in. 

He graduated in 1873 and served as a science instructor at the 
Academy during the latter part of that decade. In 1878 the velocity
of-light bug bit him and he never recovered. Using Foucault's method 
but adding some ingenious improvements, he made his first report 
on the velocity, which be announced as 186,508 miles per second. He 
was approximately 300 miles per second too high, but his result was 
within one sixth of 1 percent of the actual figure. 

In 1882 be tried again, after some years spent in studying optics 
in Germany and France. This time be came out with a figure of 
186,320 miles per second, which was 120 miles per second high, or 
only one fifteenth of 1 percent off. 
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Meanwhile, though, it had occurred to Michelson that speeding 
light could be made to reveal some fundamental secrets of the uni
verse. 

One of the big things in the 1880s was the "luminiferous ether" (see 
the previous chapter). The ether was considered to be motionless, at 
"absolute rest," and if light were ether waves, then its velocity, if 
measured carefully enough under appropriate conditions, could give 
the value of the absolute velocity of the earth; not just its velocity 
with respect to the sun, but with respect to the very fabric of the uni
verse. Such a value would be of the utmost importance to the philoso
phy of science, since without it one could never be sure of the validity 
of all the laws of mec11anics that had been worked out since the time 
of Galileo. 

Let me explain how this works. Suppose an airplane were moving 
at 150 miles an hour and encountered winds of 145 miles an hour. If 
it were traveling with the wind, the plane would seem to move at 295 
miles an hour (as viewed from the ground). If it traveled against the 
wind, it would travel only five miles an hour with respect to the 
ground. If the velocity of the plane on a windless day were known, 
then from the difference in velocity produced by the wind, the wind's 
own velocity could be calculated. 

Now suppose the earth were moving through the stationary ether. 
From a mechanical standpoint, this wou]d be equivalent to the earth 
standing still while the ether moved past it. Let's take the latter view, 
for an "ether wind" is easy to visualize. 

Light, consisting (as was thought) of ether waves, would move
relative to the earth- with the ether, moving faster than average in 
the direction of the ether wind, more slowly- than average against that 
direction, and at intermediate velocities in intermediate directions. 

Clearly, the velocity of the ether wind could not be very ireat. If 
it were blowing at a considerable fraction of the velocity of light, 
then all sorts of strange phenomena would be observable. For in
stance, light would radiate outward in an egg-sh�ped curve instead 
of in a circle. The fact that no such phenomena were ever observed, 
meant that the effects must be very small and that earth's absolute 
velocity could only be a small fraction of the velocity of light.. 
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Michelson turned bis attention toward the possibility of measuring 
that small fraction. 

In 1881 Michelson had constructed an "interferometer," a device 
which was designed to split a light beam in two, send the parts along 
different paths at right angles to each other, then bring them back 
together again. 

The two rays of light were made to travel exactly the same distance 
in the process of going and returning, and, therefore, presumably 
spent the same time on their travels. On returning to their starting 
point they wou1d merge into one beam again, just as though they had 
never separated. The merged beams would then display no properties 
that the original beam bad not had. 

If, on the other hand, the two light rays had been on their travels 
for different times, the wave fom1s of the two rays of light would no 
longer match; upon merging they would find themselves out of step. 
There would be places where the waves of one light ray would be 
moving up while the waves of the other would be moving down. There 
would then be mutual cancellation ("interference"), and darkness 
would be produced. The areas of darkness would recur periodically 
and take the form of a kind of zebra-stripe arrangement ("interference 
fringes"). 

The idea was to adjust the instrument so that, as far as was bu· 
manly possible, the two light rays would be made to travel just the 
same distance, and if they then spent the same time at their travels, 
they would match on merging and no interference fringes would 
appear. 

However, this did not allow for the ether wind, the e.xistence of 
which was then assumed. If one of the light rays went with the wind, 
it would return against the wind. The other light ray, sent out at right 
angles, would then go cross-wind and return cross-wind. It �an be 
shown that, in this case, the time taken by the one ray of light to 
travel with the wind, then return against it, is slightly longer 
than the time taken by the other ray of light to travel cross-wind both 
ways. 

The stronger the ether wind, the greater the discrepancy in time; 
and the greater the discrepancy in time, the wider the interference 
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fringes. By observing the interference fringes, then, Michelson would be able to measure the velocity of the ether wind, and that would give the earth's absolute motion. 
Michelson tried the experiment first in Gennany, anchoring his int�rfer�meter to rock, and driving himself mad trying to eliminate the vibrations set up by city traffic. When he finally sent his split beams of light on their separate paths, he found they brought back no information .. The li_ght had failed, and failed miserably. It brought back nothmg; no mterference fringes at all. 
Something had gone wrong, but Michelson did not know what. He let the matter go for a few years. 

He returned to the United States, resigned from the Navy, joined 
the faculty of a new school called Case School of Applied Science, in 
Cleveland, and there met a chemist named Edward Williams Mode 
�orley's ambition had been to be a minister and he took bis chemis;,� 
Job onl! on condition that be could preach in the school's chapel. His 
ow? piece of scientific monomania lay in comparing the atomic 
weights of oxygen and hydrogen. 

Michelson and Morley discussed the interferometer experiment and 
finally, in 1886, joined forces in order to try again under conditions 
of the most heroic precautions. They dug down to bedrock to anchor 
th� equipment to the solid planet itself. They built a brick base on 
which they placed a cement top with a doughnut shaped depression. 
They placed mercury in the depression and let a wooden float rest 
upon the mercury. On the wood was a stone base in which the parts 
of the interferometer were firmly fixed. All was so well balanced that 
�he lightest touch would make the interferometer revolve steadily on 
its mercury support. 

Now they were ready for what was to come to be known as the 
"Michelson -Mor_ley experiment." Once again a ray of light was split 
and sent o.ut on its errand; and once again the light failed and brought 
back nothing. The only interference fringes that were to be seen were 
�iny ones that clearly represented unavoidable imperfections of the 
mstrument. 

� course, it migh! be that the rays of light weren't heading exactly 
upwmd and downwmd, but in such directions that the ether wind 
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had no effect . However, the instrument could be rotated Michelson 
and Morley took measurements at all angles- surely the ether wind 
had to be blowing in one of those directiops. They did even better 
than that. They kept taking measurements all year while the earth 
itself changed direction of motion constantly as it moved in its orbit 
about the sun. 

They made thousands of observations, and by July 1887 they were 
ready to report. The results were negative. They had tried to measure 
earth's absolute velocity and they had failed and that was that. 

There had to be an explanation of this failure and no less than five 
of them can be considered for a moment. I'll list them. 

1) The experiment can be dismissed. Perhaps something was wrong 
in the equipment or the procedure or the reasoning behind it. Men 
such as the English scientists Lord Kelvin and Oliver Lodge took that 
point of view. However, this point of view is not tenable. Since 1887, 
numerous physicists have repeated the Michelson-Morley .experiment 
with greater and greater precision. In 1960 masers (atomic clocks) 
were used for the purpose and an accuracy of one part in a trillion 
was achieved. But always, down to and including the 1960 experi
ments, the Michelson -Morley failure was repeated. There were no 
interference fringes. The light rays took precisely the same time to 
travel in any direction, regardless of the ether wind. 

2) Well, then, the experiment is valid and shows there is no ether 
wind, for any one of four different reasons: 

a) The earth is not moving; it is the motionless center of the 
universe. This would involve so many other paradoxes and would 
fly in the face of so much astronomical and physical knowledge 
gained since the time of Copernicus that no scientist seriously ad
vanced this for a moment. However, a friend of mine has pointed 
out that the only way of disproving this suggestion beyond a doubt i s  
to  run the Michelson-Morley experiment elsewhere than on the earth. 
Perhaps when we reach the moon, we ought to make it one of the 
early orders of business to repeat the Michelson-Morley experiment 
there. If it proves negative (and I'm sure it will !),  we can certainly 
conclude that the earth and the moon can't both simultaneously be 
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motionless. That one or the other is motionless is, at least, conceiva
ble; that both are, is not. 

b) The earth does move, but in doing so it drags the neighboring 
ether with it, so that it seems motionless compared with the ether that 
is right at the surface of the earth. For that reason, no interference 
fringes are produced. The English physicist George Gabriel Stokes 
suggested this. Unfortunately, this implies that there is friction be
tween the earth and the ether and this would raise the serious question 
as to why the motion of heavenly bodies wasn't continually being 
slowed by their passage through the ether. It was as hard to believe 
in the "ether drag" as in the motionless earth, and Stokes's notion died 
a quick death. 

Two suggestions survived, however: 
c) The Irish physicist George Francis Fitzgerald suggested that 

all objects ( and therefore all measuring instruments) grew shorter in 
the direction of motion, according to a formula which was easily 
derived. This is the "Fitzgerald contraction." The Fitzgerald con
traction introduced a factor that just neutralized the difference in 
time spent by the two light rays on their travel and therefore accounted 
for the absence of interference fringes. And yet the Fitzgerald con
traction had the appearance of a "gimmick factor." It worked, yes, 
but why should the contraction exist at all? 

d) The Austrian physicist Ernst Mach went to the heart of the 
matter. He said there were no interference fringes because there was 
no ether wind because there was no ether. What could be simpler? 

This was not a strange thing for Mach to have said. He was a rebel 
who insisted that only observable phenomena were rightly a matter 
for scientific inquiry, and that scientists should not set up models 
that were not themselves directly observable, and then believe in their 
actual existence. Mach even refused to accept atoms as anything more 
than a convenient fiction. Naturally, it was to be expected that he 
would be ready to scrap the ether the first chance he got. 

How tempting that must have been! The ether was such a ridicu
lous and se11-contradictory substance that some of the greatest nine
teenth-century theoretical physicists had worn themselves out trying 
to explain it. Why not throw it away, as Mach irascibly suggested? 

The trouble was-how would one then account for the fact that 
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light could cross a vacuum? Everyone admitted that light consisted 
of waves, and the waves had to be waves of something. If the ether 
existed, light consisted of waves of ether. If the ether did not exist, 
then light consisted of waves of what? 

Physics was hovering between the frying pan of ether and the fire 
of complete chaos, and heaven only knows what would have hap
pened if two German scientists, Max Karl Ernst Ludwig Planck in 
1900, and Albert Einstein in 1905, had not come along to save the 
situation. 

Save it, however, they did. The work of Planck and Einstein 
proved that light behaved as particles in some ways and that the 
ether therefore was not needed for light to travel through a vacuum. 
When this was done, the ether was no longer useful and it was 
dropped with a glad cry. The ether has never been required since. It 
does not exist now; in fact, it never existed. (Einstein's work also 
placed the Fitzgerald contraction in the proper perspective. )  

As a result, the Michelson-Morley light-that-failed was recognized 
as the most tremendously successful failure in the history of science, 
for it completely altered the physicists' view of the universe. In 1907 
Michelson received the Nobel Prize in Physics, the first American to 
win one of the science prizes. 
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When I was young, we children used to listen to something called 

"radio." It's a hard thing to describe to the modem population, but 
if you imagine a television set with the picture tube permanently out 
of order, you've got the essentials. 

On the radio set there was a dial you could turn in order to tune 
in the various stations and the dial had markings numbered from 
55 to 160. As far as I know, nobody I knew had any idea what those 
numbers meant-or cared. 

A particular radio station might describe itself as possessing "880 
kilocycles," and eventually I deduced that the numbers on the radio 
dial referred to tens of kilocycles, but again I never bumped into any
one (when I was young) who knew or cared what a kilocycle was. 

In fact, as I look back upon it now, I don't think I knew or cared 
myself. I could dial any radio station I wanted with quick sureness 
and I had the radio schedule memorized. What more could I want? 

And yet, if you consider the dial of a radio set, and proceed by 
free association, you can end up with some pretty amazing matters, 
as I shaJJ try to show you. 

I'll begin with waves. 

The most important waves in the universe are set up by oscilJating 
electric charges. Since all electric charges have associated magnetic 
fields, the radiating waves produced in this fashion are called "electro
magnetic." Electromagnetic waves radiate outward from the point of 
origin, moving at the velocity of light-which is not surprising, since 
light is itself an electromagnetic radiation. 

Each oscillation of the electric charge back and forth gives rise to 
a single wave and from this fact we can calculate the length of the 
wave to which it gives rise. The length of a wave is called, with com-
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roendable simplicity, the "wavelength," and it is usually symbolized 
by the Greek letter lambda (>..). 

Now suppose the electric charge oscillates once per second. By the 
time the end of the wave is formed at the completion of the oscil
lation, the beginning of the wave has been speeding out through space 
at the velocity of light for one full second. The velocity of light in a 
vacuum is 186,200 miles per second or, in the metric system, which 
I shall use exclusively in this article, .300,000 kilometers per second. 
If, therefore, it takes a second to form the wave, tbe beginning of the 
wave is 300,000 kilometers ahead of the end of the wave and the 
wavelength is 300,000 kilometers. 

Suppose the electric charge oscillates twice per second. Then in one 
second two waves are formed. Together they stretch out over 300,000 
kilometers and each wave is 150,000 kilometers long; 150,000 kilo
meters is therefore the wavelength. 

If the electric charge oscillates ten times per second, each wave is 
30,000 kilometers long. If it oscillates fifty times per second, the 
wavelength is 6000 kilometers, and so on. 

The number of oscillations per second can be called the "fre
quency," and this is usually symbolized by the Greek letter nu (v). 

As you see, what I have been doing in order to work out the wave
length of electromagnetic radiation is to divide the velocity of light 
( usually represented by c) by the frequency of the radiation. Put this 
in equation form and you have: 

C >.. = v 
If you know the wavelength and want to find the frequency, you 

need only solve for v in the equation above, and you have: 
C 

v=x 
Thus, if the wavelength is 15 kilometers, then the frequency is 
300,0 0 0  or 20 000 oscillations per second. 

15 ' ' 

A frequency of one oscillation per second can be described as one 
cycle. A frequency of a thousand oscillations per second can be de
scribed as one kilocycle (the prefix kilo-, as I explained in Chapter 7, 
being used in the metric system to represent "one thousand") .  If, 
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then, radio station WNBC in New York is located at 660 kilocycles 
(or at 66 on the dial) ,  then that means the wave it puts out has a frequency of 660,000 oscillations per second. The wavelength of those 

• 8 0 0  0 0 0  0 455 kil Th' · · a1 waves lS 6 6 0:000 or . ometers. 1s 1s eqmv ent to 455 meters. 
In the same way, we can calculate the wavelengths of the waves 

put out by some other New York radio stations: 

Kilocycles Wavelen8th (meters) 

WOR 710 425 
WABC 770 390 
WNYC 830 360 
WCBS 880 340 
WNEW 1130 265 
WQXR 1560 190 

Notice that the wavelength gets shorter as the kilocycles increase; 
which is why, if we go up high enough on the dial, we end up with 
"short-wave radio." One way of expressing this relationship is to 
say that frequency and wavelength are inversely proportional to each 
other; as one goes up, the other goes down. 

An electromagnetic radiation can have any wavelength, as far as 
we know, since a charged particle can oscillate at any frequency. 
There is no upper limit to the wavelength, certainly, for the oscilla
tion can be slowed down to zero, in which case the wavelength ap
proaches the infinite. 

On the other hand, electric charges can be made to oscillate mil
lions of times per second by man. Atoms can (in effect) oscillate tril
lions of times a second. Electrons can oscillate quadrillions and even 
quintillions of times per second. Nuclear particles can oscillate sextil
lions and even septillions of times per second. Wavelengths can get 
shorter and shorter, with no lower limit in theory. 

The properties of electromagnetic radiation vary with frequency. 
For one thing, the radiation is put out in discrete little bundles called 
"quanta" and the energy content of one quantum of a particular 
radiation is in direct proportion to its frequency. As frequency goes 
up (and wavelength down) the radiation becomes more energetic 
and can interact more thoroughly with matter. 

Short-wave radiation may knock electrons out of metals where 
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longer-wave, less energetic radiation will not, and this is known as 
the photoelectric effect. (Einstein explained the rationale behind the 
photoelectric effect in 1905, the same year in which be first advanced 
his theory of relativity; and when he got his Nobel Prize in 1921, it 
was for explaining the photoelectric effect, not for relativity.) 

Again, short-wave radiation will bring about certain chemical 
changes where long-wave radiation will not, which is why you can 
develop ordinary photographic film under a red light. The red-light 
radiations are too low in energy to affect the negative. 

Certain ranges of radiation are energetic enough to affect the retina 
of the eye and give us the sensation we call light. Radiation less en
ergetic cannot be seen, but the energy can be absorbed by the skin 
and felt as beat. Radiation more energetic cannot be seen either, but 
can damage the retina and bum the skin. 

It is convenient for physicists to .divide the entire range of electro
magnetic radiation (the "electromagnetic spectrum") into arbitrary 
regions. Here they are in the order o� increasing frequency and en
ergy and, therefore, of decreasing wavelength. 

1 ) Micropulsations. These have frequencies of less than 1 cycle 
and, therefore, wavelengths of more than 300,000 kilometers. Such 
radiation has been detected with frequencies of as little as 0.01 cycle. 
This means that one oscillation takes 100 seconds and the wave
length is 30,000,000 kilometers, or three fourths of the way from 
here to Venus at its closest, which isn't bad for one wave. 

2) Radio waves. In its broadest sense, these would include every
thing with frequencies from 1 cycle to 1 billion ( 10°) cycles, and 
with wavelengths from 300,000 kilometers down to 30 centimeters. 
Actually, long-wave radio makes use of frequencies from 550,000 
cycles to 1 ,600,000 cycles and wavelengths from 550 meters down 
to 185 meters. Short-wave radio uses wavelengths in the 30-meter 
range, and television in the 3-meter range. 

3)  Microwaves. The frequencies are from 1 billion (10°) to 100 
billion ( 1011) cycles and the wavelengths are from 30 centimeters 
to 0.3 centimeters. The radiation detected by radio telescopes is in 
this range and the radiation of the neutral hydrogen atom (the fa-
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mous "song of hydrogen")  has a wavelength of 21 centimeters. Radar 
, also makes use of this range. 

f 

4) Infrared rays. The frequencies are from 100 billion (1011) • 
cycles to nearly a quadrillion (1014 plus) cycles and the wavelengths r 
run from 0.3 centimeters to 0.000076 centimeters. Infrared wave
lengths are usually measured in microns, one micron being a ten
thousandth of a centimeter, so the infrared wavelength range can be 
said to extend from 3000 microns down to O. 76 microns. 

5) Visible light rays. These include a short stretch of frequencies 
just under the quadrillion mark (1015 minus), with wavelengths from 
0.76 microns to 0.38 microns. Light wavelengths are usually measured 
in angstrom units, one angstrom unit being equal to a ten-thousandth 
of a micron. Thus, the wavelengths of visible light range from 7600 
angstrom units down to 3800 angstrom units. ,, 

6) Ultraviolet rays. These include frequencies from a quadrillion 
(1015) cycles up to nearly a hundred quadrillion (1017 minus) 
cycles, and the wavelengths run from 3800 angstrom units down to 

I about 100 angstrom units. 
7) X-rays. These include frequencies from nearly a hundred quad- .. 

rillion (1017 minus) up to a hundred quintillion (102°) cycles, r 
with wavelengths ranging from 100 angstrom units down to 0.1 ang-

l 
strom units. 

8)  Gamma rays. These make up the frequencies that are more 
than a hundred quintillion (1020 ) cycles and wavelengths less than 

I 
0.1 angstrom units. 

Actually, the dividing lines are anything but sharp, and X -rays 

I 
and gamma rays, in particular, overlap generously. People speak of 
a particular frequency as being an X-ray if it is created in an X-ray 
tube and as a gamma ray if it is produced by a nuclear reaction. You 
can have soft gamma rays with wavelengths some three hundred times 
as long as the hardest X-rays. However, a particular wavelength has ., 
a particular energy and a particular set of properties regardless of 

I 
what you call it: X-ray, gamma ray, or herring. By setting the bound-
ary between X-rays and gamma rays at a frequency of a hundred 

f 
quintillion cycles, I merely cut the overlap in half and am perfectly 
willing to admit the boundary is arbitrary. 

l 
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Now this is a bewildering array of frequencies and wavelengths 
and I wouldn't be me if I didn't look for an easier way of presenting 
it. The easier way is drawn from usage in connection with sound 
waves. Sound waves are not electromagnetic in nature, but they, too, 
have wavelengths and frequencies. 

We detect differences in the frequency of sound waves, at least 
in the audible range, by differences in the pitch we hear. It is conve n 
tional in  our culture to write music using a series of notes with fixed 
frequencies. I will begin with the note on the piano which is called 
"middle C" and give its frequency and that of successive notes as we 
proceed toward the right on the keyboard, considering white keys 
only: 

do -264 do - 528 do - 1056 
re - 297 re -594 
mi -330 mi -660 
fa -352 fa -704 
sol- 396 sol - 792 
la -440 la -880 
ti -495 ti - 990 

Notice that the frequency of each "do" is just twice the frequency 
of the preceding one. In fact, starting anywhere on the keyboard, one 
can progress through seven notes of increasing frequency and end with 
an eighth note of just twice the frequency of the first. Such a stretch 
is called an "octave," from the Latin word for "eight." 

Applying this to any wave form in general, one can speak of an 
octave as applying to any continuous region stretching from a fre
quency of x to one of 2x. Since wavelength is inversely proportional 
to frequency, every time a frequency is doubled, a wavelength is 
halved. Every region stretching from a wavelength of y to one of y/2 
is also an octave, therefore. 

So we can break up the eJe.ctromagnetic spectrum into octaves. As 
an example, the longest wavelengths of visible light are 7600 angstrom 
units, while the shortest are 3800 angstrom units. The shortest wave
lengths are just half the longest and so the range covered by visible 
light is equal to one octave of the electromagnetic spectrum. 
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Since there is no upper or lower limit to the frequencies of the elec
tromagnetic spectrum, the number of octaves is, theoretically, infi
nite. However, suppose we consider a wavelength of 30,000,000 
kilometers as the practical maximum, since this is the longest micro
pulsation detected, and a wavelength of 0.0001 angstrom units as the 
practical mininmm, since beyond that lie the energy ranges associated 
with cosmic rays, which are particulate rather than electromagnetic 
in nature. 

The number of times you must halve 30,000,000 kilometers to 
reach 0.0001 angstrom units is 81. (Try it and see, and remember 
that 1 kilometer equals 1 0,000,ooo,ooo,ooo angstrom units.) The 
portion of the electromagnetic spectrum I have marked off, therefore, 
is eighty-one octaves long, and of that length, we see exactly one 
octave with our eyes. 

Now let's measure off the confusing divisions of the electromag
netic spectrum in octaves and the picture wilJ be much simpler: 

Octaves 
micropulsations 6f 
radio waves 30 
microwaves 6t 
infrared rays 12 
visible light rays 1 
ultraviolet rays 5 
X-rays 10 
gamma rays 10 

total 8 1  

As you see, two thirds of the octaves are longer-wave and, therefore, 
less energetic than light. In fact, the radio-wave region at its broadest 
takes up a third of the octaves of the spectrum. Actually, though, only 
about twelve octaves altogether are used for radio and television 
communications. 

Still that makes up about 1 5  percent of the total number of octaves 
and as our needs for communication increase with the developing 
space age, how much room for expansion can there be? 

The answer is: Plenty! 
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To see why that is, let's consider this matter of octaves further. In 
the realm of sound, the ear finds all octaves equal. In each one, there 
is room for seven different notes (plus sharps and flats, of course) 
before the next octave begins. 

This is not so, however, as far as communication by electromag
netic waves is concerned. As one goes up the electromagnetic spectrum 
in the direction of increasing frequency, each octave has more room 
than the one before. 

Each television channel emits a carrier wave which it modifies, 
these modifications being converted into sight and sound at the receiv
ing television set. In order for two channels not to interfere with each 
other, they must have frequencies that are not too close. They can't 
be anywhere near as closely spaced as the radio stations with which I 
began this article, for instance. The width of a standard television 
channel is 4,000,000 cycles (or 4 megacycles, a megacycle being 
equal to a million cycles) . 

The television channels fall at the short-wave end of the radio-wave 
region, in the range of frequencies of 100,000,000 cycles (100 mega
cycles) and wavelengths of about 3 meters. 

Consider an octave in this region of frequencies; say a stretch of the 
spectrum from a frequency of 80 megacycles to one of 160 megacycles. 
This covers a width of 80 megacycles, and if television channels are 
spaced at 4 megacycle intervals, there is room for twenty channels. 

In the next octave up, from 160 to 320 megacycles, there is room 
for forty channels. In the one after that, from 320 to 640 megacycles, 
there is room for eighty channels. 

The number of television channels per octave of electromagnetic 
radiation doubles for each successive octave as one moves up the 
scale in the direction of increasing frequency. In fact, each octave of 
electromagnetic radiation contains about as much room for television 
channels as do all the preceding octaves put together. 

What about visible light, then? There is only one octave of visible 
light, but it is roughly twenty-two octaves higher than the one used 
for television. There is thus 222 times as much room for television 
channels in the octave of light as in the octave ordinarily used for 
television. The figure 222 represents the product of twenty-two 2's, and 
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that comes to over four million. (Multiply them out for yourself; don't 
take my word for it.) 

In other words, for every channel available in the usual television 
portion of the electromagnetic spectrum, there would be some four 
million channels available in the visible light portion. 

We can break this down in more detail. The visible spectrum con
tains a number of colors that fade one into the other as you go up or 
down the scale. Actually, the eye can distinguish among a great num
ber of shades and there are no sharp boundaries. Nevertheless, it is 
customary to divide the visible spectrum into six colors, which, in or
der of increasing frequency, are red, orange, yellow, green, blue, and 
violet. And each color is considered as stretching over a certain range 
of frequency. The situation might be presented thus: 

red 
orange 
yellow 
green 
blue 

violet 

Wavelength Range 
(angstrom units) 

7600 to 6300 
6300 to 5900 
5900 to 5600 
5600 to 4900 
4900 to 4500 
4500 to 3800 

Frequency Range 
(megacycles) 

400,000,000 to 475,000,000 
475,000,000 to 510,000,000 
510,000,000 to 540,000,000 
540,000,000 to 615,000,000 
615,000,000 to 670,000,000 
670,000,000 to 800,000,000 

Remembering that the width of a standard television channel is only 
4 megacycles, then we can set up the following table: 

red 
orange 
yellow 
green 
blue 

violet 

Width of Frequency 
Band ( megaycles) 

75,000,000 
35,000,000 
30,000,000 
75,000,000 
55,000,000 

1 30,000,000 

Number of Television 
Channels Possible 

19,000,000 
9,000,000 
7,000,000 

19,000,000 
14,000,000 
32,000,000 

total 100,000,000 

Well, then, why not use light waves as carriers for television broad
casts? 

Until two years ago this was a suggestion that could have only 
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theoretical interest. The carrier waves set up for ordinary radio-tele� 
vision communication can be produced in perfect phase. They form an 
orderly succession of waves that can be neatly modified in any fashion. 

Light waves, however, cannot be set up so neatly in phase; at least 
they couldn't until the 1960s. It is quite impractical to try to oscillate 
an electric circuit five hundred trillion times a second, which is what 
would be required to send out a beam of visible light. The electrons 
within an atom must be relied upon for such an oscillation. Heat is 
poured into them and it is liberated as electromagnetic radiation, 
much of which (because of their natural rate of oscillation) is in the 
form of visible light. In other words, you can make light by starting a 
fire. 

The only trouble is that the various heated atoms give off radiation, 
each in its own good time, and the wavelength is not fixed but can be 
varied over a wide range, and the quantum is fired out in any direc
tion. Thus, the emitted light waves are so much out of phase that most 
of their energy is canceled and converted into heat; they spread out 
widely in every direction and cover a broad range of the spectrum. In 
short, the light produced is good enough to see by, but not good enough 
to serve as a carrier wave for TV. 

However, in 1960 instruments were devised into which energy could 
be pumped and then, when a sparking bit of light was allowed to en
ter, all the energy was converted into light of the same wavelength, 
and all in phase. The device could be so constructed that all the light 
would emerge in the same direction, too. 

The beam of intense light that is produced by such a device would 
stick together (it would be "coherent") and it would possess an ex
tremely narrow band of wavelengths (it would be "monochromatic"). 
The process by which a bit of light sparks the conversion of energy 
into a lot of light is called "light amplification by stimulated emission 
of radiation," and by taking the indicated initials, the instrument was 
named a "laser." (In case you are interested, a word constructed out 
of the initials of a phrase is called an "acronym,") 

Of course, even so, the use of light as television carrier waves pre
sents difficulties. In the range of the electromagnetic spectrum cur· 
rently used for television, the radiation can penetrate buildings and 
go through ordinary obstacles. Visible light can't do this. You would 
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need a clear and unobstructed view of the TV station before you could 
receive a program. 

It is possible, however, that light might be sent through plastic 
pipes, from which leads could reach each television set in the area. 
(Does that mean the streets all get dug up, or will the pipes run along 
telephone poles, or what?) 

On the other hand, television by laser would be ideal out in space, 
where ship could reach ship or space station through the uninterrupted 
reaches of vacuum, and each ship could have a television channel 
reserved all for itself. It would be a long time before we had more than 
a hm1dred million ships out in space, so there would be no crowding. 
Then, even if we did run out of room in the visible region, the ultra
violet portion of the spectrum would give room for about six billion 
more channels. 

Of course, there is something else-
These days, when I watch television here at home, I have my choice 

of four channels that I can get with reasonable clearness and audibility. 
Even with only four channels at their disposal, however, the tele
vision moguls can supply me with a tremendous quantity of rubbish. 

Imagine what the keen minds of our entertainment industry could 
do if they realized they had a hundred million channels into which 
they could funnel new and undreamed-of varieties of trash. 

Maybe we ought to stop right now! 
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CHEMISTRY 
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For many years now I have been an inveterate admirer of Sir Isaac 
Newton. One can, after all, make out a good case for his having been 
the greatest scientist who ever lived. 

What's more, it doesn't displease me one little bit that Newton's 
first name is Isaac. To be sure, I wasn't named for him, but for my 
grandfather. Yet the principle remains; we have something in common. 
And to top it off, the Boston suburb in which I live is named Newton 
- how do you like that? 

So you see, I have lots of reasons for being an Isaac Newton fan 
and it therefore pains me to admit there are flaws in the shining pic
ture he presents. In physics and astronomy he was a transcendent 
genius. In mathematics he was a ground-breaking prodigy. Yet in 
chemistry he was nothing but a bumbler. He wasted his time in a vain 
and useless effort to manufacture gold, scouring Europe for recipes, 
trying each one and forever being disappointed. 

This is a dramatic way of showing that Newton stood at a midway 
point in the history of the physical sciences. In the 1680s when he 
announced his laws of motion and his theory of gravitation, the birth 
of modern physics (thanks to Galileo) was just one century in the 
past and the birth of modern chemistry (thanks to Lavoisier) was just 
one century in. the future. 

Now the story of the birth of physics has been told and told again. 
We all know (or should) about Gahleo's experiments with falling 
bodies which, at one stroke, destroyed Aristotelian physics and es
tablished the modem form of the science. In popular mythology this 
is concentrated into a single experiment, the dropping of a heavy and 
light ball from the top of the Leaning Tower of Pisa and watching 
them hit the ground simultaneously. (Actually, it is quite certain that 
Galileo never performed this experiment.) 

On the other hand, the birth of chemistry is graced by no such key 
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experiment. There is no chemical equivalent of dropping weights off 
the Leaning Tower of Pisa; no single, classic feat to go ringing down 
the corridors of time as the smasher of the old and the beginner of 
the new. At least, I don't find one in the books I've read on the sub
ject; not one that is pointed to as the experiment. 

Except that I think I've found one. I think I can make a case for the 
existence of a single, simple experiment that smashed the old chemistry 
and started the new chemistry. It was every bit as dramatic and con
clusive (if not quite as spectacular) as the Leaning Tower of Pisa 
experiment, except that : 

1 ) The crucial chemical experiment really happened and is not a 
myth, and 

2) It involved a mad scientist and should therefore strike a nos
talgic chord in the hearts of all true science-fiction fans. 

With your permission then, 0 Gentle Reader (or, if necessary, with
out), I shall tell the story of the birth of Modern Chemistry, as I see it. 

In the time of Newton chemical theory was still based, in large part, 
on what the Greek philosophers had worked out two thousand years 
earlier. The "four elements" (that is, the fundamental substances out 
of which the universe was made) were earth, water, air, and fire. 

The Greek philosophers felt that actual bodies were made up of the 
four elements in particular proportions. One could well imagine, then, 
that the elements in one body could be separated and then recom
bined in different proportions to form a second body of a different 
sort. In this way, one could change one metal into another (if one 
could but discover the correct procedure), and in particular, one could 
change lead into gold. 

For about fifteen hundred years, alchemists trfod to find out the 
proper recipe for such "transmutation." The Arabs, in the process, 
worked out the theqry that there were two special principles involved 
in the different solid bodies with which they worked. There was the 
metallic principle, mercury, and the combustible principle, sulfur. 

This didn't help them make gold, and by Newton's time chemistry 
seemed badly in need of some new ideas. What's more, any new ideas 
that did come along ought to deal with combustion. Coal was· begin
ning to come into use as a new fuel. Men were beginning to play with 
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the steam produced by the heat of burning fuel. In general, the matter 
of combustion was in the air and as exciting in 1700 as electricity was 
to be in 1800, radioactivity in 1900, and rocketry in 1950. 

Onto the scene then, steps a German physician named Georg Ernest 
Stahl. While still in his twenties he was appointed court physician to 
the Duke of Weimar. In later life he was to become physician to still 
higher royalty, King Frederick William I of Prussia. His lectures on 
medicine at the University of Halle were famous and well attended. 

In 1700 this man advanced a theory of combustion that made 
more sense than anything previously suggested. He drew heavily on 
alchemical notions and, in particular, on the combustible principle, 
sulfur. He gave this principle a new name and described its behavior 
in greater detail. 

The principle he called "phlogiston," from a Greek word meaning 
"to set on fire," for he held that all inflammable objects contained 
phlogiston and it was only the phlogiston content that made it pos
sible for them to burn. 

During the process of combustion, said Stahl, the burning material 
lost its content of phlogiston, which poured out into and was receive<l 
by the air. What was left after combustion was completely lacking in 
phlogiston and could bum no more. Wood and coal, for instance, were 
rich in phlogiston, but the ash they left behind contained none. 

Stahl's greatest contribution to chemical thinking was his sugges
tion that the process of rusting of metals was similar in principle to 
that of the burning of wood. A metal, such as iron, was rich in phlogis
ton. As it corroded, it lost phlogiston to the air, and when all the 
phlogiston was gone, only rust was left behind. 

The basic difference, then, between the burning of wood and the 
rusting of iron was no more than a matter of speed. Wood lost phlogis
ton so rapidly that the velocity of its passing made it visible as flame. 
Iron lost phlogiston so slowly that its passage was imperceptible. 
Burning, in Stahl's view, was a fast rusting, while rusting was a slow 
bum. 

In this, Stahl was quite correct, but he gets little credit for it. About 
the first thing chemistry students are taught to do is to laugh at the 
phlogiston theory, so that Stahl is either forgotten or condemned, 
and I consider that unfair. 
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As a matter of fact, the phlogiston theory explained quite a few 
things that were not explained before, most notably the matter of 
metallurgy. For instance, it had been known for thousands of years 
that if metal ore were heated strongly, in contact with burning wood 
or charcoal, the free metal could be obtained. As for why this hap
pened, no one had a good answer. 

Until Stahl, that is. According to the phlogiston theory, it was easy 
to see that a metal ore was a kind of naturally occurring rust that was 
completely free of phlogiston and therefore showed no metallic proper
ties. If heated in the presence of phlogiston-rich charcoal, phlogiston 
passed from the charcoal to the ore. As the ore gained phlogiston, 
it turned into metal. As the charcoal lost phlogiston, it turned into ash. 

Isn't that neat? 
Unfortunately, there was one great flaw in the theory. When a metal 

rusted, it gained weight! One pound of iron produced about one and a 
half pounds of iron rust. If the conversion were the result of the loss 
of phlogiston and not the gaining of anything, where did the extra 
weight come from? 

A few chemists worried about this and tried to explain that phlogis
ton had negative weight! Instead of phlogiston being pulled down by 
gravity, it was pushed up by levity. (You may take that as a pun, if 
you choose, but levity was the actual term used.) Thus, a pound of 
iron could be considered as containing minus half a pound of phlogis
ton, and when the phlogiston left, the resulting rust would weigh one 
and a half pounds. 

This notion went over like a lead balloon. For one thing, no example 
of levity was found anywhere in nature outside of phlogiston, and for 
another, when wood burned it lost weight. The ash it left behind was 
much lighter than the original wood. If the wood had lost phlogiston 
and if phlogiston exerted a force of levity, why wasn't the ash heavier 
than the wood, as rust is heavier than iron? 

There was no answer to this, and the average chemist of the day 
simply shrugged. There was, after all, no tradition of exact measure
ment in chemistry. For thousands of years everyone had worked the 
chemical industries as art forms rather than as sciences. The alchemists 
had involved themselves in purely descriptive observations. They had 
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noted the formation of precipitates, the emission of vapors, the changes 
of colors-but such things as weight and volume were irrelevant. 

For two generations matters continued thus, and then, in the 1770s, 
a number of momentous developments took place. For one thing, 
chemists began to concern themselves with air. 

To the ancient Greeks air was an element, a single substance. How
ever, the Scottish chemist Joseph Black burned a candle in a closed 
container of air, as the 1770s opened, and found that the candle even
tually went out. When it did, there was still plenty of·air in the con
tainer, so why did it go out? 

He was busy with other matters, so he passed the problem on to a 
student of his named Daniel Rutherford. (Rutherford, by the way, 
was the uncle of the poet and novelist Sir Walter Scott.) 

In 1772 Rutherford repeated Black's experiments and went fur
ther. New candles, set on fire and placed in the air remaining after the 
old candle had burned out, promptly went out themselves. Mice, placed 
in such air, died. 

Rutherford analyzed these observations in terms of the phlogiston 
theory. When a candle burned in an enclosed volume of air, it gave up 
phlogiston to the air but, apparently, any given volume of air could 
only hold so much phlogiston and no more. When the air was filled 
with phlogiston, the candle went out and nothing further would bum in 
that air. A living creature which, in the process of breathing, con
stantly gave up phlogiston (there had been speculations dating back to 
Roman times that respiration was analogous to combustion) could not 
do so in this phlogiston-filled air, and died. Rutherford called this 
asphyxiating gas "phlogisticate<l air." 

The scene now shifts southward to England, where a Unitarian 
minister Joseph Priestley had become interested in science after he 
met the American scientist and statesman Benjamin Franklin in 1766. 

Priestley's great discovery came from experiments with mercury in 
177 4. He began by heating mercury with sunlight concentrated through 
a large magnifying glass. The beat caused the gleaming surface of the 
mercury to be coated with a reddish powder. Priestley skimmed off 
the powder and heated it to a still higher temperature. The powder 
evaporated, forming two different gases. One of these was mercury 
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vapor, for it condensed into droplets of mercury in the cool upper 
regions of the vessel. The other remained an invisible vapor. 

How did Priestley know it was there? Well, it had peculiar proper
ties that were not like those of ordinary air. A smoldering splint of 
wood thrust into the container in which the red powder from mercury 
was being heated burst into bright flame. Priestley collected the vapors 
and found a candle would bum in it with unearthly brightness; he 
found that mice placed in the vapor would jump about actively; he 
even breathed some himself and reported it made him feel very "light 
and easy." 

Priestley interpreted all this according to the phlogiston theory. 
When mercury was heated it lost some of its phlogiston to air and be
came a red powder which lacked phlogiston and could be considered 
a kind of mercury rust. If he heated this mercury rust strongly, it ab
sorbed phlogiston from the air and became mercury again. Meanwhile, 
the air in the neighborhood was bled of its phlogiston and became 
"dephlogisticated air." Naturally, such dephlogisticated air was unu
sually thirsty for phlogiston. It sucked phlogiston rapidly out of a 
smoldering splint and the velocity of the reaction was visible as a 
burst of flame. For similar reasons, candles burned more brightly and 
mice ran about more actively in dephlogisticated air than in ordinary 
air. 

The Priestley and Rutherford experiments, taken together, seemed 
to show that air was a single material substance, which could be al
tered in properties by a variation in its content of the imponderable 
fluid, phlogiston. 

Ordinary air contains some phlogiston but is not saturated with it. 
It can gain phlogiston when something burns in it; or it can lose phlo
giston when a rust heated in it becomes a metal. When it gains all the 
phlogiston it can bold, it will no longer support combustion or life and 
it is then Rutherford's gas. If it loses all the phlogiston it has, it will 
support combustion with great eagerness and life with great ease and 
will then be Priestley's gas. 

Now we shift still farther south. In Paris the brilliant young chemist 
Lavoisier is working bard under the stress of an idea-that measure
ment is as important to chemistry as Galileo showed it to be to phys-
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ics. Qualitative observations are insufficient; one must be quantitative. 
As an example- when water, even the purest, was slowly boiled 

away in a glass vessel, some sediment was always left behind. Alche
mists had often done this and they had pointed to the sediment as an 
example of the manner in which the element water had been converted 
to the element earth. (From this they deduced that transmutation was 
possible and that lead could be turned to gold.) 

About 1770 Lavoisier decided to repeat the experiment, but quan
titatively. He began by accurately weighing a clean flask and adding 
an accurate weight of water. He then boiled the water under conditions 
so designed that the rising water vapor was cooled, condensed back to 
water, and forced to drip again into the still-boiling contents of the 
flask. He continued this for 101 days, thus giving the water plenty of 
time to tum into earth. He then stopped and let all the water cool 
down. 

Sure enough, as the water cooled, the sediment formed. Lavoisier 
poured out the water, filtered off the sediment, and weighed each sepa
rately. The weight of the water had not changed at all. He then weighed 
the flask. The flask had lost weight and the loss in weight was just 
equal to the weight of the sediment. Water had not changed to earth; 
it had simply dissolved some of the material of the flask. 

Thus he showed that one conclusion drawn from a particular experi
ment could be shifted to another and much more plausible conclusion 
by simply becoming quantitative. 

In a later experiment Lavoisier put some tin in a vessel which he 
then closed. He next weighed the whole business accurately. Then he 
heated the vessel. 

A white rust formed on the tin. It was known that such a rust was 
invariably heavier than the original metal, yet when Lavoisier weighed 
the whole setup, be found the total weight had not changed at all If 

the rust were heavier than the tin, then that gain in weight must have 
been countered by an equal loss in weight elsewhere in the vessel If 
the Joss in weight were in the air content, then a partial vacuum 
should now exist in the vessel. Sure enough, when Lavoisier opened 
the vessel, air rushed in and then the system increased in weight. The 
increase was equal to the extra weight of the rust. 

Lavoisier therefore suggested the following: Combustion (or rust-
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formation) was caused not by the loss of phlogiston but by the com
bination of the fuel or metal with air. Phlogiston bad nothing to do 
with it. Phlogiston did not exist. 

The weak point in this new suggestion, just at first, lay in the fact 
that not alJ the air was involved in this. Lavoisier found that when a 
candle burned, it used up only about one fifth of the air. It would bum 
no longer in the remaining four fifths. 

Light dawned when Priestley visited France and had a conversation 
with Lavoisier. Of course! Lavoisier rushed back to bis work. If phlo
giston did not exist, then air could not change its properties with gain 
or Joss of phlogiston. If two kinds of air seemed to exist with different 
properties, then it was because air contained two different substances. 

The one fifth of the air which a burning candle used up was 
Priestley's dcpblogisticated air, which Lavoisier now called "oxygen," 
from Greek words meaning "sourness-producer." (Lavoisier thought 
oxygen was a necessary component of acids. It isn't, but the name will 
never be changed now.) As for the remaining four fifths of the air, 
that portion in which candles would not burn and mice would not live, 
that was Rutherford's phlogisticated air, and Lavoisier called it 
"azote," from Greek words meaning "no life." Nowadays, we call it 
"nitrogen." 

Air, according to Lavoisier, then, was one fifth oxygen and four 
fifths nitrogen. Combustion and rusting were brought about by the 
combination of materials with oxygen only. Some combinations (or 
"oxides"), such as carbon dioxide, were vapors and left the scene of 
combustion altogether, which was why coal, wood, and candles all lost 
weight drastically after burning. Other oxides were solids and remained 
on the spot, which was why rust was heavier than metal-heavier by 
the added oxygen. 

In order for a new theory to displace an old comfortable one, the 
new theory has to be clearly better, and the oxygen theory was not, just 
at first. To most chemists, oxygen just seemed phlogiston in reverse. 
Instead of wood losing phlogiston in combustion, it gained oxygen. In
stead of iron ore gaining phlogiston in iron smelting, it lost oxygen. 

Lavoisier could only have carried conviction by proving that the 
matter of weight was crucial, for the oxygen theory explained the 
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weight changes in combustion and rusting, whi le the phlogiston the
ory did not and could not. 

Lavoisier tried to emphasize the importance of weight and to make 
it central to chemistry by maintaining that there was no change in 
total weight during the course of any chemical reaction in a closed 
system, where vapors were not allowed to escape and outside air could 
not be added. This is the "law of conservation of mass." Another way 
of putting it is that matter can neither be created nor destroyed, and 
if that is true, then the phlogiston theory is fallacious, for in it the 
added weight of the rust appears out of nowhere and matter must 
therefore be created. 

Unfortunately, Lavoisier could not make the law of conservation of 
mass hard and fast at first. There was a flaw. Lavoisier tried to meas
ure the amount of oxygen a human being absorbed in breathing and 
to compare it with the carbon dioxide he exhaled. When he did that, 
it always turned out that some of the oxygen had disappeared. The ex
haled carbon dioxide never accounted for all the oxygen taken in. If 
the law of conservation of mass didn't hold, there was no handy stick 
with which to kiU phlogiston. 

Now let's go back to England and to our mad scientist, Henry 
Cavendish. 

Cavendish, you see, was pathologically shy and unbelievably absent
minded. It was only with difficulty that he could speak to one man; 
and it was virtually impossible to speak to more than one. Although 
he regularly attended dinner at the Royal Society, dressed in snuffy, 
old-fashioned clothes, be ate in dead silence with his eyes on his plate. 

He was a woman-hater (or, perhaps, woman-fearer) to the point 
where he could not bear to look at one. He communicated with his 
female servants by notes, and any who accidentally crossed his path in 
his house was fired on the spot. He built a separate entrance to his 
house so he could come and leave alone. In the end, he even insisted 
on dying alone. 

He came of a noble family and at the age of forty inherited a for
tune, but paid no particular attention to it. Money literally meant noth
ing to him, and neither did fame. Many of his important discoveries 
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be never bothered publishing, and it is only by going through the 
papers he left behind that we know of them. 

Some discoveries, however, he did publish. In 1766, for instance, 
he discovered an inflammable gas produced by the action of acids 
on metals. This had been done before, but Cavendish was the first to 
study the gas systematically and so he gets credit for its discovery. 

One thing that Cavendish noted about the gas was that it was ex
ceedingly light-far lighter than air; lighter than any material object 
then known ( or since discovered) . With his mind on the "levity" that 
some had suggested as one of the properties of phlogiston, Cavendish 
began to wonder whether he had stumbled on something that was 
mostly, or even entirely, phlogiston. Perhaps he had phlogiston itself. 

After all, as the gas left the metal through the action of acids, the 
metal formed a rust with phenomenal rapidity. Furthermore, the gas 
was highly inflammable; indeed, explosively so; and surely that was 
to be expected of phlogiston. 

When, in the decade that followed, Rutherford isolated his phlo
gisticated air and Priestley his dephlogisticated air, it occurred to 
Cavendish that he could perform a crucial experiment. 

He could add his phlogiston to a sample of dephlogisticated air and 
convert it first into ordinary air and then into phlogisticated air. If he 
did that, it would be ample proof that bis inflammable gas was indeed 
phlogiston and, moreover, it would be a general proof of the truth of 
the phlogiston theory. 

So, in 1781, Cavendish performed the crucial experiment in chem
istry. It was simplicity itself. He merely set acid to working on metal 
so that a jet of his phlogiston -could be forced out of a glass tube. This 
jet of phlogiston could be lighted by a spark and allowed to burn in
side a vessel full of dephlogisticated air. That was all there was to it. 

But when he did it, he found to his surprise that he had not formed 
pblogisticated air at all. Instead, the inner walls of the vessel were be
dewed with drops of a liquid that looked like water, tasted like water, 
felt like water, bad all the chemical properties of water and, egad, 
sir, was water. 

Cavendish hadn't proved the phlogiston theory at all. In fact, as 
Lavoisier saw at once, Cavendish's experiment had once and for all 
killed phlogiston. 
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As soon as Lavoisier heard of Cavendish's work, he jumped upon 
it with loud cries of delight. He repeated the experiment with im
provements and named Cavendish's gas "hydrogen," from Greek 
words meaning "water-producer," a name it keeps to this day. 

Here's what this one simple experiment of Cavendish's did: 
1 )  It proved water to be an oxide; the oxide of hydrogen. This 

was the last, final blow to the "four-elements" theory of the Greeks, 
for water was not a basic substance after all. 

2) It wiped out the notion that air was a single substance varying 
in properties according to its phlogiston content. If that were so, then 
hydrogen plus oxygen would yield nitrogen (as Cavendish had, in 
truth, expected it would-using the eighteenth-century terminology of 
phlogisticated air, dephlogisticated air, and so on). But if air were 
not a single substance, then the only way of accounting for the experi
ments of the 177 Os was to assume it a mixture of two substances. 

3) Lavoisier realized that the foodstuffs that underwent combus
tion in the body contained both carbon and hydrogen. In the light of 
Cavendish's experiment, then, it was not surprising that the carbon 
dioxide produced by the body was less than sufficient to account for 
the oxygen absorbed. Some of the oxygen was used up in combining 
with hydrogen to form water, and expired breath was rich in water as 
well as in carbon dioxide. The obvious flaw in the law of conserva
tion of mass was removed. The importance of quantitative measure
ment in chemistry was thus established and bas never since been 
doubted. 

In short, then, all of Modem Chemistry traces back, clean and true 
as an arrow, to Cavendish's burning jet of hydrogen. 

There is an ironic postscript to the story, though. Lavoisier had 
one flaw in an otherwise admirable character. He had a tendency to 
grab for credit that did not belong to him. In advancing his theory of 
combustion, for instance, he never mentioned Priestley's experiments 
and never indicated that he bad discussed them with Priestley. In fact, 
he tried to give the impression that he, himself, was the discoverer of 
oxygen. In the same way, when he repeated Cavendish's experiment 
of burning hydrogen, he tried to give the impression, without quite 
saying so, that the experiment was original with him. 
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Lavoisier didn't get away with these little tricks and posterity has 
forgiven him his vanity, for what he did do (including a deal of ma
terial I haven't mentioned in this article) was quite enough for a hun
dred ordinary chemists. 

However, it is quite likely that neither Priestley nor Cavendish felt 
particularly kindly toward Lavoisier as a result. At least, neither man 
would accept Lavoisier's new chemistry. Both men refused to aban
don phlogiston, and remained stubborn devotees of the old chemistry 
to the end of their lives. 

Which once again proves, I suppose, that scientists are human. 
Like the metals they work with, they can be subjected to the effects of 
a slow bum. 
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It is di.fficult to prove to the man in the street that one is a chemist. At 
least, when one is a chemist after my fashion (strictly annchair). 

Faced with a miscellaneous stain on a garment of unknown com. 
position, I am helpless. I say "Have you tried a dry cleaner?" with a 
rising inflection that disillusions everyone within earshot at once. I 
cannot look at a paste of dubious composition and tell what it is good 
for just by smelling it; and I haven't the foggiest notion what a drug, 
identified only by trade name, may have in it. 

It is not long, in short, before the eyebrows move upward, the wise 
smiles shoot from lip to lip, and the hoarse whispers begin: "Some 
chemist! Wonder what barber coUege he went to?" 

There is nothing to do but wait. Sooner or later, on some breakfast
cereal box, on some pill dispenser, on some bottle of lotion, there will 
appear an eighteen-syllable name of a chemical. Then, making sure I 
have a moment of silence, I will say carelessly, "Ah, yes," and rattle 
it off like a machine gun, reducing everyone for miles around to 
stunned amazement. 

Because, you see, no matter how inept I may be at the practical as· 
pects of chemistry, I speak the language fluently. 

But, alas, I have a confession to make. It isn't hard to speak chem
istry. It just looks hard because organic chemistry (that branch of 
chemistry with the richest supply of nutcracker names) was virtually 
a Gennan monopoly in the nineteenth century. The Germans, for 
some reason known only to themselves, push words together and 
eradicate all traces of any seam between them. What we would ex
press as a phrase, they treat as one interminable word. They did this 
to the names of their organic compounds and in English those names 
were slavishly adopted with minimum change. 

It is for that reason, then, that you can come up to a perfectly re
spectable compound which, to all appearances, is just lying there, 
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harming no one, and find that it has a name like para-dimethylamino
benzaldehyde. (And that is rather short, as such names go.) 

To the average person, used to words of a respectable size, this 
conglomeration of letters is offensive and irritating, but actually, if you 
tackle it from the front and work your way slowly toward the back, 
it isn't bad. Pronounce it this way: PA-ruh-dy-METH-il-a-MEE-noh
ben-ZAL-duh-hide. If you accent the capitalized syllables, you will 
discover that after a while you can say it rapidly and without trouble 
and can impress your friends no end. 

What's more, now that you can say the word, you will appreciate 
something that once happened to me. I was introduced to this par
ticular compound some years ago, because when dissolved in hydro· 
chloric acid, it is used to test for the presence of a compound called 
glucosamine and this was something I earnestly yearned to do at the 
time. 

So I went to the reagent shelf and said to someone, "Do we have 
any para-dimethylaminobenzaldehyde?" 

And he said, "What you mean is PA -ruh-dy- METH-il-a-MEE-noh
ben-ZAL-duh-hide," and he sang it to the tune of the "Irish Washer
woman." 

If you don't know the tune of the "Irish Washerwoman," al] I can 
say is that it is an Irish jig; in fact, it is the Irish jig; if you heard it, 
you would know it. I venture to say that if you know only one Irish 
jig, or if you try to make up an Irish jig, that's the one. 

It goes: DUM-dee-dee-DUM-dee-dee-DUM-dee-dee-DUM-dee
dee, and so on almost indefinitely. 

For a moment I was flabbergasted and then, realizing the enormity 
of having someone dare be whimsical at my expense, I said, "Of 
course! It's dactylic tetrameter." 

"What?" he said. 
I explained. A dactyl is a set of three sy1lables of which the first is 

accented and the next two are not, and a line of verse is dactylic tetram
eter when four such sets of syllables occur in it. Anything in dactylic 
feet can be sung to the tune of the "Irish Washerwoman." You can 
sing most of Longfellow's "Evangeline" to it, for instance, and I 
promptly gave the fellow a sample: 
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"THIS is the FO-rest pri-ME-val. The MUR-muring PINES and 
the HEM-locks-" and so on and so on. 

He was walking away from me by then, but I followed him at a 
half run. In fact, I went on, anything in iambic feet can be sung to 
the tune of Dvorak's "Humoresque." (You know the one-dee-DUM
dee-DUM-dee-DUM-dee-DUM-dee-DUM-and so on forever.) 

For instance, I said, you could sing Portia's speech to the "Humor
esque" like this : "The QUALiTY of MERcy IS not STRAINED it 
DROPpeth AS the GENtle RAIN from HEA V'N uPON the PLACE 
beNEATH." 

He got away from me by then and didn't show up at work again 
for days, and served him right. 

However, I didn't get off scot free myself. Don't think it. I was 
haunted for weeks by those drumming dactylic feet. PA-ruh-dy
METH-il-a-MEE-noh-ben-ZAL-duh-hide-PA-ruh-dy-METH-il-a
MEE-noh-went my brain over and over. It scrambled my thoughts, 
interfered with my sleep, and reduced me to mumbling semimadness, 
for I would go about muttering it savagely under my breath to the 
alarm of all innocent bystanders. 

Finally, the whole thing was exorcized and it came about in this 
fashion. I was standing at the desk of a receptionist waiting for a 
chance to give her my name in order that I might get in to see some
body. She was a very pretty Irish receptionist and so I was in no hurry 
because the individual I was to see was very masculine and I preferred 
the receptionist. So I waited patiently and smiled at her; and then her 
patent Irishness stirred that drumbeat memory in my mind, so that 
I sang in a soft voice (without even realizing what I was doing) PA
ruh-dy-METH-il-a-MEE-noh-ben-ZAL-duh-hide . . . through sev
eral rapid choruses. 

And the receptionist clapped her hands together in delight and cried 
out, "Oh, my, you know it in the original Gaelic!" 

What could I do? I smiled modestly and bad her announce me as 
Isaac O'Asimov. 

From that day to this I haven't sung it once except in telling this 
story. It was gone, for after all, folks, in my heart I know I don't know 
one word of Gaelic. 
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But what are these syllables that sound so Gaelic? Let's trace them 
to their lair, one by one, and make sense of them, if we can. Perhaps 
you will then find that you, too, can speak Gaelic. 

Let's begin with a tree of southeast Asia, one that is chiefly found 
in Sumatra and Java. It exudes a reddish-brown resin that, on being 
burned, yields a pleasant odor. Arab traders had penetrated the In
dian Ocean and its various shores during medieval times and had 
brought back this resin, which they called "Javanese incense." Of 
course) they called it that in Arabic, so that the phrase came out 
"luban javi." 

When the Europeans picked up the substance from Arabic trad
ers, the Arabic name was just a collection of nonsense syllables to 
them. The first syllable lu sounded as though it might be the definite 
article (lo is one of the words for the in Italian; le and la are the in 
French and so on). Consequently, the European traders thought of 
the substance as "the banjavi" or simply as "banjavi." 

That made no sense, either, and it got twisted in a number of ways; 
to "beojamin," for instance (because that, at least, was a familiar 
word), to "benjoin," and then finally, about 1650, to "benzoin." In 
English, the resin is now called "gum benzoin." 

About 1608 an add substance was isolated from the resin and that 
was eventu�lly called "benzoic acid." Then, in 1834, a German chem
ist Eilhart Mitscherlich converted benzoic acid (which contains two 
oxygen atoms in its molecule) into a compound which contains no 
oxygen atoms at all, but only carbon and hydrogen atoms. He named 
the new compound "benzin," the first syllable signifying its ancestry. 

Another German chemist Justus Liebig objected to the suffix -in, 
which, be said, was used only for compounds that contained nitrogen 
atoms, which Mitscberlich's "benzin" did not. In this, Liebig was cor
rect. However, he suggested the suffix -ol, signifying the German word 
for "oil," because the compound mixed with oils rather than with 
water. This was as bad as -in, however, for, as I shall shortly explain, 
the suffix -ol is used for other purposes by chemists. However, the 
name caught on in Germany, where the compound is still referred to 
as "benzol." 

In 1845 still another German chemist (I told you organic chemis
try was a German monopoly in the nineteenth century) August W. 
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von Hofmann suggested the name benzene, and this is the name 
properly used in most of the world, including the United States. I say • 
properly, because the -ene ending is routinely used for many molecules 
containing hydrogen and carbon atoms only ("hydrocarbons") and 
therefore it is a good ending and a good name. 

The molecule of benzene consists of six carbon atoms and six hy
drogen atoms. The carbon atoms are arranged in a hexagon and to • 
each of them is attached a single bydrogen atom. If we remember the 
actual structure we can content ourselves with stating that the formula 
of benzene is C6H6, 

You will have noted, perhaps, that in the long and tortuous path
way from the island of Java to the molecule of benzene, the letters of 
the island have been completely lost. There is not a j, not an a, and not • 
a v, in the word benzene. 

Nevertheless, we've arrived somewhere. If you go back to the "Irish 1 
Washerwoman" compound, para-dimethylaminobenzaldehyde, you 
will not fail to note the syllable benz. Now you know where it comes I 
from. r 

Having got this far, Jet's start on a different track altogether. 
Women, being what they are (three cheers), have for many cen

turies been shading their eyelashes and upper eyelids and eye cor
ners in order to make said eyes look large, dark, mysterious, and 
enticing. In ancient times they used for this purpose some dark pig
ment (an antimony compound, often) which was ground up into a 
fine powder. It had to be a very fine powder, of course, because lumpy 
shading would look awful. 

The Arabs, with an admirable directness, referred to  this cosmetic 
powder as "the finely divided powder." Only, once again, they used 

I Arabic and it came out "al-kuhl," where the h is pronounced in some t 

sort of guttural way I can't imitate, and where al is the Arabic word I � �  l The Arabs were the great alchemists of the early Middle Ages and 
I when the Europeans took up alchemy in the late Middle Ages, they 

adopted many Arabic terms. The Arabs had begun to use al-kuhl as � 
a name for any finely divided powder, without reference to cosmetic 

( 

I 

YOU, TOO, CAN SPEAK GAELIC 137 

needs, and so did the Europeans. But they pronounced the word, 
and spelled it, in various ways that were climaxed with "alcohol." 

As it happened, alchemists were never really at ease with gases or 
vapors. They didn't know what to make of them. They felt, some
how, that the vapors were not quite material in the same sense that 
liquids or solids were, and so they referred to the vapors as "spirits." 
They were particularly impressed with substances that gave off "spir
its" even at ordinary temperatures (and not just when heated), and 
of these, the most important in medieval times was wine. So alche
mists would speak of "spirits of wine" for the volatile component of 
wine ( and we ourselves may speak of alcoholic beverages as "spirits," 
though we will also speak of "spirits of turpentine"). 

Then, too, when a liquid vaporizes it seems to powder away to 
nothing, so spirits also received the name alcohol and the alchemists 
would speak of "alcohol of wine." By the seventeenth century the 
word alcohol all by itself stood for the vapors given off by wine. 

In the early nineteenth century the molecular structure of these 
vapors was determined. The molecule turned out to consist of two 
carbon atoms and an oxygen atom in a straight line. Three hydrogen 
atoms are attached to the first carbon, two hydrogen atoms to the 
second, and a single hydrogen atom to the oxygen. The formula can 
therefore be written as CH8CH20H. 

The hydrogen-oxygen group ( - OH) is referred to in abbreviated 
form as a "hydroxyl group." Chemists began to discover numerous 
compounds in which a hydroxyl group is attached to a carbon atom, 
as it is in the alcohol of wine. All these compounds came to be re
ferred to generally as alcohols, and each was given a special name 
of its own. 

For instance, the alcohol of wine contains a group of two carbon 
atoms to which a total of five hydrogen atoms are attached. This 
same combination was discovered in a compound first isolated in 
1540. This compound is even more easily vaporized than alcohol 
and the liquid disappears so quickly that it seems to be overwhelm
ingly eager to rise to its home in the high heavens. Aristotle had re
ferred to the material making up the high heavens as "aether" (see 
Chapter 8), so in 17 30 this easily vaporized material received the 
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name spiritus aethereus, or, in English, "ethereal spirits." This was 
eventually shortened to "ether." 

The two-carbon-five-hydrogen group in ether (there were two of 
these in each ether molecule) was naturally called the "ethyl group," 
and since the alcohol of wine contained this group, it came to be 
called "ethyl alcohol" about 1850. 

It came to pass, then, that chemists found it sufficient to give the 
name of a compound the suffix -ol to indicate that it was an alcohol, 
and possessed a hydroxyl group. That is the reason for the objection 
to benzol as a name for the compound C�. Benzene contains no 
hydroxyl group and is not an alcohol and should be called "benzene" 
and not "benzol." You hear? 

It is possible to remove two hydrogen atoms from an alcohol, tak
ing away the single hydrogen that is attached to the oxygen, and one 
of the hydrogens attached to the adjoining carbon. Instead of the 
molecule CH8CH20H, you would have the molecule CH3CHO. 

Liebig (the man who had suggested the naughty word benzol) 
accomplished this task in 1835 and was the first actually to isolate 
CHaCHO. Since the removal of hydrogen atoms is, naturally, a "de
hydrogenation," what Liebig had was a dehydrogenated alcohol, and 
that's what he called it. Since he used Latin, however, the phrase was 
alcohol dehydrogenatus. 

That is a rather long name for a simple compound, and chemists, 
being as human as the next fellow (honest!), have the tendency to 
shorten long names by leaving out syllables. Take the first syllable 
of alcohol and the first two syllables of dehydrogenatus, run the result 
together, and you have aldehyde. 

Thus, the combination of a carbon, hydrogen, and oxygen atom 
(-CHO), which forms such a prominent portion of the molecule of 
dehydrogenated alcohol, came to be called the "aldehyde group," 
and any compound containing it came to be called an "aldehyde." 

For instance, if we return to benzene, C6H0, and imagine one of 
its hydrogen atoms removed, and in its place a -CHO group inserted, 
we would have CoH5CHO and that compound would be "benzene
aldebyde" or, to use the shortened form that is universally employed, 
"benzaldehyde." 
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Now let's move back in time again to the ancient Egyptians. The 
patron god of the Egyptian city of Thebes on the Upper Nile was 
named Amen or Amun. When Thebes gained hegemony over Egypt, 
as it did during the eighteenth and nineteenth dynasties, the time of 
Egypt's greatest military power, Amen naturally gained hegemony 
over the Egyptian gods. He rated many temples, including one on an 
oasis in the North African desert, well to the west of the main center 
of Egyptian culture. This one was well known to the Greeks and, 
later, to the Romans, who spelled the name of the god "Ammon." 

Any desert area has a problem when it comes to finding fuel. One 
available fuel in North Africa is camel dung. The soot of the burning 
camel dung, which settled out on the walls and ceiling of the temple, 
contained white, salt-like crystals, which the Romans then called "sal 
ammoniac," meaning "salt of Ammon." (The expression "sal am
moniac" is still good pharmacist's jargon, but chemists call the sub
stance "ammonium chloride" now.) 

In 1774 an English chemist Joseph Priestley discovered that heat
ing sa1 ammoniac produced a vapor with a pungent odor, and in 
1782 the Swedish chemist Torbem Olof Bergmann suggested the 
name ammonia for this vapor. Three years later a French chemist, 
Claude Louis Berthollet, worked out the structure of the ammonia 
molecule. It consisted of a nitrogen atom to which three hydrogen 
atoms were attached, so that we can write it NH3• 

As time went on, chemists who were studying organic compounds 
(that is, compounds that contained carbon atoms) found that it often 
happened that a combination made up of a nitrogen atom and two 
hydrogen atoms ( -NH2) was attached to one of the carbon atoms 
in the organic molecule. The resemblance of this combination to the 
ammonia molecule was clear, and by 1 860 the -NH2 group was 
being called an "amine group" to emphasize the similarity. 

Well, then, if we go back to our benzaldehyde, C6H,CHO, 
and imagine a second hydrogen atom removed from the original 
benzene and in its place an amine group inserted, we would have 
C0H4(CHO) (NH2) and that would be "aminobenzaldehyde." 

Earlier I talked about the alcohol of wine, CHsCH20H, and said 
it was "ethyl alcohol." It can also be called ( and frequently is) "grain 
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alcohol" because it is obtained from the fermentation of grain. But, 
as I hinted, it is not the only alcohol; far from it. As far back as 1661, 
the English chemist Robert Boyle found that if he heated wood in the 
absence of air, he obtained vapors, some of which condensed into 
clear liquid. 

In this liquid he detected a substance rather similar to ordinary 
alcohol, but not quite the same. (It is more easily evaporated than 
ordinary alcohol, and it is considerably more poisonous, to mention 
two quick differences.) This new alcohol was called "wood alcohol;'' 

However, for a name really to sound properly authoritative in sci
ence, what is really wanted is something in Greek or Latip. The Greek 
word for wine is methy and the Greek word for wood is yli. To get 
"wine from wood" (i.e., "wood alcohol"), stick the two Greek words 
together and you have methyl. The first to do this was the Swedish 
chemist Jons Jakob Berzelius, about 1835, and ever since then wood 
alcohol has been "methyl alcohol" to chemists. 

The formula for methyl alcohol was worked out in 1834 by a 
French chemist named Jean Baptiste Andre Dumas (no relation to 
the novelist, as far as I know). It turned out to be simpler than that 
of ethyl alcohol and to contain but one carbon atom. The formula is 
written CHaOH. For this reason, a grouping of one carbon atom and 
three hydrogen atoms ( -CH3) came to be referred to as a "methyl 
group." 

The French chemist Charles Adolphe Wurtz (he was born in Al
sace, which accounts for his Germanic name) discovered in 1849 that 
one of the two hydrogen atoms of the amine group could be replaced 
by a methyl group, so that the end product looked like this: -NHCH3• 

This would naturally be a "methylamine group." If both hydro
gen atoms were replaced by methyl groups, the formula would be 
-N(CHah and we would have a "dimethylamine group." (The pre
fix di- is from the Greek dis, meaning "twice." The methyl group is 
added to the amine group twice, in other words.) 

Now we can go back to our aminobenzaldehyde, C�(CHO)
(NH2). If, instead of an amine group, we had used a dimethylamine 
group, the formula would be CGH4(CHO)(N(CH3h) and the name 
would be "dimethylaminobenzaldehyde." 
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Let's think about benzene once again. Its molecule is a hexagon 
made up of six carbon atoms, each with a hydrogen atom attached. 
We have substituted an aldehyde group for one of the hydrogen atoms 
and a dimethylamine group for another, to form dimetbylaminoben
zaldehyde, but which two hydrogen atoms have we substituted? 

In a perfectly symmetrical hexagon, such as that which is the mole
cule of benzene, there are only three ways in which you can choose 
two hydrogen atoms. You can take the hydrogen atoms of two ad
joining carbon atoms; or you can take the hydrogens of two carbon 
atoms so selected that one untouched carbon-hydrogen combination 
lies between; or you can take them so that two untouched carbon
hydrogen combinations lie between. 

If you number the carbon atoms of the hexagon in order, one 
through six, then the three possible combinations involve carbons 1,2; 
1,3; and 1,4 respectively. If you draw a diagram for yourself Ht is 
simple enough), you will see that no other combinations are possible. 
All the different combinations of two carbon atoms in the hexagon 
boil down to one or another of these three cases. 

Chemists have evolved a special name for each combination. The 
1,2 combination is ortho from a Greek word meaning "straight" or 
"correct," perhaps because it is the simplest in appearance, and what 
seems simple, seems correct. 

The prefix meta- comes from a Greek word meaning "in the midst 
of," but it also has a secondary meaning, "next after." That makes 
it suitable for the 1,3 combination. You substitute the fust carbon, 
leave the next untouched, and substitute the one "next after." 

The prefix para- is from a Greek word meaning "beside" or "side 
by side." If you mark the 1,4 angles on a hexagon and turn it so 
that the 1 is at the extreme left, then the 4 will be at the extreme 
right. The two are indeed "side by side" and so para- is used for the 
1,4 combination. 

Now we know where we are. When we say "para-dimethylamino
benzaldebyde," we mean that the dimethylamine group and the alde
hyde group are in the 1,4 relationship to each other. They are at 
opposite ends of the benzene ring and we can write the formula 
CHOC6H4N (CHs) 2. 

See? 
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Now that you know Gaelic, what do you suppose the following are? 
1) alpha-dee-glucosido-beta-dee-fructofuranoside 
2) two,three-dihydro-three-oxobenzisosulfonazole 
3)  delta-four-pregnene-seventeen-alpha, twenty-one, diol-three, 

eleven, tweoty-trione 
4) three- (four-amino-two-methylpyrimidyl-five-methyl) -four

methy 1-five-beta-hydrox ye thy lthiazolium chloride hydrochloride 
Just in case your Gaelic is still a little rusty, I will give you the 

answers. They are: 
1) table sugar 
2) saccharin 
3 )  cortisone 
4) vitamin B1 

Isn't it simple? 
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There are disadvantages to every situation, however ideal it may seem. 
For instance, by extremely clever maneuvering, I have created the 
image of one who possesses universal knowledge. This, plus the pos
session of a magnetic glance, enables me to browbeat editors (present 
editor always excepted) .  

Having brought myself to this ideal pass, however, I find myself 
occasionally asked to speak on some subject far outside my field of 
competence. When I then protest (very feebly) that I know nothing 
about it, there is a loud, jovial laugh in response and a hearty slap 
on the shoulders and someone says, "Good old Asimov! Always 
joking!" 

WelJ, I can't allow the destruction of the image, or I might starve 
to death, so I do the next best thing to knowing my subject; I cheat. 
I start talking about whatever it is I am supposed to be talking about 
and then I sneakily change the subject to something I know. 

For instance, one July I found myself staring at an audience of a 
hundred and fifty specialists in "information retrieval," having agreed 
to give the featured talk of the evening. By spelling the words information retrieval I have just given you all the knowledge I possess on 
the subject. The talk I proceeded to give was off the cuff ( as all my 
talks are) and is lost forever. However, the following is an approxima
tion of parts of it, anyway. 

A magic phrase these days is "information retrieval," the study of 
devices whereby knowledge, once found, need never be lost again. 

So many are the busy minds in scientific research who are hacking 
away at the jungle of ignorance, so numerous and miscellaneous are 
the fragmented bits of knowledge so obtained, that keeping all of it 
safely in hand is a problem indeed. 
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The information is published in a myriad journals, digested and 
spewed out again in a thousand reviews, pounded into pulp and sum
marized in a variety of abstracts, then compressed into invisibility 
and recorded on miles of microfilm. The net result is that any one 
needle of information, even a most important and crucial one, found 
for a moment of time, is in constant danger of being lost, lost, lost 
in the haystacks upon haystacks that fill the shelves of our technical 
libraries. 

To rescue an important bit of knowledge, to snatch it out of its 
dusty surroundings, shake it free of obscurement, and hold it up, 
gleaming, in the light of day, is the purpose of information retrieval. 
Librarians, scientists, cybemeticists, combine to devise new methods 
of indexing and cross-filing and hope to transfer the organized infor
mation into the colossal and unfailing memory of a computer, in order 
that at the touch of a punch-code, the machine might bring forth 
anything that is known on any subject that is desired. 

Thus the devices produced by the advance of modern science will, 
it is hoped, correct the incapacity of the human mind to keep up 
with the advance of modern science. 

Yet there remains a flaw in this self-corrective process of science, 
a flaw for which no one has yet proposed a remedy, and one for 
which no remedy may be possible. It is not enough, after all, to supply 
a scientist with tbe information he needs. Once the information is 
supplied, the scientist must be capable of looking at it and seeing its 
importance. 

This may sound an easy thing to do, this looking at importance 
and seeing it, but it is not. In fact, it may well be the hardest thing 
in the world. It may require all the intuition and creative talent of the 
world's best minds to see how a single bit of a jigsaw puzzle may just 
complete a structure and turn a meaningless jumble of facts into a 
fruitful and beautiful theory. 

Far from being able to rely on a machine for this particular pur
pose, we cannot even rely on men-except, perhaps, for a very few. 

Imagine, for example, a crucial scientific discovery, one that com
pletely revolutionizes a major branch of science and supplies elegant 
answers to key questions that have agitated scientists and philosophers 
for thousands of years. And suppose, further, that there is but one 
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major flaw in the discovery; one weakness that threatens to make this 
beautiful discovery worth nothing after all. A continent of scientists is 
searching desperately for a method of removing the flaw and, behold, 
the necessary piece of information is unexpectedly discovered by an 
amateur, and is worked out in full detail, so that the great central 
theory is complete at last. 

Consider, next, that this piece of information, this key, this crux, 
is carefully placed in the hand of one of the most eminent scientists 
of the day, one who is bending his every effort to discovering just this 
piece of information. Now be has "retrieved" it; he has it. 

What do you suppose the scientist would do with this information? 
There is no need to guess. All that I have just described actually 

happened a hundred years ago. And in real life, the scientist who 
came upon the key contemptuously threw it away and kept on looking 
(in vain) for that which he had had and had not recognized. No one 
else found that thrown-away item for thirty-four years! 

The great theory to which I have referred is that of "evolution by 
natural selection" as advanced by the English naturalist Charles Rob
ert Darwin. This he did in 1859, in his book The Origin of Species, 
undoubtedly the most important single scientific work in all the history 
of the life sciences. 

Ever since the time of the Greek philosophers, there have been 
scholars who studied the nature of the various species of plants and 
animals and who came to feel (sometimes very uneasily) that there 
was an ordered relationship among all those species; that one species 
might develop out of another; that several species might have a com
mon ancestry. 

The great difficulty at first was that no such evolutionary process 
was visible in all the history of man, so that if it occurred at all, it 
must take place with exceeding slowness. As long as mankind believed 
the earth to be no more than a few thousand years old, evolution was 
an impossible concept. 

In the early nineteenth century, however, the conviction grew and 
strengthened that the earth was not a few thousand years old, but 
many millions of years old, and suddenly there was time for evolution 
to take place after all. 

r 
l 
f 

I 

I 

THE LOST GENERATION 147 

But now another problem arose. Why should evolution take place? 
What force drove some primitive antelope-like creature to lengthen 
its legs and neck and become a giraffe (which, despite its grotesque 
shape, still plainly revealed, in its anatomy and physiology, its rela
tionship to the world of antelopes) .  Or why should a primitive four
hoofed creature, no larger than a dog, grow over the eons and lose 
one toe after another until it became the large one-hoofed creature 
we know today as the horse. 

The first man to supply a reason was the French naturalist Jean 
Baptiste de Lamarck. In 1809 he suggested that animals changed be
cause they voluntarily tried to change. Thus, a primitive antelope that 
dined on the leaves of trees was apt to find the leaves within easy 
reach already consumed by himself and his confreres. He would there
fore stretch his neck and his legs, and even his tongue, to grasp leaves 
that were just higher than he could comfortably reach. A lifetime of 
such exercise would permanently (it seemed to Lamarck) extend the 
stretched portions just a trifle and the young of such a creature would 
inherit this slightly increased length of neck and limbs. (This is the 
doctrine of "inheritance of acquired characteristics.") The new gen· 
eration would repeat the process and, very slowly, with the passage of 
time, the antelope would become a long-legged, long-necked, Jong
tongued giraffe. 

This theory foundered on two points. In the first place, no evi
dence existed that showed that acquired characteristics could be in
herited. In fact, all the evidence that biologists could locate proved 
just the reverse, the acquired characteristics were not inherited. 

Secondly, Lamarckism might be conceivable for characteristics that 
could be altered by conscious effort, but what about other charac
teristics? The giraffe had also developed the novelty of a blotched 
coat that caused it to blend into the spattered background of light 
and shadow under the sunlit trees upon whose leaves it fed. This pro
tective coloration makes it easier for the giraffe to avoid the predatory 
gaze of the large carnivores. But how did the giraffe develop this spe
cialized and un-antelope-like coloration? Surely it could not have 
tried to become blotchy and therefore have succeeded in becoming 
just a trifle blotchier in the course of its life and then have passed on 
that additional bit of blotch to its young. 
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It fell to Darwin to supply a better answer. He spent years worrying 
about evolution until one day he happened upon a book called An 
Essay on  the Principle of Population by an English economist named 
Thomas Robert Malthus. In this book Malthus pointed out that the 
human population increases more rapidly than the food supply and 
that the population must therefore inevitably be kept down by famine, 
by the disease that accompanies undemutrition, or by the wars fought 
by competing groups of human beings, each intent on salvaging for 
itself a more than fair share of the earth's limited food supply. 

And if this held true for mankind, thought Darwin, why not for 
all living creatures on earth? Each species would multiply until it out
ran its food supply, and each would be cut down by hunger, disease, 
and by the activity of those who preyed upon it, until there was bal
ance between the numbers of the species and the quantity of its food. 

But when the species was winnowed out, which individuals would 
be eliminated? Why, on the whole, reasoned Darwin, those who were 
less well adjusted to the life they led. A species that fed by running 
down its prey would find that the slowest runners would be the first 
to starve. If the species avoided danger by hiding, those less capable 
of efficient concealment would be the first to be eaten. If all were 
subject to a particular parasite, those that were least resistant would 
be the first to sicken and die. 

In this way the blind forces of nature would continually, in each 
generation, weed out the less well adapted and preserve the better 
adapted. 

The giraffe would not try to lengthen its legs and neck, but those 
that were born with slightly longer legs and neck in the first place 
would eat better and survive longer-and have more young to inherit 
their own particular character istics. In each generation the longest 
legs and neck would survive by "natural selection" and the inborn 
length (not the acquired length) would be inherited. 

Again, a giraffe that happened to be born with a blotchier pelt than 
average would more likely survive, so that the blotches would become 
more pronounced with the generations. It was not necessary for a 
giraffe to try for blotches. Natural selection would see to it. 

And among the four-hoofed creatures ancestral to the modem 
horse, those which were largest (hence strongest and fleetest) would 
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most easily survive in each generation. And those with the strongest 
central hoof (and hence with the leg best adapted, mechanically, for 
speed) would best survive. In the end, the large one-hoofed horse 
would be developed. 

Darwin's theory created a terrific furor, but the loudest objections 
were the least crucial, scientifically. Of course, evolution by natural 
selection offended the religious sensibilities of many men, since it 
seemed to deny the version of the creation story found in the first 
chapter of the Book of Genesis. That form of opposition was by far 
the most dramatic, and culminated in the Scopes trial in  Tennessee in 
1924. However, this form of opposition played no great role within 
the realm of science itself. 

Among scientists who were ready to  accept the fact of evolution, 
there were still many who were not ready to accept the Darwinian 
mechanism. Natural selection was a blind, random force and to many 
the thought that the crowning creation of man should be brought 
about by the unseeing stagger of chance was intellectually repugnant. 

Yet within the decade after the publication of Darwin's book, ran
dom forces were shown to account for some subtle facts in physics 
and chemistry. All the physical-chemical properties of gases, for in
stance, were found to result from the random movements of mole
cules. Randomness proved respectable and this form of opposition 
weakened. 

However, there remained one objection so insuperable that if it 
were allowed to stand, it would be the ruin of the entire Darwinian 
theory. The theory's supporters could only suppose (and hope) that 
eventually some way out would be found. This objection involved the 
manner in which variations-the longer neck, the blotchier coat, the 
stronger hoof-were preserved across the generations. 

Darwi n pointed out that the variations arose, in the first place, 
through sheer random effects. In every group of young, in every litter, 
in every set of seedlings, there were trifling variations; differences in 
size, color, and every other conceivable characteristic. It was upon 
these random variations that natural selection would seize. 

But, how could such variations be passed on from generation to 
generation so that they would remain in being for a long enough time 
to allow the very slow workings of natural selection to  bring about 
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the necessary result? One could not count on a male giraffe with a 
longer-than-usual neck mating with a female giraffe with a Jonger
than-usual neck. He would be quite likely to mate with a female with 
an ordinary neck, but one which happened to be ready and waiting 
when the male giraffe was ready and willing. 

In the same way, a large stallion might very well mate with a small 
mare; a well-fanged lion with a small-toothed lioness; an intelligent 
ape with a stupid one. 

And what would happen if these unlikes mated? Darwin was a 
pigeon-fancier and he knew what happened when varieties of pigeon 
were crossbred. For that matter, everyone knows what happens when 
purebred varieties of domestic animals are allowed to mate at ran
dom. The result is the mongrel; a creature in which the special charac
teristics of the ancestral varieties are blended into an undistinguished 
mixture. The sharp blacks and whites tum into a muddy gray. 

Well, then, if chance forces produced the variations at birth, other 
chance forces would see to it that, through indiscriminate mating, 
those variations would blend and mix and cancel out before natural 
selection could get in its work. 

So the theory of natural selection was simply unworkable in the 
light of the knowledge of Darwin's time. It seemed that despite all 
natural ·selection could do, species must remain middle-of-the -road 
and unchanging over countless eons. There could be no evolution, 
then, and yet there indubitably seemed to be evolution. 

Some way had to be found out of this dilemma; some way of de
stroying the paradox. The theory of evolution by natural selection bad 
to be equipped with a driving mechanism that would push it onward. 

One of those most intent on finding this driving mechanism was a 
Swiss botanist named Karl Wilhelm von Nageli, a professor at the 
University of Munich. He was heir to a nineteeoth-century school of 
German biologists who called themselves "nature philosophers." 

The nature philosophers were a group who believed in the mystic 
importance of the individual and in the existence of misty and unde
fined forces particularly associated with life. The German language is 
particularly well adapted to a kind of learned professorial prose that 
resembles a cryptogram to which no key exists, and the nature philoso-
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phers could use this sort of language perfectly. If obscurity is mistaken 
for profundity, then they were profound indeed. 

Von Niigeli was a perfectly competent botanist as long as be con
fined himself to making observations and reporting on them. When, 
however, he theorized and attempted to construct vast realms of 
thought, he produced nothing of value. His books were as thunderous 
as so many drums, and as empty. 

To find a driving mechanism for the Darwinian theory, he went 
old Lamarck one better and postulated a mysterious inner drive that 
forced a species onward in change. 

In this way, von Niigeli could forget the matter of random mating 
and the blending of characteristics that resulted. In fact, he could for
get all concrete evidence and all reality, for he had solved the matter 
of a driving mechanism by simply assuming that one existed, without 
ever realizing that he was arguing in a circle. 

He maintained that if the individuals of a species started to grow 
larger with the generations, the unconscious drive within that species 
would forc.e the individuals to continue to grow larger. It did that be
cause it did that because it did that because it did that. In fact, ac
cording to von Nageli, this process (which he called "orthogenesis") 
would force the species to continue to grow larger, even past the point 
of diminishing returns, so that its oversize would eventually harm it 
and drive it to extinction. 

(Needless to say, no biologist has taken orthogenesis seriously for 
a long time now.) 

Meanwhile, in Brunn, Austria (now Brno, Czechoslovakia), there 
lived an Augustinian monk named Gregor Johann Mendel. He was 
far removed from the violent controversy that was then racking the 
world of biology. He had two interests outside the religious life and 
these were botany and statistics. With commendable economy he 
combined the two by growing pea plants in the monastery garden, 
and counting the different varieties he produced. 

There are certain advantages to growing pea plants. First, they are 
docile creatures who do not resist the interference of man. Mendel 
could fertilize them in any combination he chose and so could control 
their pattern of mating with ease. Secondly, he could cause a pea 
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pl.ant to fertilize itself so that he could simplify matters by dealing 
with only one parent, rather than two. Finally, be could study indi
vidual characteristics that were much simpler than the more notice
able characteristics of, let us say, domestic animals such as dogs and 
cattle. 

I n  crossing his pea plants during the 1860s, Mendel came across a 
number of fascinating effects that proved of prime importance. I'll 
mention two of them. First, characteristics did not blend and mix. 
Black and white did not produce gray. 

When he crossed pea plants producing green peas with those pro
ducing yellow peas, he found that all the seedlings that resulted even
tually produced yellow peas. The peas were not some-yellow-some
green; they were not all yellowish-green. They were all yellow, as 
yellow as though no green-pea parent had been involved. 

Secondly, Mendel discovered that although the green peas had ap
parently disappeared in the second generation when all the pea plants 
produced yellow peas, they reappeared again in the third generation. 
In that generation, some of the yellow-pea plants produced some 
seedlings capable of producing green peas and others capable of pro
ducing yellow peas. 

The deductions drawn from these facts, and from others which 
Mendel uncovered, are today called the "Mendelian laws of inherit
ance," and in the century that has passed there has been no reason 
to change the fundamentals. As Mendel discovered them, so they 
have remained. 

Nor do the Mendelian laws apply only to pea plants, or only to 
the plant world. If varieties of dogs seem to mongrelize when inter
mated, it is because so many different characteristics are involved. 
The crossbred young will inherit some characteristics from one parent, 
and some from another, so that as a whole it will seem intermediate. 
Each .individual characteristic is inherited intact, in one fashion or 
another. 

The Mendelian laws of inheritance provided just the driving mecha
nism that the Darwinian theory needed. If a desirable characteristic 
turned up, it would bang on for generation after generation, and re
main in full, undiluted force, as the yellow peas did. Even if the char
acteristic seemed to disappear for a while, as the green peas did, it 
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was not dead but was merely hiding and in the fullness of time it 
would appear again. 

The reasons for all this were not worked out for decades to come, 
but the facts were incontrovertible. Characteristics did not blend to
gether into an undistinguished middle-ground as a result of random 
mating. Instead, even the most random mating did not affect the 
emergence of different characteristics, and upon those characteristics 
natural selection seized and exerted its force. 

But now that Mendel bad made his crucial discovery (and he him
self by no means recognized its crucial nature, for he was no evolu
tionist), what was he to do with it? 

As he was only an unknown amateur, he felt that the best be could 
do would be to send his findings to some renowned and near-by 
botanist If that botanist were pleased, he could then lend his name 
and prestige to the paper and bring it before the attention of the 
world. So Mendel sent it to von Nageli. 

Von Niigeli now had the key finding in his bands. He was the most 
fortunate ( or, at least, he could have been) of all biologists of his 
generation. Darwin knew about evolution by natural selection but 
knew nothing about the Mendelian Jaws of inheritance. Mendel knew 
about the laws of inheritance but was not concerned with evolution by 
natural selection. 

Only von Nageli, in all the world, was now in a position to consider 
both, put them together, and find the first truly workable theory of 
evolution. 

Looking back on it now, that would seem a simple thing to do, 
but von Nageli did not do it. Instead, he read Mendel's paper with 
the utmost disdain. It was not merely that Mendel was an unknown 
and an amateur, it was also true that the paper was full of numbers 
and ratios in an  age when biologists never dealt with mathematics. 

Moreover, to nature philosophers like von Niigeli, the important 
job of a biologist was the manufacture of windy and abstruse theories. 
To content one's self with counting pea plants seemed an idle amuse
ment that could only be childish at best and idiotic at worst. 

Von Nageli returned the paper to Mendel with a curt, cold com
ment to the effect that the contents were not reasonable. Poor Mendel 
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was crushed. He published the paper, in 1866, in  the Proceedings of 

the Natural History Society of Brunn (a perfectly respectable periodi
cal but rather obscure and out-of-the-way), and there it remained 
unsponsored and unnoticed. 

Mendel never returned to his botanical work. In part, this was due 
to his increasing girth. He became stout enough to make it difficult 
to do the stooping that plant cultivation requires. He also became 
abbot of the monastery and found himself engaged in complicated 
controversy with the Austrian government over questions of taxation. 
However, the crushing rebuff from von Nageli surely helped sour the 
whole subject of botanical research for him. 

Mendel djed in 1884 without having any notion that in the future 
there would be such a thing as "Mendelian" laws. Darwin died in 
1882 without ever realizing that the major flaw in his theory had been 
corrected. And von Nageli died in 1891 never for one moment sus
pecting that he had had the pearl of great price in his hand, and had 
thrown it away. 

Even as von Niigeli lay dying, however, a Dutch botanist Hugo 
de Vries was working on the concept that evolution proceeded by 
jumps, by sudden changes called "mutations." 

De Vries uncovered plants in which new varieties had sprung up, 
seemingly from nowhere, and observed that these new varieties main
tained themselves over the generations and did not blend in with the 
other more normal varieties with which they might be crossed. 

By 1900 he had worked out the same laws of inheritance that Men
del had. Unknown to de Vries and to each other, two other botanists, 
a German, Karl Correns, and an Austrian, Erich Tschennak, had 
reached the same conclusions in that same year. 

All three botanists, before publishing their papers, looked through 
previous work on the subject (they should have done that first) and 
all three found Mendel's paper in the obscure journal in which it was 
buried. 

It is one of the glories of scientific history that these three men, each 
of whom had independently made one of the greatest and most iinpor• 
tant discoveries in biology, immediately relinquished any thought of 
retaining credit. Each published his work as nothing more than con-
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firmation of a discovery made by an unknown monk a generation 
earlier. 

This was no small sacrifice, as can be shown by the results. Mendel, 
through the triple relinquishment of credit, is now immortally famous 
in the history of science and lends his name to the laws of inheritance. 
De Vries, on the other hand, is famous to a considerably lesser degree, 
for the development of the mutation theory; and as for Correns and 
Tschermak, they are virtually unknown even to specialists. 

We live now at a time in which the livest and most exciting branch 
of biology is that of genetics, that branch of science that deals with 
the inheritance of characteristics. Based originally on Mendel's :find
ings it has broadened into a domain that overlaps the fields of physics 
and chemistry and now :fills the major portion of the new science of 
"molec�lar biology." 

The science of molecular biology holds the promise of solving, at 
last, some of the most fascinating problems of life, and knowledge in 
this field is moving so quickly that no one dares predict where we will 
be ten years from now. 

Where would we be now, then, if there had not been the sad loss of 
a complete generation of effort between Mendel and de Vries? What 
if, for those thirty-four years, men of science had been thinking of 
genetic problems and studying them instead of wasting their time on 
orthogenesis and such-like trash? 

To be sure, nineteenth-century techniques would not have ad
vanced them very far in that interval, as viewed by present standards, 
but there would have been some advance, certainly, which would be 
reflected in a better position for ourselves now. 

But that generation, alas, is lost, and regrets are useless. 
And yet we have no reason to suppose it can't happen again. What 

pair of eyes is gazing right now at a crucial finding, without seeing its 
significance? What hands are putting it to one side and what mind is 
closing against it? 

We can't tell. We can never tell. 
We can only hope that when the marvels of information retrieval 

put the right item before a man, it is put before the right man. And for 
human retrieval, no theory and no machinery exists. We can only hope. 



14 HE'S NOT MY TYPE 

I seem to be a nonconformist. This is not by any means because I have 
deliberately set out to be one. On the contrary, nothing would suit me 
better than to fade into the surroundings. Unfortunately, it turns out 
that at any gathering I attend I seem, for some mysterious reason, to 
attract attention. 

Sooner or later, some curious stranger is bou·nd to ask, "Who is 
the loud-mouthed extrovert over tbere?"1 And someone else is bound 
to say, "That's Asimov," and accompany the information with several 
taps on the forehead, a gesture of whose significance I am uncertain. 

In response to this, I am forced back on the mumbled defense that 
everyone is different and has his own peculiarities, so there. (It's either 
that or stop being a loud-mouthed whatchamacallit.) 

And I'm not wrong either. The fact that everyone is different is 
known perfectly well to all of us. An infant quickly learns to tell his 
mother from other women and a young woman is very likely to be 
considered by ber young man to be not only different from all others, 
but infinitely superior to all the others put together. I am told that 
young women (with less reason, no doubt) have similar feelings with 
regard to specific young men. 

But placing these intuitively-felt individual differences on a hard, 
scientific foundation had to await the turn of the present century. Only 
then was it indubitably established that there was blood and blood. 

Throughout history men have attributed differences to blood-but 
aU the wrong differences. There was masculine red blood and aristo
cratic blue blood; and people talked of blood Jines when they meant 
generations of a family. They spoke of good blood and of bad blood 
in the moral sense rather than the physical one, so that if you said of 

1 Actually, be says "loud-mouthed out," but I think the word extrovert is 
more accurate and has a more literary ring to it. 
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a person "He has bad blood," you didn't mean he had leukemia, but 
that his father had once forged a check. "It's in the blood," people 
would say meaningfully. 

When the actual differences among blood were discovered, it turned 
out to be a very prosaic matter. It bad nothing to do with morals or 
temperament or one's place in life. It was just that blood from one 
person didn't always mix well with blood from another. 

The consequences of this fact had been apparent for centuries, 
actually. When someone was near death from loss of blood, it didn't 
take much imagination to decide that a little blood transferred into the 
patient's veins from another person in the full flush of health (and 
therefore able to spare a little blood) might stave off death. Occa
sionally doctors tried this, and occasionally the patient recovered. But 
occasionally the patient died almost at once. 

The deaths were horrifying, of course, and doctors were forbidden 
by most enlightened governments to attempt transfusions. 

In 1900, however, the matter was finally rationalized by an Aus
trian physician named Karl Landsteiner. He experimented by mix
ing red blood corpuscles from the blood of one individual with 
serum2 from the blood of another. 

In some cases, nothing happened. The corpuscles distributed them
selves happily through the foreign serum and all was well. In other 
cases, however, the corpuscles, upon being added to the serum, ad
hered to each other in clumps. They had "agglutinated." 

Clearly, then, there were at least two kinds of corpuscles and it 
seemed reasonable to suppose that the difference was chemical. One 
variety of corpuscle contained a chemical which, in the presence of 
the serum, reacted in such a way as to give rise to agglutination. 

If we call this chemical "A" (you can't be simpler than that ) ,  then 
we can suppose there is a substance in the serum that reacts with it 
and we can call the serum-substance "anti-A." 

Using this terminology we can say that if we have serum containing 
anti-A, we expect A corpuscles to agglutinate and other corpuscles 
not to agglutinate. 

2.The liq�id portion of blood is called "plasma." If a protein clotting factor, 
fibnnogen, IS removed from plasma, what is left is serum. I n  practical matters 
the two terms are virtually interchangeable. 

' 
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But this isn't all. It is also possible to obtain samples of serum from 
particular people that will not agglutinate A corpuscles but that will 
agglutinate corpuscles left untouched by anti-A. There must then be 
a second chemical present in some corpuscles, one which we can call 
(you guessed it) "B," and there must be varieties of serum that con
tain "anti-B." 

We can now say that serum which contains anti-A will agglutinate 
A corpuscles but not B corpuscles, while serum which contains anti-B 
will agglutinate B corpuscles but not A corpuscles. 

And still this isn't all. There are samples of red blood corpuscles 
which will agglutinate in both types of serum and which therefore con
tain both A and B. We can refer to these as AB corpuscles. Finally, 
there are red blood corpuscles which will agglutinate in neither type 
of serum and which therefore contain neither A nor B. These are O 
corpuscles ("ob," that is, and not "zero"). 

Every person, then, belongs to one of four "blood groups" or 
"blood types," depending on whether his red blood corpuscles con
tain A, B, both A and B, or neither A nor B. Furthermore, tests show 

that each person contained those antisubstances in bis serum which 
would not react with his own corpuscles. (Obviously, or he would be 
dead to begin with.) 

We can prepare a small table then: 
Blood Type Corpuscles Serum 

0 anti-A, anti-B 
A A anti-B 
B B anti-A 

AB A, B 

By keeping a supply of serums containing known anti-A and anti
B, any sample of blood can be quickly typed, and transfusion can then 
be made safe. Transfusion is possible, without complications, when 
donor and patient are of the same blood type. No agglutination takes 
place and the donated blood flows freely through the patient's blood 
vessels. 

Things are not necessarily ruinous even when donor and patient are 
of different types. 
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To explain that, let's begin by supposing that the blood of a B 
donor is given to an A patient. The donated blood is, roughly, half 
corpuscles and half serum and each half is a source of possible 
trouble. 

The serum of the B donor contains anti-A which could bring about 
the agglutination of the patient's A corpuscles. This is not particu
larly serious. The half pint of serum donated by the B donor does not 
contain enough anti-A to do much damage, especially when it is 
quickly diluted by several quarts of the patient's own blood. 

The second possibility is that the donor's B corpuscles may be ag-
"' glutinated by the anti-B in the patient's serum. This is the real danger 

because it is the anti-B in  an entire blood stream that must now be 
considered. If the corpuscles of the donated blood agglutinate, they 
are virtually useless for the performance of their chief function, that 
of transporting oxygen. Worse than that, the clumps of corpuscles will 
swirl through the blood stream, plugging tiny arteries in the kidney 

l and elsewhere, and this is very likely to kill the patient. 
In considering transfusion dangers, then, it is important to check 

the donor's red cells (not serum) and the patient's serum (not red 
cells). 

r. 

( 

Begin with an AB donor. His AB corpuscles cannot safely be given 
to any patient with either anti-A or anti-B in his serum. This means, 
if you look at the table above, that AB blood can be given only to an 
AB patient. 

A sample of A blood can be donated only to patients without 
anti-A in the serum, which means that it can be given to either A or 
AB patients. Similarly a sample of B blood can be given to either B 
or AB patients. People with O blood have corpuscles that will not 
agglutinate in the presence of either anti-A or anti-B and such blood 
can be given to anyone. People of blood type O are therefore some
times called "universal donors."3 

3 This term is actually a slight exaggeration. Sometimes the antisubstancc 
concentration in O blood is too high for comfort and wreaks a bit of havoc 
among the paiient's corpuscles. Consequently, the practice of having donor and 
patient of the same blood type whenever possible is safest. It is also Possible on 
occasion to do good by transfusing only plasma, eliminating the red blood cor
puscles and with them virtually all the danger of transfusion. 
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This can be summarized in the following table: 
Donor Patient 

AB AB 
A AB, A 
B AB, B 
0 AB, A, B, O 

When much blood is needed for transfusions, as during wars, or 
even during lesser catastrophes, blood type O is particularly desirable. 

This reminds me, always, of an occasion during World War II 
when I had given blood and was sitting at the Red Cross center with 

r 
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a glass of milk and a cookie, recovering from the ordeal. A loud. • 
mouthed extrovert sitting nearby was also recuperating and he an
nounced himself to be of blood type 0. I looked up and could see at 
once that he was not my type, for I am a B. 

Someone asked the fellow why people of blood type O were so de. 
sired at the blood banks, and the fellow replied, with an insufferable 
smugness I found very difficult to take, "Well, O blood is particu. 
lady rich, you see/' 

Fortunately, I recover from these blows to my pride quite quickly. 
I've been brooding about this one for only sixteen years and expect 
to get over it fairly soon. 

Anyway, Landsteiner's discovery made transfusion safe, snatched 
uncounted numbers of lives out of the jaws of death, and, as a re. 
sult, it took only a full generation for the powers that be to decide he l 
deserved a Nobel Prize in Medicine. He received it in 1930. 

For purposes of transfusion there are four types of human blood, 
but the number is greater from the genetic viewpoint. Every person 
inherits two genes governing the particular blood groups I have been 
discussing, one from his mother and one from his father. Each gene 
can bring about the production of A, or B, or of neither, so that the 
genes are spoken of as belonging to the A, B, 0 group. 

You can inherit any of six possible combinations then: 00, AO, 
AA, BO, BB, AB. When you possess the AO combination, the one 1\ A gene brings about the production of A corpuscles just as well as 
two A genes would. You are of blood type A, then, whether your 
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combination is AA or AO. By similar reasoning, you are of blood 
type B, whether your combination is BB or BO. Your gene combina
tion is your "genotype" and what you actually appear to be by test is 
your "phenotype." In other words, the six possible genotypes work out 
to four phenotypes. 

But, you may ask, what does it matter whether you are AO or AA? 
Your blood reacts equally in either case, so why make a point of it? 
As far as transfusion goes, to be sure, the difference is negligible. But 
consider-

If two AA individuals marry, each can contribute only A genes to 
their offspring. All their offspring must be of blood type A. On the 
other hand, if two AO individuals marry, then it is possible that each 
will contribute an O gene to a particular offspring, which will then be 
00 and will test out as blood type 0. 

In other words, if two people, both of blood type A, marry, it is 
possible for an offspring to be of blood type 0, without any hanky
panky having been involved. The existence of the AO genotype as 
opposed to the AA genotype is thus very important in paternity suits. 

It was eventually found that there were two kinds of A corpuscles, 
one that reacted strongly with anti-A, and one that reacted weakly. 
The former was called A1 and the latter A2. This difference is of Jittle 
importance in transfusion, but is, again, significant in paternity suits, 
since, for example, two A1 parents canno,t have an A2 child, and vice 

\ 

versa. 
Counting the two A varieties, we have ten genotypes, which I won't 

bother to list, giving rise to six phenotypes: 

0, Ai, A2, B, A1B, and A2B 

The reason why the A, B, 0 group of substances in the corpuscles 
was discovered as early as it was, rests with the fact that blood serum 
contains antisubstances that react with appropriate corpuscles and ag· 
glutinate them. But what if the corpuscles also contain other su� 
stances capable of bringing about agglutination which, however, do 
not make their presence felt, owing to the fact that the blood serum 
lacks the appropriate antisubstance? 

If this were so, the only way of demonstrating the fact would be 



162 ADDING A DIMENSION to produce the corresponding antisubstance artificially. This can be done by making use of the natural mechanisms of the animal body. The body reacts to the injection of foreign proteins ( and of certain other substances all lumped under the heading of "antigen") by producing an "antibody" which reacts with that antigen, removing it from circulation and rendering it harmless. Such a reaction is highly specific; that is, the antibody will react with the antigen and will react only weakly if at all with any other substance. Serum obtained from such a sensitized blood stream can then be used to detect the presence of this particular antigen through some sort of precipitating or clumping reaction. In 1927 Landsteiner was able to show that rabbit blood could be sensitized in such a fashion that it would agglutinate some human corpuscles and not others, without reference to the A, B, 0 system. That is, some A corpuscles would be agglutinated but some not; some B corpuscles would be agglutinated and some not; and so on. The obvious deduction was that there were additional corpuscle substances that were inherited independently of the A, B, 0 groups. These were labeled M and N, and any individual could be of blood type M, of blood type N, or of blood type MN. Serums containing anti-M and anti-N could be obtained from properly sensitized rabbits, and the human blood types could then be determined by noting whether corpuscles were agglutinated by anti-M, by anti-N, or by both. This triples the number of phenotypes, for a person who is of blood group O can check out as blood group OM, ON, or OMN. The analogous situation is true for the other blood groups. Out of the six genes, 0, A1, Ai, B, M, and N, then, eighteen phenotypes are possible. 
In 1940 Alexander S. Wiener, an American physician, discovered that when rabbit blood was sensitized against red blood corpuscles obtained from a Rhesus monkey, the rabbit's serum could then be used to distinguish among blood from different human beings in still another fashion. Apparently then, tbe blood corpuscles contain substances that belong neither to the A, B, 0 group nor to the M, N group. The new substances are referred to as the "Rh group," "Rh" standing for Rhesus monkey. 
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HE'S NOT MY TYPE 163 I hesitate to try to explain the ins and outs of the various Rh groups, because for twenty years now there has been a fairly violent running fight between various groups of immunologists as to just how to explain those same ins and outs-and I do not wish to get involved in it. Apparently, though, there are at least twelve different Rh phenotypes that can be detected by using four different antisubstances. The three best known of the antisubstances are called anti-C, anti-D, and anti-E by some of the people in the field. One of the phenotypes can be detected by the fact that the red blood corpuscles do not agglutinate in response to any of these three antisubstances and this phenotype is called "Rh-negative." All the other phenotypes agglutinate in response to one or another (in some cases, to more than one) of these antisubstances, and all eleven are lumped together under the general heading of "Rh-positive." This turns out to be of importance not to transfusion, but in childbirth. When an Rh-negative mother is married to an Rh -positive father, the child may inherit, from the father, one of the Rh genes which will make it Rh-positive. This fact becomes true at the moment of conception and manifests itself during embryonic life. The situation then arises of an Rh-negative mother carrying an Rh-positive fetus. The Rh-positive substances of the fetal corpuscles may make their way across the placental barrier into the maternal blood stream. The mother manufactures an antisubstance in response (since these Rhpositive substances do not naturally occur in her own blood). This antisubstance may then make its way back across the placental barrier into the fetal blood stream. The poor fetus now has both the substance and the antisubstance in the blood and is, so to speak, allergic to itself. If it is not stillborn altogether, it is born very sick with a condition called "erythroblastosis fetalis." It is usually fatal unless extensive transfusion is arranged for at once in order to remove the troublesome antisubstance. The situation does not always ari'se, of course, and it almost never arises at the first pregnancy. It is estimated that about one birth out of four hundred in the United States involves erythroblastosis fetalis. Still, doctors like to be ready, just in case, which is why pregnant women are routinely typed for the Rh groups. In any case, if we consider the twelve Rh phenotypes, we can see 
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that each of the eighteen phenotypes involving the A ,  B, 0 and the 
M, N groups can be subdivided into twelve classes, one for each of 
the Rh phenotypes. The total number of blood types involving these 
three groups is therefore eighteen times twelve, or 216. 

These various phenotypes are not, of course, evenly distributed. In 
the United States, for instance, 45 percent of the population is of 
blood type 0, 42 percent of blood type A, 10 percent of blood type B, 
and 3 percent of blood type AB. 

This distribution is American but not world-wide. There are Ameri
can Indian tribes that are 98 percent O and 2 percent A, while other 
American Indian tribes are 80 percent A and 20 percent 0. Practi
cally no American Indians are B or AB. 

The usual explanation for this is that the American Indians are 
descended from small groups of individuals who made their way across 
Siberia, over the Bering Strait, and down the American continent. The 
individuals who made it happened not to include any B types. (Since 
B is considerably less common than either A or O in the world as a. 
whole, it is the more easily "lost" in small groups.) Alternatively, the 
comparatively few B individuals that reached America happened to 
die out without establishing a family line. 

This loss of a particular gene among small groups is called "genetic 
drift." 

On the other hand, blood type B, while always in a minority, is 
most strongly represented (up to 30 percent) in Central Asia. Its fre
quency declines as one travels westward. It is down to 20 percent on 
the European border, 15 percent in western Russia, 10 percent in 
Germany, and 5 percent in France. Some people suggest that the B 
gene was brought into Europe by successive floods of Asian invaders, 
notably the Huns and Mongols. 

In fact, there are attempts made to follow human migrations by 
tracing the variations in gene frequencies. These, however, are not 
always easy to work out and modem means of transportation are so 
churning up the human race that any remaining trace will, it seems to 
me, shortly be wiped out. 

Anthropologists also try to work out a division of the human spe
cies into smaller groups on the basis of gene frequencies. For instance, 
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the American Indians and the Australian aborigines are both marked 
by lack of the B gene. However, the American Indians are unusually 
high in M and low in N, whereas the Australian aborigines are un
usually high in N and low in M. 

Again, Asian individuals of blood type A are almost exclusively A i, 
while in Europe and Africa both A1 and A2 are strongly represented 
among such individuals. As another example, there is one Rh gene 
that seems to occur almost exclusively in Africa. 

The most interesting result obtained by such subdivisions-by-blood· 
group -frequencies involves the Rh series. People native to the 
Americas, to Asia, to Australia, and to Africa are virtually never Rb
negative. Where Rh-negative does occur, it almost always turns out 
that there are European natives among the ancestors of the individual. 

It is Europe, then, which is the great reservoir of Rh-negativity. 
Among Europeans and their descendants on the other continents (in
cluding the Americans, of course), one out of seven individuals is 
Rh-negative. 

How does this happen? Are there any areas in Europe which are 
focal points for Rh-negative genes, as the Mongols of Central Asia 
seem to have been the focal point for B. The answer is yes, for there 
is a small group of people in northern Spain called the Basques. 4 

Among the Basques, one out of three is Rh-negative, and nowhere 
else in the world is there so high a concentration of this phenotype. 

It would seem, then, that the Basques represent the remaining rem
nant of a group of Rh-negative "Early Europeans" who were flooded 
out by the invasions of the Rh-positive "Indo-European peoples" who 
now populate Europe. In the mountain fastnesses of Europe's far west 
they managed to retain a last grip. 

This possibility is made the more attractive by the fact that the 
Basque language is not Indo-European in nature and, in fact, has no 
known relationship to any other language, living or dead. (So con
fusing is the Basque language to people speaking the common Euro
pean tongues that there is a legend that the devil has no power over the 
Basques. He cannot tempt them because, try as he might, with all his 
diabolical power, he cannot learn their language.) 

4 At this point, I am tempted to maneuver the chapter in such a way that I can 
casually refer to "putting all my Basques in one exit," but I shall refrain. 
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Nor have new blood groups come to an end with 1940 and the Rh 
series. Animals continue to be sensitized in various ways and to pro
duce serums that can, in turn, be used to type individuals in new fash
ions. New blood types with names such as Duffy, Kell, Kidd, Lewis, 
and Lutheran (usually named after the patients in whose blood they 
were first located) are constantly being reported. 

As of now, about sixty different blood-type series are known. Some 
of them are uncommon, of course, and no one serological laboratory 
is equipped to classify human blood in each of the sixty series. (The 
best laboratories can handle about twenty, I think.) 

It bas been calculated that the number of phenotypes that could 
actually be differentiated by the proper serums, if all were available, 
would come to (hold your breath now!) no less than 1,152,900,000,-
000,000,000, or a little over one quintillion. 

This number is 400,000,000 times the population of the earth, so 
that it is highly unlikely that any two people (barring identical twins) 
are of absolutely identical blood type. In fact, it is easily conceivable 
that no two human beings who ever lived (barring identical twins) 
were of absolutely identical blood type. Not only is he not your type; 
no one is anybody's type, most likely. 

And this just involves blood and blood corpuscles. Undoubtedly 
other tissues of the body differ from individual to individual just as 
complicatedly; so do the dietary requirements, protein structure, met
abol ic details, and so on. Not one of us conforms completely. 

And that explains why it is perfectly all right for me to be a loud
mouthed extrovert. 

-I think. 
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Every child comes staggering out of grammar school with a load of 
misstatements of fact firmly planted in his head. He may forget, for 
instance, as the years drift by, that the Battle of Waterloo was fought 
in 1815  or that seven times six is forty-two; but he will never, never 
forget, while he draws breath, that Columbus proved the world was 
round. 

And, of course, Columbus proved no such thing. What Columbus 
did prove was that it doesn't matter how wrong you are, as long as 
you're lucky. 

The fact that the earth is spherical in shape was first suggested in 
the sixth century B.c. by various Greek philosophers. Some believed 
it out of sheer mysticism, the reasoning being that the sphere was 
the perfect solid and that therefore the earth was a sphere. To us, the 
premise is dubious and the conclusion a non sequitur, but to the 
Greeks it carried weight. 

However, not all Greek philosophers were mystics and there were 
rational reasons for believing the earth to be spherical. These were 
capably summarized by Aristotle in the fourth century n.c. and turned 
out to be three in number : 

1 )  If the earth were flat, then all the stars visible from one point on 
the earth's surface would be visible from all other points (barring 
minor distortions due to perspective and, of course, the obscuring of 
parts of the horizon by mountains). However, as travelers went south
ward, some stars disappeared beyond the northern horizon, while new 
stars appeared above the southern horizon. This proved the earth was 
not flat but had some sort of curved shape. Once that was allowed, 
one could reason further that all things fell toward earth's center and 
got as close to it as they could. That solid shape in which the total 
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distance of all parts from the center is a minimum is a sphere, 
Q.E.D. 

2)  Ships on leaving harbor and sailing off into the open sea seemed 
to sink lower and lower in the water, until at the horizon only the 
tops were visible. The most reasonable conclusion was that the water 
surface, though it seemed flat, was a gently curving hi!J behind which 
the ships disappeared. Furthermore, since this effect was equally in
tense whatever the direction in which the ship sailed, the gently curv
ing hill of the ocean seemed to curve equally in all directions. The 
only solid shape that curves equally in all directions is a sphere, 
Q.E.D. 

3 ) It was accepted by the Greek philosophers that the moon is 
eclipsed when it enters the earth's shadow. As darkness crossed over 
the face of the moon, the encroaching shadow marked off a projection 
of the shape of the earth, and that shadow was always the segment 
of a circle. It didn't matter whether the moon were high in the sky or 
at either horizon. The shadow was always circular. The only solid for 
which all projections are circular is a sphere, Q.E.D. 

Now, Aristotle's reasoning carried conviction. All learned men 
throughout history who had access to Aristotle's books, accepted the 
spbericity of the earth. Even in the eighth century A.D., in the very 
depth of the Dark Ages, St. Bede (usually called "the Venerable 
Bede"), collecting what scraps of physical science were still remem
bered from Greek days, plainly stated the earth was a sphere. In the 
fourteenth century Dante's Divine Comedy, which advanced a de
tailed view of the orthodox astronomy of the day, presented the earth 
as spherical. 

Consequently, there is no doubt that Columbus knew the earth was 
a sphere. But so did all other educated men in Europe. 

In that case, what was Columbus's difficulty? He wanted to sail west 
from Europe and cross the Atlantic to Asia. If the earth were spheri
cal, this was theoretically possible, and if educated men all agreed 
with the premise and, therefore, with the conclusion, why the resist
ance to Columbus's scheme? 

Well, to say the earth is a sphere is not enough. The question is
how large a sphere? 
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The first person to measure the circumference of the earth was a 
Greek astronomer, named Eratosthenes of Cyrene, and he did it with
out ever leaving home. If the earth were a sphere, as Eratosthenes was certain it was, then 
the sun's rays should, at any one instant of time, strike different parts 
of the earth's surface at different angles. For .instance, on June 21, the 
sun was just overhead at noon in the city of Syene, Egypt. In Alexan
dria, Egypt (where Eratosthenes lived),  the sun was not quite over
head at that moment but made a small angle with the zenith. 

Eratosthenes knew the distance between Alexandria and Syene, and 
it was simple geometry to calculate the curvature of the earth's sur
face that would account for the displacement of the sun. From that one 
could further calculate the radius and the circumference of the earth. 

Eratosthenes worked out this circumference to be 25,000 miles in 
our modern units of length (or perhaps a little higher- the exact length 
in miles of the unit he used is uncertain) and this is just about right! 

About 100 B.c., however, a Greek geographer named Posidonius 
of Apamea checked Eratosthenes' work and came out with a lower 
figure-a circumference of 18,000 miles. 

This smaller figure may have seemed more comfortable to some 
Greeks, for it reduced the area of the unknown. If the larger figure 
were accepted, then the known world made up only about one sixth 
of the earth's surface area. If the smaller figure were accepted, the 
earth's surface area was reduced by half and tl1e known world made 
up a third of the earth's surface area. 

Now the Greek thinkers were much concerned with the unknown 
portions of the earth ( which seemed as unattainable and mysterious 
to them as, until recently, the other side of the moon seemed to us) 
and they fiUed it with imaginary continents. To have less of it to worry 
about must have seemed a relief, and the Greek astronomer Claudius 
Ptolemy, who lived about A.D. 150, was one of those who accepted 
Posidonius's figure. It so happened that in the latter centuries of the Middle Ages, Ptol
emy's books were as influential as Aristotle's, and if the fifteenth
century geographers accepted Aristotle's reasoning as to the 
sphericity of the earth, many of them also accepted Ptolemy's figure 
for its circumference. 
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An Italian geographer named Paolo Toscanelli was one of them. 
Since the extreme distance across Europe and Asia is some 13,000 
miles (a piece of knowledge geographers had become acquainted with 
thanks to Marco Polo's voyages in the thirteenth century) and the 
total circumference was 18,000 miles or less, then one would have 
to travel westward from Spain no more than 5000 miles to reach "the 
Indies." In fact, since there were islands off the eastern coast of Asia, 
such as the Zipangu (Japan) spoken of by Marco Polo, the distance 
might be only 4000 miles or even less. Toscanelli drew a map in the 
1470s showing this, picturing the Atlantic Ocean with Europe and Af
rica on one side and Asia, with its offshore islands, on the other. 

Columbus obtained a copy of the map and some personal encour
agement from Toscanelli and was an enthusiastic convert to the notion 
of reaching Asia by the westward route. All be needed now was gov
ernment financing. 

The most logical place to go for such financing was Portugal. In 
the fifteenth century many of Europe's luxuries (including spices, 
sugar, and silk) were available only by overland routes from the Far 
East, and the Turks who straddled the route charged all the traffic 
could bear in the way of middleman fees. Some alternate route was 
most desirable, and the Portuguese, who were at the extreme south
eastern edge of Europe, conceived the notion of sailing around Africa 
and reaching the Far East by sea, outflanking the Turks altogether. 
Throughout the fourteenth century, then, the Portuguese had been 
sending out expedition after expedition, farther and farther down the 
African coast. (The Portuguese "African effort" was as difficult for 
those days as our "space effort" is for ours.) 

In 1484, when Columbus appealed to John II of Portugal for 
financing, Portuguese expeditions had all but reached the southern tip 
of Africa ( and in 1487 they were to do so) . 

The Portuguese, at the time, were the most experienced navigators 
in Europe, and King John's geographers viewed with distrust the low 
figure for the circumference of the earth. If it turned out that the high 
figure, 25,000 miles, were correct, and if the total east-west stretch 
of Europe and Asia were 13,000 miles-then it followed, as the night 
the day, that a ship would have to sail 12,000 miles west from Portugal 
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to reach Asia. No ship of that day could possibly make such an un
interrupted ocean voyage. 

The Portuguese decision, therefore, was that the westward voyage 
was theoretically possible but, given the technology of the day, com
pletely impractical. The geographers advised King John to continue 
work on Project Africa and to tum down the Italian dreamer. This 
was done. 

Now, mind you, the Portuguese geographers were perfectly right 
It is 12,000 miles from Portugal west to Asia, and no ship of the day 
could possibly have made such a voyage. The fact is that Columbus 
never did reach Asia by the western route, whereas the Portuguese 
voyagers succeeded, within thirteen years, in reaching Asia by the Af
rican route. As a result, tiny Portugal built a rich and far-flung empire, 
becoming the first of the great European colonialists. Enough of that 
empire has survived into the 1960s to permit them to be the last as 
well. 

And what is the reward of the Portuguese geographers for proving 
to be right in every last particular? Why, schoolchildren are taught to 
sneer at them. 

Columbus obtained the necessary financing from Spain in 1492. 
Spain bad just taken the last Moslem strongholds on the Iberian Penin
sula and, in the flush of victory, was reaching for some daring feat 
of navigation that would match the deeds of the Portuguese. (In the 
language of today, they needed an "ocean spectacular" to improve 
their "world image.") So they gave Columbus three foundering hulks 
and let him have his pick of the prison population for crewmen and 
sent him off. 

It would have meant absolutely certain death for Columbus and his 
men, thanks to his wrongness, were it not for his incredible luck. The 
Greek dreamers had been right. The unoccupied wastes of the earth 
did indeed possess other continents and Columbus ran aground on 
them after only 3000 miles. (As it was, he barely made it; another 
thousand miles and he would have been gone.) 

The Portuguese geographers had not counted on what are now 
known as the American continents (they would have been fools to do 
so), but neither had Columbus. In fact, Columbus never admitted he 
had reached anything but Asia. He died in 1506 still convinced the 
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earth was 18,000 miles in circumference-stubbornly wrong to the 
end. 

So Columbus had not proved the earth was round; that was al
ready known. In  fact, since he bad expected to reach Asia and had 
failed, his voyage was an argument against the sphericity of the earth. 

In 1519, however, five ships set sail from Spain under Ferdinand 
Magellan (a Portugue-se navigator in the pay of Spain), with the in
tention of completing Columbus's job and reaching Asia, and then 
continuing on back to Spain. Such an expedition was as difficult for 
its day as orbiting a man is for ours. The expedition took three years 
and made it by an inch. An uninterrupted 10,000-mile trip across the 
Pacific all but finished them ( and they were far better prepared than 
Columbus had been). Magellan himself died en route. However, the 
one ship that returned brought back a large enough cargo of spices to 
pay for the entire expedition with plenty left over. 

This first circumnavigation of the earth was experimental confirma
tion, in a way, of the sphericity of the planet, but that was scarcely 
needed. More important, it proved two other things. It proved the 
ocean was continuous; that there was one great sea in which the conti
nents were set as large islands. This meant that any seacoast could 
be reached from any other seacoast, which was vital knowledge (and 
good news) for merchantmen. Secondly, it proved once and for all that 
Eratosthenes was right and that the circumference of the earth was 
25,000 miles. 

And yet, after all, though the earth is round, it turned out, despite 
all Aristotle's arguments, that it wasn't a sphere after all. 

Again we go back to the Greeks. The stars wheel about the earth 
in a stately and smooth twenty-four-hour cycle. The Greek philoso
phers realized that this could be explained in either of two ways. It was 
possible that the earth stood still and the heavens rotated about it in a 
twenty-four-hour period. Or the heavens might stand still while the 
earth rotated about itself in twenty-four hours. 

A few Greeks (notably Aristarchus of Samos) maintained, in the 
third century B.c., that it was the earth that rotated. The majority, 
however, held for a stationary earth, and it was the latter who won 
out. After all, the earth is large and massive, while the heavens are 
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light and airy; surely it i s  more logical to suppose the latter turned. 
The notion of the stationary earth was accepted by Ptolemy and 

therefore by the medieval scholars and by the Church. It was not until 
1543, a generation after Magellan's voyage, that a major onslaught 
was made against the view. 

In that year Nicolaus Copernicus, a Polish astronomer, pub
lished his views of the universe and died at once, ducking all contro
versy. According to his views (which were like those of Aristarchus) 
the sun was the center of the universe, and the earth revolved about 
it as one planet among many. If the earth were only a minor body 
circling the sun, it seemed completely illogical to suppose that the stars 
revolved about our planet. Copernicus therefore maintained that the 
earth rotated on its axis. 

The Copernican view was not, of course, accepted at once, and the 
world of scholarship argued the matter for a century. As late as 1633, 
Galileo was forced by the Inquisition to abjure his belief that the earth 
moved and to affirm that it was motionless. However, that was the 
dying gasp of the motionless-earth view, and there has been no scien
tific opposition to earth's rotation since. (Nevertheless, it was not until 
1851 that the earth's rotation was actuaUy confirmed by experiment, 
but that is another story.) 

Now if the earth rotated, the theory that it was spherical in shape 
suddenly became untenable. The man who first pointed this out was 
Isaac Newton, in the 1680s. 

If the earth were stationary, gravitational forces would force it into 
spherical shape (minimum total distance from the center) even if it 
were not spherical to begin with. If the earth rotated, however, a sec
ond force would be applied to every particle on the planet. This is 
centrifugal force, which would counter gravity and would tend to move 
particles away from the center of the earth. 

But the surface of a rotating sphere moves at varying velocities de
pending upon its distance from the axis of rotation. At the point where 
the axis of rotation intersects the surface (as at the North and South 
Poles) the surface is motionless. As distance from the Poles increases, 
the surface velocity increases; it is at its maximum at the Equator, 
which is equidistant from the Poles. 

Whereas the gravitational force is constant (just about) at all points 
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on earth's surface, the centrifugal force increases rapidly with sur
face velocity. :As a result the surface of the earth lifts up slightly away 
from the center and the lifting is at its maximum at the Equator 
where the surface velocity is highest. In other words, said Newton, 
the earth should have an equatorial bulge. (Or, to put it another way, 
it should be flattened at the Poles.) 

This means that if an east-west cross-section of the earth were 
taken at the Equator, that cross-section would have a circular bound
ary. If, however, a cross-section were taken north-south through the 
Poles, that cross-section would have an elliptical boundary and the 
shortest diameter of the ellipse would run from Pole to Pole. Such a 
solid body is not a sphere but an "oblate spheroid." 

To be sure, the ellipticity of the north-south cross-section is so small 
that it is invisible to the naked eye and, viewed from space, the earth 
would seem a sphere. Nevertheless, the deviation from perfect sphe
ricity is important, as I shall explain shortly. 

Newton was arguing entirely from theory, of course, but it seemed 
to him he had experimental evidence as well. In 1673 a French scien
tific expedition in French Guiana found that the pendulum of their 
clock, which beat out perfect seconds in Paris, was moving slightly 
slower in their tropical headquarters-as compared with the steady 
motion of the stars. This could only mean that the force of gravity 
(which was what powered the swinging pendulum) was slightly 
weaker in French Guiana than in Paris. 

This would be understandable if the scientific expedition were on a 
high mountain where the distance from the center of the earth were 
greater than at sea level and the gravitational force consequently weak
ened-but the expedition was at sea level. Newton, however, main
tained that, in a manner of speaking, the expedition was not truly at 
sea level, but was high up on the equatorial bulge and that that ac
counted for the slowing of the pendulum. 

In this, Newton found himse1f in conflict with an Italian-born 
French astronomer named Jean Dominique Cassini. The latter tackled 
the problem from another direction. If the earth were not a true 
sphere, then the curvature of its surface ought t o  vary from point to 
point. (A sphere is the only solid that has equal curvature everywhere 
on its surface.) By triangulation methods, measuring the lengths of 
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the sides and the size of the angles of triangles drawn over large areas 
of earth's surface, one could determine the gentle curvature of that 
surface. If the earth were truly an oblate spheroid, then this curvature 
ought to decrease as one approached either Pole. 

Cassini had conducted triangulation measurements in the north and 
south of France and decided that the surface curvature was less, not in 
the north, but in the south. Therefore, he maintained, the earth bulged 
at the Poles and was flattened at the Equator. If one took a cross-sec
tion of the earth through the Poles, it would have an elliptical bound
ary indeed, but the longest (and not the shortest) diameter would be 
through the Poles. Such a soHd is a "prolate spheroid." 

For a generation, the argument raged. It was not just a matter of 
pure science either. I said the deviation of the earth's shape from the 
spherical was important, despite the smallness of the deviation, and 
that was because ocean voyages had become commonplace in the 
eighteenth century. European nations were squabbling over vast 
chunks of overseas real estate, and victory could go to the nation 
whose ships got less badly lost en route. To avoid getting lost one had 
to have accurate charts and such charts could not be drawn unless the 
exact deviation of the earth's shape from the spherical were known. 

It was decided that the difference in curvature between northern 
and southern France was too small to decide the matter safely either 
way. Something more extreme was needed. In 1735, therefore, two 
French expeditions set out. One went to Peru, near the Equator. The 
other went to Lapland, near the North Pole. Both expeditions took 
years to make their measurements ( and out of their difficulties arose 
a strong demand for a reform in standards of measurement that led, 
eventually, t o  the establishment of the metric system a half century 
later). When the expeditions returned, the matter was settled. Cassini 
was wrong, and Newton was right. The equatorial bulge is thirteen 
miles high, which means that a point at sea level on the Equator is 
thirteen miles farther from the center of the earth than i s  sea level at 
either Pole. 

The existence of this equatorial bulge neatly explained one particu
lar astronomic mystery. The heavens seem to rotate about an axis of 
which one end ( the North Celestial Pole) is near the North Star. An 
ancient Greek astronomer, Hipparchus of Nicaea, was able to show 
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about 150 B.c. that this celestial axis is not fixed. It marks out a circle 
in the heavens and takes some 25,800 years to complete one turn of 
the circle. This is called "the precession of the equinoxes." 

To Hipparchus, it seemed that the heavenly sphere simply rotated 
slowly in that fashion. He didn't know why. When Copernicus ad
vanced his theory, he had to say that the earth's axis wobbled in that 
fashion. He didn't know why, either. 

Newton, however, pointed out that the moon traveled in an orbit 
that was not in the plane of the earth's Equator. During half of its 
revolution about the earth, it was well to the north of the Equator 
and during the other half it was well to the south. If the earth were 
perfectly spherical, the moon would attract it in an all-one-piece 
fashion from any point. As it was, the moon gave a special unsym
metrical yank at the equatorial bulge. Newton showed that this pull 
at the bulge produced the precession of the equinoxes. This could be 
shown experimentally by hanging a weight on the rim of a spinning 
gyroscope. The axis of the gyroscope then precesses. 

And thus the moon itself came to the aid of scientists interested in 
the shape of things. 

An artificial moon was to do the same, two and a half centuries 
after Newton's time. 

The hero of the latest chapter in the drama of earth's shape is 
Vanguard I, which was launched by the United States on March 17, 
1958. It was the fourth satellite placed in orbit and is currently the 
oldest satellite still orbiting and emitting signals. Its path carried it so 
high above earth's surface that in the absence of atmospheric inter
ference it will stay in orbit for a couple of centuries. Furthermore, it 
has a solar battery which will keep it delivering signals for years. 

The orbit of Vanguard I, like that of the moon itself, is not in the 
plane of the earth's Equator, so Vanguard I pulls on the equatorial 
bulge and is pulled by it, just as the moon does. Vanguard I isn't 
large enough t o  affect the earth's motion, of course, but it is itself 
affected by the pull of the bulge, much more than the moon is. 

For one thing, Vanguard I is nearer to the bulge and is therefore 
affected more strongly. For another, what counts in some ways i s  
the total number of revolutions made by a satellite. Vanguard I re-



178 ADDING A DIMENSION volves about the earth in two and a quarter hours, which means that in a period of fourteen months, it has completed about 4500 revolu. tions. This is equal to the total number of revolutions that the moon has completed since the invention of the telescope. It follows that the motions of Vanguard I better reveal the fine structure of the bulge than the motions of the moon do. Sure enough, John A. O'Keefe, by studying the orbital irregularities of Vanguard l, was able to show that the earth's equatorial bulge is not symmetrical. The satellite is yanked just a little harder when it is south of the Equator, so that the bulge must be a little bulgier there. It has been calculated that the southern half of the equatorial bulge is up to fifty feet (not miles but feet!) farther from the earth's center than the northern half is. To balance this, the South Pole ( ca}. culating from sea level) is one hundred feet closer to the center of the earth than the North Pole is. So the earth is not an exact oblate spheroid, either. It is very, very, very slightly egg.shaped, with a bulging southern half and a narrow northern half; with a flattened southern tip and a pointy northern tip. Nevertheless, to the naked eye, the earth is still a sphere, and don't you for get it. This final tiny correction is important in a grisly way. Nowadays the national insanity of war requires that missiles not get lost en route, and missiles must be aimed far more accurately than ever a sailing vessel had to be. The exact shape of the earth is more than ever important. Moreover, this final correction even has theoretical implications. To allow such an asymmetry in the bulge against the symmetrical pull of gravity and the push of centrifugal force, O'Keefe maintains, the interior of the earth must be considerably more rigid than geophysicists had thought. 
One final word: O'Keefe's descriptive adjective for the shape of the earth, as revealed by Vanguard I, is "pear-shaped," and the news. papers took that up at once. The result is that readers of headlines must have the notion that the earth is shaped like a Bartlett pear, or a Bose pear, which is ridiculous. There are some varieties of pears that are closer to the egg-shaped, but the best-known varieties are ' 
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TIIE SHAPE OF THINGS 179 far off. However, "pear-shaped" will last, I am sure, and will do untold damage to the popular conception of the shape of the earth. Undoubtedly the next generation of kids will gain the firm conviction that Columbus proved the earth is shaped like a Bartlett pear. But it is an ill wind that blows no good, and l am breathlessly awaiting a certain opportunity. You see, in 1960 a book of mine entitled The Double Planet was published. It is about the earth and moon, which are more nearly alike in size than any other planet· satellite combination in the solar system, so that the two may rightly be referred to as a "double planet." Now someday, someone is going to pick up a copy of the book in my presence (I have my books strategically scattered about my house), and leaf through it and say, "Is this about the earth?" With frantically beating heart, I will say, "Yes." And be will say (I hope, I hope), "Why do you call the earth a double planet?" And then I will say (get this now), "Because it is pair..shaped/!l" -Why am I the only one laughing? 
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LITTLE STAR 

It came as a great shock to me, in childhood days, to learn that our 
sun was something called a "yellow dwarf" and that sophisticated 
people scorned it as a rather insignificant member of the Milky Way. 

I had made the very natural assumption, prior to that, that stars 
were little things, and everything I had read confirmed the notion. 
There were innumerable fairy tales about the tiny stars, which (I gath
ered) must be the little children of the sun and moon, the brightly 
shining sun being the father and the dim, retiring moon the mother.1 

When I found that all those minute points of light were huge, glar
ing suns greater than our own, it not only upset the sanctity of the 
heavenly family for me, but it also offended me as a patriotic inhab
itant of the solar system. Consequently, it was with grim relief that 
I eventually learned that not all stars were greater than the sun after 
all; that, in fact, a great many were smaller than the sun. 

What's more, I found some of those small stars to be intensely 
fascinating; and in order to talk about them, I will begin Asimov
fashion at the other end of the stick, a11d consider the earth and the 
sun. 

The earth does not really revolve about the sun. Both earth and 
sun (taken by themselves) revolve about a common center of gravity. 
Natura11y, the center of gravity is closer to the more massive body 
and the degree of closeness is proportional to the ratio of masses of 
the two bodies. 

Thus, the sun is 333,400 times as massive as the earth, and the 
center of gravity should therefore be 333,400 times as close to the 

1 I had curiously nai've ideas about the comparative importance of the sexes 
in those days. 
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sun's center as to the earth's center. The clistance between earth and 
sun, center to center, is about 92,870,000 miles; and dividing that by 
333,400 gives us the figure 280. Therefore, the center of gravity of 
the earth-sun system is 280 miles from the center of the sun. 

This means that as the earth moves around this center of gravity in 
its annual revolution, the sun makes a small circle 280 miles in radiu.-; 
about the same center, leaning always away from the earth. Of course, 
this trifling wobble is quite imperceptible from an observation point 
outside the solar system; say, from Alpha Centauri. 

But what about the other planets? Each one of them revolves with 
the sun about a common center of gravity. Some of the planets are 
both more massive than the earth and more distant from the sun, 
each of these factors working to move the center of gravity farther 
from the sun's center. To show you the result, I have worked out the 
following table (which, by the way, I have never seen in any astron
omy text). 

Planet 

Mercury 
Venus 
Earth 
Mars 

Jupiter 
Saturn 
Uranus 

Neptune 
Pluto 

Distance (miles) of Center of 
Gravity of Sun-Planet System 

from Center of Sun 6 
80 

280 
45 

460,000 
250,000 
80,000 

140,000 
1,500 (?) 

The radius of the sun is 432,200 miles, so the center of gravity in 
every case but one lies below the sun's surface. The exception is Jupi
ter. The center of gravity of the Jupiter -sun system is about 30,000 
miles above the sun's surface (always in the direction of Jupiter, of 
COU(Se). 

If the sun and Jupiter were an that existed in the solar system, an 
observer from Alpha Centauri, say, though not able to see Jupiter, 
might (in principle) be able to observe that the sun was making a 
tiny circle about something or other every twelve years. This "some-



182 ADDING A DIMENSION thing or other" could only be the center of gravity of a system consisting of the sun and another body. If our observer had a rough idea of the mass of the sun, he could tell how distant the other body must be to impose a twelve-year revolution. From that distance, as compared with the radius of the circle the sun was making, he could deduce the mass of the other body. In this way, the observer on Alpha Centauri could discover the presence of Jupiter and work out its mass and its distance from the sun without ever actually seeing it. Actually, though, the wobble on the sun imposed by Jupiter is still too small to detect from Alpha Centauri (assuming their instruments to be no better than ours). What makes it worse is that Saturn, Uranus, and Neptune ( the other planets can be ignored) impose wobbles on the sun, too, which complicate its motion. But suppose that circling the sun were a body considerably more massive than Jupiter. The sun would then make a much larger circ.le and a much simpler one, for the effect of other revolving bodies would be swamped by this super-Jupiter. To be sure, this is not the case with the sun, but is it possible that it might be so for other stars? Yes, indeed, it is possible. 
In 1834 the German astronomer Friedrich Wilhelm Bessel concluded, from a long series of careful observations, that Sirius was moving across the sky in a wavy line. This could best be explained by supposing that the center of gravity of Sirius and another body was moving in a straight line and that it was Sirius's revolution about the center of gravity (in a period of some fifty years) that produced the waviness. Sirius, however, is about two and a half times as massive as the sun, and for it to be pulled as far out of line as observation showed it to be, the companion body had to be much more massive than Jupiter. In fact, it turned out to be about one thousand times as massive as Jupiter, or just about as massive as our sun. If we call Sirius itself "Sirius A," then this thousand-fold-Jupiter companion would be "Sirius B." (This use of letters has become a standard device for naming components of a multiple star system.) Anything as massive as the sun ought to be a star rather than a planet and yet, try as be might, Bessel could see nothing in the neighborhood of Sirius A where Sirius B ought to be. The seemingly natu-

TWINKLE, TWINKLE, LITTLE STAR 183 ral conclusion was that Sirius B was a burned-out star, a blackened cinder that had used up its fuel. For a generation, astronomers spoke of Sirius's "dark companion." In 1862, however, an American telescope-maker, Alvan Graham Clark, was testing a new eighteen-inch lens he had made. He turned it on Sirius to test the sharpness of the image it would produce, and, to his chagrin, found there was a flaw in his lens, for near Sirius was a sparkle of light that shouldn't be there. Fortunately, before going back to his grinding, he tried the lens on other stars, and the defect disappeared! Back to Sirius-and there was that sparkle of light again. It couldn't be a defect; Clark had to be seeing a star. In fact, he was seeing Sirius's "dark companion," which wasn't quite dark after f all, for it was of the eighth magnitude. Allowing for its distance, bowl ever, it was at least dim, if not dark, for it was only 1 t O as luminous as our sun-there was still that much of a dim glow amid its supposed ashes. In the latter half of the nineteenth century, spectroscopy came into its own. Particular spectral lines could be produced only at certain temperatures, so that from the spectrum of a star its surface temperature could be deduced. In 1915 the American astronomer Walter Sydney Adams managed to get the spectrum of Sirius B and was amazed to discover that it was not a dimly glowing cinder at all, but had a surface rather hotter than that of the sun! But if Sirius B was hotter than the sun, why was it only 1 ! 0 
as bright as the sun? The only way out seemed to be to assume that it was much smaller than the sun and had, therefore, a smaller radiating surface. In fact, to account for both its temperature and its low total luminosity, it had to have a diameter of about 30,000 miles. Sirius B, although a star, was just about the size of the planet Uranus. It was more dwarfish than any astronomer bad conceived a star might be and it was white-hot, too. Consequently, Sirius B and all other stars of that type came to be called "white dwarfs." But Bessel's observation of the mass of Sirius B was still valid. It was still just about as massive as the sun. To squeeze all that mass into the volume of Uranus meant that the average density of Sirius B had to be 38,000 kilograms per cubic centimeter, or about 580 tons per cubic inch. Twenty years earlier, this consequence of Adams' discovery would 
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have seemed so ridiculous that the entire chain of reasoning would 
have been thrown out of court and the very concept of judging stellar 
temperatures by spectral lines would have come under serious doubt. 
By Adams' time, however, the internal structure of the atom had 
been worked out and i t  was known that virtually all the mass of the 
atoms was concentrated in a tiny nucleus at the very center of the 
atom. If the atom could be broken down and the central nuclei al
lowed to approach, the density of Sirius B-and, in fact, densities mil
lions of times greater still-became conceivable. 

Sirius B by no means represents a record either for the smallness 
of a star or for its density. Van Maanen's Star (named for its dis
coverer) has a diameter of only 6048 miles, so that it is smaller than 

the earth and not very much larger than Mars. It is one seventh as 
massive as our sun (about 140 times as massive as Jupiter ) ,  and that 
is enough to make it fifteen times as dense as Sirius B. A cubic inch 
of average material from Van Maanen's Star would weigh 8700 tons. 

And even Van Maanen's Star isn't the smallest. In the course of this 
last year William J. Luyten of the University of Minnesota has dis
covered a white dwarf star with a diameter of about 1000 miles
only half that of the moon. 

Of course, the white dwarfs can't really give us much satisfaction 
as "little stars." They may be dwarfs in volume but they are sun-size 
in mass, and giants in density and in intensity of gravitational fields. 
What about really little stars, in mass and temperature as well as in 
volume? 

These are hard to find. When we look at the sky, we are automati
cally making a selection. We see all the large, bright stars for hun
dreds of light-years in  all directions, but the dim stars we can barely 
see at all, even when they are fairly close. 

Judging by the stars we see, our sun, sure enough, i s  a rather in
significant dwarf, but we can get a truer picture by confining ourselves 
to our own immediate neighborhood. That is the only portion of space 
through which we can make a reasonably full census of stars, dim 
ones and all. 

Thus, within five parsecs ( 16! light-years) of ourselves, accord-
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ing to a compilation prepared by Peter Van de Kamp of Swarthmore 
College, there are thirty-nine stellar systems, including our own sun. 
Of these, eight include two visible components and two include three 
visible components, so that there are fifty-one individual stars alto
gether. 

Of these, exactly three stars are considerably brighter than our sun 
and these we can call "white giants." 

Star 

Sirius A 
Altair 

Procyon A 

Distance 
(ligh t -years) 

8.6 
15.7 
1 1 .0 

Luminosity 
(sun = 1) 

23 
8.3 
6.4 

There are then a dozen stars that are as bright o r  nearly as bright 
as the sun. We can call these "yellow stars" without making any in
vidious judgments as to whether they are dwarfs or not. 

Star 
Alpha Centauri A 

Sun 
70 Ophiuchi A 

Tau Ceti 
Alpha Centauri B 

Omicron2 Eridani A 
Epsilon Eridani 

Epsilon Indi 
70 Ophiuchi B 

61 Cygni A 
61 Cygni B 

Groombridge 1618 

Distance 
(light-years) 

4.3 

16.4 
11.2 
4.3 

15.9 
10.7 
11.2 
16.4 
11.1 
11.1 
14.1 

Luminosity 
(sun = 1) 

1.01 
1.00 
0.40 
0.33 
0.30 
0.30 
0.28 
0.13 
0.08 
0.07 
0.04 
0.04 

Of the remaining stars, all of which are less than one twenty-fifth 
as luminous as the sun, four are white dwarfs: 

Distance Luminosity 
Star (light-years) (sun = 1) 

Sirius B 8.6 0.008 
Omicron2 Eridani B 15.9 0.004 

Procyon B 11.0 0.0004 
Van Maanen's Star 13.2 0.00016 



186 ADDING A DIMENSION This leaves thirty-two stars that are not only considerably dimmer than the sun, but considerably cooler, too, and therefore distinctly red in appearance. To be sure, there are cool red stars that are nevertheless much brighter in total luminosity than our sun because they are so gigantically voluminous. (This is the reverse of the white-dwarf situation.) These tremendous cool stars are "red giants," and there are none of these in the sun's vicinity-distant Betelgeuse and Antares are the best-known examples. The cool, red, small stars are "red dwarfs." An example of this is the very nearest star to ourselves, the third and dimmest member of the Alpha Centauri system. It should be called Alpha Centauri C, but because of its nearness, it is more frequently called Proxima Centauri. It is only z 8,100 0 as bright as our sun and, despite its nearness, can be seen only with a good telescope. To summarize, then, there are, in our vicinity: no red giants, three white giants, twelve yellow stars, four white dwarfs, and thirty-two red dwarfs. If we consider the immediate neighborhood of the sun to be a typical one (and we have no reason to think otherwise) ,  then well over half the stars in the heavens are red dwarfs and considerably dimmer than the sun. Indeed, our sun is among the top 10 percent of the stars in luminosity-"yellow dwarf" indeed! 
The red-dwarf stars offer us something new. When I discussed the displacement of the sun by Jupiter at the beginning of the article, I pointed out that the displacement would be larger, and therefore possible to observe from other stars, if Jupiter were considerably larger. An alternative would be to have the sun considerably less massive. It is not the absolute mass of either component, but the ratio of the masses that counts. Thus, the Jupiter-sun ratio is 1 :  1000, which leads to an indetectable displacement. The mass ratio of the two components of the Sirius system, however, is 1 :2.5, and that is easily detectable. If a star were, say, half the mass of the sun, and if it were circled by a body eight times the mass of Jupiter, the mass ratio would be about 1 :60. The displacement would not be as readily noticeable as in the case of Sirius, but it would be detectable. Exactly such a displacement was detected in 1943 at Sproul Ob-

TWINKLE, TWINKLE, LITrLE STAR 187 servatory in Swarthmore College, in connection with 61 Cygni. From unevennesses in the motion of one of the major components, a third component, 61 Cygni C, was deduced as existing; a body with a mass 
-1- of our sun or only eight times that of Jupiter. In 1960 similar dis-
1 2 :;  placements were discovered for the star Lalande 21185 at Sproul Ob-servatory. It, too, had a planet eight times the mass of Jupiter. And in 1963, the same observatory announced a third planet outside the solar system. The star involved is Barnard's Star. This star was discovered in 1916 by the American astronomer Edward Emerson Barnard, and it turned out to be an unusual star indeed. In the first place it is the second nearest star to ourselves, being only 6.1 light-years distant. (The three stars of the Alpha Centauri system, considered as a unit, are the nearest, at 4.3 light-years; Lalande 21185 at 7.9 light-years is third nearest. Next is Wolf 359 and then the two stars of the Sirius system-at 8.0 and 8.6 light-years respectively.) Barnard's Star has the most rapid proper motion known, partly because it is so close. It moves 10.3 seconds of arc a year. This isn't much, really, for in the forty-seven years since its discovery, it has only moved a little over 8 minutes of arc ( or about one quarter the apparent width of the moon) across the sky. For a "fixed" star, however, that's a tremendously rapid movement; so rapid, in fact, that the star is sometimes called "Barnard's Runaway Star" or even "Barnard's Arrow." Barnard's Star is a red dwarf with about one fifth the mass of the sun and less than 
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the luminosity of the sun ( though it is nine times as luminous as Proxima Centauri) .  The planet displacing Barnard's Star is Barnard's Star B and it is the smallest of the three invisible bodies yet discovered. It is about 
-1- the mass of the sun and hence roughly 1.2 times the mass of Jupi-
1 0  o ter. Put another way, it is about five hundred times the mass of the earth. If it possesses the over-all density of Jupiter, it would make a planetary body about 100,000 miles in diameter. All this bas considerable significance. Astronomers have about decided from purely theoretical considerations that most stars have planets. Now we find that in our immediate neighborhood at least three stars have at least one planet apiece. Considering that we can only 
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detect super-Jovian planets, this is a remarkable record. Our sun has 
one planet of Jovian size and eight sub-Jovians. It is reasonable to 
suppose that any other star with a Jovian planet bas a family of sub
Jovians also. And indeed, there ought to be a number of stars with 
sub-Jovian planets only. 

In short, on the basis of these planetary discoveries, it would seem 
quite likely that nearly every star has planets. 

A generation ago, when it was believed that solar systems arose 
through collisions or near-collisions of stars, it was felt that a plane
tary family was excessively rare. Now we might conclude that the re
verse is true; it is the truly lone star, the one without companion stars 
or planets, that is the really rare phenomenon. 

And yet the red dwarfs aren't quite as little as they seem to be 
from their luminosity. Even the smallest red dwarf, Proxima Centauri, 
is not less than one tenth the mass of the sun. In fact, stellar masses 
are quite uniform; much more uniform than stellar volumes, densi
ties, or luminosities. Virtually all stars range in mass from not less 
than one tenth of the sun to not more than ten times the sun, a stretch 
of but two orders of magnitude. 

There is good reason for this. As mass increases, the pressure and 
temperature at the center of the body also increases and the amount 
of radiation produced varies as the fourth power of the temperature. 
Increase the temperature ten times, in other words, and luminosity 
increases ten thousand times. 

Stars that are more than ten time-s the mass of the sun are there
fore unstable, for the pressures associated with their vastly intense 
radiations blow them apart in short order. On the other hand, stars 
with less than one tenth the mass of the sun do not have an internal 
temperature and pressure high enough to start a self-sustaining nuclear 
reaction. 

The upper limit is fairly sharp. Too-massive stars, except in very 
rare cases, blow up and actually don't exist. Too-light stars merely 
don't shine and can't be seen, so that the lower limit is an arbitrary 
one. The light bodies may exist even if they can't be seen. 

Below the smallest luminous stars are, indeed, the nonluminous 
planets. In our own solar system, we have bodies up to the size of 
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Jupiter, which is perhaps Th the mass of the feebly glowing Proxima 
Centauri. A body such as 61 Cygni C would have a mass one twelfth 
that of Proxima Centauri. Undoubtedly there must be bodies closing 
that remaining gap in mass. 

Jupiter, large as it is for a planet, develops insufficient heat at its 
center to lend significant warmth to its surface. Whatever warmth 
exists on Jupiter's surface derives from solar radiation. The same may 
be true for 61 Cygni C. 

However, as we consider planets larger still, there must come a 
point where the internal beat, while not great enough to start nuclear 
reactions, is great enough to keep the surface warm, perhaps warm 
enough to allow water to remain eternally in the liquid form. 

We might call this a super-planet but, after all, it is radiating energy 
in the infrared. Such a body would not glow visibly, but if our eyes 
were sensitive to infrared we might see them as very dim stars. They 
might, therefore, be more fairly called "sub-stars" than super-planets. 

Harlow Shapley, emeritus director of Harvard College Observatory, 
thinks it possible that such sub-stars are very common in space, and 
that they might even be the abode of life. To be sure, a sub-star with 
an earth-like density would have a diameter of about 150,000 miles 
and a surface gravity about eighteen times earth-normal. To life devel
oping in the oceans, however, gravity is of no importance. 

Is it possible that such a sub-star (with, perhaps, a load of life) 
might come rolling close enough to the solar system, some day, to 
attract exploring parties? 

We can't be certain it won't happen. In the case of luminous stars, 
we can detect invaders from afar, and we can be certain that none 
will be coming this way for millions of years. A sub-star, however, 
could sneak up on us unobserved; we'd never know it was approach
ing. It might be right on top of us-say, within fifte.en billion miles of 
the sun-before we detected its presence through its reflected light and 
through its gravitational perturbations on the outer planets. 

Then at last mankind might go out to see for themselves what a 
little star was like and set to rest that generations- long plaintive chant 
of childhood, "How I wonder what you are!" 

Only-it won't be twinkling. 



l 

Part VI 
GENERAL 



1 7 THE ISAAC WINNERS 

When one looks back over the months or years, it becomes awfully 
tempting to try to pick out the best in this or that category. Even the 
ancient Greeks did it, choosing the "seven wise men" and the "seven 
wonders of the world." 

We ourselves are constantly choosing the ten best-dressed women 
of the year or the ten most notable news-breaks, or we list the Ameri
can Presidents in order of excellence. The FBI and other law-enforce
ment agencies even list criminals in the order of their desirability 
( behind bars, that is) . 

There is a certain sense of power in making such lists. An otherwise 
undistinguished person suddenly finds himself able to make decisions 
with regard to outstanding people, taking this one into the fold and 
hurling that one into the outer darkness. One can, after some thought, 
move x up the list and y down, possibly changing the people so moved 
in the esteem of the world. It is almost god-like, power like that. 

Well, can I be faced with the possibility of assuming god-like power 
and not assume it at once? Of course not. 

As it happens, I have been spending nearly two years writing a 
history of science, and in the course of writing it I could not help 
but grow more or less intimate with about a thousand scientists of 
all shapes and varieties. 

Why not, then, make a list of the "ten greatest scientists of history"? 
Why not, indeed? 

I sat down, convinced that in ten seconds I could rattle off the ten 
best. However, as I placed the cerebral wheels in gear, I found myself 
quailing. The only scientist who, it seemed to me, indubitably belonged 
to the list and who would, without the shadow of a doubt, be on such 
a list prepared by anyone but a consummate idiot, was Isaac Newton. 

But how to choose the other nine? 
It occurred to me to do as one did with the Academy Awards 
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( and such-like affairs) and set up nominations, and after some time 
at that I found I had no less than seventy-two scientists whom I 
could call "great" with an absolutely clear conscience. From this list 
I could then slowly and by a process of gradual elimination pick out 
my ten best. 

This raised a side issue. I would be false to current American cul
ture if I did not give the ten winners a named award. The motion 
picture has its Oscar, television its Emmy, mystery fiction its Edgar, 
and science fiction its Hugo. All are first names and the latter two 
honor great men in the respective fields: Edgar Allan Poe and Hugo 
Gems back. 

For the all-time science greats, then, why not an award named for 
the greatest scientist of them all-Newton. To go along with the Oscar, 
Emmy, Edgar, and Hugo, let us have the Isaac. I will hand out Isaac 
Awards and choose the Isaac winners.1 

Here, then, is my list of nominees, with a few words intended to 
indicate, for each, the reasons for the nomination. These are presented 
in alphabetical order- and I warn you the choice of nominees is en
tirely my own and is based on no other authority. 

1 Archimedes (287?-212 n.c.) Greek mathematician. Considered 
the greatest mathematician and engineer of ancient times. Discovered 
the principle of the lever and the principle of buoyancy. Worked out 
a good value for 1r by the principle of exhaustion, nearly inventing 
calculus in the process (see Chapter 4). 

2 Aristotle (384-322 n.c.) Greek philosopher. Codified aU of an
cient knowledge. Classified living species and groped vaguely toward 
evolutionary ideas. His logic proved the earth was round (see Chapter 
15) and established a world system that was wrong, but that might 
have proved most fruitful if succeeding generations had not too slav
ishly admired him. 

3 Arrhenius, Svante A. ( 1859-1927) Swedish physicist and chem
ist. Established theory of electrolytic dissociation, which is the basis 
of modem electrochemistry. Nobel Prize, 1903. 

l lf anyone has some wild theory that the choice of the name derives from any 
source other than Newton, let him try to prove it. Besides, what conceivable 
alternate origin could there be? 
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4 Berzelius, Jons J. (1779- 1848) Swedish chemist. Was the first 
to establish accurate table of atomic weights. Worked out chemical 
symbols still used in writing formulas. Pioneered electrochemistry and 
notably improved methods of inorganic analysis. 

5 Bohr, Niels (1885-1962) Danish physicist. First to apply quan
tum theory to atomic structure, and demonstrated the connection 
between electronic energy levels and spectral lines. Suggested the dis
tribution of electrons among "shells" and rationalized the periodic 
table of elements. Nobel Prize, 1922. 

6 Boyle, Robert (1627-1691) Irish-born British physicist and 
chemist First to study the properties of gases quantitatively. First to 
advance operational definition of an element. 

1 Broglie, Louis V. de (1892- ) French physicist. Discovered 
the wave nature of electrons, and of particles in general, completing 
the wave-particle duality. Nobel Prize, 1929. 

8 Cannizzaro, Stanislao ( 1826-1910) Italian chemist. Established 
usefulness of atomic weights in chemical calculations, and in working 
out the formulas of organic compounds. 

9 Cavendish, Henry (1731-1810) English physicist and chemist. 
Discovered hydrogen and determined the mass of the earth. Virtually 
discovered argon and pioneered in the study of electricity (see Chap
ter 11). 

10 Copernicus, Nicolaus (1473-1543) Polish astronomer. Enun
ciated heliocentric theory of the solar system, with sun at center and 
earth moving about it as one of the planets. Initiated the Scientific 
Revolution in the physical sciences (see Chapter 15). 

11 Crick, Francis H. C. (1916- ) English physicist and bio-
chemist. Worked out the helical structure of the DNA molecule, which 
was the key breakthrough in modem molecular biology. Nobel Prize, 
1962. 

12  Curie, Marie S. (1867- 1934) Polish-French chemist. Her 
investigations of radioactivity glamorized the subject. Discovered ra
dium. Nobel Prize, 1903 (Physics) and 1911 (Chemistry). First per
son in history to win two. 

13  Cuvier, Georges L. C. F. D. (1769-1832) French biologist. 
Founder of comparative anatomy and, through systematic studies of 
fossils, founder of paleontology as well. 
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14 Dalton, John (1766-1844) English chemist. Discovered Jaw 
of multiple proportions in chemistry, which Jed him to advance an 
atomic theory that served as the key unifying concept in modern 
chemistry. 

15 Darwin, Charles R. (1809-1882) English naturalist. Worked 
out a theory of evolution by natural selection which is the central, 
unifying theme of modem biology ( see Chapter 13). 

16 Davy, Humphry (1778-1829) English chemist. Established im
portance of electrochemistry by utilizing an electric current to pre
pare elements not previously prepared by ordinary chemical means, 
These included such elements as sodium, potassium, calcium, and 
barium. 

17 Ehrlich, Paul (1854- 1915) German bacteriologist. Pioneered 
in the staining of bacteria. Worked out methods of disease therapy 
through immune serums and also discovered chemical compounds 
specific against particular diseases, notably syphilis. Hence founder 
of both serum therapy and chemotherapy. Nobel Prize, 1908. 

18  Einstein, Albert (1879-1955) German-Swiss-American physi
cist. Established quantum theory, earlier put forth by Planck, by using 
it to explain the photoelectric effect. Worked out the theory of rela
tivity to serve as a broader and more useful world-picture than that 
of Newton. Nobel Prize, 1921. 

19 Faraday, Michael (1791-1867) English chemist and physicist. 
Advanced the concept of "lines of force." Devised the first electric 
generator capable of converting mechanical energy into electrical en
ergy. Worked out the laws of electrochemistry and pioneered in the 
field of low-temperature work. 

20 Fermi, Enrico (1901-1954) Italian-American physicist. Inves
tigated neutron bombardment of uranium, initiating work that led to 
the atomic bomb, in the development of which he was a key figure. 
Outstanding theoretician in the field of subatomic physics. Nobel 
Prize, 1938. 

21 Franklin, Benjamin (1706-1790) American universal talent. 
Demonstrated the electrical nature of lightning and invented the light
ning rod. Enunciated the view of electricity as a single fluid, with 
positive charge representing an excess and negative charge a deficiency. 



196 ADDING A DIMENSION 22 Freud, Sigmund (1856 -1939) Austrian neurologist. Founder of psychoanalysis and revolutionized concepts of mental disease. 23 Galileo (1564-1642) Italian astronomer and physicist. Studied the motion of falling bodies, disrupting the Aristotelian world system and laying the foundation for the Newtonian one. He popularized experimentation and quantitative measurement and is the most important single founder of experimental science. He was the first to tum a telescope upon the heavens and founded modem astronomy. 24 Gauss, Karl F. (1777 -1855) German mathematician and astronomer. Perhaps greatest mathematician of all time. In science, developed method of working out planetary orbit from three observations and made important studies of electricity and magnetism ( see Chapter 5). 25 Gay-Lussac, JosephL. (1778-1850) French chemist and physicist. Discovered several fundamental laws of gases and was the first to ascend in balloon to make scientific measurements at great heights. 26 Gibbs, Josiah W. ( 1839-1903) American physicist and chemist. Applied principles of thermodynamics to chemistry and founded, in detail, chemical thermodynamics, which is the core of modem physical chemistry. 
21 Halley, Edmund (1656-1742) English astronomer. First to undertake systematic study of southern stars. Worked out the orbits of comets and showed that they were subject to the law of gravitation. 28 Harvey, William (1578-1657) English physiologist. First to apply mathematical and experimental methods to biology. Demonstrated the circulation of the blood, overthrowing ancient theories and founding modem physiology. 29 Heisenberg, Werner (1901- ) German physicist. Enunci-ated uncertainty principle, a concept of great power in modern physics. Was the first to work out the proton-neutron structure of the atomic nucleus and was thus the founder of modern nucleonics. Nobel Prize, 1932. 30 Helmholtz, Hermann L. F. von (1821-1894) German physicist and physiologist. Advanced a theory of color vision and one of hearing, making important studies of light and sound. First to enunciate, clearly and specifically, the law of conservation of energy. 31 Henry, Joseph (1797-1878) American physicist. Devised first 

THE ISAAC WINNERS 197 large-scale electromagnet and invented electric relay, which was basis of the telegraph. Invented the electric motor, which is the basis of much of modem electrical gadgetry. 32 Herschel, William (1738-1822) German-English astronomer. Discovered the planet Uranus, first to be discovered in historic times. Founded the modern study of stellar astronomy by work on double stars, on proper motions, etc. He was the first to attempt to work out the general shape and size of the Galaxy. 33 Hertz, Heinrich R. (1 857-1894) German physicist. Discovered radio waves, thus establishing Maxwell's theoretical predictions concerning the electromagnetic spectrum ( see Chapter 10). 34 Hipparchus (second century B.c.) Greek astronomer. The greatest of the naked-eye observers of the heavens. Worked out the epicycle theory of the solar system, with the earth at the center. Perfected system of latitude and longitude, devised first star map, and discovered the precession of the equinoxes ( see Chapter 1 S) . 
35 Hubble, Edwin P. ( 1889 -1953) American astronomer. His studies of the outer galaxies demonstrated that the universe was expanding. Presented first picture of known universe as a whole. 36 Hutton, James ( 1726-1797) Scottish geologist Founded modem geology; the first to stress the slow, eons-long, changes of the earth's crust under environmental stresses continuing and measurable in the present. 37 Huygens, Christian (1629-1695) Dutch mathematician, physicist, and astronomer. Devised first pendulum clock, thus founding the art of accurate timekeeping. Improved the telescope and discovered Saturn's rings. Was the first to advance a wave theory of light. 38 Kekule von Stradonitz, Friedrich A. (1829-1896) German chemist. Devised the modem method of picturing organic molecules with bonds representing valence links, of which the carbon atom possessed four. This brought order into the jungle of organic chemistry. 39 Kelvin, William Thomson. Lord (1824-1907) Scottish physicist. Proposed absolute scale of temperature, did important theoretical work on electricity, and was one of those who worked out the concept of entropy. 40 Kepler, Johann (1571-1630) German astronomer. Established elliptical nature of planetary orbits, and worked out generalizations 
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governing their motions. He thus established the modern model of 
the solar system and eliminated the epicycles that had governed as
tronomical thinking for nearly two thousand years. 

41 Kirchhoff, Gustav R. ( 1824-1887) German physicist. Applied 
the spectroscope to chemical analysis, thus founding modern spectros
copy and laying the groundwork for modem astrophysics. He was 
the first to study black-body radiation, something which led, even
tually, to the quantum theory. 

42 Koch, Robert ( 1843-1910) German bacteriologist. Isolated 
bacteria of tuberculosis and of anthrax. Was the first to develop 
systematic methods for culturing pure strains of bacteria and estab
lished rules for locating the infectious agent of a disease. Nobel Prize, 
1905. 

43 Laplace, Pierre S. (1749- 1 827) French mathematician and 
astronomer. Worked out the gravitational mechanics of the solar sys
tem in detail and showed it to be stable. 

44 Lavoisier, Antoine L. (1743-1794) French chemist. First to 
popularize quantitative methods in chemistry. Established the nature 
of combustion and the composition of the atmosphere. Enunciated 
the Jaw of conservation of matter. Introduced the modern system of 
terminology for naming chemical compounds and wrote the first mod
ern chemical textbook (see Chapter 1 1 ) .  

45 Lawrence, Ernest 0. (1901-1958) American physicist. In
vented the cyclotron, first device suitable for induction of large-scale 
artificial nuclear reactions. Modern nuclear-physics technology de
pends upon the cyclotron and its descendants. Nobel Prize, 1939. 

46 Leverrier, Urbain J. J. (1811-1877) French astronomer. 
Worked out the calculations that predicted the position of the then
unknown Neptune. This was the greatest victory for gravitational the
ory and the most dramatic event in the history of astronomy. 

47 Liebig, Justus von ( 1 803-1873) German chemist. Worked out 
methods of quantitative analysis of organic compounds. Was the first 
to study chemical fertilizers intensively and hence is the founder of 
agricultural chemistry. 

48 Linnaeus, Carolus (1707-1778) Swedish botanist. Painstak
ingly c.Jassified all species known to himself into genera, placed re
lated genera into orders and related orders into classes, thus founding 
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taxonomy. He devised the system of binomial nomenclature, whereby 
each species has a general and a specific name. 

49 Maxwell, James C. (1831-1879) Scottish physicist. Worked 
out equations that served as basis for an understanding of electro
magnetism. Showed light to be an electromagnetic radiation and pre
dicted a range of such radiations beyond those then known. Worked 
out the kinetic theory of gases, one of the foundation blocks of physi
cal chemistry (see Chapter 8). 

50 Mendel, Gregor J. ( 1822-1884) Austrian botanist. His studies 
of pea plants founded the science of genetics, though the laws of in
heritance he worked out remained unknown in his lifetime (see Chap
ter 13) .  

51 Mendeleev, Dmitri I. (1834-1907) Russian chemist. Worked 
out the periodic table of the elements, which proved an important 
unifying concept in chemistry. The value of the table was established 
by his dramatic prediction of the properties of as-yet-unknown ele
ments. 

52 Michelson, Albert A.  (1852- 1931) German-American physi
cist. Made accurate determinations of velocity of light. Invented the 
interferometer and used it to show that light travels at constant ve
locity in all directions despite motion of the earth. This served as the 
foundation of the theory of relativity (see Chapter 9).  Nobel Prize, 
1907. 

53 Moseley, Henry G. J. (1887 -1915) English physicist. Studied 
X-ray emission by elements and worked out the manner in which 
nuclear electric charge differed from element to element. This led to 
the concept of the atomic number, which greatly improved the ra
tionale behind the periodic table of the elements. 

54 Newton, Isaac (1642-1727) English physicist and mathema
tician. Invented calculus, thus founding modern mathematics. Dis
covered compound nature of white light, thus founding modern optics. 
Constructed the first reflecting telescope. Worked out the laws of mo
tions and the theory of universal gravitation, replacing Aristotle's 
world system with one that was infinitely better. 

55 Ostwald, Friedrich W. (1853-1932) German physical chemist. 
Founder of modern physical chemistry. Worked on electrolytic dis-



200 ADDING A DIMENSION sociation. Proposed the modem view of catalysis as a surface phenomenon. Nobel Prize, 1909. 56 Pasteur, Louis (1822-1895) French chemist. Did pioneer work in stereochemistry. Advanced the germ theory of disease, thus founding modem medicine. He worked out dramatic methods of inoculation against various diseases. 57 Pauling, Linus C. (1901- ) American chemist. Applied quantum theory to molecular structure, proposing a new and more useful view of the valence bond, and establishing modem theoretical organic chemistry. First to propose the helical structure of large organic molecules, such as proteins, which led on to Crick's work. Nobel Prize, 1954 (Chemistry) and 1963 (Peace) .  Second person to win two Nobel Prizes. 58 Perkin, William H. ( 1838-1907) English chemist. Initiated the great days of synthetic organic chemistry by synthesizing aniline purple, first of the aniline dyes. Also synthesized coumarin, founding the synthetic perfume industry. 
59 Planck, Max K. E. L. (1858-1947) Gennan physicist. Worked out quantum theory to explain the nature of black-body radiation. This theory treats energy as discontinuous and as consisting of discrete particles or quanta. The new understanding it offered is so crucial that physics is commonly divided into "classical" (before Planck) and "modem" (since Planck).  Nobel Prize, 1918. 60 Priestley, Joseph (1733-1804) English chemist. Discovered oxygen ( see Chapter 11 ) . 61 Roentgen, Wilhelm K. (1845 -1923) German physicist. Discovered X-rays, an event usually considered as initiating the Second Scientific Revolution. Nobel Prize, 1901. 62 Rutherford, Ernest (1871- 1937) New Zealand-born British physicist. Enunciated the theory of the nuclear atom, in which the atom was viewed as containing a tiny central nucleus surrounded by clouds of electrons. 'Th.is founded subatomic physics. Rutherford was the first to effect an artificial nuclear reaction, changing one element into another. Nobel Prize, 1908. 63 Scheele, Karl W. (1 742-1786) German-Swedish chemist. Discovered or co-discovered some half-dozen elements, as well as a variety of organic and inorganic compounds. 

THE ISAAC WINNERS 201 64 Schwann, Theodor (1810-1882) German zoologist. Discovered first animal enzyme, pepsin. Contributed to the disproof of spontaneous generation. Strongest single contributor to the establishment of the cell theory, which is virtually the atomic theory of biology. 65 Soddy, Frederick (1877 -1956) English chemist. Worked out the isotope theory of the elements and with it the details of the course of radioactive breakdown. Nobel Prize, 1921. 66 Thales (640?- 546 B.c.) Greek philosopher. Founder of rationalism and the tradition that has led to modem science. 67 Thomson, Joseph J. ( 1856-1940) English physicist. First to establish, definitely, that cathode rays consisted of particles far smaller than atom; therefore the discoverer of the electrons and the founder of the study of subatomic particles. Nobel Prize, 1906. 68 Van't Hoff, Jacobus H. (1852 -1911)  Dutch physical chemist. Advanced theory of the tetrahedral carbon atom, by which molecular structure could be described in three dimensions. Contributed greatly to chemical thermodynamics. Nobel Prize, 1901. 69 Vesalius, Andreas (1514-1564) Belgian anatomist. Described his anatomical observations in a book with classically beautiful illustration. This demolished ancient errors in anatomy and established the science in its modem form. Published in 1543 (the year of Copernicus' book) it began the Scientific Revolution in the biological sciences. 70 Virchow, Rudolf (1821-1902) German pathologist. Studied disease from the cellular standpoint and ranks as the founder of modem pathology. He also labored on behalf of sanitation reform and was one of the founders of modem hygiene. 71  Volta, Alessandro (1745-1827) Italian physicist. Built the first chemical battery and founded the study of current electricity. 72 Wohler, Friedrich (1800-1882) First to form an organic compound (urea) from an inorganic precursor, thus founding modem organic chemistry.2 

Having completed the list of nominees, I am under the temptation to play with it, analyze it statistically in various fashions. I shall suc-
2 I repeat that this list is perhaps overconservative. Arguments can be ad

vanced for including such men as Hippocrates, Euclid, Leonardo da Vinci, 
Robert H. Goddard, Charles H. Townes, Emil Fischer, and so on. 
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cumb to this in only one small way. Let me list the total number of 
scientists on the list according (as nearly as I can guess) to the lan
guage they thought in. 

English 26 

German 21 
French 7 

Italian 4 
Greek 4 
Swedish 3 

Dutch & Flemish 3 

Polish 2 
Danish 1 
Russian 1 

I suppose this can be taken as evidence that modem science is 
primarily an Anglo-American-German phenomenon. I think, though, 
it is more likely to demonstrate that the individual who selected the 
names is himself English-speaking. 

Now there is nothing left for me to do but to list my version of the 
ten winners of the Isaac Awards. They will be placed on another page 
so that you can prepare your own version (if you choose) without 
reference to mine. My own list of Isaac winners is in alphabetical 
order; for I lack the courage to choose among them ( except that I 
would put Newton first).  However, you may list yours in a particular 
order, if you have the courage. 

Please feel free to send your list to me, if you wish. You have the 
right to disagree and can freely tell me about the men I have included 
(or excluded) that only a jackass would include (or exclude), either 
in my list of nominees or in my final list of Isaac winners. 

It's possible you may even enlighten me and cause me to change 
my mind. 
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Archimedes 
Darwin, Charles R. 
Einstein, Albert 
Faraday, Michael 
Galileo 
Lavoisier, Antoine L. 
Maxwell, James C. 
Newton, Isaac 
Pasteur, Louis 
Rutherford, Ernest 
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